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Abstract. To describe the values of criteria and to generate a sort of alternatives are two important issues in multi-criteria deci-

sion-making (MCDM). A superior tool for the former issue is Pythagorean hesitant fuzzy number (PHFN) and an effective tool 

for the latter issue is aggregation operator. So far, a number of aggregation operators of PHFNs have been presented within the 

academia. Each aggregation operator has its own characteristics and can work well for its specific purpose. But there is not yet 

an aggregation operator of PHFNs that can provide satisfying generality and flexibility in aggregating the values of criteria and 

capturing the interactions of criteria. The Archimedean t-conorm and t-norm (ATT) are well-known for having the capability to 

generate versatile and flexible operational rules for fuzzy numbers, while the Muirhead mean (MM) operator is an all-in-one 

aggregation operator for capturing the interrelationships of the aggregated arguments. To this end, the MM operator and the ATT 

for PHFNs are combined to present a Pythagorean hesitant fuzzy Archimedean MM (PHFAMM) operator and a weighted 

PHFAMM operator and a new MCDM method based on the presented operators is proposed in this paper. Firstly, the generalised 

expressions of the presented operators are provided. The properties of the operators are explored and proved and their specific 

expressions based on Algebraic, Einstein, Hamacher, and Frank ATTs are then constructed. Based on these specific expressions, 

a new method for solving the MCDM problems based on PHFNs is developed. Finally, the developed MCDM method is demon-

strated via an example, a set of experiments and qualitative and quantitative comparisons.  
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1.  Introduction 

Multi-criteria decision-making (MCDM) is a pro-

cess of finding desirable alternatives via evaluating the 

values of multiple criteria of all alternatives syntheti-

cally [1]. In this process, a primary issue is to describe 

the values of criteria. For this issue, many experts pro-

posed to adopt fuzzy sets [2]. For example, Atanassov 

[3-5] introduced the intuitionistic fuzzy set (IFS), 

which is a generalization of fuzzy set. Garg and Rani  

[6,7] extended the aggregation operators for IFS to 

deal with two-dimensional information in a set. Yager 

[8,9] introduced the Pythagorean fuzzy set (PFS), 
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which improves the expressiveness of IFS.  Zhang and 

Xu [10] developed a set of new operational laws for 

PFSs and explored their desirable properties. Garg 

[11-14] improved the existing aggregation operators 

for PFSs by adding the pairs of the hesitation between 

the membership functions and proposed some new op-

erational laws for Pythagorean fuzzy numbers using 

Einstein operations. Gou et al. [15] studied the conti-

nuity, derivability, and differentiability of continuous 

Pythagorean fuzzy information. Peng [16] extended 

the scope of PFS to combine soft set with rough set, 

employ PFS in the information environment of lan-



guage and propose a method to manage the member-

ship and non-membership degrees expressed by inter-

val-values. Garg [17] presented the linguistic Pythag-

orean fuzzy set by combining PFSs and linguistic 

fuzzy sets. Wei and Lu [18] proposed a set of Pythag-

orean fuzzy power aggregation operators and studied 

the prominent characteristics of these operators. By 

aggregated interval-valued Pythagorean fuzzy set 

(IVPFS) and the Maclaurin symmetric mean (MSM) 

operator, Garg [19] explored the IVPFSMSM opera-

tors and their weighted forms for solving MCDM 

problem, which can consider the interaction between 

the pairs of the membership degrees. In addition, Garg 

[20,21] also developed two new exponential opera-

tional laws and the aggregation operators to cope with 

crisp values on IVPFS in MCDM. Peng [22,23] pro-

posed a novel score function, a new distance measure 

with multiple parameters and novel algorithms for 

IVPFS in the context of MCDM. Torra and Narukawa 

[24,25] presented the concept of hesitant fuzzy set 

(HFS), which allows the membership degree of an el-

ement to be a set of some  feasible values between 0 

and 1. Qin et al. [26] investigated the Frank triangular 

norms with hesitant fuzzy information. Xu and Liang 

[27] proposed a distance measure for Pythagorean hes-

itant fuzzy sets (PHFSs), which can consider the dif-

ferences of the membership, non-membership, and in-

determinacy degrees.   

Another important issue in MCDM is to generate a 

sort of alternatives. For this issue, there are normally 

two categories of approaches. One category is com-

prised by conventional approaches (e.g. TOPSIS, VI-

KOR, PROMETHEE, ELECTRE). The other cate-

gory consists of the approaches based on aggregation 

operators. Aggregation operators can deal with the 

MCDM problems more effectively because they can 

provide comprehensive values and ranking of alterna-

tives, whereas conventional approaches can only gen-

erate ranking [28].  Recently, a number of different ag-

gregation operators for PHFSs have been presented, 

which mainly include the weighted average and geo-

metric operators [29], Hamacher aggregation opera-

tors [30], MSM operator [31], Bonferroni mean (BM) 

operator [32], Hybrid aggregation operator [33], Dual 

hesitant Pythagorean fuzzy Hamacher operator [34], 

and Archimedean aggregation operators [35]. Among 

these operators, the Archimedean Pythagorean hesi-

tant fuzzy weighted averaging operator and weighted 

geometric operator [35] are the most generalized ag-

gregation operators of Pythagorean hesitant fuzzy 

numbers (PHFNs). In them, the operations are per-

formed on the basis of any types of Archimedean t-

conorm and t-norm (ATT) (e.g. Algebraic, Einstein, 

Hamacher, and Frank t-conorms and t-norms) [36-38]. 

Due to such characteristic, the operators are more gen-

eralized, versatile and flexible than those operators 

based on one specific t-conorm and t-norm.  

In addition to the generality of the operations, the 

capability to capture the interactions among criteria is 

also an important feature of aggregation operators [39]. 

Among the existing aggregation operators of PHFNs, 

the MSM and BM operators have this capability. The 

Muirhead mean (MM) operator [40], a generalization 

of the arithmetic average, BM [41], MSM [42,43] and 

geometric average operators, also has such capability 

[44]. A number of researchers have explored the MM 

operator in various fuzzy environments for MCDM. 

For example, Liu and Li [45] developed an MM oper-

ator to aggregate hesitant fuzzy linguistic information. 

Wang J et al. [46] developed a hesitant fuzzy linguistic 

MM operator. Hong and Rong [44] presented a hesi-

tant fuzzy dual Muirhead mean operator. Zhu and Li 

[47] proposed a Pythagorean fuzzy MM operator and 

a Pythagorean fuzzy dual MM operator.  

Based on the considerations above, it is non-trivial 

to combine the MM operators with the ATTs under 

Pythagorean hesitant fuzzy environment. In this paper, 

such combination is studied in depth. The major con-

tributions of the paper are to present and explore the 

properties of a Pythagorean hesitant fuzzy Archime-

dean MM (PHFAMM) operator and its weighted form 

and to propose a new method based on the presented 

operators to resolve the MCDM problems based on 

PHFNs. To the best of the knowledge, this is the first 

PHFNs based MCDM method that combines the MM 

operators and the ATTs in the context of PHFSs.  

