
Page 1 of 34 

 

Using drift diffusion modelling to understand inattentive behaviour in 

preterm and term-born children  

Jenny Retzlera1, Chris Retzlera1, Madeleine Groomb, Samantha Johnsonc, Lucy Craggd. 

a Department of Psychology, School of Human and Health Sciences, University of 

Huddersfield, UK 

b Division of Psychiatry & Applied Psychology, School of Medicine, University of 

Nottingham, UK  

c Department of Health Sciences, University of Leicester, UK 

d School of Psychology, University of Nottingham, UK 

 
1 These authors contributed equally to this work. 

Correspondence to:  

Dr Jenny Retzler, Department of Psychology, School of Human and Health Sciences, 

University of Huddersfield, UK 

j.retzler@hud.ac.uk  

 

Acknowledgements:  

We would like to thank the families who participated, without whom this would not 

have been possible, and Valerie Astle and Helen Budge for their help identifying eligible VP 

patients. This work was supported by the Economic and Social Research Council (grant 

number 1230421).  

 

Conflict of interest:  The authors declare that they have no conflict of interest. 

 

This is the authors’ accepted manuscript. The final published version will appear in 

Neuropsychology.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Huddersfield Research Portal

https://core.ac.uk/display/237464276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Page 2 of 34 

 

Abstract 

Objective: Children born very preterm are at increased risk of inattention, but it remains 

unclear whether the underlying processes are the same as in their term-born peers. Drift 

diffusion modelling (DDM) may better characterise the cognitive processes underlying 

inattention than standard reaction time (RT) measures. This study used DDM to compare the 

processes related to inattentive behaviour in preterm and term-born children. 

Method: Performance on a cued continuous performance task was compared between 33 

children born very preterm (VP; ≤32 weeks’ gestation) and 32 term-born peers (≥37 weeks’ 

gestation), aged 8-11 years. Both groups included children with a wide spectrum of parent-

rated inattention (above average attention to severe inattention). Performance was defined 

using standard measures (RT, RT variability and accuracy) and modelled using a DDM. A 

hierarchical regression assessed the extent to which standard or DDM measures explained 

variance in parent-rated inattention and whether these relationships differed between VP and 

term-born children. 

Results: There were no group differences in performance on standard or DDM measures of 

task performance. Parent-rated inattention correlated significantly with hit rate, RT 

variability, and drift rate (a DDM estimate of processing efficiency) in one or both groups. 

Regression analysis revealed that drift rate was the best predictor of parent-rated inattention. 

This relationship did not differ significantly between groups. 

Conclusions: Findings suggest that less efficient information processing is a common 

mechanism underlying inattention in both VP and term-born children. This study 

demonstrates the benefits of using DDM to better characterise atypical cognitive processing 

in clinical samples. 
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Public significance statements: 

1. Less efficient information processing during a sustained attention task explained 

individual differences in inattentive behaviour. This was true both in 8-to-11-year-

olds born very preterm and their term-born peers. 

2. Drift diffusion modelling provides a way to help us better characterise the processes 

that underlie task performance. This is valuable for understanding processing 

differences that affect clinical groups.  
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Introduction 

One of the most common adverse outcomes from very preterm (VP; <32+0 weeks’ gestation) 

birth is attention-deficit/hyperactivity disorder (ADHD; Johnson & Marlow, 2011; Linnet et 

al., 2006), a condition characterised by developmentally inappropriate and functionally 

impairing levels of inattention and/or hyperactivity-impulsivity. Risk for ADHD in the VP 

population is 2-3 times greater than for children born at term (Johnson & Marlow, 2011). 

Notably, VP children are at significantly greater risk for inattentive symptoms than 

hyperactivity/impulsivity (Ask et al., 2018; Brogan et al., 2014), and mean symptom scores 

are significantly elevated even where children do not meet the threshold for diagnosis (Jaekel, 

Wolke, & Bartmann, 2013; Johnson et al., 2016; Johnson & Marlow, 2011). Given evidence 

showing that inattentive symptoms predict academic underachievement in both VP (Jaekel et 

al., 2013) and general population samples (Sayal, Washbrook, & Propper, 2015), and that 

inattention in the VP population persists into adulthood (Ask et al., 2018; Breeman, Jaekel, 

Baumann, Bartmann, & Wolke, 2016), inattention can be characterised as a core, lifelong 

impairment following VP birth. Increasing understanding of the processing deficits 

underlying inattentive symptoms may improve the ability to detect impairment and trial the 

suitability of interventions, to, ultimately, improve long-term outcomes for individuals born 

VP. 

While ADHD in the general population is by and large recognised as the result of a gene-

environment interaction (Faraone et al., 2005), it is thought that the increased risk for 

inattention in VP children arises as a result of aberrant neurodevelopment due to birth at very 

preterm gestations (Lindström, Lindblad, & Hjern, 2011). Specifically, there is evidence of 

atypical structural neural connectivity and white matter development, even in VP children 

who do not show major brain injury or impairment (Ment, Hirtz, & Hüppi, 2009), and 
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associations have been observed between atypical white matter development and inattention 

in adolescents born VP (Skranes et al., 2007). With potentially differing initial causal factors, 

the mechanisms underlying inattentive symptoms in children born very preterm may be 

different from those in term-born children with ADHD. Exploring possible differences in 

these underlying mechanisms would inform theories that have postulated a ‘pure’ form of 

inattention associated with VP birth (Hille et al., 2001). It would also be of clinical 

importance, with implications as to whether interventions currently available to treat ADHD 

are suitable in the VP population. 

