
An ASP-based Framework for the Manipulation
of Articulated Objects using Dual-arm Robots

Riccardo Bertolucci1, Alessio Capitanelli2, Carmine Dodaro2, Nicola Leone1,
Marco Maratea2, Fulvio Mastrogiovanni2, and Mauro Vallati3

1 DeMaCS, University of Calabria, Italy
{bertolucci,leone}@mat.unical.it

2 DIBRIS, University of Genova, Genova, Italy
{name.surname}@unige.it

3 University of Huddersfield, UK
m.vallati@hud.ac.uk

Abstract. The manipulation of articulated objects is of primary impor-
tance in robotics, and is one of the most complex robotics tasks. Tradi-
tionally, this problem has been tackled by developing ad-hoc approaches,
that lack of flexibility and portability.
In this paper we present a framework based on Answer Set Program-
ming (ASP) for the automated manipulation of articulated objects in a
robot architecture. In particular, ASP is employed for representing the
configuration of the articulated object, for checking the consistency of
the knowledge base, as well as for generating the sequence of manipu-
lation actions. The framework is validated both in simulation and on
the Baxter dual-arm manipulator, showing the applicability of the ASP
methodology in this complex application scenario.

1 Introduction

The manipulation of articulated objects plays an important role in real-world
robot tasks, both in home and industrial environments [16,20]. Attention has
been put to the development of approaches and algorithms for generating the
sequence of movements a robot has to perform in order to manipulate an articu-
lated object. In the literature, the problem of determining the 2D configuration
of articulated or flexible objects has received much attention in the past few
years [5,6,23,27], whereas the problem of obtaining a target configuration via
manipulation has been explored in motion planning [2,26,28]. A limitation of
such manipulation strategies is that they are often crafted specifically for the
problem at hand, with the relevant characteristics of the object and robot capa-
bilities being either hard coded or assumed; thus, in these contexts generalisation
property and scalability are somehow limited.

In this paper we present a framework based on Answer Set Programming
(ASP) [3,24] for the automated manipulation of articulated objects in a robot 2D
workspace. ASP is a general, prominent knowledge representation and reasoning
language with roots in logic programming and non-monotonic reasoning [14].

2 R. Bertolucci et al.

Fig. 1. Two possible representations: absolute (top) and relative (bottom).

In particular, ASP is employed for performing all automated reasoning related
tasks, i.e., both for planning actions that the robot has to execute, and for
checking the consistency of the configurations of the articulated object as it
changes over time. The validity of the framework is finally demonstrated both
in simulation and on the Baxter dual-arm manipulator.

2 Problem Statement and the Reference Scenario

Our goal is to present (i) an efficient ASP-based planning and execution architec-
ture for the manipulation of articulated objects in terms of perceptual features,
their representation and the planning of manipulation actions, which maximises
the likelihood of being successfully executed by robots, and (ii) given a specific
object’s goal configuration, determine a plan to attain it, in which each step
involves one or more manipulation actions to be executed by a dual-arm robot.
Our working assumptions are:

A1 flexible objects can be appropriately modelled as articulated objects with a
high number of links and joints, as it is customary [28];

A2 an object’s configuration is only affected by robot manipulation actions, or
possibly by humans, and the effects of external forces such as gravity are not
considered;

A3 we do not consider possible issues related to grasping or dexterity during the
manipulation task;

A4 sensing is affected by noise, but the symbol grounding problem, i.e., the as-
sociation between perceptual features and the corresponding symbols [15],
is assumed to be solved.