The remainder of the paper is organized as follows. 

Section 2 gives a brief introduction to some related 

concepts. Section 3 explains the details of the pre-

sented operators. Section 4 elaborates the proposed 

MCDM method. Section 5 demonstrates the proposed 

method via a practical example, a set of experiments, 

and comparisons with existing methods. Section 6 

ends the paper with a conclusion.  

2. Preliminaries 

2.1. MM Operator 

Definition 1. [40] Let 𝑎𝑖(𝑖 = 1,2, … , 𝑛)  be a collec-

tion of nonnegative real members, 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} 
and 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛) ∈ 𝑅

𝑛 be a parameter vector, if 
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then MMP is called the MM operator, where 𝜗(𝑗)(𝑗 =

1,2, … , 𝑛) is a permutation of (1,2, … , 𝑛) and 𝑆𝑛 is the 

collection of all permutations of 𝜗(𝑗).  

An advantage of the MM operator is that it can capture 

the interrelationships among the multiple aggregated 

arguments. In addition, the MM operator is a general-

ization of a number of existing aggregation operators. 

The special cases of MM operator are as follows: 

Case 1. If 𝑃 = (1,0, … ,0), the MM operator will re-

duce to the arithmetic average operator: 
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Case 2. If 𝑃 = (
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Case 3. If P = (1, 1, 0, 0, …, 0), the MM operator will 

reduce to the BM operator: 
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Case 4. If 𝑃 = (1,1,…1⏟    
𝑘

, 0,0,… 0⏟    )
𝑛−𝑘

, the MM operator 

will reduce to the MSM operator: 
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2.2. PHFS Theory 

Definition 2. [29]   Let 𝑋 be a universe of discourse. A 

PHFS 𝑃 on 𝑋 is given by 

{ , ( ) | }pP x h x x X   
 

where ℎ𝑝(𝑥) = {𝜇(𝑥), 𝜈(𝑥)} denotes a set of possible 

Pythagorean fuzzy numbers on 𝑋, and 𝜇(𝑥) and 𝜈(𝑥) 
denote the membership and non-membership degrees 

of the element 𝑥 ∈ 𝑋  to the set P, respectively. For 

convenience, 𝑝 = ℎ𝑝(𝑥) = ⋃ {(𝛾, 𝜂)}(𝛾,𝜂)∈ℎ𝑝(𝑥)   (0 ≤

γ, η ≤ 1  and 0 ≤ γ2 + η2 ≤ 1 ) is called a PHFN. A 

PHFN is generally simplified as 𝑝 = ℎ𝑝 = (𝜇, 𝜈).  

Definition 3. [30]  For any PHFN ℎ𝑝 = (𝜇, 𝜈) , the 

score function of ℎ𝑝 is defined as follow: 
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where S(ℎ𝑝) ∈ [−1,1]   For any PHFN ℎ𝑝 = (𝜇, 𝜈) , 

the accuracy function of ℎ𝑝 is defined as follow: 

2 2

( , ) ( , )

1
( ) ( )

h

A p
l 

 
   

 

                        (7) 

where 𝑙ℎ is the number of elements in (𝜇, 𝜈).   
Definition 4. [10, 29]  Let ℎ1𝑝 = (𝜇1, 𝜈1)  and ℎ2𝑝 =

(𝜇2, 𝜈2) be any two PHFNs, 𝑆(ℎ𝑖𝑝) is the score func-

tion and 𝐴(ℎ𝑖𝑝) is accuracy function of ℎ𝑖𝑝(𝑖 = 1, 2). 

Then the ordering of those two PHFNs are given by 

(1) if  𝑆(ℎ1𝑝) > 𝑆(ℎ2𝑝) , then ℎ1𝑝 is superior to ℎ2𝑝, 

denoted by ℎ1𝑝 > ℎ2𝑝  

(2) if  𝑆(ℎ1𝑝) = 𝑆(ℎ2𝑝), then 

a. if  𝐴(ℎ1𝑝) > 𝐴(ℎ2𝑝) , then ℎ1𝑝 > ℎ2𝑝  

b. if  𝐴(ℎ1𝑝) = 𝐴(ℎ2𝑝) , then ℎ1𝑝  is equivalent 

to ℎ2𝑝, denoted by ℎ1𝑝 ≈ ℎ2𝑝.  

 

2.3. Operational Laws of PHFNs Based on ATTs 

Definition 5. [35]  A fuzzy t-conorm is a binary oper-

ation  𝑈: [0,1] × [0,1] → [0,1]  that satisfies the fol-

lowing conditions for all 𝑎, 𝑏, 𝑑 ∈ [0,1] :  
(1) 𝑈(𝑎, 0) = 𝑎 for all 𝑎. 

(2) 𝑈(𝑎, 𝑏) = 𝑈(𝑏, 𝑎)  for all 𝑎 and 𝑏. 

(3) If 𝑏 < 𝑏∗ and 𝑑 < 𝑑∗ then 𝑈(𝑏, 𝑑) ≤ 𝑈(𝑏∗, 𝑑∗). 
(4) 𝑈(𝑎, 𝑈(𝑏, 𝑑)) = 𝑈(𝑈(𝑎, 𝑏), 𝑑) for all 𝑎, 𝑏 and 𝑑. 

Definition 6. [35] A fuzzy t-norm is a binary operation 

𝐼: [0,1] × [0,1] → [0,1]   that satisfies the following 

conditions for all , 𝑏, 𝑑 ∈ [0,1] :  
(1) 𝐼(𝑎, 1) = 𝑎 for all 𝑎. 

(2) 𝐼(𝑎, 𝑏) = 𝐼(𝑏, 𝑎) for all 𝑎 and 𝑏. 

(3) If 𝑏 < 𝑏∗and 𝑑 < 𝑑∗ then  𝐼(𝑏, 𝑑) ≤ 𝐼(𝑏∗, 𝑑∗). 
(4) 𝐼(𝑎, 𝐼(𝑏, 𝑑)) = 𝐼(𝐼(𝑎, 𝑏), 𝑑) for all 𝑎, 𝑏 and 𝑑. 

Definition 7. [35]  A fuzzy t-norm 𝐼(𝑎, 𝑏) is called Ar-

chimedean t-norm (ATN) if every sequence 𝑥𝑛 (where 

𝑛 = 1,2, …  𝑥1 < 1  and  𝑥𝑛+1 = 𝐼( 𝑥𝑛 , 𝑥𝑛) converges 

to 0. The conorm of an ATN is called Archimedean t-

conorm (ATC). 