Slower and more variable response times (RTs) in speeded reaction time tasks have 

traditionally been considered as markers of poor attention, having been shown to differentiate 

between children with and without ADHD and to correlate with symptoms of inattention (e.g. 

(Castellanos & Tannock, 2002; Hervey et al., 2006; Leth-Steensen, Elbaz, & Douglas, 2000; 

Uebel et al., 2010; Vaurio, Simmonds, & Mostofsky, 2009). Despite vastly increased 

measurement accuracy since the introduction of software with millisecond timing, standard 

RT measures remain limited in scope. Individual differences in RT may be attributable to 

differences in the speed of stimulus perception, decision-making, or the motor response. As 

such, the precise source of variation cannot be determined using standard RT metrics and the 

reliance on these measures may fail to identify specific cognitive processes underlying 

inattention. Moreover, if interactions between the different component processes have 

opposing effects on RTs, for example, if inattentive children process information slowly, but 

make fast and impulsive decisions, while attentive children process information quickly but 

make slower decisions, the resulting RTs may mask the underlying processing differences.  

The drift diffusion model (DDM; see Figure 1 for a graphical representation) uses intra-

individual variability in RT and accuracy across trials to isolate underlying cognitive 

processes. The model assumes that the decision to make a response is a cumulative process in 
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which noisy sensory information is gathered in favour of each response option, from a given 

starting point, until a decision threshold is reached (Ratcliff & McKoon, 2008). While the 

‘full’ DDM provides estimates of drift rate, boundary separation, non-decision time, starting 

point, and trial-to-trial variabilities in drift rates, non-decision time and starting point, the 

complexity of this model, both in terms of the structure of input data required and parameter 

fitting, reduces its applicability to many datasets, including that in the current study. A 

simplified version of the model (the EZ-DDM) has been developed that provides estimation 

of the most cognitively relevant of these parameters; drift rate, boundary separation and non-

decision time (Wagenmakers et al., 2007). Drift rate reflects the rate of information 

processing over time, referred to as information processing efficiency, as demonstrated by 

studies reporting lower drift rates in more difficult tasks compared to simpler tasks (Ratcliff 

& McKoon, 2008). Boundary separation reflects the speed-accuracy trade-off, or impulsivity, 

of the participant (Metin et al., 2013; Wiecki, Sofer & Frank, 2013). When this threshold is 

low, the participant makes decisions after accumulating only a small amount of information, 

meaning decisions will be fast but less accurate, reflecting impulsivity, and when this 

threshold is high, the participant requires more information before making decisions, 

meaning they will be more accurate but slower, reflecting conservatism. Non-decision time 

provides a measure of the non-cognitive elements of decision making such as encoding and 

response processes.  
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Figure 1: The EZ Drift Diffusion Model of decision making (Wagenmakers, Van Der Maas, & Grasman, 2007) 

provides estimates of drift rate (v), boundary separation (a), and non-decision time (Ter). 

 

Use of DDM in clinical samples has demonstrated how this approach can alter the 

conclusions that would have been drawn using standard RT and accuracy measures alone 

(Pirrone, Dickinson, Gomez, Stafford, & Milne, 2017; Zhang, 2012). For example, Pirrone et 

al. (2017) used DDM analysis to show that despite slower responses by patients with Autism 

Spectrum Disorder (ASD) on an orientation discrimination task, perceptual sensitivity was 

not impaired in this group, though behavioural data in isolation would have suggested it was.  

Given the correspondence between the DDM measures and processes that have long been 

implicated in attentional processing, such as response speed, impulsivity and response 

preparation, it is, perhaps, unsurprising that DDM has been used to assess impaired 

processing in ADHD. Analyses using case-control paradigms have consistently identified low 



Page 8 of 34 

 

drift rates as the primary explanation of group differences in task performance across a range 

of RT tasks, indicating that individuals with ADHD show less efficient processing. For 

example, Karalunas, Huang-Pollock, & Nigg (2012) found that group differences in RTs on a 

Stop task were explained by drift rate, rather than boundary separation (speed-accuracy trade-

offs) or non-decision processes such as response preparation. Similarly, Metin et al., (2013) 

found that those with ADHD showed lower drift rates and less non-decision time but no 

difference in boundary separation in both a simple choice RT task and a conflict control task, 

concluding that the RT differences in ADHD reflect inefficient information accumulation, 

rather than impulsive processing. Finally, Weigard & Huang-Pollock (2014) showed that in a 

contextual cueing task, individuals with ADHD, again, showed lower drift rates compared to 

controls, but also less flexibility in boundary separation.  

