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Abstract

Radiation-induced precipitation was examined in an Nb-stabilised austenitic stainless steel

(AISI-348) under heavy ion irradiation in situ within a transmission electron microscope (TEM)

at 1073 K. Selected-area electron diffraction (SAED), bright- and dark-field TEM were used to

investigate the nature of the precipitates within the austenite phase (γ-Fe). The precipitates

were confirmed to be of Cr23C6 crystal structure. Therefore, the results herein reported indicate

that inert gas bubbles may accelerate clustering and precipitation kinetics in the austenite phase

during irradiation.
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Austenitic stainless steels have been widely applied in both nuclear and conventional electric

power generation plants as well as in chemical and petroleum industries due to mainly their

favourable corrosion resistances at high temperatures and suitable mechanical properties [1–

6]. In particular, the exposure of the γ-Fe phase in extreme environments of nuclear reactors

contributes to the degradation of several properties as energetic particle irradiation modifies

the crystal structure by displacing atoms from their lattice positions. Additionally, due to their

extensive engineering database, market availability and lower cost compared with other metals

and alloys, the austenitic stainless steels are under active consideration to be used as structural

materials for nuclear fusion reactors [7, 8]. For these reasons, the stability of the γ-Fe phase

under irradiation is an important subject of investigation aiming at mitigating the occurrence of

severe degradation mechanisms such as radiation-induced precipitation (RIP) and segregation

(RIS).

RIP has been accounted as an important effect of displacive irradiation in austenitic stainless

steels [9–11]. The RIP phenomenon is often associated with the degradation of mechanical

properties that may lead the steel into fracture under the envelope conditions of LWRs operation

[12]. Different precipitates may nucleate and grow within a degraded γ–Fe matrix after neutron

exposure [9]. Most frequently occurring are the M23C6 (τ) and M6C (η) carbides where M stands

for a solute element [9, 10].
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Garner et al. recently reviewed the formation of M23C6 precipitates as a result of neutron

irradiation in the AISI-304 microstructure up to 21.7 dpa at around of 650 K[13]. According

to Maziasz [9], further analytical screening often reveal that such neutron-irradiation induced

precipitates were Ni- and Si-rich, however, the thermally aged precipitates in the same steels

were Ni- and Si-depleted. Maziasz [14] also reported on the formation of M6C under neutron

exposure within the temperature range from 643 to 953 K in the AISI-316 steel. The phase was

Ni- and Si-rich either after irradiation or annealing. Yang et al. [15–17] have also identified

Ni- and Si-rich M23C6 under neutron irradiation of the AISI-348 steel at temperatures around

of 973 K. Differences in elemental composition and crystal structure between the irradiation-

induced and thermally-induced precipitates consolidated a methodology to assess under which

conditions such carbides may form within the context of nuclear materials technology.

Ion beam technology has allowed investigations on the RIP phenomenon to be carried out

in either ex situ or in situ within a TEM. Due to the limited worldwide availability of materials

test reactors as well as the high costs and hazards associated with post-neutron-irradiation

tests, irradiation experiments with ion beams (specially with heavy ions [18, 19]) have shed

light on fundamental aspects of precipitation in these complex multicomponent Fe-based alloys.

Recently, Jin et al. observed the formation of Cr23C6 after ex situ TEM ion irradiation with 120

keV Ar ions at 823 K in the system Fe-24.8Cr-19.7Ni-0.4Mn-0.4Nb (weight percent or %wt.),

commercially known as HR3C steel [12]. Crystallographic indexing was used to confirm the τ

precipitates. The authors also showed that upon increasing the dose, the Cr23C6 grew in size as

well as its areal density within the γ-Fe matrix. Interestingly, these authors found that under

such irradiation conditions and temperature, the formation of Cr23C6 precipitates was prone

to occur specially closer and inside dislocation loops (likely formed prior to RIP, but during

irradiation) which had acted as sinks for irradiation-induced segregated solute elements [12].