For ATN and ATC:  

(1) If 𝑓(𝑡)(𝑡 ∈ 𝑅)  is monotonically decreasing and 

satisfies the conditions that 𝑓(𝑡): (0,1] →
𝑅+   𝑓−1(𝑡): 𝑅+ → (0,1]   𝑙𝑖𝑚𝑡→∞𝑓

−1(𝑡) = 0   

𝑓−1(0) = 1 , then 𝑓(𝑡)  can be used to express 𝐼 
and is called the additive generator of 𝐼 :  

1( , ) ( ( ) ( ))I a b f f a f b                (8) 

for all 𝑎, 𝑏 ∈ [0,1]. 
(2) If 𝑔(𝑡)(𝑡 ∈ 𝑅)  is monotonically increasing and 

satisfies the conditions that 𝑔(𝑡): (0,1] →



𝑅+   𝑔−1(𝑡): 𝑅+ → (0,1]   𝑙𝑖𝑚𝑡→∞𝑔
−1(𝑡) = 1   

𝑔−1(0) = 0, then 𝑔(𝑡) can be used to express 𝑈 

and is called the additive generator of 𝑈:  
1( , ) ( ( ) ( ))U a b g g a g b                (9)  

Please note that 𝑔(𝑡) = 𝑓(1 − 𝑡) for all 𝑎, 𝑏 ∈ [0,1].     

Four specific types of ATTs and their additive gen-

erators are shown in the Tables 1 and 2 [35]. From the 

two tables, it is not difficult to derive the inverses of 

the additive generators (i. e. 𝑓−1 and 𝑔−1) of each type 

of ATT. They are omitted here due to space limitations.

 

Table 1 
Four types of ATNs and their additive generators 

Name ATN Additive generator 𝑓(𝑡) 
Algebraic 𝐼𝐴(𝑎, 𝑏) = 𝑎𝑏 𝑓(𝑡) = − ln 𝑡 

Einstein 𝐼𝐸(𝑎, 𝑏) =
𝑎𝑏

1 + (1 − 𝑎)(1 − 𝑏)
 𝑓(𝑡) = −ln

2 − 𝑡

𝑡
 

Hamacher 𝐼𝐻(𝑎, 𝑏) =
𝑎𝑏

𝜃 + (1 − 𝜃)(𝑎 + 𝑏 − 𝑎𝑏)
, 𝑤ℎ𝑒𝑟𝑒 𝜃 > 0 𝑓(𝑡) = ln

𝜃 + (1 − 𝜃)𝑡

𝑡
, 𝑤ℎ𝑒𝑟𝑒 𝜃 > 0 

Frank 𝐼𝐹(𝑎, 𝑏) = log𝜃 1 +
(𝜃𝑎 − 1)(𝜃𝑏 − 1)

𝜃 − 1
,𝑤ℎ𝑒𝑟𝑒 𝜃 > 1 𝑓(𝑡) = ln

𝜃 − 1

𝜃𝑡 − 1
,𝑤ℎ𝑒𝑟𝑒 𝜃 > 1 

 
 

 
Table 2 

Four types of ATCs and their additive generators  

Name ATC Additive generator 𝑔(𝑡) 
Algebraic 𝑈𝐴(𝑎, 𝑏) = 𝑎 + 𝑏 − 𝑎𝑏 𝑔(𝑡) = − ln(1 − 𝑡) 

Einstein 𝑈𝐸(𝑎, 𝑏) =
𝑎 + 𝑏

1 + 𝑎𝑏
 𝑔(𝑡) = ln

1 + 𝑡

1 − 𝑡
 

Hamacher 𝑈𝐻(𝑎, 𝑏) =
𝑎 + 𝑏 − 𝑎𝑏 − (1 − 𝜃)𝑎𝑏

1 − (1 − 𝜃)𝑎𝑏
, 𝑤ℎ𝑒𝑟𝑒 𝜃 > 0 𝑔(𝑡) = ln

𝜃 + (1 − 𝜃)(1 − 𝑡)

1 − 𝑡
,𝑤ℎ𝑒𝑟𝑒 𝜃 > 0 

Frank 𝑈𝐹(𝑎, 𝑏) = 1 − log𝜃 1 +
(𝜃1−𝑎 − 1)(𝜃1−𝑏 − 1)

𝜃 − 1
,𝑤ℎ𝑒𝑟𝑒 𝜃 > 1 𝑔(𝑡) = ln

𝜃 − 1

𝜃1−𝑡 − 1
,𝑤ℎ𝑒𝑟𝑒 𝜃 > 1 

Definition 8. [35]  Let ℎ𝑝 = (𝜇, 𝜈) and  𝜆 > 0. Then 

there are two operational laws for the PHFNs based on 

ATT: 

(1) 1 2 1 2

( , ) ( , )

{( ( ( )), ( ( )))}ph g g f f 
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Definition 9. [35] Let ℎ𝑗𝑝 = (𝑢𝑗 , 𝑣𝑗)(𝑗 = 1,2, … 𝑛) be 

a set of PHFNs, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇 be the weight 

vector of ℎ𝑗𝑝, where  𝑤𝑗 ∈ [0,1] and  ∑ 𝑤𝑗
𝑛
𝑗=1 = 1. An 

Archimedean Pythagorean hesitant fuzzy weighted 

average (APHFWA) operator is a mapping operation: 

𝑃𝑛 → P , defined by 𝐴𝑃𝐻𝐹𝑊𝐴(𝑝1 , 𝑝2, … , 𝑝𝑛 =
⨁𝑖=1
𝑛 (𝑤𝑖𝑝𝑖)), where ⨁ conveys the addition of all el-

ements in ℎ𝑗𝑝 . Then the aggregated value of the 

APHFWA operator is also a PHFN, and 

1 2
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Definition 10. [35] Let  ℎ𝑗𝑝 = (𝑢𝑗, 𝑣𝑗)(𝑗 = 1,2, … 𝑛) 

be a set of PHFNs, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇  be the 

weight vector of ℎ𝑗𝑝 , where  𝑤𝑗 ∈ [0,1]  and 

 ∑ 𝑤𝑗
𝑛
𝑗=1 = 1 . Then, an Archimedean Pythagorean 

hesitant fuzzy weighted geometric (APHFWG) opera-

tor is a mapping operation: 𝑃𝑛 → P , defined by 

𝐴𝑃𝑠𝐻𝐹𝑊𝐺(𝑝1 , 𝑝2, … , 𝑝𝑛 = ⨂𝑖=1
𝑛 (𝑝𝑖

𝑤𝑖)) , where ⨂ 

conveys the multiplication of all elements in ℎ𝑗𝑝. Then 

the aggregated value of the APHFWG operator is also 

a PHFN, and 

1 2

1 2

1

1 2( , ) ( , )
1,2,... 1

( , ,..., )

{( ( ( )),

( ( )))}i i i i

p p np
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j ii

n
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APHFWG h h h

f w f
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3. PHFAMM Operators 

In this section, a PHFAMM operator and a 

weighted PHFAMM (WPHFAMM) operator are pre-

sented via using the MM operator and the operational 

laws of PHFNs based on ATTs. The properties of the 

two operators are explored and proved and their spe-

cific expressions are derived.  