To our knowledge, research into inattention using the DDM approach has been limited to 

case-control studies of ADHD to date, without thorough investigation of the extent to which 

the cognitive processes isolated by DDM can predict variation in symptom severity, nor 

investigation of the relationship of the parameters to particular symptom domains. Moreover, 

DDM has never before been used to investigate processing in individuals born VP, a 

population at risk for attentional deficits. Emerging evidence indicates that although many of 

the mechanisms underlying inattention are the same in term and VP samples, there may be 

specific deficits in processing speed that contribute to inattentive symptoms in children born 

VP (Mulder, Pitchford, & Marlow, 2011; Retzler et al., 2019). The evidence from these 

analyses is limited by the response and domain-specificity of the tasks, thus measures more 

sensitive to elucidating the underlying cognitive processes, such as DDM, may be useful to 

further understand how processing may relate to inattentive symptoms. 

The current study investigates the value of DDM measures to further elucidate the cognitive 

mechanisms underlying inattention in VP and term-born children. A cued continuous 
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performance task (CPT-AX), in which responses are required to infrequent cue-target 

sequences among distractor stimuli, was used to measure sustained attention. CPTs are 

known to be sensitive to the behavioural deficits observed in children with ADHD (Huang-

Pollock, Karalunas, Tam, & Moore, 2012; Riccio & Reynolds, 2001), and studies have 

shown that task performance measures are best predicted by inattentive symptoms rather than 

hyperactive-impulsive symptoms (Chhabildas, Pennington, & Willcutt, 2001). To date, 

studies using CPTs to assess individuals born preterm have demonstrated poorer sustained 

attention in VP children relative to term-born controls (Mulder, Pitchford, Hagger, & 

Marlow, 2009), and shown that poorer task performance was associated with higher ADHD 

symptoms in VP adolescents (Rommel et al., 2017), but have not focussed on associations 

between task performance and inattention specifically. 

In order to facilitate the detection of correlates of inattention within both groups of children, 

and to directly compare these correlates between groups, term-born children were not 

recruited using a typical case-control approach. Instead, both groups were recruited to include 

children with a wide range of inattentive symptoms, as rated by their parents, ranging from 

above average attention to severe inattention (see supplementary material and Retzler et al., 

2019 for details). Accordingly, a dimensional measure of inattentive symptoms suitable for 

use in non-clinical samples and sensitive to the full range of attention scores was selected to 

capture the full range of these traits in both groups (the Strengths and Weaknesses of ADHD 

and Normal-behaviour; SWAN; Polderman et al., 2007; Swanson et al., 2012). 

Given that inattention is one of the core deficits in ADHD, it was predicted that, in line with 

previous studies in ADHD groups, drift rate would explain significant variance in inattention. 

As the first study to isolate cognitive components using DDM within a VP sample, our 

second hypothesis was two-tailed; we predicted that either inattention would be explained by 
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the same DDM parameters in both groups, or that groups would differ on one or more 

parameters.   

Method 

Ethical Standards 

Ethical approval was granted by a UK NHS Research Ethics Committee (Coventry and 

Warwickshire; Ref: 13/WM/0203) and informed parental consent was obtained for all 

children.  

Participants 

Sample recruitment is described in detail in Retzler et al. (2019) and a full description of all 

children tested is presented in the supplementary material. In brief, following identification 

from hospital records and tracing of all babies born VP (≤32 weeks’ gestation) and admitted 

for neonatal intensive care in Nottingham University Hospitals NHS Trust, 65 children were 

recruited (16% of eligible births) to the study. As a comparison group, 48 term-born children 

(≥37 weeks’ gestation) were then recruited from the same geographical area, using 

advertisements distributed via local schools and in the community, as well as the University 

of Nottingham volunteer database. This was a two-stage process that screened for inattentive 

symptoms using the parent-rated SWAN scale (stage 1), before inviting families to 

participate in the full study (stage 2). This process ensured that the seven points on the 

SWAN scoring scale were represented in the term-born children, reflecting a range of 

attentional abilities (far below average, below average, slightly below average, average, 

slightly above average, above average, and far above average).  

The sub-sample for the current analysis comprised all children with available task data 

suitable for the DDM analysis (see supplementary material for full explanation of why data 

for some children were unavailable). 10 children in each group achieved a 100% hit rate, 
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which prevents calculation of DDM parameters and rendered their data unsuitable for the 

analysis. This resulted in a sub-sample of 32 term-born children and 33 children born very 

preterm aged 8-11 years. Comparisons of the children included in the DDM analysis with 

those not included, revealed no differences in gestational age at birth, sex, ethnicity, socio-

economic status (as measured using the English Indices of Multiple Deprivation (McLennan 

et al., 2011)), IQ, or scores of parent-rated inattention and hyperactivity (p>0.1 in all cases; 

see supplementary material).  

Moreover, the VP children in the sub-sample for this analysis did not differ significantly from 

the wider eligible VP children (n = 374; excluded either due to non-recruitment to the study, 

or due to unsuitable data for the DDM) with respect to gestational age (p = 0.34), birthweight 

(p = 0.46), sex (p = 0.41), or socio-economic status, (p=0.19). 

Experimental task  

Children were asked to complete a CPT-AX programmed using PsychoPy software (Peirce, 

2007) while electroencephalography (EEG) measurements were recorded as the last part of a 

test battery (EEG data not reported here). Children were seated at a desk in a quiet, unlit 

room facing a computer screen while wearing the EEG recording cap. An experimenter 

remained with them in the testing room at all times.  