On the basis of assumption A1, we focus on articulated objects only. We
define an articulated object as a 2-ple α = (L,J), where L is the ordered set

An ASP Framework for Articulated Objects Manipulation 3

Fig. 2. The experimental scenario.

of its |L| links and J is the ordered set of its |J | joints. Each link l ∈ L is
characterised by two parameters, namely a length λl and an orientation θl. We
allow only for a limited number of possible orientations. This induces a set of
allowed angle orientations A with size |A|. If α is represented using absolute
angles (Figure 1 on the top), then its configuration is a |L|-ple:

Cα,a =
(
θa1 , . . . , θ

a
|L|

)
. (1)

Otherwise, if relative angles are used (Figure 1 on the bottom), then the con-
figuration must be augmented with an initial hidden link l0 in order to define a
reference frame:

Cα,r =
(
θr1,h, θ

r
2, . . . , θ

r
|L|

)
. (2)

In fact, while in principle the relative approach could represent the configuration
of an articulated object with one joint less compared to the absolute one, the
resulting representation would not be unique, since the object maintains relative
orientations among its parts even when rotated as a whole.

In order to comply with assumption A2, we setup a scenario in which a
Baxter robot manipulates an articulated object located on a horizontal table in
front of it, assumed to be large enough to accommodate the object itself, see
Figure 2. Therefore, rotations occur only around an axis perpendicular to the
table. We have crafted two wooden articulated objects of different size: the first
has three 40 cm long links (which are connected by two joints), and the second
is made up of seven 20 cm long links (connected by six joints). For both objects,
links are 3 cm thick. The two objects can be easily manipulated by the Baxter’s
standard grippers, which complies with assumption A3. The Baxter’s head is
equipped with a camera pointing downward to the table. QR tags are fixed
to each object link l, which is aimed at meeting assumption A4. Each QR code
provides an overall link pose, which directly maps to an absolute link orientation
θal . Finally, if relative orientations are chosen, we compute them by performing
an algebraic sum between the two absolute poses of two consequent links, e.g.,

4 R. Bertolucci et al.

Fig. 3. The robot’s architecture: in green the ASP-based modules, in orange the
ROSPlan-based module.

θr1 = θa2 − θa1 . After this general scenario introduction, in the next section we
detail the architecture.

3 The Robot Architecture

The architecture of the Baxter from Rethink Robotics is shown in Figure 3.
It is noteworthy that, in principle, the architecture can be adapted to other
robot platforms as well, either in simulation or in real-world conditions, as long
as appropriate perception, low-level motion planning tools, and manipulation
strategies are adopted.

In the current implementation, perception is managed using a camera sen-
sor located on top of the robot’s head and pointing downward, which provides
6D poses for each link, which update corresponding ASP-based representation
structures in the Knowledge Base module. The Consistency Checking module
performs a check for knowledge base validation. In case the check succeeds, the
Goal Checker module is notified and relevant parts of the ASP current Knowl-
edge Base are processed by the rules encoded in the Goal Checker module,
aimed at detecting whether the (already computed) plan can be successfully
executed, also in response to a possible human intervention. Whenever checks
that influence the knowledge base status are performed, a problem instance may
be generated, which depends on the target articulated object configuration and
the current configuration maintained in the Knowledge Base module. The Ac-
tion Planner module receives such problem instance and generates a plan in
the form of a suitable sequence of actions to be performed. Once a plan is gen-
erated, its actions are processed sequentially to drive the overall behaviour of
the robot Motion Planner module, which is responsible of the execution. For

An ASP Framework for Articulated Objects Manipulation 5

the use case described in this paper, each action involves one rotation operation
on the target link. Rotations occur only around axes centred on the object’s
joints. Any action may be either successful or not, depending on a number of
reasons related to noise and errors in perception, grasping, and manipulation in
a real-world environment. If an action is successful, the Motion Planner module
proceeds with the one that follows until the plan ends and the Knowledge Base
module is notified about successful execution. Otherwise, an issue is raised and
re-planning occurs, thereby reiterating the whole work-flow described above.

Note that all modules except Motion Planner (i.e., all green modules in
Figure 3) are based on ASP. The Motion Planner is the module that has to
interact with the robot, and has therefore to follow the constraints posed by the
actual machine.

