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Abstract: 

This paper proposes a novel method for tolerance specification on revolving components. The 

revolving parts are widely used and functionally important. An exclusion approach is introduced 

to construct a tolerance specification method. A functional analysis tool is developed to select 

features to be specified and to generate their Datum Reference Frame (DRF). A set of rules are 

modelled to create suitable specification schemes. The independent axiom and entropy theory are 

applied for further specification refinement. A software application is developed, and an RV 

reducer is used as a case study. A comparison with other specification methods is undertaken. 
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1. Introduction 

Tolerancing plays an essential role in the management of the geometrical variation of a 

product from conceptual design to final product1, 2, 3. With the trend toward digital manufacturing 

and intelligent manufacturing4, the related international standard is evolving to include an 

enriched description of both a real product and its digital twin5. This enrichment helps the 

engineers ensure a given geometrical variation of a product throughout its life-cycle. On another 

hand, this enrichment increases the difficulty in the development of tolerancing specification for 

the engineer. To this end, some software packages have been developed to assist the designer 

(detailed in Section 2).  

This paper focuses on the tolerance design of revolving components such as shafts, rollers, 

and so on. They are widely used in mechanical products and play an essential role in their 

functional performance. 

Computer-Aided Tolerancing (CAT)6 was introduced in the 1980s. Tolerance design7 often 

includes three tasks: tolerance specification, tolerance allocation and tolerance analysis. Tolerance 

specification also consists of three sub-tasks7: (a) determination of a DRF; (b) selection of the 

tolerance, (c) assignment of a tolerance principle. This paper focuses on sub-task (a) and (b), as 
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sub-task (c) is highly dependent on an individual engineer’s judgments, a process which is 

currently not sufficiently quantified to allow it to be captured in this way8.  

To develop a tolerance specification, researchers have previously proposed and developed 

methods classified as reasoning approaches (see the review in Section 2). In this paper, we 

propose a new approach for developing a tolerance specification, namely one involving a principle 

of rule-based exclusion (RBE). Section 3 details the framework and Section 4 presents the 

implementation of the RBE method. The assessment of its performance is in Section 5, which is 

followed by the conclusions and future work.  

2. Methodology 

2.1 Literature review 

1) Technologically and Topologically Related Surfaces (TTRS) method 

Clemént et al.9 proposed the TTRS method which is probably the first computer-aided 

tolerance specification model. The TTRS method introduced the Minimum Geometric Datum 

Element (MGDE) model to classify the features of a part and to apply a given set of rules. The 

correct application of the TTRS rules is reliant on having an experienced user making the correct 

judgement calls. 

2) Rule-based reasoning methods 

The rule-based methods have been developed to reduce the outcomes dependence on a 

designer’s experience. The rules (in the form of a list of conditions) can be constructed from 

mathematical theories, assembly relationships and/or empirical knowledge. Rule-based methods 

are widely used in many fields (e.g. assembly lines10, design evaluation11 and so forth).  

For tolerance specification, several mathematical theories have been developed in order to 

build the rules or reasoning matrix. Zhang et al.12 introduced the Polychromatic Set Theory, while 

Zhong13 and Qin14 developed ontology-based representation methods, and Hu et al.15 proposed a 

Variational Geometric Constraints Network-based method. These methods are less dependant on 

the users’ experience, however, these models are relatively complicated. 

    Other methods have been developed according to the assembly positioning constraints. 

Anselmetti et al.16 proposed a positioning-table method which they have implemented in a CAD 

system17, while Cao et al.18 applied graph theory to validation algorithms. Those methods do not, 

however, take into account the limitations on a measurement method in certain conditions.  

Finally, there are empirical rule-based methods such as that by Armillotta19, and Haghighi et 

al.20 These methods consider both the manner of assembly and inspection, though sometimes their 

rules may be too rigid to allow them to be successfully applied. 

3) Case-based reasoning method 

Some case-based reasoning methods and machine learning method21 have been introduced. 

Cao et al.22 proposed a statistical learning based method for datum selection. Qin et al.23 

developed an ontology-supported case-based reasoning approach. These show the possibility of 

creating a tolerance specification via machine learning, but currently, their successful application 

is limited due to the lack of sufficient data to train the algorithms.  