3.1.  PHFAMM Operator 

Definition 11. Let 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝑛) ∈ 𝑅
𝑛  be a pa-

rameter vector and ℎ𝑗𝑝 = (𝑢𝑗, 𝑣𝑗)(𝑗 = 1,2, … 𝑛)  be a 

set of PHFNs. If  
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Then PHFAMMQ is called the PHFAMM operator. In 

this equation, 𝜗(𝑗)(𝑗 = 1,2, …𝑛) is any a permutation 

of (1,2, … 𝑛), 𝑆𝑛 is the collection of all permutations 

of (1,2, … 𝑛), ⨁ and ⨂ convey the same meaning as 

they are in Definition 9 and Definition 10, respectively. 

Theorem 1. Let ℎ𝑗𝑝 = (𝑢𝑗 , 𝑣𝑗)(𝑗 = 1,2, … 𝑛) be a set 

of PHFNs, 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝑛) ∈ 𝑅
𝑛  be a parameter 

vector, 𝜗(𝑗)(𝑗 = 1,2, …𝑛)  be a permutation of 

(1,2, …𝑛), and 𝑆𝑛 be the collection of all permutations 

of (1,2, … 𝑛) .Then 𝑃𝐻𝐹𝐴𝑀𝑀𝑄(ℎ1𝑝, ℎ2𝑝, … ℎ𝑛𝑝)  is 

still a PHFN, and  
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Proof. 

(1) Firstly, it is needed to prove that Equation (13) 

holds. 

According to law (2) in Definition 8, it can be 

obtained that 
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Obviously, ⨂𝑖=1
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Obviously, ⨁𝑖=1
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According to law (1) in Definition 8, it can be 

obtained that 
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According to law (2) in Definition 8, the fol-

lowing equation is obtained: 
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where λ =
1

∑ 𝑞𝑗
𝑛
𝑗=1

 , 𝜗(𝑗)(𝑗 = 1,2,… 𝑛)  is a per-

mutation of (1,2,… 𝑛) , and 𝑆𝑛 is the collection 

of all permutations of (1,2,…𝑛). Thus, Equa-

tion (13) holds. 

(2) The following will prove that Equation (13) is 

a PHFNs. 

Let 
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and  
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According to the definition of a PHFNs (Defi-

nition 2), it can be obtained that 0 ≤ 𝛾𝑗 ≤ 1 , 

0 ≤ 𝜂𝑗 ≤ 1  and 0 ≤ 𝛾𝑗
2 + 𝜂𝑗

2 ≤ 1 . Since 

𝜗(𝑗)(𝑗 = 1,2,…𝑛)  is a permutation of 

(1,2,… 𝑛) and 𝑆𝑛 is the collection of all permu-

tations of (1,2,… 𝑛), the following inequalities 

are obtained according to the requirements of 

the additive generators 𝑓(𝑥) and 𝑔(𝑥): 
0 1hp  , 0 1hp  . 



Thus, it is obtained that 0 ≤ 𝛾ℎ𝑝
2 + 𝜂ℎ𝑝

2 ≤ 2. 

Since 𝛾𝜗(𝑗)
2 + 𝜂𝜗(𝑗)

2 ≤ 1 , then 𝛾𝜗(𝑗)
2 ≤ 1 − 𝜂𝜗(𝑗)
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Since 𝑓 (1 − 𝜂𝜗(𝑗)
2 ) = 𝑔(𝜂𝜗(𝑗)

2 ) , it can be ob-

tained that 
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Therefore, the following inequality is attained: 
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That is,  0 ≤ 𝜇ℎ𝑝
2 + 𝜈ℎ𝑝

2 ≤ 1.  

According to the Definition 2, it can be con-

cluded that the aggregated result of Equation 

(12) is a PHFN. 
The following theorems state the idempotency, 

monotonicity and boundedness of the PHFAMM op-

erator, respectively: 

Theorem 2(Idempotency). Let ℎ𝑗𝑝(𝑗 = 1,2, … 𝑛) 

(where   ℎ𝑗𝑝 = (𝑢𝑗, 𝑣𝑗)(𝑗 = 1,2, …𝑛) ) be a collection 

of PHFNs and 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝑛) ∈ 𝑅
𝑛 be parameter 

vectors. If ℎ𝑗𝑝(𝑗 = 1,2, …𝑛)  are equal, i.e., ℎ𝑗𝑝 = ℎ𝑝 

(where ℎ𝑝 = (𝑢𝑝, 𝑣𝑝)) for all i , then 
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Proof. 

According to the Theorem 1 yields  
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where λ =
1

∑ 𝑞𝑗
𝑛
𝑗=1

. 

Since ℎ𝑗𝑝 = ⋃ {(𝛾𝑗, 𝜂𝑗)}(𝛾𝑗,𝜂𝑗)∈(𝜇𝑗,𝜈𝑗)

𝑗=1,2,…,𝑛

= ℎ𝑝 = 

 ⋃ {(𝛾, 𝜂)}(𝛾,𝜂)∈(𝜇,𝜈)  i.e., 𝛾𝑗 = 𝛾 and 𝜂𝑗 = 𝜂, then  
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Finally, it is obtained that: 

1 2( , ,... ) ( , )Q

p p np p pPHFAMM h h h    . 

Theorem 3(Monotonicity).  Let 

 ℎ𝑗𝑝 = ⋃ {(𝛾𝑗, 𝜂𝑗)}(𝛾𝑗,𝜂𝑗)∈(𝜇𝑗,𝜈𝑗)

𝑛=1,2,…𝑛

 and 

 ℎ̃𝑗𝑝 = ⋃ {(�̃�𝑗, �̃�𝑗)}(�̃�𝑗,�̃�𝑗)∈(�̃�𝑗,�̃�𝑗)

𝑛=1,2,…𝑛

  be two collections of 

PHFNs. For the PHFAMMQ operator, if 𝛾𝑗 ≥

𝛾�̃� and 𝜂𝑗 ≥ 𝜂�̃�, then 
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Since𝑓(𝑥) and 𝑓−1(𝑥) are monotonically decreasing, 

𝑔(𝑥) and 𝑔−1(𝑥) are monotonically increasing, 𝛾𝑗 ≥
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Therefore, it is obtained that  
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holds. 

Theorem 4(Boundness).  Let 

ℎ𝑗𝑝 = ⋃ {(𝛾𝑗, 𝜂𝑗)}(𝛾𝑗,𝜂𝑗)∈(𝜇𝑗,𝜈𝑗)

𝑛=1,2,…𝑛

 be a collection of PHF-

Ns, and let 𝛾𝑚𝑖𝑛 = min {𝛾𝑗𝑚𝑖𝑛}, 

where 𝛾𝑗𝑚𝑖𝑛 = min
(𝛾𝑗,𝜂𝑗)∈(𝜇𝑗,𝜈𝑗)

{𝛾𝑗}  for all 𝑖 = 1,2,…𝑛; 

𝛾𝑚𝑎𝑥 = max{𝛾𝑗𝑚𝑎𝑥}, 

where 𝛾𝑗𝑚𝑎𝑥 = max
(𝛾𝑗,𝜂𝑗)∈(𝜇𝑗,𝜈𝑗)

{𝛾𝑗} for all 𝑖 = 1,2, … 𝑛; 

𝜂𝑚𝑖𝑛 = min {𝜂𝑗𝑚𝑖𝑛},  

where 𝜂𝑗𝑚𝑖𝑛 = min
(𝛾𝑗,𝜂𝑗)∈(𝜇𝑗,𝜈𝑗)

{𝜂𝑗} for all 𝑖 = 1,2, … 𝑛; 

𝜂𝑚𝑎𝑥 = max {𝜂𝑗𝑚𝑎𝑥}, 

where 𝜂𝑗𝑚𝑎𝑥 = max
(𝛾𝑗,𝜂𝑗)∈(𝜇𝑗,𝜈𝑗)

{𝜂𝑗} for all 𝑖 = 1,2, … 𝑛. 