To date, such electron microscopy investigations have been carried out with austenitic

steel specimens after either neutron or ion bombardment. The microstructural response of

an austenitic stainless steel under heavy ion irradiation in situ within a TEM was investigated

in this work. The technique allowed the real-time observation of nucleation and growth of

precipitates throughout the γ-Fe matrix with concurrent observation of inert gas bubbles: the

latter also an important degradation mechanism within the technology of nuclear materials

[20].

The alloy studied was the commercial austenitic stainless steel AISI-348. This steel has

particular relevance to the nuclear field as the addition of Nb and Ta improves its corrosion

resistance at high temperatures by removing C from solid solution during synthesis and pro-

cessing [2, 3]. The AISI-348 also lacks of irradiation data in scientific literature according

to Garner et al. [6]. Inductively coupled plasma optical emission spectrometry (ICP-OES)

technique showed that the bulk alloy has Fe-17.50Cr-9.47Ni-1.81Mn-0.32Nb-0.037C-0.001S-

0.002P-0.001Co-0.008B-0.003Ta (%wt.) in solid solution. The specimens were grinded and

polished with SiC papers with grits from 120 to 1200 aiming at reducing their initial thick-

nesses. Then, 3 mm disks were punched and electropolished using a Struers TenuPol-5 with an
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electrolyte composed of 90% perchloric acid (HClO4) and 10% (vol.%) of methanol (CH3OH) at

a bath temperature of 233 K. The electropolishing was performed until perforation and samples

were washed several times in methanol and dried in air.

The irradiations were carried out in the MIAMI-1 facility at University of Huddersfield.

The facility consists of a JEOL JEM-2000FX operating at 200 kV coupled with an 100 kV

ion implanter [21, 22]. Images and videos were recorded using a Gatan ORIUS SC200 digital

camera. Specimens were irradiated with 30 keV Xe ions at 1073 K (0.56Tm) using a Gatan

double-tilt heating holder. Heavy ion irradiation is an acknowledged methodology to assess

the radiation resistance of Fe and Fe-based alloys [23]. Samples were annealed at 1073 K

during 20 min before the experiments. Calculations using SRIM-2013 showed that, for such

irradiation conditions, the implantation peak was around of 10 nm and an average of 355

vacancies were estimated per ion collision. At the specimen position within the TEM, the ion

flux was measured to be 3.8 × 1013 ions·cm−2·s−1. Using a recent procedure suggested by Stoller

et .al [24] it was possible to convert the fluences to dpa (displacement-per-atom). Under these

conditions, a fluence of 3.6×1015 ions·cm−2 corresponds to 1.3 dpa and, similarly, a fluence of

2.0×1016 ions·cm−2 corresponds to 7.3 dpa.

Figure 1: A set of BFTEM micrographs showing the real-time microstructural evolution of the γ-Fe under 30
keV Xe heavy ion irradiation at 1073 K from 0 to 7.3 dpa. Note: scale marker in the first image applies to all
micrographs in the figure. The field of view varies slightly due to both thermal and irradiation drifts.

A set of bright-field transmission electron microscopy (BFTEM) micrographs extracted from

the in situ TEM ion irradiation experiment at 1073 K is shown in the figure 1. Small particles

with sizes around of 2-5 nm were initially observed to nucleate at the early stages of the irradi-

ation with doses as low as 0.1 dpa. Upon increasing the irradiation dose, the precipitates grew

as can be noticed by the significant changes in the bright-field contrast around the precipitates.

However, above 5.9 dpa, the precipitates stopped to grow significantly. Additionally, the dislo-

cation network (in the bottom left side of the images) seemed to undergo into annihilation upon
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increasing the irradiation dose. This is noticiable when comparing the microstructures at 0 and

7.3 dpa. The nucleation and growth of precipitates occurred preferentially in the surroundings

of the dislocation network and not within it. It is important emphasising that such dislocation

network was present before irradiation and remained stable after the annealing up to 1073 K.