At the start of the task written instructions appeared on the screen to familiarise the children 

with the stimuli that represented cues and targets. The stimuli consisted of black abstract 

shapes (chosen so that they did not have a verbal label) filled with different patterns 

presented on a grey background (see Figure 2). One stimulus was designated as the target 

stimulus (in CPT-AX nomenclature, this represents the X stimulus) and one stimulus as the 

cue stimulus (in CPT-AX nomenclature, this represents the A stimulus). The same shapes 

were designated as cue and target for all children. The instructions were read out by the 
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experimenter who told each child that they were required to respond as quickly as possible 

when they saw a cue-target sequence. They were informed that the cue shapes and target 

shapes might also appear in isolation and it was reiterated that it was only when they saw a 

cue-target sequence in the specified order that they needed to respond.  

 

Figure 2: Schematic showing a cue-target sequence for the CPT-AX task. 

A continuous stream of stimuli was presented in the centre of the screen. Each stimulus was 

presented for 250ms separated by an inter-stimulus interval of 1400ms, during which a 

central fixation cross was displayed (see Figure 2). A cue-target ‘go’ (A-X) trial was defined 

as a trial-pair where the stimuli designated as the cue and target were presented 

consecutively. Each time the child saw the target stimulus sequentially following the cue 

stimulus, they were required to respond as quickly as possible pressing the left-most button 

on a Cedrus RB-730 button box with their right hand. Children were instructed to keep their 

finger over the response button so that they could respond as quickly as they could. No 

response was required to other trial types, including those where the cue and target were 

presented in isolation from one another.  
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The task consisted of 4 blocks of 100 trials, with the cue stimulus, target stimulus and 11 

different distractor stimuli presented. Trials were presented in a pseudorandomised order, 

with different orders for each block, but identical orders across participants. ‘Go’ (A-X) cue-

target sequences were presented 10 times within each block, as were cue-without-target ‘no-

go’ trials (A-not-X), and uncued-target ‘no-go’ (X-not-A) trials. On ‘go’ trials, participants 

were required to respond within 1650ms of stimulus onset (prior to the presentation of the 

subsequent stimulus) to be considered ‘correct’.   

Standard task performance measures 

Hit rate. The total number of correct hits (responses made within 200-1650ms from the onset 

of a cued target) was summed as a measure of accuracy. This was reported as a percentage of 

correct hits out of the maximum score of 40. Higher scores represent more accurate 

performance, and thus better attention.  

Commission errors. The total number of responses made on ‘no-go’ trials (any trial other 

than a cued target) was summed as a measure of commission errors. This was reported as a 

percentage of erroneous responses out of the 360 ‘no-go’ trials (error rates were too low to 

permit differentiation between type of ‘no-go’ trial). Higher scores represent less accurate 

performance and therefore greater impulsivity.  

Response time. The mean response time on correct hit (A-X) trials was calculated as a 

measure of response speed. Higher values represent slower response speed.  

Response time variability. Finally, the standard deviation of response time on correct hit trials 

was calculated as a measure of response speed variability. Higher values represent greater 

variability in response speed. 

Participant characteristics and clinical symptoms 
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An age-standardized estimate of full scale IQ (FSIQ-2) was calculated from the Wechsler 

Abbreviated Scale for Intelligence (Wechsler, 1999) using the vocabulary and matrices 

subtests. Inattentive and hyperactive-impulsive behaviours were measured using the raw 

scores on the SWAN rating scale (Swanson et al., 2012) a parent-report measure of a child’s 

ADHD symptoms. This scale has been considered appropriate for use in community 

populations (Swanson et al., 2012) as it allows measurement of variation in above average 

attention in addition to below average attention (more severe inattention; Arnett et al., 2013). 

To characterise inattention and hyperactivity in more clinical terms, measures of symptoms 

and risk of ADHD were assessed using the Conners 3-P (Conners, 2008), with higher scores 

indicating greater symptoms. Children with scores above the predefined clinical cut-off were 

classified as “at risk” of diagnosis. 

Diffusion model fitting  

In light of the infrequent target stimuli in this task and consequent low trial numbers (n=40), 

as well as the fact that error rates on ‘go’ trials were low, the EZ-DDM (Wagenmakers et al., 

2007) was used. The EZ-DDM is a simplified version of the full drift diffusion model and is 

ideal for use both with small numbers of trials, and with low numbers of error rates 

(Wagenmakers, van der Maas, Dolan, & Grasman, 2008).  

The EZ-DDM (Wagenmakers et al., 2007) was fitted to the ‘go’ RT and accuracy data from 

our task using custom R scripts (Wagenmakers provides customisable scripts for R here: 

https://www.ejwagenmakers.com/2007/EZ.R). The EZ-DDM transforms a participant’s 

overall accuracy, mean RT and variance in RT using three equations derived from the full 

DDM (see Wagenmakers et al. (2007) for a more detailed description of the procedure). This 

simplification allows calculation of the most cognitively salient DDM measures without 

complex parameter fitting procedures often requiring large numbers of trials. This comes at 

the cost of a more detailed account of behaviour provided by the full DDM which includes 

https://www.ejwagenmakers.com/2007/EZ.R
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measures of cross-trial variability and starting point. For the purposes of EZ-DDM, such 

parameters are kept constant. 