Let ℎ𝑝− = (𝛾𝑚𝑖𝑛 , 𝜂𝑚𝑎𝑥) and ℎ𝑝+ = (𝛾𝑚𝑎𝑥 , 𝜂𝑚𝑖𝑛),then 

1 2 +( , ,... )Q

p p p np ph PHFAMM h h h h   . 

Proof. 

According to Theorem 2 and Theorem 3, it can be 

achieved that 

1 2 + + +( , ,... ) ( , ,... ),Q Q

p p np p p pPHFAMM h h h PHFAMM h h h  

1 2( , ,... ) ( , ,... ).Q Q

p p np p p pPHFAMM h h h PHFAMM h h h    

Consequently, it is obtained that  

1 2 +( , ,... )Q

p p p np ph PHFAMM h h h h   . 

Equation (13) is a generalized expression of the 

PHFAMM operator. To construct specific expressions 

of the operator, different pairs of 𝑓(𝑥)𝑠 and 𝑔(𝑥)𝑠 are 

used:  

▪ (Algebraic) If 𝑓(𝑥) = − 𝑙𝑛(𝑡), then the PHFAMM 

operator reduces to a Pythagorean hesitant fuzzy Ar-

chimedean Algebraic Muirhead mean (PHFAAMM) 

operator: 

1 2

( , ) ( , )

1,2...

( , ,... )

= {( (1 ) , 1 (1 ) )}
j j j j

Q
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i n
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where  
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A j A j
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▪ (Einstein) If 𝑓(𝑥) = 𝑙𝑛(
2−𝑡

𝑡
), then the PHFAMM 

operator reduces to a Pythagorean Hesitant Fuzzy Ar-

chimedean Einstein Muirhead mean (PHFAEMM) op-

erator: 

1 2

1 2

1 2 1 2
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where 
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▪ (Hamacher) If  𝑓(𝑥) = 𝑙𝑛(
𝜃+(1−𝜃)𝑡

𝑡
)  ,𝜃 > 0 , δ =

𝜃 − 1, then the PHFAMM operator reduces to a Py-

thagorean hesitant fuzzy Archimedean Hamacher 

Muirhead mean (PHFAHMM) operator: 
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The PHFAHMM operator reduces to the PHFAAMM 

operator when 𝜃 = 1 and reduces to the PHFAEMM 

operator when 𝜃 = 2.  

▪ (Frank) If 𝑓(𝑥) = 𝑙𝑛(
𝜃−1

𝜃𝑡−1
), 𝜃 > 1, δ = 𝜃 − 1, then 

the PHFAMM operator reduces to a Pythagorean hes-

itant fuzzy Archimedean Frank Muirhead mean 

(PHFAFMM) operator: 
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3.2. WPHFAMM Operator 

The PHFAMM operator has advantages in describ-

ing fuzzy information flexibly and capturing the inter-

relationships among criteria. But it does not measure 

the relative importance of criteria. To this end, weights 

are introduced and a weighted PHFAMM operator is 

constructed as follow: 

Definition 12. On the basis of Definition 7, let 𝑤 =
(𝑤1, 𝑤2, … , 𝑤𝑛)

𝑇  be the weight vector of ℎ𝑗𝑝 (where 

𝑤𝑗   delegates the importance degree of ℎ𝑗𝑝) such that  

𝑤𝑗 ∈ [0,1] and  ∑ 𝑤𝑗
𝑛
𝑗=1 = 1. If  
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Then WPHFAMMQ is called the WPHFAMM opera-

tor. 

Theorem 5.  Let ℎ𝑗𝑝 = (𝑢𝑗 , 𝑣𝑗)(𝑗 = 1,2, …𝑛) be a set 

of PHFNs, and 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝑛) ∈ 𝑅
𝑛  be a param-

eter vector. Then W𝑃𝐻𝐹𝐴𝑀𝑀𝑄(ℎ1𝑝, ℎ2𝑝, … ℎ𝑛𝑝)  is 

still a PHFN, and  
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where, λ =
1

∑ 𝑞𝑗
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The proof of Theorem 5 is similar as that of Theorem 

1 and is omitted here. Furthermore, the WPHFAMM 

operator has the properties of monotonicity and 

boundedness. Such proofs are respectively similar as 

that of Theorem 3 and Theorem 4 and are also omitted 

here.  

The following are some special cases of the WPH-

FAMM operator with respect to the value of parameter 

Q: 



(1) When 𝑄 = (1,0, … ,0) , the WPHFAMM reduces 

to: 
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which is the APHFWA operator presented in [35]. 

(2) When 𝑄 = (
1

𝑛
,
1

𝑛
, … ,

1

𝑛
), the WPHFAMM reduces 

to:   
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which is the APHFWG operator presented in [35]. 
(3) When Q = (1, 1, 0, 0, …, 0), the WPHFAMM re-

duces to: 

, , , ,
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where 𝑝, 𝑞 ≥ 0, and  
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(4) When 𝑄 = (1,1, … 1⏟    
𝑘

, 0,0, … 0⏟    )
𝑛−𝑘

, the WPHFAMM 

reduces to: 
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whose Algebraic form is the WHPFMSM operator 

presented in [31], where  
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Equation (19) is a generalized expression of the 

WPHFAMM operator. To construct specific expres-

sions of the operator, different pairs of 𝑓(𝑥)𝑠  and 

𝑔(𝑥)𝑠 are used:   

▪ (Algebraic) If 𝑓(𝑥) = − 𝑙𝑛(𝑡), the WPHFAMM op-

erator reduces to a weighted PHFAAMM operator 

(WPHFAAMM): 
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▪ (Einstein) If 𝑓(𝑥) = 𝑙𝑛(
2−𝑡

𝑡
), then the WPHFAMM 

operator reduces to a weighted PHFAEMM operator 

(WPHFAEMM): 
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▪ (Hamacher) If 𝑓(𝑥) = 𝑙𝑛(
𝜃+(1−𝜃)𝑡

𝑡
)  ,𝜃 > 0 ,  δ =

𝜃 − 1 , the WPHFAMM operator reduces to a 

weighted PHFAHMM operator (WPHFAHMM): 
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The WPHFAHMM operator reduces to the WPH-

FAAMM operator when 𝜃 = 1  and reduces to the 

WPHFAEMM operator when 𝜃 = 2.  