Table 1 is a comparison of the above methods. Using this comparison we have developed a 

method taking into account the following considerations: 1) the manner of assembly and 



inspection, 2) be ISO standard1 compatible, 3) use a rule-based method, and 4) be easy to apply.  

In the 15th CIRP conference on CAT, further works on tolerance specification were presented, 

including that by Zbigniew24, Stefan25 and Stanislao26, that can be classified as the reasoning 

approach as well.  

Table 1 Comparison of current tolerance specification methods  

Tolerance specification 

methods 

Factors for 

specification 

Standards Model or 

method 

Difficulty of 

Implementation 

Clemént9 Geometry, position. ISO MGDE & rules Simple 

Haghighi20 Geometry, position, 

assembly. 

ASME Rules Simple 

Armillotta19 Geometry, position, 

assembly, process. 

ASME Reasoning table 

& rules 

Simple 

Anselmetti17 Geometry, position, 

assembly. 

ASME Positioning 

table & rules 

Medium 

Zhang12 Geometry, position, 

assembly. 

ISO Polychromatic 

sets & relation 

matrix 

Difficult 

Qin23 Geometry, position, 

assembly, successful 

cases. 

ISO Ontology & 

calculation of 

similarity 

Difficult 

2.2 The proposed method 

Table 2 shows diagrammatically both the reasoning approach and the exclusion approach. All 

the methods listed in section 2.1 can be classified as reasoning approaches. The process taken by 

the reasoning approach is to develop the tolerances from the geometrical requirements of the 

objects specification, as shown in table 2. The rules, tables, matrixes or cases are applied to select 

geometrical tolerances directly by applying the following steps (See example in Table 2): 1) a 

object, e.g. a cylinder, is required to be toleranced; 2) the rule is followed, e.g. that the cylinder is 

specified by its cylindricity; and 3) tolerancing is applied, e.g. cylindricity is selected.  

Table 2 Reasoning approach and exclusion approach 

Reasoning 

approach 

Diagram: 
 

Example: 

 

Exclusion 

approach 

Diagram: 

 

Example: 

 

Note 1: The Rules are the mapping from the functional requirement of the feature to the geometrical 

tolerances.  

Note 2: The Rules are the mapping from the geometrical tolerances to the final tolerance specification 



scheme. 

An exclusion approach (see Table. 2) is introduced for tolerance specification in this paper. 

This approach has been widely applied in many fields, e.g. biotechnology27, robotics28. This 

method uses three steps to develop the tolerance (see example in Table 2): 1) to list all possible 

geometrical tolerances for a feature; 2) to eliminate the tolerance items according to the rules; e.g. 

everything except cylindricity; 3) to use the remaining tolerance items as the outcome of the 

tolerance specification.  

In general, the exclusion approach will provide either the same number, or more, possible 

solutions than the reasoning approach, though it may take longer to calculate that the traditional 

method if the number of tolerance items is large. We will develop the RBE method in the 

following sections with the above considerations. 

3. The development of Rule-Based Exclusion (RBE) method 

The character of “revolving” is utilized to model rules for datum selection. The factors of 

geometry, position and assembly are modelled as fixed constraints by rigid rules. Axiomatic 

Design (AD) theory29 and entropy theory30 are used for refinement. Fig. 1 illustrates the flow of 

the RBE method with the key steps being shown in bold, these will be documented in subsections 

3.1-3.2. 

 

Fig. 1 Specification flow of the RBE method 

To identify the features to be specified, information about the parts function17, how it is 

joined 19 and its assembly23 is required. The following should be specified: (1) joined and 

assembly features; (2) any functional features; (3) any datum features.  

3.1 Formulation of Datum Reference Frame (DRF)  

When determining the DRF, there are several significant factors31: 



1. Geometrical size and accuracy grade: The largest features, and/or those having a higher 

accuracy grade are often most suitable to be selected as a datum32.  

2. Geometrical type: Which determine the orientation of a datum9. 

3. Inspection method: The datum has to be suitable for measurement. 

For the revolving parts, an axis datum and a plane datum should be selected via the following 

operations: (1) the selection of features in order to derive the central axis together with the plane 

perpendicular to this axis, and (2) the determination of the primary datum. Rule 1 and Rule 2 are 

defined for operation (1) and (2) respectively.  