TEM characterisation of the AISI-348 before and after the heavy ion irradiation is shown in

figure 2 where the microstructure before irradiation and after 20 minutes of annealing at 1073

K is shown in the figure 2(a). Figure 2(b) shows the same area after 17 dpa where precipitates

can be observed uniformly distributed along the γ-Fe phase. Figure 2(c) is a selected-area

micrograph with some precipitates close to the edge of the irradiated specimen. Its respective

diffraction pattern is in figure 2(d). The small inset in figure 2(c) shows a DFTEM micrograph

revealing that the precipitates are responsive to diffraction contrast. A crystallographic model

simulated with the CrystalMaker software and with data available in the scientific literature

for the Cr23C6 crystal structure [25] is shown in the figures 2(e-f). The experimentally obtained

diffraction pattern in figure 2(d) matches with the [010] zone axis of the Cr23C6 cubic structure.

Figure 2: BFTEM micrographs (a) and (b) were taken in a same area before and after irradiation at 17 dpa,
respectively. Micrograph (c) is a SAED micrograph with (d) its respective diffraction pattern at 17 dpa. The
small inset in (c) corresponds to a DFTEM micrograph from the same area. With crystallographic data from
literature [25] the CrystalMaker model for the Cr23C6 precipitates is presented in images (e) corresponding to
the zone axis [010] and (f) the respective simulated diffraction pattern.

Post-irradiation characterisation at 20 dpa shows Xe bubbles within the γ-Fe matrix as

shown in the BFTEM micrograph in figure 3(a). The zoomed region in figure 3(b) shows that

the precipitates were observed in regions where Xe bubbles were also detected. The profile in

figure 3(c) exhibits contrast differences among precipitates, bubbles and the austenite matrix.
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Precipitates and matrix are of diffraction contrast while inert gas bubbles can be detected by

means of through-focal imaging (Fresnel contrast) [26]. The average bubble size was measured

within the ImageJ to be 10.5±3.2 nm. Similarly, precipitates had an average final length of

30.7±4.5 nm at 20 dpa.

Figure 3: Underfocused (1 µm of defocus degree) BFTEM micrograph (a) showing the precipitates and Xe
bubbles along the γ-Fe microstructure after 20 dpa. The image (b) is a zoom from the dashed rectangle in (a):
the image was coloured within the ImageJ for better visualisation purposes.

Past studies on radiation behaviour of multicomponent alloys showed that the generation of

Frankel defects (i.e. vacancies and interstitials) at supersaturated levels contributes to enhance

solute diffusion: the radiation-enhanced diffusion (RED) effect [27, 28]. In austenitic stainless

steels, Cr is known to be the most diffusive element which segregates preferentially at grain

boundaries and dislocations [28]. The radiation-induced segregation (RIS) effect triggered by

RED lowers the Gibbs free energy steel by means of eliminating concentration gradients which

favours nucleation and growth of secondary phases like as the Cr23C6. As the atomic diffusiv-

ity is faster under irradiation, precipitation is then accelerated when compared with thermal

annealing. Cr23C6 were reported to form in the 18Cr-12Ni (%wt.) steel after 80 h of thermal

treatment at 923 K and under stress [3]. Similarly, in an austenitic stainless steel with super-

saturation of Cr, like the HR3C [12], precipitation of Cr23C6 start to occur only after around

of 500 h at 973 K.

Herein, Cr23C6 precipitates were tracked to nucleate within the AISI-348 austenitic matrix

immediately upon starting the heavy ion irradiation at a dose level of approximately 0.1 dpa. In

a very similar work, but using ex situ heavy ion irradiation and TEM, Jin et al. [12] reported on

formation of Cr carbides at 4.8 dpa in the HR3C austenitic steel. Similarly, we have confirmed

that there is a direct relationship between dose, precipitates size and areal density, as can be

seen directly in figure 1, but the precipitates stopped to grow significantly at around of 4.0 dpa.

Shrink or dissolution of such precipitates were not noticed in the experiments reported in this
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work, indicating a certain degree of stability upon the continuous irradiation at an intermediate

temperature (i.e. 1073 K). Regarding the heavy irradiations on the HR3C steel reported by

Jin et al. [12], the average final length after 28.8 dpa was approximately 8.2 nm. Comparing

the Cr content in the HR3C (≈ 25 %wt.) and the AISI-348 (≈ 18 %wt.) steels, one can see

that the first is supersaturated in Cr. As this element is often reported to be the most diffusive

element in austenitic stainless steels under irradiation [28], in the HR3C experiment, the rate

of Cr diffusion into γ-Fe phase may be higher than in the 30 keV Xe irradiated AISI-348.