4 ASP Modules

In this section we describe how ASP is used to implement the modules depicted
in Figure 3. In the following, we assume the reader is familiar with ASP and
ASP-Core-2 input language specification [4].

4.1 Knowledge Base

The knowledge base consists of facts over atoms of the form joint(J), angle(A),
isLinked(J1,J2), time(T), hasAngle(J,A,T), and goal(J,A), and the con-
stants granularity and timemax. Atoms over the predicate joint represent
the joints of the articulated object. Atoms over the predicate angle represent
the possible angles reachable from the joints and they can range from 0 to 359.
Actually, the atom angle(0) must be always part of the knowledge base and
admissible angles are the ones that can be obtained by rotating a joint by the
degrees specified by the constant granularity, e.g., if the granularity is 90 de-
grees, then the admissible angles are 0, 90, 180, and 270. Atoms over the predicate
isLinked represent links between joints J1 and J2. Atoms over the predicate
time represent the possible time steps, and they range from 0, which represents
the initial state, to timemax. Atoms over the predicate hasAngle represent the
angle A of the joint J at time T. Actually, knowledge base only contains the ini-
tial state of each joint, i.e., its angle at time 0. Finally, atoms over the predicate
goal represent the angle A that must be reached by the joint J at the time step
specified by timemax. An example of the input is represented by the facts and
constants reported in Figure 4. Note that the constant timemax is not included
in the example, its usage will be described in Section 4.3.

4.2 Consistency Checking module

The module performs some consistency checking on the knowledge base by using
the following ASP encoding:

6 R. Bertolucci et al.

joint(1..5). angle(0). angle(90). angle(180). angle(270).

isLinked(1,2). isLinked(2,3). isLinked(3,4). isLinked(4,5).

hasAngle(1,90,0). hasAngle(2,180,0). hasAngle(3,180,0).

hasAngle(4,270,0). hasAngle(5,270,0). time(0..timemax).

goal(1,270). goal(2,270). goal(3,180). goal(4,270).

goal(5,270). #const granularity = 90.

Fig. 4. An example of an ASP knowledge base.

c1a :- isLinked(J1,J2), not joint(J1).

c1b :- isLinked(J1,J2), not joint(J2).

c2 :- isLinked(J,J).

c3a :- hasAngle(J,A,T), not joint(J).

c3b :- hasAngle(J,A,T), not angle(A).

c3c :- hasAngle(J,A,T), not time(T).

c4a :- goal(J,A), not joint(J).

c4b :- goal(J,A), not angle(A).

c5 moreThanOneGoal(J) :- joint(J), #count{A:goal(J,A)}>1.
c6 :- joint(J), moreThanOneGoal(J).

c7 oneStartingAngle(J) :- joint(J), #count{A:hasAngle(J,A,0)}=1.
c8 :- joint(J), not oneStartingAngle(J).

c9 :- not time(0).

c10 :- not angle(0).

c11 possibleAngle(0).

c12 possibleAngle(X) :- possibleAngle(Y), X=Y+granularity, X<360.

c13 :- not angle(X), possibleAngle(X).

c14 :- angle(X), not possibleAngle(X).

In particular, rule c1a and c1b check whether atoms over the predicate isLinked

represent the links between two joints, while c2 checks whether there is no link
between the same joint. Rule c3a, c3b, and c3c check the correctness of the predi-
cate hasAngle, whereas c4a and c4b check the correctness of the predicate goal.
Rules c5 and c6 check whether at most one goal is specified for each joint, whereas
rules c7 and c8 verify if each joint is in exactly one angle at time step 0. Rules
c9 and c10 simply check the existence of the first time step and angle 0, re-
spectively. Finally, rules from c11 to c14 check whether atoms over the predicate
angle represent the possible angles.