Rule 1: Datum features selection rule 

A feature (i.e. revolving surfaces) is to be selected if the central axis can be derived from it. If 

several features satisfy this condition, the primary selection is the feature(s) related to supporting 

parts (such as bearing and support frame).  

To derive the planar datum, a plane feature is selected which does not have an assembly 

relationship with another part. If several features satisfy this condition, then the feature with the 

largest area is selected. 

Rule 2: Primary datum selection rule 

The plane datum feature is selected as a primary datum, if 𝑟𝑑 > 2; otherwise, the revolving 

feature(s) is selected as a primary datum.  

Definition 1: The relative size of a datum feature (note as rd) is the ratio of the length of the 

revolving feature in the axial direction and length of the plane in the radial direction. 

The factor 𝑟𝑑 is determined according to the related literature19, 20.  

Example 1: The length of the plane in a radial direction, D, the length of the revolving 

feature in the axial direction, L, and 𝑟𝑑 are shown in Fig. 2. 

 

Fig. 2 An illustration of 𝑟𝑑 

3.2 Geometrical tolerances selection 

Fig. 3 shows the process of tolerance selection. Note that the process may terminate at any 

step when a unique tolerance scheme is obtained. 



   

Fig. 3 The process of geometrical tolerances selection 

Initially, all possible tolerances are listed. All the geometrical tolerances33 and the DPs, along 

with the symbols used to denote them are listed in Table 3.  

Table 3 DPs, symbol and requirement of a datum of each geometrical tolerance 

DPs1 Geometrical tolerance Symbol The requirement of 

datum or not 

Tolerance type 

DP1 Straightness  No Form 

DP2 Flatness  No Form 

DP3 Roundness  No Form 

DP4 Cylindricity  No Form 

DP5 Parallelism  Yes Orientation 

DP6 Perpendicularity  Yes Orientation 

DP7 Angularity  Yes Orientation 

DP8 Coaxiality  Yes Positioning 

DP9 Symmetry  Yes Positioning 

DP10 Position  Yes Positioning 

DP11 Circular Runout2  Yes Positioning 

DP12 Total Runout2  Yes Positioning 

DP13 Concentricity  Yes Positioning 

DP14 Line Profile3  Yes / No / 

DP15 Surface Profile3 
 Yes / No / 

1 The design parameters (DPs) are used to describe the task of geometrical tolerances design. 

2 Because the circular and total runout determines the position, they are classified as position tolerance here. 

3 Line and surface profile can be used as form tolerance, orientation tolerance or position tolerance, so the datum 

requirement is uncertain. 

The geometrical type of a feature is an essential characteristic in the selection of tolerancing. 

Thus, the geometrical type rule is introduced.  

Rule 3: Geometrical type rule 

A geometrical tolerance must satisfy the requirements of the feature’s geometrical types; 

otherwise, it will be removed from candidate tolerances.  



The geometrical type of a feature can sometimes determine the geometrical tolerances. The 

geometrical tolerance for a freeform surface is unique (i.e. ), while the geometrical tolerance 

for a plane is variable. Table A1 lists the possible geometric tolerances according to the 

geometrical type9 and their definitions1.  

For some features, i.e. a plane and a revolving surface, there are many possible results. Rule 

4 is then applied which is an exclusion operation based on the TTRS method9. 

Rule 4: Positioning relationship rule 

A geometrical tolerance must fulfil the requirements of the relationship between a feature and 

the primary datum; otherwise, it will be eliminated from candidate tolerances.  

For example, if a feature is a parallel to the primary datum, then DP5 ( ) is employed for 

control of the orientation, but not DP11 ( ) or DP12 ( ). If a feature is a primary datum, its 

orientation and position variation would not be specified. Table A2 illustrates different conditions 

and their corresponding possible geometrical tolerance.  

The AD theory is introduced for further exclusion and selection. The variation requirement is 

treated as a functional requirement (FR), the geometrical tolerance is described as a design 

parameter (DP)34, and a design matrix is used to model their relationships. Rule 5 and Rule 6 are 

based on the independent axiom and the information axiom.  

