
Improving Planning Performance in PDDL+
Domains via Automated Predicate

Reformulation

Santiago Franco, Mauro Vallati1[0000−0002−8429−3570], Alan Lindsay, and
Thomas L. McCluskey

School of Computing and Engineering
University of Huddersfield, Huddersfield, United Kingdom

{n.surname}@hud.ac.uk

Abstract. In the last decade, planning with domains modelled in the
hybrid PDDL+ formalism has been gaining significant research interest.
A number of approaches have been proposed that can handle PDDL+,
and their exploitation fostered the use of planning in complex scenarios.
In this paper we introduce a PDDL+ reformulation method that reduces
the size of the grounded problem, by reducing the arity of sparse predi-
cates, i.e. predicates with a very large number of possible groundings, out
of which very few are actually exploited in the planning problems. We
include an empirical evaluation which demonstrates that these methods
can substantially improve performance of domain-independent planners
on PDDL+ domains.

Keywords: Automated Planning · Hybrid Reasoning · Reformulation

1 Introduction

Automated planning is one of the most prominent Artificial Intelligence (AI)
challenges; it has been studied extensively for several decades and has led to
a large number of real-world applications. The growing number of domain-
independent PDDL+ planners is fostering the exploitation of planning in com-
plex real-world applications, where notions of continuous processes and discrete
events and actions are needed [4]. The use of reformulation and configuration
techniques, which can automatically re-represent the planning model in order to
increase efficiency and enable a scale up in size of applications that can be han-
dled. In the last decades, research into reformulation techniques has attracted
significant attention. Types of reformulation of classical PDDL models include
macro-learning [6] and configuration [9].

Hybrid PDDL+ models are amongst the most advanced models of systems
and the resulting problems are notoriously difficult for planners to cope with
due to non-linear behaviours and immense search spaces. Complexity is exac-
erbated by the potentially huge size of the fully grounded problems, needed by
planners in order to effectively explore the search space, which can make some

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Huddersfield Research Portal

https://core.ac.uk/display/237463982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Franco et al.

Algorithm 1 Reformulation for flattening sparse predicates

Require: Do, Io, st, at

Ensure: Dr,Ir
1: SP = statics(Do);P = predicates(Do) ∪ functions(Do)
2: Dr = Do; Ir = Io
3: for all pj in P , where arity(pj) > 2 do
4: if sparsity(pj , Io) > st then
5: pstat = findConstrainingStatic(pj , SP)
6: if pstat 6= None then
7: Tpstat = getSparseV ariables(pstat, Io, a

t)
8: Cnew = makeConstants(Tpstat , so)
9: Dr = addAsConstants(Dr, C

new)
10: Dr = updateOpProEv(Dr, Tpstat , C

new)
11: Ir = updatePredsFuncs(Dr, Ir, Tpstat , C

new)

problems impossible to tackle. Particularly, grounding is also strongly affected
by predicates’ instances that will not be reachable in any state of the problem.

In this paper we introduce a PDDL+ reformulation method that allows to
drastically reduce the size of the grounded problem, by reducing the arity of
sparse predicates, i.e. predicates with a very large number of possible ground-
ings, out of which very few are actually exploited in the planning problems. Arity
is reduced by merging suitable objects together, and partially grounding the op-
erators, processes and events in which reformulated predicates are involved. Our
experimental analysis, performed on a range of problem from different applica-
tion domains, shows that the proposed reformulation technique can substantially
improve the performance of PDDL+ planning engines, by allowing problems to
be grounded and by constraining the search space.

2 The Proposed Reformulation Approach

Our approach relies on identifying sparse predicates that are partially con-
strained by a static predicate. Through combining the sparsity measure for
dynamic predicates with a constraining static predicate, the approach is able
to better identify predicates for which the reformulation will have significant
impact.

Let us consider an hybrid version of the well-known Rovers domain model,
where movements and energy generation via solar are modelled as continuous
processes, triggered by actions under the control of a planner, and constrained
by appropriate events. In the Rovers domain, rovers are used to make soil and
rock samples and to take pictures for various objectives. This requires that the
rovers are moved between waypoints in order to establish shots and collect sam-
ples from certain positions. The constraints establishing the properties of the
rovers and the relationships between waypoints (e.g., that a rover can traverse
between waypoints) are encoded as static facts. As with many network based re-
lationships, only a fraction of the potential connections are made available in any

Automated Predicate Reformulation for PDDL+ 3

particular problem model. Of course, as the number of waypoints (and rovers)
grows this fraction will reduce. The problem model reformulation reported in this
paper collapses the variables of predicates, creating a model with fewer sparsely
instantiated predicates. This procedure can be applied to Rovers, for example,
consider replacing the (arity 2) predicate: (visible ?waypoint1 ?waypoint2)
with an alternative (arity 1) encoding: (visible ?visible waypoint1 waypoint2).
Whereas in the original version, the domain of possible instantiations is every
pair of waypoints; in the second approach, we can reduce the domain by only
defining constants for the combinations of waypoints for which the relation holds.