It is important to emphasise here that the encoding reported in this section
comprises only rules for covering the failure cases that can occur in our setting.
The Knowledge Base is created starting from of the camera sensors of the robot,
therefore in case of failure it is not possible to repair it by using an ASP encod-
ing. Moreover, according to our experience some of the rules presented in the
encoding might be simplified. As an example, c1a and c1b might be merged in

c1 :- isLinked(J1,J2), not joint(J1), not joint(J2).

An ASP Framework for Articulated Objects Manipulation 7

r1 joint(0).

r2 hasAngle(0,0,0).

r3 isLinked(0,1).

r4 isLinked(J1,J2) :- isLinked(J2,J1).

r5 {changeAngle(J1,J2,A,Ai,T) : joint(J1), joint(J2), J1>J2, angle(A),

hasAngle(J1,Ai,T), A<>Ai, isLinked(J1,J2)} <= 1

:- time(T), T < timemax, T > 0.
r6 ok(J1,J2,A,Ai,T) :- changeAngle(J1,J2,A,Ai,T),

F1=(A+granularity)\360, F2=(Ai\360), F1=F2, A < Ai.

r7 ok(J1,J2,A,Ai,T) :- changeAngle(J1,J2,A,Ai,T),

F1=(Ai+granularity)\360, F2=(A\360), F1=F2, A > Ai.

r8 ok(J1,J2,A,0,T) :- changeAngle(J1,J2,A,0,T), A=360-granularity.

r9 ok(J1,J2,0,A,T) :- changeAngle(J1,J2,0,A,T), A=360-granularity.

r10 :- changeAngle(J1,J2,A,Ai,T), not ok(J1,J2,A,Ai,T).

r11 affected(J1,An,Ac,T) :- changeAngle(J2, ,A,Ap,T), hasAngle(J1,Ac,T),

J1>J2, angle(An), An=|(Ac + (A-Ap)) + 360|\360, time(T).

r12 hasAngle(J1,A,T+1) :- changeAngle(J1, ,A, ,T).

r13 hasAngle(J1,A,T+1) :- affected(J1,A, ,T).

r14 hasAngle(J1,A,T+1) :- hasAngle(J1,A,T), not changeAngle(J1, , , ,T),

not affected(J1, , ,T), T <= timemax.

r15 :- goal(J,A), not hasAngle(J,A,timemax).

Fig. 5. Base encoding: it allows for forward manipulations only.

since in our setting if J1 is not a valid joint also J2 is not a valid joint. Similar
considerations hold for rules c3 and c4. However, we decided to use this encoding
since it is more general.

4.3 Action Planning Module

ASP is not a planning-specific language, but it can be also used to specify encod-
ing for planning domains [22], like our target problem. We have defined several
encodings variants, for what concerns either the manipulation modes and the
strategy for computing plans. The encoding described in this section is em-
bedded into a classical iterative deepening approach in the spirit of SAT-based
planning [18], where timemax is initially set to 1 and then increased by 1 if a
plan is not found, which guarantees to return shortest possible plans for a se-
quential encoding, i.e., when the robot performs only one action for each step
(see Section 6 for some details about the other strategies).

Figure 5 reports our base encoding. Note that it uses operations \ and |· · · |,
which are not defined in the ASP-Core-2 standard but supported by Clingo [13],
and compute the remainder of the division and the absolute value, respectively.

Since we employ an absolute representation, r1, r2 and r3 add to the knowl-
edge base the joint(0), its angle and link to joint 1. This joint will not be
moved and it is used only to have a fixed reference between the robot and artic-
ulated object frames. Rule r4 enforces that bidirectionality of linked joints, i.e.,

8 R. Bertolucci et al.

if joint(1) is linked to joint(2) then joint(2) is also linked to joint(1).
Rule r5 selects an atom of the form changeAngle(J1,J2,A,Ai,T), where J1 is
the joint to move, J2 is the joint to keep steady, A is the desired angle, Ai is the
current angle of J1 and T is the current step. Rule r10 ensures the validity of
the configuration represented by the atom changeAngle(J1,J2,A,Ai,T), that
is when each action has a desired angle A that can be reached in one step (rules
r6, r7, r8, and r9). Rule r11 is used to identify which joints are affected from the
atom selected in r5. Rules r12 and r13 are used to update the joints angles for the
next step, while r14 states that if neither r12 nor r13 have affected a joint then
its angle remains unchanged. Finally, r15 states the the goal must be reached.