▪ (Frank) If 𝑓(𝑥) = 𝑙𝑛(
𝜃−1

𝜃𝑡−1
), 𝜃 > 1, δ = 𝜃 − 1, the 

WPHFAMM operator reduces to a weighted PHFAF-

MM operator (WPHFAFMM): 
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4. MCDM Method  

Let Z = {𝑧1, 𝑧2, … , 𝑧𝑚} be a set of alternatives, C =
{𝑐1, 𝑐2, … , 𝑐𝑛} be a collection of criteria whose weight 

vector is given by 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇 , with 𝑤𝑗 ∈

[0,1]  and  ∑ 𝑤𝑗
𝑛
𝑗=1 = 1 . Suppose 𝐻 = (ℎ𝑝𝜗(𝑗))𝑚×𝑛  is 

a Pythagorean hesitant fuzzy decision matrix. Then, a 

MCDM method based on the PHFAMM and WPH-

FAMM operators can described via the following 

steps:  

Step 1.  Normalize the Pythagorean hesitant fuzzy 

decision matrix. Normally, there are two kinds of cri-

teria in MCDM, i.e. benefit criteria and cost criteria. 

They respectively have a positive and negative impact 

on decision making. To remove the negative impact, 

the matrix needs to be normalized by 

ℎ𝑝𝜗(𝑗) = {
(𝜇𝑖𝑝𝜗(𝑗) , 𝜈𝑖𝑝𝜗(𝑗)) , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑎

(𝜈𝑖𝑝𝜗(𝑗) , 𝜇𝑖𝑝𝜗(𝑗)) , 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑎       
. 

Step 2.  Calculate the comprehensive values of all 

alternatives. Taking (ℎ𝑝𝜗(𝑗))𝑚×𝑛 , 𝑄  and 𝑤  as input, 

the comprehensive value for each alternative 𝑧𝑖 can be 

calculated using the PHFAMM (or WPHFAMM) op-

erator. 

        
1 2( , ,... )Q

p p p nph PHFAMM h h h  

or   
1 2( , ,... )Q

p p p nph WPHFAMM h h h  

Step 3.  Calculate the scores and accuracies. Ac-

cording to Equation (6) and Equation (7), the scores 

and accuracies of the comprehensive values of all al-

ternatives are calculated as  
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Step 4.  Generate a sort of all alternatives. Accord-

ing to Definition 4 and the score and accuracy values 

of each alternative, a sort of all alternatives is gener-

ated.  

5. Example, Experiments and Comparisons 

In this section, an example is given to illustrate the 

working process of the proposed method firstly. Then 

a set of experiments are performed to explore the de-

cision results under different parameters. Finally, the 

effectiveness of the method is demonstrated via com-

parisons with existing methods.  

5.1. Example 

With the fast-growing industrialization, the society 

is facing various threats, such as global warming, food 

safety, trash-dumping issue, natural resources deple-

tion, etc. The green supply chain management 

(GSCM) (cited from Reference [35]) is one of bur-

geoning fields of research that present solutions for 

these threats. It not only considers environmental im-

pacts but also productivity and profit. Consequently, 

GSCM is a good example of MCDM problems. It is 

formally described as follow. 

There are five alternative green suppliers in GSCM 

𝑍 = {𝑧𝑖|𝑖 = 1,2,3,4,5} . The experts mainly consider 

four criteria, namely, the product quality factor (𝐶1), 



the environmental factor (𝐶2),  the delivery factor(𝐶3), 
and the price factor (𝐶4) . The weight vector of these 

criteria is 𝑤 = (0.4,0.1,0.2,0.3)𝑇. The assessed values 

of the four criteria of the five alternative green suppli-

ers are shown in Table 3.  

With the conditions above, the GSCM problem can 

be resolved using the proposed MCDM method. The 

specific process is as follows:  

Step 1. Normalize the decision matrix. Since the 

four criteria are all benefit criteria, normalization is 

not needed. 

Step 2.  Calculate the comprehensive values of all 

alternatives. The comprehensive value ℎ𝑝 for each al-

ternative 𝑧𝑖  can be obtained via using the presented 

PHFAMM (or WPHFAMM) operator. Taking 

(ℎ𝑝𝜗(𝑗))𝑚×𝑛, Q and 𝑤 as input, the generalized WPH-

FAHMM operator (Suppose Q = (1,1,1,1), 𝜃 = 3) is 

used to calculate the overall preference value of each 

alternative. For example, the comprehensive of 𝑍1 is 
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Then 

 1 2 3 4( , , , )Q

p p p pWPHFAHMM h h h h  

{(0.2,0.3),(0.3,0.4)},

{(0.4,0.6),(0.5,0.4),(0.7,0.2)}
=

{(0.4,0.5),(0.6,0.3)},

{(0.6,0.3),(0.7,0.4)}

 
 
 
 
 
  

 

{0.357468,0.374823,0.398696,0.417558,...,

0.457773,0.478537,0.506760,0.528819},

{0.527741,0.543744,0.491898,0.508755,...,

0.467861,0.485401,0.427919,0.446677}

 
 
 

  
 
  

 

Similarly, the comprehensive values of the remain-

ing alternatives are calculated. 

Step 3. Calculate the scores and accuracies. The ac-

curacy and score values of each alternative are respec-

tively calculated using Equation (6) and Equation (7). 

The calculated results are shown in the Table 4. 

Step 4. Generate a sort of all alternatives. Based on 

Table 4, the ranking method in Definition 4 is applied 

to generate a sort of the five alternatives. The gener-

ated sort is 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1. 
 

Table 3  
Pythagorean hesitant fuzzy decision matrix 

Alternatives 𝐶1 𝐶2 
𝑍1 {(0.2,0.3), (0.3,0.4)} {(0.4,0.6), (0.5,0.4), (0.7,0.2)} 
𝑍2 {(0.4,0.3), (0.6,0.4)} {(0.5,0.6), (0.6,0.4)} 
𝑍3 {(0.6,0.2), (0.7,0.3)} {(0.5,0.3), (0.5,0.4)} 
𝑍4 {(0.6,0.5), (0.7,0.4)} {(0.5,0.2), (0.6,0.5)} 
𝑍5 {(0.3,0.3), (0.6,0.4)} {(0.5,0.4), (0.7,0.4)} 

Alternatives 𝐶3 𝐶4 
𝑍1 {(0.4,0.5), (0.6,0.3)} {(0.6,0.3), (0.7,0.4)} 
𝑍2 {(0.5,0.3), (0.5,0.6)} {(0.5,0.4), (0.7,0.6)} 
𝑍3 {(0.5,0.2), (0.8,0.6), (0.8,0.2)} {(0.4,0.5), (0.6,0.4)} 
𝑍4 {(0.4,0.3), (0.5,0.4)} {(0.6,0.2), (0.6,0.3), (0.8,0.4)} 
𝑍5 {(0.6,0.4), (0.7,0.4)} {(0.4,0.6), (0.5,0.3)} 