Rule 5: The independent axiom rule 

The tolerances are organised according to the independent axiom rule if several candidate 

tolerances exist. 

The independent axiom29 requires that the design matrix should be triangular or diagonal, in 

other words: The number of FRs and DPs should be equal, and each FR could be satisfied by 

adjusting a DP individually or by several DPs orderly. 

Let FRR be the variation requirement of a revolving feature. The variation of a feature can be 

decomposed into form variation FR1, rotation variation FR2 and translation variation FR3, 

according to the kinematics35 and tolerance analysis method36 (See in Fig. 4). Based on the 

definition of the tolerances, FR1 can be controlled by the form tolerance, FR2 by the orientation 

tolerance, and FR3 by the position tolerance33.  

  

Fig. 4 Decomposition of the variation of the revolving feature 

(Cylinder for example) 

Based on Rule 5, three geometrical tolerances are applied to a revolving feature: 

DP for FR1 of FRR can be: DP1( ), DP3( ) or DP4( ); 

DP for FR2 of FRR can be: DP5 ( ), DP6 ( ) or DP7 ( ); 



DP for FR3 of FRR can be: DP8 ( ), DP9( ), DP10 ( ), DP11 ( ) or DP12 ( ). 

Note 1: if a plane is coplanar to the primary datum, or a cylinder coaxial to the primary 

datum, FR2 will not be taken into account.  

Note 2: if a plane or cylinder is used as the primary datum, FR2 and FR3 will not be 

considered.  

If the use of Rule 3 – Rule 5 does not produce a unique result, Rule 6 is employed to 

produce the optimized scheme based on the information entropy30.  

Rule 6: Entropy rule 

If there are several candidate tolerance schemes, the scheme with the least entropy is 

selected.   

The concept of the entropy is introduced to estimate the cost and efficiency of a geometrical 

tolerance application. It is defined as follows:  

Definition 2: The entropy, Si, is 

  𝑆𝑖 = 𝑙𝑜𝑔2
3𝑚𝑖

𝑉𝑖
+ 𝑙𝑜𝑔2

𝑐𝑖

𝑐𝑚𝑖𝑛
  (1) 

where ci (i = 1, 2, …, 15), is the geometrical tolerance application, mi is the inspection precision, 

Vi is the maximum accepted variation and cmin is the minimal cost of all DPs 

Since the inspection precision has to be three times greater than the accepted variation, the 

coefficient “3” is introduced. 

If 3𝑚𝑖 < 𝑉, then let 𝑙𝑜𝑔2
3𝑚𝑖

𝑉𝑖
= 0. 

The entropy of the selection scheme, S, is then 

  𝑆 = ∑ 𝑆𝑖
𝑛
1  (2) 

where n is the number of the geometrical tolerances, and 𝑆𝑖 is a single tolerance of selection 

scheme. The selection scheme with minimum S would be selected as the optimized scheme.  

Note: If the number of optimized schemes with minimum S is more than one, then one of them 

will be selected randomly for the tolerance specification. 

4. Implementation and Case Study 

4.1 Implementation 

A software application has been carried out in order to test and verify the RBE method 

(illustrated in Fig. 5). The selection of geometrical tolerance and indication are implemented by 

Visual Basic for Application (VBA) in Solidworks. In the Solidworks environment, the 

geometrical type of feature, size and position relation can be obtained from the CAD model 

allowing the geometric tolerances selection to be executed. The Solidworks software package 

provides a DimXpert module, which has an annotation function, which is implemented by calling 

the API (Application Program Interface) of DimXpert.  



 

Fig. 5 The tolerance specification program for feature 

The current version of API of Solidworks limits the implementation of automatic tolerancing: 

(1) there is a degree of difficulty in identifying features with multiple surfaces (e.g. a 

multiple-keys feature); (2) it requires an initial approximation to the value. 

4.2 Case Study 

An RV37 (RV is a code of model) reducer mechanism are shown in Fig. 6. We assume that 1) 

the designer has taken this RV reducer from a sketch38; 2) there is no previous case for reference; 

3) the machining method39 used to make the RV reducer is unknown; and 4) the geometric 

information, the assembly relationship and the possible inspection method are known.  