This promotes greater precipitation density which suppress the grow which may explain the

differences on precipitates size between the work by Jin et al. and this current work.

DFTEM and SAED micrographs in figure 2 have proven to be a suitable methodology

to confirm the crystal structure of the irradiation-induced precipitates. This has been also

confirmed in previous similar studies [12]. The crystallographic indexing in figure 2(d-f) shows

that the experimental diffraction pattern matches well with the cubic Cr23C6 zone axis [010]

from data in literature [25].

Whilst for Jin et al. [12] the Cr23C6 precipitates were formed within dislocation loops

and lines, this current work showed that RIP was preferentially observed within the degraded

γ-Fe grains. Clearly, the pre-existing dislocation network in figure 1 was not a site where pre-

cipitation has significantly occurred. Conversely, post-irradiation characterisation at 20 dpa

demonstrated that Xe bubbles were observed in regions where precipitates have nucleated and

grown (figure 3). Although TEM micrographs do not confirm that an inert gas bubble is

touching a precipitate, the nucleation of inert gas bubbles creates surfaces that may contribute

as specific site dependencies for segregation of alloying elements under irradiation. This may

result in a favourable site for nucleation of secondary phases [9, 10]. Either this work and the

one reported by Jin et al. [12] are indicating that heavy ion irradiation at high temperatures

have led the γ-Fe phase to an instability region where the austenite starts to decompose and

lose structural integrity, as the nucleation of precipitates is a well known contributor for em-

brittlement of steels. Additionally, the supersaturation of point defects generated by heavy ion

irradiation together and the subsequent RED effect are clearly acting to change the kinetics of

Cr23C6 precipitation in austenitic steels. In this way, RED is the main cause for the acceleration

of ageing in such steels.

RIS and RIP in austenitic stainless steels can be interpreted as a non-equilibrium thermody-

namic process in which the competition between the recombination of vacancies and interstitials

(lower irradiation temperature range), alloying elements segregation and back diffusion of va-

cancies (higher irradiation temperature range) at dose rates ranging from 10−6 to 10−2 dpa·s−1

and irradiation temperature range from 0.1 to 0.8Tm (where Tm is the melting temperature

of the alloy) will define whether segregation is prone to occur or not [29–34]. By this, it is

worth emphasising that the irradiation conditions reported in this work – i.e. dose rate of

1.4×10−2 dpa·s−1 at 1073 K – lie within the thresholds proposed by Wiedersich-Okamoto-Lam

et al. [33, 34] where either RIS and RIP are prone to occur in austenitic stainless steels. This

present work also shows that inert gas bubbles, when nucleated, may play a major rule in these

6



processes as it affects the dynamics of nucleation by creating surfaces that act as sinks for solute

segregation [35] and embryo nucleation and growth. In this sense, the presence of extended

defects such as cavities and bubbles as well as dislocation loops introduced by irradiation should

be taken into consideration in these earlier RIS and RIP models.

In this work, to the best of our knowledge, we report for the first time the real-time ob-

servation of RIP in the AISI-348 under heavy ion irradiation. The crystalline nature of the

precipitates was assessed by means TEM characterisation and with the crystallographic data

available in literature. We found a direct relationship between dose, precipitates size and areal

density, although at around 4.0 dpa further growth was suppressed and the precipitates were

observed to be stable under irradiation at around of 20 dpa. The final average length for

the precipitates was 30.7±4.5 nm at 20 dpa. RIP has not occurred preferentially at dislocation

loops or lines as previously reported [12], but there is scientific evidence that the nucleation and

growth of inert gas bubbles may be promote precipitation, therefore further accelerating the al-

loy ageing under irradiation. Another important conclusion that can be drawn from the results

shown in this paper with respect to the metallurgy of austenitic stainless steels is that the Nb

addition in the AISI-348 was found to be not sufficient to prevent (or delay) such observed pre-

cipitation. Additional studies on the elemental composition of irradiation-induced precipitates

are needed to compare with those precipitates observed in thermal annealed microstructures.
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