4.4 Goal Checker

During the execution of a plan an external agent may interact with the articu-
lated object, e.g., a human may change the angle of some joints (see, e.g., [6]).
In such a case, the system must react to the changes if they are not compatible
with the plan executed by the robot. This is accomplished by asynchronously
creating a new input configuration according to the current status of the ob-
ject, so that the configuration is ready as soon as it is needed. The role of Goal
Checker module is to check when there is no need to create a new configuration,
that is when all goals have been reached. This is done by using rule r15 from the
encoding in Figure 5.

5 Validation of the Framework

A validation scenario where a robot has to manipulate a 5-link articulated object
has been set up both in simulation and in real-world using the Baxter dual-arm
manipulator. Objects composed by 5 links provide a very valuable ground for
testing our approach, as they are not so long to make the manipulation difficult
for the robot, and at the same time they are articulated enough to require to
plan movements in order to reach a goal configuration. The use of Baxter is
justified by its widespread adoption as a research platform and by the necessity
to employ a robot with two arms in order to manipulate the object, i.e., the
robot should be able to keep a link of an object with one arm while it rotates
an adjacent one.

Simulations have some practical advantages in this scenario. Indeed, they
allow to run a greater number of planning-execution cycles with minimal human
supervision and shorter execution times. Moreover, they are less susceptible to
uncertainty and low-level motion planning failures, which are outside of the
scope of this work. Nevertheless, we also test with the real robot in order to
provide a more robust proof-of-concept of the proposed architecture. A video
showing the Baxter in operation, via the introduced framework, can be found at
https://tinyurl.com/yd6kqgjn.

In our setting, we employed (i) ALVAR, an AR tag tracking library, to de-
tect the absolute pose of the object’s links using a head-mounted camera; and

An ASP Framework for Articulated Objects Manipulation 9

a1 : changeAngle(2,1,90,180,1) a2 : changeAngle(1,0,180,90,2)
a3 : changeAngle(3,2,90,180,3) a4 : changeAngle(1,0,270,180,4)

Fig. 6. The planning and execution process on the sample scenario: an excerpt of the
answer set returned by Clingo (a1 . . . a4 are compact references for the ground actions).

(ii) MoveIt!, as the de facto standard for motion planning and execution in the
robotic community. The system was implemented in the Robot Operating Sys-
tem (ROS, Indigo release) framework, while Gazebo 2 was used as simulation
environment for the relevant part. The system has been tested on a machine
with an Intel i7-4790 CPU and 16 GB of RAM. All the results of the evaluation
are available at https://tinyurl.com/ydzyefux.

The evaluation procedure unfolds as follows. First, the object is set up in a
random configuration coherent with the specified granularity and within an ac-
ceptable margin of error. The initial and goal configurations are then represented
in terms of the ASP atoms reported in Section 4.1, and processed by the state-
of-the-art ASP system Clingo [13] together with the encoding in Section 4.3 in
order to generate a (valid) plan. Actions of the plan are then executed through
the low-level motion planning layer, where an action consists of rotations around
the object’s joints perpendicular axes.

An example is shown in Figures 4, 6 and 7: Figure 4 reports the ASP repre-
sentation of the scenario in which the number of joints composing the articulated
object, their initial state and the goal to achieve are given, while Figure 6 lists
an excerpt of an answer set obtained by Clingo with the encoding in Section 4.3.
Each atom of the form changeAngle in the answer set represents an action to
perform on a joint with the meaning detailed in Section 4.1.