The EZ-DDM provides estimates of drift rate, boundary separation, and non-decision time 

parameters for each participant. For drift rate, a higher value indicates that more information 

is processed per unit of time (higher drift rate indicates more efficient information 

processing); for boundary separation, a higher value indicates greater separation between 

decision boundaries and thus a more conservative approach to decision making based on 

greater evidence accumulation, conversely a lower value suggests an impulsive decision.  

Finally, for non-decision time, a higher value indicates greater time spent encoding the 

stimuli and preparing and executing responses.  

Prior to fitting, response times below 200ms were rejected as these are likely to reflect 

anticipatory responses from participants prior to cognitive processing of the current stimuli 

(Ratcliff & McKoon, 2008).  

To test the goodness of fit of the DDM model, 1000 trials for each group were simulated 

using the ‘multisimul’ function in the DMAT toolbox for MATLAB. The simulated data 

were created using model parameters (drift rate, boundary separate, non-decision time) 

averaged across individuals within each group to create mean parameters. Using these 

parameters, DMAT was used to create two simulated super-subjects. The mean RTs and 

accuracy from the observed data were then compared with those of our simulated data. 

Statistical Analysis 

As children in both groups presented with a range of levels of parent-rated inattention, group 

differences in cognitive performance were not expected, but were analysed to provide 

context. Group differences in CPT-AX performance were examined using a MANCOVA 
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with group (term-born or VP) as the between-subjects factor and age entered as a covariate as 

this differed between groups.  

To assess the pattern of association between parent-rated inattention and task performance 

and DDM measures, first partial correlations controlling for age were performed, both across 

groups and split by group. Next, in order to assess the independent contribution of these 

variables for explaining the variance in parent-rated inattention, any task performance or 

DDM measure that showed a significant correlation with parent-rated inattention in either 

term-born or VP children was entered into a hierarchical multiple regression, with parent-

rated inattention as the dependent variable. Group and age were entered into the first step, 

and hit rate, RT variability and drift rate were entered in the second step. Due to high 

intercorrelations between task performance and DDM measures (see supplementary 

material), when these were entered in the second step, a data-driven stepwise-entry selection 

technique was used so that only those variables that added significant variance above and 

beyond that accounted for in the preceding steps were entered. This approach has been used 

previously (Aarnoudse-Moens, Weisglas-Kuperus, Duivenvoorden, Goudoever, & 

Oosterlaan, 2013) to better separate out effects amongst variables that are inter-related. In 

order to investigate any group-specific effects, group interaction terms were included as 

predictor variables in a regression analysis. However, to assess whether the interaction terms 

explained additional variance while accounting for the loss of any task performance or DDM 

measures in the second step of the analysis due to the use of stepwise-entry variable selection, 

a separate regression analysis was conducted using forced entry technique at all steps, in 

which group interaction terms were added in a final step.  

Results 

Sample characteristics 
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A full comparison of sample characteristics between VP and term-born children included in 

the DDM analysis are provided in the supplementary material (Table SA1), with key features 

summarised in Table 1 below. Compared with term-born children, VP children were 

significantly older (p=0.031) and had significantly lower IQ (VP: M = 99.2 points, SD = 14.0 

points; Term: M = 111.6, SD = 9.7 points; p<0.001) but were well-matched on most other 

variables (see Table SA1). In spite of both samples including children with a large range of 

scores on the SWAN inattention scale, VP children had significantly more severe parent-

rated inattention, than those in the term-born sample (VP: M = -0.70, SD = 9.89; Term: M = -

6.58, SD = 12.23; p=0.038). That noted, while there were high correlations between Conners 

3-P ratings of inattention and hyperactivity and SWAN ratings of inattention and 

hyperactivity (inattention r=0.78, p<0.001; hyperactivity r=0.71, p<0.001), there were no 

differences between groups in the number of children scoring ‘at risk’ according to clinical 

cut-offs for DSM ADHD diagnoses on the Conners 3-P. 

Table 1: Characteristics of term-born and very preterm children. 

Participant demographics 
Very 

Preterm 
Term p 

Gestational age at birth (weeks)a; Mean (SD) 29.6 (1.9) 40.0 (1.2) - 

Birth weight (kg); Mean (SD) 1.40 (0.47) - - 

Age at assessment (years); Mean (SD) 9.6 (1.0) 9.1 (1.1) 0.031* 

Sex; % female 45.5 40.6 0.694 n.s. 

Conner’s 3 scores above clinical cut offs for 

DSM ADHD/I; n(%) 
12 (36.4%) 7 (21.9%) 0.199 n.s. 

Conner’s 3 scores above clinical cut offs for 

DSM ADHD/C; n(%) 
10 (30.3%) 10 (31.3%) 0.934 n.s. 

Note: SD = standard deviation. a 5 children (15.2%) in the VP sample were born at gestations of fewer than 28 

weeks, meeting criteria for extremely preterm birth. *p<0.05, n.s.= not significant. 

 

Model fit 
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Our simulation showed that the model fit the data well with little difference between the 

simulated and observed data for either group (Figure 3; RT quantiles are presented in Figure 

SA1 in the supplementary material for further detail). 

 

Figure 3: Comparison of simulated (light grey) and observed data. A shows mean percent accuracy for the VP 

and term born children. B shows the mean reaction time for correct responses for each group. Error bars are the 

standard error of the mean. 