 
Table 4 

The calculated accuracy and score values 

Indicator Z1 Z2 Z3 Z4 Z5 



Score 0.477289 0.480328 0.544302 0.535599 0.499754 

Accuracy 0.429011 0.556563 0.525946 0.525959 0.507405 

 
Table 5 

The results of Experiment 1 

Operators Scores of all alternatives Ranking 

WPHFAAMM 
S(𝑧1) = 0.476681, S(𝑧2) = 0.477955, 

S(𝑧3) = 0.543650, S(𝑧4) = 0.535835, S(𝑧5) = 0.499211   
𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 

WPHFAEMM 
S(𝑧1) = 0.577305, S(𝑧2) = 0.597719, 

S(𝑧3) = 0.643641, S(𝑧4) = 0.639032, S(𝑧5) = 0.603516 
𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 

WPHFAHMM 
S(𝑧1) = 0.477289, S(𝑧2) = 0.480328, 

S(𝑧3) = 0.544302, S(𝑧4) = 0.535599, S(𝑧5) = 0.499754 
𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 

WPHFAFMM 
S(𝑧1) = 0.476370, S(𝑧2) = 0.478601, 

S(𝑧3) = 0.543008, S(𝑧4) = 0.534868, S(𝑧5) = 0.498847 
𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 

 

5.2. Experiments 

To explore the effect of using different groups of ag-

gregation operators and assigning different parameter 

values on the aggregation result, the following three ex-

periments were carried out:  

(1) Experiment 1 was conducted to show the ef-

fect of using different groups of operators on the aggre-

gation result. In this experiment, (ℎ𝑖𝑗)𝑚×𝑛 , Q = 

(1,1,1,1),  𝜃 = 3   and 𝑤 = (0.4,0.1,0.2,0.3)𝑇   were 

used as the input of the WPHFAMM operator. 

The results of the experiment are the scores and 

rankings of the five alternatives, which are shown in 

Table 5. As can be seen from Table 5, the ranking re-

sults of the four operators are the same. This indicate 

that leveraging different groups of operators has no ob-

vious impact on the aggregation result.  

(2) Experiment 2 was carried out to show the ef-

fect of assigning different values to 𝜃 on the aggrega-

tion result. (ℎ𝑖𝑗)𝑚×𝑛 , Q = (1,1,1,1),  𝜃  and 𝑤 =

(0.4,0.1,0.2,0.3)𝑇  were used as the input of WPH-

FAHMM and WPHFAFMM operators. The value of 

the parameter 𝜃 was adapted from 1 to 32. The scores 

obtained by the WPHFAHMM and WPHFAFMM op-

erators are shown in Figure 1 and Figure 2, respectively. 

 
Fig.1. The scores of alternatives obtained by WPHFAHMM. 

 
Fig.2. The scores of alternatives obtained by WPHFAFMM. 

 

From Figure 1 and Figure 2, it can be observed that 

the score values increase as 𝜃  increases. The ranking 

orders of the two operators remain the same. This re-

veals that both the WPHFAHMM and WPHFAFMM 



operators are effective for solving the MCDM prob-

lems based on PHFNs. 
It's worth noting that, as described in subsection 3.2 

(Equation (26)), if the value of the parameter 𝜃 is as-

signed as 1 and 2, the WPHFAHMM operator will re-

duce to the WPHFAAMM and WPHFAEMM opera-

tors, respectively. The score values and the sort of al-

ternatives derived from the WPHFAAMM and WPH-

FAEMM operators are presented in Table 6 with the 

condition that Q= (1,1,1,1) and 𝑤 = (0.4,0.1,0.2,0.3)𝑇. 

From Table 6, it can be observed that the ranking orders 

of the two operators are the same, which is consistent 

with the result of Experiment 1.         
 

Table 6 

 The results of WPHFAAMM and WPHFAEMM 

Operators Scores of all alternatives Ranking 

  WPHFAAMM 
S(𝑧1) = 0.476681, S(𝑧2) = 0.477955, 

S(𝑧3) = 0.543650, S(𝑧4) = 0.535835, S(𝑧5) = 0.499211 
𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 

  WPHFAEMM 
S(𝑧1) = 0.476312, S(𝑧2) = 0.478748, 

S(𝑧3) = 0.543184, S(𝑧4) = 0.534805, S(𝑧5) = 0.498739 
𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 

 
Table 7 

 The results of Experiment 3. Note: 𝜃 = 3 

𝑄 The ranking of WPHFAHMM The ranking of WPHFAFMM 

  (3,0,0,0) 𝑧3 > 𝑧4 > 𝑧5 > 𝑧1 > 𝑧2 𝑧3 > 𝑧4 > 𝑧5 > 𝑧1 > 𝑧2 

  (2,0,0,0) 𝑧3 > 𝑧4 > 𝑧5 > 𝑧1 > 𝑧2 𝑧3 > 𝑧4 > 𝑧5 > 𝑧1 > 𝑧2 

  (1,0,0,0) 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 

  (1,1,0,0) 𝑧3 > 𝑧4 > 𝑧5 > 𝑧1 > 𝑧2 𝑧3 > 𝑧4 > 𝑧5 > 𝑧1 > 𝑧2 

  (1,1,1,0) 𝑧3 > 𝑧4 > 𝑧5 > 𝑧1 > 𝑧2 𝑧3 > 𝑧4 > 𝑧5 > 𝑧1 > 𝑧2 

  (1,1,1,1) 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 

(0.25,0.25,0.25,0.25) 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 

 

(3) Experiment 3 was carried out to show the ef-

fect of assigning different values to Q on aggregation 

result. (ℎ𝑖𝑗)𝑚×𝑛, Q, 𝜃 = 3 and 𝑤 = (0.4,0.1,0.2,0.3)𝑇 

were used as the input of the WPHFAHMM and WPH-

FAFMM operators. There are seven groups of values of 

Q. The results of the two operators are shown in Table 

7. 

In Table 7, when Q = (3,0,0,0), Q = (2,0,0,0), Q = 

(1,1,0,0) and Q = (1,1,1,0), the rankings are z3 > z4 > 

z5 > z1 > z2. When Q = (1,0,0,0), Q = (1,1,1,1) and Q = 

(0.25,0.25,0.25,0.25), the rankings are z3 > z4 > z5 > z2 > 

z1. Though the rankings change slightly, the best alter-

natives remain the same (i.e., 𝑧3). When Q = (1,0,0,0), 

it’s worth noting that WPHFAMM operator reduces to 

the APHFWA operator [35]. 
In addition, Figure 3 and Figure 4 draw our attention 

to the diversification of the parameters Q in more de-

tails: 1) For the WPHFAHMM and WPHFAFMM op-

erators with the condition that 𝜃 = 3, the larger the real 

number of Q, the greater the value of the score function 

when Q has merely one real number and the rest are 0  

2) For the WPHFAHMM and WPHFAFMM operators 

with the condition that 𝜃 = 3, the more complex rela-

tionships among criteria, the greater the value of the 

score function when Q has more than one real number. 