Eventually, Figure 7 illustrates the execution process. In particular, starting
from the initial configuration of the articulated object (image7.1), images 7.2, 7.4,
7.5 and 7.7 represent action’s execution for a1, a2, a3, and a4, respectively (see
Figure 6), whereas images 7.3, 7.4 and 7.6 represent intermediate configurations.
Finally, image 7.8 shows the final state, that corresponds to the required goal
configuration of the 5-links articulated object. It is important to note that 7.4
displays both a3 execution and its resulting intermediate state since it was just
a rotation of the whole object.

Other than the sample scenario, we have performed an experimental analysis
on the Action Planning module by varying the number of joints (up to 14) and
the granularity, and by randomly generating initial and final configurations, for
a total of about 400 instances. On the successfully solved instances, Clingo took
1.5s average processing time and could solve the problem in around 8 steps
on average, with results as low 0.01s/4 steps and never above 2.2s/9 steps,
which confirms the applicability of ASP reasoning in this context. All plans
have been validated with the VAL tool [17]. Albeit the performance deteriorates
when both the resolution and the links of the object are increased, they are

10 R. Bertolucci et al.

1 2

3 4

5 6

7 8

Fig. 7. The planning and execution process on the sample scenario: The robot actions
and (intermediate) states induced by the computer plan.

encouraging considering current workspace dimensions and dexterity levels for
bi-manual robots, which represent the true bottleneck in this scenario.

Remarkably, the proposed ASP approach is guaranteed to compute the short-
est plan, due to the use of an iterative deepening procedure. This is pivotal, as
it allows to minimise the actual execution time of the robot, which is the most
consuming part.

6 Related work

In Section 4.3 we have shown one of our encoding with one particular manip-
ulation mode and search strategy but, as we already said, we have designed a
series of encodings (available at https://tinyurl.com/ycbp798j), including dif-
ferent manipulation modes, i.e., also backward (given our link ordering), and

An ASP Framework for Articulated Objects Manipulation 11

search strategies. As far as the strategies are concerned, we have designed en-
coding in which, imposing a reasonable timemax (i) by employing a strategy
based on the algorithm optsat [7], where the heuristic of the solver is modified
in order to prefer plans with increasing length, and (ii) by using a choice rule
to select the timestep and we let the solver finding a plan, of course possibly
loosing optimality (see also [8]).

In [5,6] a similar framework based on automated reasoning methodologies
has been presented. Such framework employs PDDL language and automated
planning engines for the planning module, and Description Logic (DL) solvers in
the configuration module, where data are explicitly stored in an ontology, while
we use a uniform language and approach (ASP-based) in the whole framework.
Moreover, differently from most of our approaches, encodings and solvers em-
ployed in [5,6] are not currently able to return shortest plans, which is otherwise
important, given that in this context executing the actions can be expensive.
In [19], instead, a custom-designed multi-robot platform is presented, focused
on HRI in indoor service robot for understanding natural language requests.
Planning is specified using the action language BC [21].

The ASP architecture used in this paper can be integrated with ROSo-
Clingo [1], which is a system that combines the ASP solver Clingo (version
4) with the ROS middleware. In particular, it provides a high-level ASP-based
interface to control the behaviour of a robot and to process the results of the
execution of the actions. In our framework the interaction with ROS is handled
by a custom script.

Moreover, it is worth pointing out that ASP has been already employed
in robotic domains, e.g., [1,10,11,12,25]. These consider logistic and ricochet
robots domain, as well as on cooperative robots, whose ultimate goal is not the
validation and exploitation of the techniques on a real robot, as in our case. For
a recent overview, the interested reader is referred to [9].

Focusing on planning encodings, recently the Plasp system [8] has been fur-
ther extended with both SAT-inspired and genuine encodings. Some of them
have helped to reduce the (still existing) gap with automated planning tech-
niques. Our aim in the design of the encoding was to obtain a devoted and
working solution for the problem at hand, rather than the fastest possible one.
Nonetheless, results in [8] could be employed to further speed-up our Action
Planning module.