 

Between-group differences in task performance 

Using Pillai’s Trace, multivariate tests showed that there was no significant effect of age 

(V=0.121, F(7,56)=1.104, p=0.373) or group (V=0.102, F(7,56)=0.913, p=0.504) on CPT-AX 

performance using either standard or DDM measures, therefore no univariate tests were 

conducted. 

Table 2: Age adjusted marginal means and standard errors (SE) for performance measures of 

term-born and very preterm children. 

Measure Very Preterm Term 

Mean SE Mean SE 

Commission errors (%) 2.4 0.5 2.5 0.5 

Hit rate a (%)  88.3 2.2 84.6 2.3 

RT a (ms)  478 15 492  15 

RT variability (ms) 168 11 169 11 

Drift rate .211 .016 .191 .016 

Boundary separation .112 .004 .112 .004 

Non-decision time .253 .013 .267 .013 
Note: SE = standard error of the mean. RT = response time. MS = milliseconds. a See Figure SA2 in 

supplementary material for a graphical representation of RT and accuracy quantiles by group. 



Page 19 of 34 

 

Relationships with parent-rated inattention 

Partial correlations between task performance and DDM parameters and parent-rated 

inattention showed that across groups higher levels of inattention were associated with poorer 

hit rate, increased RT variability and a lower drift rate. The same pattern of findings was 

observed in both groups, although the correlation between RT variability and inattention did 

not reach significance in the VP group. Fisher’s comparison confirmed that there were no 

significant differences in the magnitude of correlations between groups for hit rate (z = 0.22, 

p = 0.83), RT variability (z = -1.35, p = 0.18) or drift rate (z = 0.32, p = 0.75). Full 

correlations between all task performance and DDM parameters and inattention are presented 

in the supplementary material. 

Table 3. Partial correlations between parent-rated inattention and task-performance.   

 Inattention 

 

Collapsed 

Across Groups 

N=64a 

Very Preterm 

N=33 

Term 

N=31 a  

Commission errors 0.241 0.167 0.319 

Hit rate  -0.350** -0.369* -0.418* 

Response time 0.152 0.126 0.210 

RT variability 0.318* 0.163 0.475** 

Drift rate -0.369** -0.364* -0.435* 

Boundary separation 0.021 -0.128 0.136 

Non-decision time -0.107 0.004 -0.159 

Note: All correlations have been controlled for the effect of age. *p<0.05, **p<0.01, ***p<0.001. a SWAN 

Inattention was not measured for 1 term-born participant 
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The results of the hierarchical stepwise regression are reported in Table 4. Age and group 

alone did not explain significant variance in parent-rated inattention (F(2,61)=2.522, 

p=0.089). The model was significantly improved with the addition of task-performance 

measures (ΔR2 =0.153, p=0.001), though only drift rate contributed enough unique variance 

to be entered into Model 2, which explained 22.9% of the variance in inattention (Model 2; 

F(3,60)=5.956, p=0.001). Notably, with the inclusion of task-performance measures, group 

also explained significant unique variance in this model.  

Finally, group-specific effects were assessed by conducting a separate regression analysis 

which used a forced entry variable selection technique throughout and added interaction 

terms in a third step. Addition of group-interaction terms did not explain significantly more 

variance than was explained by task performance and DDM measures alone,  (ΔR2 =0.039, 

p=0.374), and none of the group interaction terms explained unique variance, thus no further 

analyses of group-specific effects were conducted and Model 2 (see Table 4) was accepted as 

the final model. 

Table 4: Regression model for cognitive predictors of parent-rated inattention 

 
Inattention 

Model 1 
R2=.076 

 

Model 2 
R2=.229*** 

ΔR2= .191*** 

Predictor β β 

Group .230 .277* 

Age .099 .159 

Drift rate  -.401*** 

Hit rate  - 

RT variability  - 

Note: *p<0.05; ** p<0.01;*** p<0.001. - = did not meet criteria for stepwise entry model selection. 
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Figure 4: Scatter plot showing the association between parent-rated inattention and the drift rate parameter of 

the drift diffusion model for term and very preterm groups. Inattention scores of zero reflect an average level of 

attentive behaviour, positive scores reflect a poorer than average level of inattentive behaviour, and negative 

scores reflect an above average level of attentive behaviour. Higher drift rate scores reflect processing of a 

greater amount of information per unit of time in favour of the ‘go’ response (i.e. more efficient processing). 

 

Discussion 

The aim of the current study was to explore the value of DDM measures for understanding 

the cognitive mechanisms underlying inattention in VP and term-born children. Unlike in a 

typical case-control study, we did not necessarily expect task performance differences 

between groups due to the range of attentional abilities of the children included in both 

groups, and the fact that they were well-matched for number of children with clinically-

relevant ADHD symptoms. Indeed, the groups did not differ on standard task performance 

metrics, nor on DDM measures. Across groups, more severe parent-rated inattention was 

associated with a lower hit rate, more variability in response time, and, as hypothesised, a 

lower drift rate (less efficient information processing). No significant differences between the 

two groups were observed in the magnitude or direction of correlations between task-

performance or DDM measures and inattention. Across the sample, the best predictor of 
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parent-rated inattention was drift rate, indicating that the DDM estimate of processing 

inefficiency best characterised the features of CPT task performance that related to inattentive 

behaviour in our sample. Interestingly, parent-rated inattention was not predicted by 

boundary separation or non-decision time in either group, in line with converging findings 

from previous research that emphasises the role of inefficient processing in ADHD 

(Karalunas et al., 2012; Metin et al., 2013; Weigard & Huang-Pollock, 2014). 