2.1 The Reformulation Algorithm

Algorithm 1 shows how the reformulation of a domain model, Do, and a problem
model, Io, is performed. Beside the models to be reformulated, the algorithm
requires as input a sparsity threshold st, which is used to decide whether or not
it is useful to perform the reformulation and a parameter, and at, which sets
the maximum number of variables considered in the reformulation (how these
parameters are set is explained below).

In the algorithm (see Algorithm 1) the sparsity of the predicates (Boolean or
numeric) with arity greater than 2 are assessed in turn (line 3) to determine if
they are suitable for the reformulation step. As a measure of sparsity we compare
the set of propositions in the initial state with the possible set of all propositions
for the predicate. For example, if we consider a specific example Rovers problem
from our benchmark problems, with 4 waypoints and 2 rovers, we can calculate
the total set of possible propositions as: 4 × 4 × 2 = 32. In this example, there
are 10 instances of can traverse in the initial state and so the sparsity for this
predicate is 10/32.

In the case of a sparse predicate, pj , the procedure attempts (line 5) to find a
static predicate, pstat, such that pj is only used in transition schemas (that is in
the action, process or event schemas) with pstat. We consider predicates as static
if instances of the predicate can not be deleted or created during the planning
process but, in the case of numeric predicates, their value can be changed. If there
is more than one constraining static predicate then one is selected heuristically
by selecting the predicate that occurs the most in transition schemas. There are
two static facts that constrain the can traverse predicate: can traverse itself
and visible. The algorithm selects visible as it appears in more transition
schemas.

2.2 Reformulating the domain and problem models

In the case that pstat exists (e.g., visible), a reformulation step is applied
using pstat as the basis. In our current system, we have considered subsets of
the variables of the static facts and so we add a parameter, at, to determine the
maximum arity of the reformulation. The best max(at) variables are selected (line
7) using the sparsity of the tuple for pstat in Io. We use Tp to denote a subset
of the variables of p. In our example, visible has arity 2 and therefore Tvisible

4 S. Franco et al.

would contain both its variables. The variables in Tstat are then combined to
form a set of constants, Cnew, of type, tnew, which are added to the domain
model. One constant is defined for each distinct combination of these variables
for the instances of the predicate in Io. For example, a new constant is generated
for each distinct combination of the waypoints in the instances of the visible

predicate in the initial state. For instance, (visible waypoint3 waypoint0)

leads to a new constant waypoint3 waypoint0 (using the new type).

At this stage (line 10) each of the transition schemas that refer to pstat are
reformulated. For example, in Rovers, the transitions with visible as a precon-
dition are identified (e.g., start-navigate, communicate soil data). For each
predicate (dynamic, static or numeric) in these transitions the algorithm tests
to determine if it can be part of this reformulation step. If the predicate is only
used in transition schemas with pstat, and Tpstat is a subset of the parameters
of the predicate then it is selected for reformulation. In the case of visible,
only the can traverse predicate is constrained by the visible predicate and
so only these two are selected for reformulation. For each selected predicate, p,
(including pstat) a new predicate, p′, is made by replacing the variables that are
in Tpstat with a single variable of type, tnew and retaining the other variables
(e.g., arity(p′) = arity(p) − |Tpstat | + 1). For example, (can traverse ?rover
?waypoint1 ?waypoint2), is reformulated as (can traverse ?rover ?new-type).
The original predicate, p, is omitted from the new model, Dr.

Each transition schema that depends on pstat is partially grounded so that
the variables corresponding to those in Tpstat

are grounded and constants added
as necessary (i.e., for referencing the individual objects). This allows the relation
between the new constants and the original objects to be maintained. For exam-
ple, there are new start-navigate operators for each of the new constants, e.g.,
start-navigate-waypoint3-waypoint2. In start-navigate, each matching of
?waypoint is added as constant as it is referred to in other predicates.

Finally, the problem model is reformulated (line 11) by changing those pred-
icates involved in the reformulation to use the constants in Cnew in the initial
state and goal, using a similar approach as described above. Of course, after this
step has been applied once, the procedure can be repeated on the reformulated
model supporting further combining of variables as appropriate.