 

 

Fig. 6 The primary mechanism of RV reducer  

The crankshaft and cycloidal gear used in this paper are shown in Fig. 7, with the features  

f2, f3, … , f8 needing to be specified as they have an assembly relationship with other features. 



  

Fig. 7 The features of the crankshaft and cycloidal gear 

In this case, the runout measurement device and Coordinate Measuring Machine (CMM) are 

used for inspection. The effect of temperature is constant during inspection40. An estimation of all 

the geometrical tolerances, mi, ci (ci is a relative value) and Vi are listed in Table 4, which allows 

Rule 6 to be applied. 

Table 4 The entropy of each geometrical tolerance 

DPs mi/mm c Vi/mm Si Tolerance 

DP1 0.001 1 0.003 0.6989 Straightness 

DP2 0.001 1 0.003 0.6989 Flatness 

DP3 0.002 1 0.004 1.2839 Roundness 

DP4 0.002 1 0.005 0.9620 Cylindricity 

DP5 0.003 1 0.008 0.8688 Parallelism 

DP6 0.003 1 0.008 0.8688 Perpendicularity 

DP7 0.003 1 0.009 0.6989 Angularity 

DP8 0.004 1 0.01 0.9620 Coaxiality 

DP9 0.004 1 0.01 0.9620 Symmetry 

DP10 0.004 1 0.01 0.9620 Position 

DP11 0.002 0.2 0.008 0 Circular Runout 

DP12 0.004 0.2 0.01 0.2630 Total Runout 

DP13 0.004 1 0.01 0.9620 Concentricity 

DP14 0.004 1 0.01 0.9620 Line profile 

DP15 0.004 1 0.01 0.9620 Surface profile 

According to Rule 1, cg-3 and cg-1/cg-2 are selected as the datum features for the cycloidal 

gear, while f3, f8 and either f4 or f7 are selected for the crankshaft. The DRF selection process is 

undertaken by applying Rule 2, and the results are illustrated in Fig. 8. 



  

    Fig. 8 DRF selection process and results 

The specification of features f2 and f7 are used as an illustration of the geometrical tolerance 

selection. Feature f2 is a multiple-keys feature, and according to Rule 3, DP9( ) and DP11 ( ) 

should be adopted. Fig. 9 shows the process flow for feature f7.  

 

Fig. 9 The specification flow of feature f7 

The specification results for the crankshaft and cycloidal gear are shown in Fig. 10. The 

results of the RBE method, do not conflict with the requirements of the TTRS method, and strictly 

adhere to the ISO standard1. Moreover, the software application produces a specification of each 

feature takes less than 2s, which is sufficient for most applications. Therefore, this implementation 

addresses the common design requirements.  

The examples of the crankshaft and cycloidal gear includes a broad range of the typical types 

of features and positional relationships that would be expected, which indicates that this RBE 

method is applicable in many situations.  



 

Fig. 10 Tolerance specification result of (a) the crankshaft and (b) the cycloidal gear 

A comparison of the RBE method with other tolerance specification methods has been 

undertaken and the results are shown in Table 5 and 6.  

The results selected by the RBE method are compatible with other methods in Table 5 and 6, 

however, the RBE method selects a different DRF for the cycloidal gear. The RBE method selects 

cg-1 as a primary datum, while the methods of Zhang and Qin select cg-3. Also, the RBE method 

selects cg-3 as a secondary datum, while the methods of Armillotta and Anselmetti selects cg-4. 

The different selection of geometric tolerances (due to the different DRFs41) is responsible for the 

selection of either cg-1 or cg-3.   