In DDM, the extent to which the different parameters relate to standard task performance 

metrics depends on a combination of task demands and features of samples, so in some tasks, 

differences in RT between conditions or samples may be explained by differences in 

boundary separation, while in others, it may result from changes in non-decision processes. In 

our data, hit rate and drift rate were very highly correlated (see Tables SA2 and SA3 in 

supplementary material.), which supports previous evidence showing that drift rates are often 

substantial drivers of accuracy (Ratcliff & McKoon, 2008). In fact, running the same 

regression analysis without the drift rate parameter resulted in a model where hit rate was the 

only task performance measure retained (see Table SA4 in supplementary material), and a 

model that explained a similar amount of variance to Model 2 above (which does include 

drift rate). The benefit, therefore, of using the DDM parameters is an ability to better 

understand the cognitive processes behind the task performance, as opposed to greater 

explanatory power. A logical interpretation of hit rate predicting inattention is that children 

who have more severe inattentive behaviour are less accurate in the CPT-AX, missing more 

of the infrequent target stimuli. We do not know what processing deficits lie behind this 

inaccuracy. It could be due to response preparation being so slow that targets are missed (this 

would be captured by the parameter of non-decision time), or it could be due to poorly 

calibrated speed-accuracy trade-off (which would be captured by the parameter of boundary 

separation). In this instance, the parameter of drift rate emerges as key. Accordingly, 
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interpretation of the relationship between drift rate and inattention provides us with a clearer 

narrative. Children with more severe inattention are less efficient at information processing, 

which is likely one of the factors that contributes to a reduced hit rate.  

Another advantage of exploring DDM measures when characterising behavioural deficits is 

that there is accumulating evidence of neurological areas and processes associated with 

specific DDM measures, which can help us to understand more about the causal pathway 

from brain to behaviour. The drift rate parameter has been causally linked to the dorsolateral 

prefrontal cortex (DLPFC), an area thought to integrate sensory evidence (Philiastides, 

Auksztulewicz, Heekeren, & Blankenburg, 2011) and implicated previously in ADHD, both 

in terms of reduced activation and delayed maturation of cortical thickness (Bush, 2010). 

Given this link, Karalunas et al. (2012) speculate that low drift rates in ADHD samples may 

be due to deficits in DLPFC function, resulting in difficulty in deciding between two 

response options. Such use of modelling techniques thus promises to aid in the identification 

of risk markers and intervention targets for inattention and other disorders in which 

inattention is a key component. 

These results have implications for theories of ADHD. For some time, the focus has been on 

executive top-down explanations of the disorder but these findings add to a growing literature 

suggesting that ADHD may, at least in part, reflect deficits in the processing or accumulation 

of information which underlie the executive deficits (Rommelse et al., 2007). As 

acknowledged by Metin et al. (2013), these findings do not exclude the possibility that 

executive deficits are important, rather they indicate that executive dysfunction cannot be 

considered the sole cognitive factor in ADHD symptoms. Future research into inattentive 

behaviour, both in term and preterm populations, should focus on using tasks with greater 

numbers of trials that would allow the fitting of more sophisticated DDM models with more 
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parameters, to understand in more depth those cognitive processes underlying inattentive 

behaviour. 

The current analyses can be interpreted to indicate overlapping aetiology of inattention in our 

two groups (though larger sample sizes would be required to provide sufficient power to rule 

out smaller effect size differences and provide certainty of equivalence1) which may have 

positive implications for the suitability of assessment and treatment options used in the 

general population for children born VP. Research assessing intervention effectiveness within 

the VP population would be required to explore this in greater detail, not only in light of the 

narrow scope of the current analysis, but also in recognition of the possibility that 

neurocognitive differences unrelated to inattentive behaviour may still affect treatment 

response. 

The analysis did not provide further evidence of differences between the cognitive processes 

relating to inattention in term and VP children, suggesting that the CPT taps into different 

processes to those implemented in Retzler et al. (2019) and Mulder et al. (2011). To some 

extent, these contrasting findings demonstrate the very difficulty that computational analysis 

of behavioural data aims to resolve. Interpretation of task performance in cognitive 

neuroscience is limited to differing degrees by the impurity of the measures employed, and is 

made more difficult still by the non-specificity of terminology adopted. Both Retzler et al. 