3 Experimental Analysis

Four PDDL+ planners at the state of the art are included in the evaluation:
ENHSP [8] , UPMurphi [3], DINO [7], and SMTPlan [2].

All reported results were achieved by running the planners on a machine
equipped with i7-4750HQ CPU, 16 GB of memory, running Ubuntu 16.10 OS.
4 GB of memory were made available for each run, and a 15 CPU-time minutes
cut-off time limit was enforced.

The experimental evaluation is performed by considering three benchmark
domains, namely Hybrid Rover, Urban Traffic Control, and Baxter.

Automated Predicate Reformulation for PDDL+ 5

Table 1. CPU-time seconds needed by the planners to find a satisficing solution. O (R)
rows show the results achieved when running the Original (Reformulated) model. X
indicates grounded but not solved. ”–” means crashed during grounding. NA indicates
that the planner is unable to handle the model.

Planner Baxter Hybrid Rover UTC
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ENHSP
O 0.40 X 26.8 13.5 335.7 1.3 18.9 58.54 77.33 – 5.3 10.8 – – –
R 0.45 151.7 23.5 15.2 17.9 1.1 35.0 60.28 65.5 87.5 2.7 3.2 12.5 6.9 30.8

UPMurphi
O X X X X X X X X X X 7.26 X – 148.78 X
R X X X X X X X X X X 0.62 5.02 29.34 5.2 49.4

DINO
O 12.0 X X X X 116.24 X X X X X X – X X
R 27.6 X X X X X X X X X X X X X X

SMTPlan
O 0.01 X X X X 0.5 1.8 X X X NA NA NA NA NA
R 0.01 X X X X 0.5 1.8 X X X NA NA NA NA NA

The Baxter domain [1] exploits planning for dealing with articulated objects
manipulation tasks. The “simplified” domain model has been extended by allow-
ing continuous movements of a joint, modelled via actions and process envelope,
on different axis, and by adding events for preventing movements wider than 360
degrees. Problems consider articulated objects composed by 2–5 links. The ob-
jects of type link has been merged into a new type, and four predicates have then
been reformulated: connected, increasing angle, decreasing angle, and use. Our
reformulation approach has been applied following the fact that the connected

predicate is static, and is exploited in operators and processes to control all
the other mentioned predicates. According to the results shown in Table 1 UP-
Murphi, DINO, and SMTPlan grounded and explored the search space of all
the considered problems but only ENHSP solved most of the problems using
the original representation. ENHSP solved all but one of the problems using
the original models. Remarkably, the use of reformulated models did lead to a
significant search speedup, and allows ENHSP to solve all the considered bench-
marks. Empirical evidence indicates that the reformulation allows to improve
the pruning done by the reachability analysis of ENHSP, leading to a faster ex-
pansion and evaluation of the search states. The other planners could only solve
the simplest problem in both original and reformulated versions. Interestingly,
DINO works better with the original representation. According to our observa-
tions, in that specific problem, the DINO heuristic expanded twice the number
of states compared to its use with the reformulated model, but to find the same
solution. This seems to suggest that, on some simple problem instances, the use
of reformulated models can reduce the effectiveness of a domain-independent
heuristic.

We extended the well-known Rover domain model introduced in IPC-3 by
modelling as continuous processes the movements of the rovers, and the energy
generation via solar power. Each of the mentioned processes can be controlled by
the planner using two actions, and is constrained, where appropriate, via events.
The predicate can traverse has been reformulated by merging the objects of
type waypoints, as shown in the previous section. The use of reformulated mod-
els allows ENHSP to solve a larger number of problem instances. However, in few

6 S. Franco et al.

Table 2. Ratio of maximum search space sizes of original vs reformulated representa-
tions for the UPMurphi and DINO planners. ”–” is used to indicate cases where one
of the approaches lead planners to crash during grounding.

Baxter Hybrid Rover UTC

Problem 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Ratio 2.42 3.98 3.98 3.13 4.76 1.00 1.05 1.88 2.86 4.18 18.59 37.08 – 18.58 21.05

cases, the reformulation negatively affected search performance, once the ground-
ing is completed. The larger the problem, the closer the performance between
both versions got. According to our observations, the default heuristic exploited
by ENHSP is less informative, for this domain, when exploited on reformulated
models. However, one large and complex problems, the gap is closed by the fact
that the reformulated model allows the planner to explore a significantly larger
size of the search space. DINO, running on reformulated models, is able to com-
plete the grounding of all the considered problems, but lacks of the capability of
generating plans. SMTPlan is not significantly affected by the different domain
models. This seems to be related to the compilation of the PDDL+ model into
an SMT encoding that allows to reduce grounding-related issues.