Table 5 Specification results of the crankshaft 

No. F. type RBE method Armillotta19 Anselmetti17 Zhang12 Qin23 

DRF / f3&f8, f4 f3, f4 f3, f4, f5 f3&f8 f3&f8 

f2 M. key ,    ,  ,  

f3 Cylinder ,   φd±t/2○E  ,  ,  

f4 Plane , ,      

f5 Cylinder , ,   ,  ,  ,  

f6 Cylinder , ,   ,  ,  ,  

f7 Plane , ,      

f8 Cylinder ,   φd±t/2○E  ,  ,  

Table 6 Specification results of cycloidal gear 

No. F. type RBE method Armillotta19 Anselmetti17 Zhang12 Qin23 

DRF / cg-1, cg-3 cg-1, cg-4 cg-1, cg-4 cg-3, cg-1 cg-3, cg-1 

cg-1 Plane      

cg-2 Plane ,   ,    

cg-3 Cylinder ,   φd±t/2○E ,    

cg-4 Pattern(2)   ,  ,  ,  

cg-5 Pattern(4)      

cg-6 Pattern(2)      

cg-7 Gear      

5. Conclusion and future work 

This paper has documented the design and development of a novel method (namely, the RBE 

method) for tolerance specification of revolving parts. A review has been undertaken of the existed 

reasoning approaches. This paper has introduced an exclusion approach for geometrical tolerances 

selection which considers both the manner of assembly and methods of inspection. An RBE 

method has been designed and developed, and a case study has been undertaken to illustrate its 

application. A software package has been developed to implement this method which shows it is 

relatively easy to apply. A comparison between the results of different methods has been 

undertaken. This has shown that the RBE method generates the specification which strictly 

adheres to the ISO standard1, and there is no conflict with the requirements of TTRS.  

We aim to develop a commercially available software package in the future, however this 

will require further study and verification work of the extension of the RBE method, and a reliable 

verification method to assess the tolerance specification. 
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Annex 

Table A1 Possible geometrical tolerances used for the feature of different geometrical types 

Geometrical Type Possible geometrical tolerances Example (see Fig. 7) 

Plane* 
DP1( ), DP2( ), DP5( ), DP6( ), 

DP7( ), DP9( ), DP10( ), DP11( ) 

or DP12( ) 

Feature f4, cg-2 

Revolving surface* DP1( ), DP3( ), DP4( ), DP5( ), 

DP6( ), DP7( ),DP8( ), DP9( ), 

DP10( ), DP11( ) or DP12( ) 

Feature f3, cg-3 

Sphere* DP3( ) and DP13( ); or DP10( ) / 

Pattern** DP10( ) Feature cg-4, cg-6 

Key Slot/Multiple 

keys ** 

Axial: DP9( ) 

Radial: DP11( ) 

Feature f2 

Gear teeth** DP11( )  Feature cg-7 

Free curve ** DP14( ) / 

Free form surface ** DP15( ) / 

Note: * If the number of possible geometrical tolerances is more significant than one, then the selection will 

be carried out. For example, the geometrical type of plane, there are nine possible geometrical tolerances (see 

Table A1). 

** The number of possible geometrical tolerances is equal to one, then the selection is made as there are only 

one results (i.e. no selection needed). For example, the geometrical type of Pattern, Free curve, Freeform surface 

(see Table A1). 

  

Table A2 Possible selection schemes for different positions in relation to the primary datum 

Position relation with 

primary datum 

Selection scheme for planes Selection scheme for revolving 

features 

Primary datum DP1( ), DP2( ) DP1( ), DP3( ), DP4( ) 

Parallelism DP1( ), DP2( ), DP5 ( ) 

or DP10 ( ) 

DP1( ), DP3( ), DP4( ), DP5 

( ), DP10 ( ) 

Perpendicular DP1( ), DP2( ), DP6 

( ), DP10 ( ), DP11 ( ) or 

DP12 ( ) 

DP1( ), DP3( ), DP4( ), DP6 

( ), DP10 ( ) 

Angular DP1( ), DP2( ), DP7 ( ) 

or DP10 ( ) 

DP1( ), DP3( ), DP4( ), DP7 

( ) or DP10 ( ) 

Coplanar DP1( ), DP2( ) or DP10 

( ) 

/ 

Coaxial / DP1( ), DP3( ), DP4( ), DP8 

( ), DP11 ( ) or DP12 ( ) 

Symmetry DP1( ), DP2( ) or 

DP9( ) 

DP1( ), DP3( ), DP4( ), DP5 

( ), DP11 ( ), DP12 ( ) or DP9 

( ) 

 