Based on this, decision makers can choose different 

values of Q according to the actual relationships of cri-

teria. 
 

 
Fig.3. Scores of alternatives for different parameters Q. 

 



 
Fig.4. Scores of alternatives for different parameters Q. 

 

5.3. Comparisons 

So far, a number of MCDM methods based on the 

operators that can aggregate PHFNs have been pro-

posed. In this subsection, these MCDM methods are 

compared with the developed method in this paper. 

Specifically, the comparison methods include the meth-

ods based on the Pythagorean hesitant fuzzy Hamacher 

ordered weighted averaging (PHFHOWA) and Pythag-

orean hesitant fuzzy Hamacher ordered weighted 

(PHFHOWG) operators [30], the Pythagorean hesitant 

fuzzy Hamacher weighted averaging (PHFHWA) and 

Pythagorean hesitant fuzzy Hamacher weighted geo-

metric (PHFHWG) operators [35], the weighted Py-

thagorean hesitant fuzzy Maclaurin symmetric mean 

(WHPFMSM) operator [31], the Pythagorean hesitant 

fuzzy Hybrid weighted averaging (PHFHWA) and Py-

thagorean hesitant fuzzy Hybrid weighted geometric 

(PHFHWG) operators [33], and the presented WPH-

FAMM operator. A qualitative comparison and a quan-

titative comparison among these methods are carried 

out to verify the effectiveness and show the advantages 

of the proposed method. 

 

Table 8 

The results of the qualitative comparisons of different methods 

Methods Has desirable generality Capture the interrelationships Has desirable flexibility  

PHFHOW𝐴[30] × × × 

PHFHOW𝐺[30] × × × 

PHFHW𝐴[35] × × × 

PHFHW𝐺[35] × × × 

WHPFMS𝑀[31] √ √ √ 

PHFHW𝐴[33] × × × 

PHFHW𝐺[33] × × × 

WPHFAMM √ √ √ 

 

Table 9 

 The results of the quantitative comparison of different methods 

Operator Parameters Ranking  

PHFHOW𝐴[30] γ = 3 𝑧3 > 𝑧4 > 𝑧5 > 𝑧1 > 𝑧2 

PHFHOW𝐺[30] γ = 3 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 
PHFHW𝐴[35] θ = 3 𝑧3 > 𝑧4 > 𝑧2 > 𝑧5 > 𝑧1 
PHFHW𝐺[35] θ = 3 𝑧3 > 𝑧4 > 𝑧1 > 𝑧5 > 𝑧2 

WHPFMS𝑀[31] 𝑘 = 𝑛 𝑧3 > 𝑧4 > 𝑧2 > 𝑧5 > 𝑧1 
PHFHW𝐴[33] − 𝑧3 > 𝑧4 > 𝑧5 > 𝑧1 > 𝑧2 

PHFHW𝐺[33] − 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 
WPHFAHMM   𝑄 = (1,1,1,1), 𝜃 = 3 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 
WPHFAFMM   𝑄 = (1,1,1,1), 𝜃 = 3 𝑧3 > 𝑧4 > 𝑧5 > 𝑧2 > 𝑧1 

 

 

 

 



5.3.1.  Qualitative comparison 

This comparison is carried out by comparing the 

characteristics of the selected methods. The compara-

ble characteristics are the generality of aggregation op-

erators, whether takes into account the interrelation-

ships of different criteria and the flexibility of aggrega-

tion operators. The comparison results are shown in Ta-

ble 8. The details of the comparison are explained as 

follows: 

(1) Generality. The PHFHOWA and PHFHOWG 

method [30], the PHFHWA and PHFHWG method 

[35], and the PHFHWA and PHFHWG method [33]  

are based on a specific type of ATT. The WHPFMSM 

method [31] and the proposed method are based on any 

types of ATTs. Therefore, the WHPFMSM and pro-

posed methods are more general than the remaining 

methods. Further, the proposed method provides more 

satisfying generality than the WHPFMSM method 

since the MSM operator is a special case of the MM 

operator.  

(2) Interrelationships. Among the comparison meth-

ods, the WHPFMSM and proposed methods have the 

capability to deal with the interrelationships of differ-

ent criteria in MCDM problems because they respec-

tively use the MSM and MM operators.  

 (3) Flexibility. Since any types of ATTs can provide 

flexible parameters, the WHPFMSM and proposed 

methods are more flexible than the remaining methods.  

As can be summarized from the qualitative compar-

ison, the proposed method not only has desirable gen-

erality and flexibility, but also can consider the interre-

lationships of criteria more comprehensively.  

5.3.2. Quantitative comparison 

The quantitative comparison is carried out based on 

the numerical example in subsection 5.1. In this com-

parison, the PHFHOWA [30], PHFHOWG [30], 

PHFHWA [35], PHFHWG [35], WHPFMSM [31], 

PHFHWA [33], PHFHWA [33] and proposed methods 

are applied to resolve the MCDM problem in the exam-

ple. The results of the experiment are the rankings of 

the five alternatives, which are shown in Table 9.  

As can be seen from Table 9，the first two optimal 

alternatives derived from all comparison methods are 

 𝑧3 and  𝑧4, which demonstrate the feasibility and effec-

tiveness of the proposed method. Careful readers may 

find that the ranking of the proposed method is slightly 

different at the third, fourth and fifth places with the 

rankings of the PHFHWA, PHFHWG, WHPFMSM 

and PHFHWA methods. The reason is that different 

methods use different aggregation operators and have 

different mathematical properties.  

6. Conclusion 

The ATT can generate versatile and flexible opera-

tional laws for fuzzy numbers, while the MM operator 

is capable of capturing the interrelationships of aggre-

gated arguments. In this paper, the MM operator and 

the ATT have been combined to present a PHFAMM 

operator and a WPHFAMM operator, and a MCDM 

method based on these operators has been proposed. To 

be more specific, the generalised and specific expres-

sions of the two operators have been constructed and 

their properties have been explored and proved. The pa-

per has also reported a practical example, a set of ex-

periments, and qualitative and quantitative compari-

sons to demonstrate the proposed method. The demon-

strate results suggest that the method is feasible and ef-

fective that can provide desirable generality and flexi-

bility in aggregation of criterion values and capturing 

of criterion relationships. 

In future work, the application of the proposed 

method in real decision-making problems will be stud-

ied. The application of the similarity measures of the 

presented operators in knowledge graphs is a repre-

sentative example that will be studied. Further, other 

types of aggregation operators can easily be derived by 

combining the MM operator with dual hesitant Pythag-

orean fuzzy information and ATT or the triangle intui-

tionistic fuzzy information and picture fuzzy infor-

mation. The development of 2-tuple linguistic neutro-

sophic fuzzy Archimedean MM operators may also be 

explored. For all of these studies, the research findings 

in references [32,48-52] could be helpful.   
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