Finally, the Urban Traffic Control (UTC) domain [5] models the use of
planning for generating traffic light signal plans, in order to de-congest a urban
region. In this analysis we considered the problems introduced by McCluskey
and Vallati [5], which involved a network of 10 junctions, and we extended it by
considering problems with 20 and 30 junctions, obtained by connecting identical
regions. Problems 1–3 have 10, 20 and 30 junctions respectively and only one
goal. Problems 4 and 5 have 10 and 20 junctions respectively, both of them have
3 goals. Goals in this domain indicates the requirement of reducing the conges-
tion on a specific link of the network. In this domain, the predicate flowrate

has been reformulated by merging the objects of type link into a new type,
which represents road links which are connected via a junction. ENHSP and
UPMurphi were run using the heuristic proposed by McCluskey and Vallati [5].
Results presented in Table 1 indicate that reformulation has a strong beneficial
impact on planners’ performance. ENHSP and UPMurphi are able to quickly
solve problems involving large networks as they can manage to ground the prob-
lem. In ENHSP most of the improvement is due to the faster grounding, and on
the largest 30 junction problem 3, to be able to ground it at all. On the contrary,
in the case of UPMurphi and DINO, the reformulation boosts also the search
performance, as also the size of each state is significantly reduced by the refor-
mulation. Unsurprisingly, the domain-independent heuristic exploited by DINO
is not very informative in UTC problems, but the planner is able to ground and
to explore a large area of the search space when run on reformulated models.
SMTPlan is not able to handle the UTC domain model.

Impact of Reformulation on Search Space Size. Beside the impact on
planning performance, it is also important to assess whether the use of the
proposed reformulation approach allows to actually reduce the size of a search

Automated Predicate Reformulation for PDDL+ 7

state, so that the search space can be explored quicker and more efficiently. Table
2 shows how planners DINO and UPMurphi benefit from the reformulation of
PDDL+ models, in terms of state size. We consider these planners because they
allow to measure effectively and accurately the size of a single search state.
Results are presented in terms of ratio of maximum space sizes between original
and the corresponding reformulated representation; for instance, a value of 1.0
indicates that there is no difference, while a value of 2.0 means reformulated
search can create twice the number of states before running out of memory. In
almost every considered instance, reformulation greatly increases the maximum
state space, and therefore allows the planners to explore a larger portion of the
space, and to generate search states in less time.

4 Conclusion

In this paper, we introduced a reformulation approach that allows to reduce the
size of a PDDL+ grounded problem by tackling the arity of sparse predicates.
Our experimental analysis showed that the proposed reformulation: (i) effectively
reduces the grounding size of hybrid problems, hence allowing planners to deal
with them; and (ii) positively affect the size of each search state, leading to a
faster and more effective exploration of the search space. Results suggest that
PDDL+ reformulation techniques, by allowing larger problems to be reasoned
upon by planning engines, can foster the exploitation of planning in real-world
applications. Future work is planned on extending the number of objects that
can be merged, and to study the importance of the sparsity threshold.

References

1. Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: On the manipula-
tion of articulated objects in humanrobot cooperation scenarios. Robotics and Au-
tonomous Systems 109, 139 – 155 (2018)

2. Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of the full PDDL+
language into SMT. In: Proc. of ICAPS (2016)

3. Della Penna, G., Magazzeni, D., Mercorio, F., Intrigila, B.: UPMurphi: A tool for
universal planning on PDDL+ problems. In: Proc. of ICAPS (2009)

4. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. Jour-
nal of Artificial Intelligence Research 27, 235–297 (2006)

5. McCluskey, T.L., Vallati, M.: Embedding automated planning within urban traffic
management operations. In: Proc. of ICAPS (2017)

6. Newton, M.A.H., Levine, J., Fox, M., Long, D.: Learning macro-actions for arbitrary
planners and domains. In: Proc. of ICAPS (2007)

7. Piotrowski, W.M., Fox, M., Long, D., Magazzeni, D., Mercorio, F.: Heuristic plan-
ning for PDDL+ domains. In: Proc. of IJCAI (2016)

8. Scala, E., Haslum, P., Thiébaux, S., Ramı́rez, M.: Interval-based relaxation for gen-
eral numeric planning. In: Proc. of ECAI (2016)

9. Vallati, M., Hutter, F., Chrpa, L., McCluskey, T.L.: On the effective configuration
of planning domain models. In: Proc. of IJCAI (2015)