(2019) and Mulder et al. (2011) used very different tasks that were both purported to measure 

                                                 
1 To further assess equivalence between groups we conducted some Bayesian analyses in addition to our null-

hypothesis significance testing (NHST) inferential statistics. First we performed a Bayesian regression to 

calculate Bayes factors in favour of the alternative hypothesis for the prediction of inattention in a model with 

group, age and drift rate as predictors. In line with our NHST analysis, we found strong evidence in favour of 

accepting the alternative hypothesis (BF10 = 25.95). To examine group-specific effects of drift rate on 

inattention, we performed a second analyses in which group, age and drift rate were added to the null model 

(akin to including these variables in first steps of a hierarchical regression analysis), before calculating the 

Bayes factor for the inclusion of the group*drift rate interaction term. This provided some evidence in support 

of the null hypothesis (BF01 = 2.71), indicating that it is unlikely that the relationship between drift rate and 

inattention is group-specific. 
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some element of processing speed, finding that only VP children showed an association 

between these measures and inattention. It may, perhaps, seem contradictory for no similar 

finding to be observed in the current analysis with regard to drift rate, which is often referred 

to as processing efficiency, particularly given that it involves a sub-sample of those in Retzler 

et al. (2019). Further research that uses designs, techniques and analytical approaches more 

sensitive to these underpinning cognitive processes is required to address this complexity, 

and to understand more fully any processing deficits that are specific to children born VP. 

Limitations 

This study is limited by the use of the EZ-DDM in preference to more complex DDMs that 

are able to estimate a wider range of parameters. This decision was taken due to the limited 

number of ‘go’ trials in the task, which resulted from a combination of the CPT-AX design 

(10% frequency of ‘go’ trials), and consideration of the total number of trials it would be 

ethical and pragmatic to include for one task within an extended test battery for a sample with 

attention difficulties. The EZ-DDM is better suited to small numbers of trials (Wagenmakers 

et al., 2007). Indeed, previous research has demonstrated good fits with very few trials 

(Lerche, Voss, & Nagler, 2017; Pirrone et al., 2017) and our simulated data suggested a good 

fit to our empirical data. However, the EZ-DDM did not allow us to look at some of the other 

components of the DDM such as starting point of evidence accumulation or cross trial 

variability of model parameters. While the measures provided by the EZ-DDM are those 

considered the most psychologically relevant (Wagenmakers et al., 2007), and also include 

those identified by previous literature to underlie inattention, the inflexibility of EZ-DDM 

may have limited the accuracy of the estimation of our parameters. Starting point, in 

particular, may have been biased towards the more frequent ‘no-go’ response in this task, and 

ideally, future studies should aim to collect data from enough trials to fit a full DDM. 

Inclusion of the other parameters of the full DDM may not only improve the accuracy of 
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parameter estimation all-round, but may also avoid misinterpretation of data as demonstrated 

in Ratcliff, Huang-Pollock and McKoon (2018). Incidentally, the EZ-DDM was created by 

Wagenmakers et al. (2007) to provide an easily applied model that could be used by those 

without in-depth knowledge of modelling. The current findings, along with previous research 

in ASD (Pirrone et al., 2017), Parkinson’s disease (Zhang, 2012) and ADHD (Karalunas et 

al., 2012; Metin et al., 2013; Weigard & Huang-Pollock, 2014), highlight the worth of such 

an approach alongside standard analyses.  

While the EZ-DDM was the best fit to our data as it can be used even with low trial numbers 

and error rates, it does still require some errors. Although Wagenmakers et al. (2007) 

proposed a correction method for cases of 100% accuracy, this has been critiqued by Ratcliff 

(2008) for unreliable parameter recovery, particularly with small trial numbers. As such, we 

opted to exclude the 10 children from each group who had achieved 100% hit rates, and had, 

unsurprisingly, also performed significantly better on other measures of task performance. 

Future research may benefit from manipulating task difficulty, for example, by making target 

and distractor stimuli visually similar in order to increase error rates, so that data for the full 

sample can be analysed. 

In contrast to the full study sample, SWAN scores in inattention differed between term and 

VP children in this sub-sample (see supplementary material for details), and group was a 

significant unique predictor of inattention when drift rate was modelled. However, given the 

dimensional approach used in the study design, matched samples per se were not necessary 

for achieving the study aims. As intended from the recruitment process, both groups in the 

sub-sample included children from the full spectrum of SWAN scores, facilitating detection 

of relationships between cognitive processes and inattentive behaviour. Although there were 

group differences in SWAN inattention overall, there were no differences in the number of 

children scoring above clinical cut-offs on the Conners 3-P, suggesting that the number of 
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children with clinically relevant symptoms was well-matched. This may explain why 

although drift rate was associated with SWAN inattention, which differed between groups, 

drift rate itself did not differ between groups. 

Finally, in the current study the primary factor underlying inattention was the same for both 

groups. However, these results only provide a snapshot of the children’s development 

(between 8 and 11 years old), thus it remains unclear whether the developmental trajectories 

underlying inattention are the same for those born VP and at term, or whether similarities 

observed here have been reached via distinct pathways. In order to fully understand the 

similarities and differences in the causal pathways to inattention and ADHD in preterm and 

term-born children more comprehensive studies are required. Whilst these results provide an 

encouraging avenue for future research, it is important to note that the amount of variance in 

inattention explained by our model remained modest at 22.9%, suggesting that these 

differences in cognition were not the only factors involved in the aetiology of inattention in 

this sample. 

Conclusions 

In summary, the cognitive mechanisms underlying inattention in term-born and VP children 

seem to be at least partly overlapping. High levels of inattention were predicted by lower drift 

rate, indicating that inattentive behaviour is associated with less efficient processing of 

information. Use of DDM parameters provided a better characterisation of the individual 

differences in cognition that related to inattentive behaviour in term and VP children. 
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