7 Conclusions

In this paper we presented an ASP framework for the automated manipulation
of articulated objects in a robot 2D workspace. We demonstrated the validity
and usefulness of the proposed approach both in simulation and by running real-
world experiments with a Baxter, which is widely adopted for research purposes.
The experimental results of our validation also indicates that the proposed ASP-
based approach, using Clingo as a solver, is capable of generating optimal results,

12 R. Bertolucci et al.

with regards to the number of actions that the Baxter has to perform, in a very
limited amount of time.

We see several avenues for future work. First, we are interested in validat-
ing the framework on different dual-arm robots, possibly manipulating different
articulated objects: given the nature of the approach, we expect it to generalise
with a reasonably limited effort. We also plan to integrate our approach with
ROSoClingo, to simplify the interaction with robots. Finally, we plan to extend
our approach in order to cope with different types of robots (e.g., those with
different number of arms / grippers), and to extend it to model and support the
3D manipulation of articulated objects.

References

1. Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into ROS
for reasoning in robots. In: Proceedings of the International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR). pp. 69–82. Springer (2015)

2. Bodenhagen, L., Fugl, A.R., Jordt, A., Willatzen, M., Andersen, K.A., Olsen,
M.M., Koch, R., Petersen, H.G., Krüger, N.: An adaptable robot vision system
performing manipulation actions with flexible objects. IEEE Transactions on Au-
tomation Science and Engineering 11(3), 749–765 (2014)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Communications of the ACM 54(12), 92–103 (2011)

4. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., Schaub, T.: ASP-Core-2 Input Language Format (2013)

5. Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: Automated planning
techniques for robot manipulation tasks involving articulated objects. In: Proceed-
ings of the International Conference of the Italian Association for Artificial Intel-
ligence (AI*IA). pp. 483–497. Springer (2017)

6. Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: On the manipula-
tion of articulated objects in human-robot cooperation scenarios. Robotics and
Autonomous Systems 109, 139–155 (2018)

7. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with
preferences. Constraints 15(4), 485–515 (2010)

8. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., Schaub, T.: plasp 3: Towards
effective ASP planning. In: Proceedings of the International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR). Lecture Notes in Com-
puter Science, vol. 10377, pp. 286–300. Springer (2017)

9. Erdem, E., Patoglu, V.: Applications of ASP in robotics. Künstliche Intelligenz
32(2-3), 143–149 (2018)

10. Erdem, E., Patoglu, V., Saribatur, Z.G.: Integrating hybrid diagnostic reasoning in
plan execution monitoring for cognitive factories with multiple robots. In: Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA).
pp. 2007–2013. IEEE (2015)

11. Erdem, E., Patoglu, V., Saribatur, Z.G., Schüller, P., Uras, T.: Finding optimal
plans for multiple teams of robots through a mediator: A logic-based approach.
Theory and Practice of Logic Programming 13(4-5), 831–846 (2013)

12. Gebser, M., Jost, H., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.,
Schneider, M.: Ricochet robots: A transverse ASP benchmark. In: Proceedings of

An ASP Framework for Articulated Objects Manipulation 13

the International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR). pp. 348–360. Springer (2013)

13. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Proceedings of the Technical Com-
munications of the International Conference on Logic Programming (ICLP). pp.
2:1–2:15. Schloss Dagstuhl (2016)

14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the International Conference on Logic Programming (ICLP). pp.
1070–1080. MIT Press (1988)

15. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)
16. Heyer, C.: Human-robot interaction and future industrial robotics applications. In:

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp. 4749–4754. IEEE (2010)

17. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In: Proceedings of the IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI). pp. 294–301. IEEE
Computer Society (2004)

18. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the European
Conference on Artificial Intelligence (ECAI). pp. 359–363 (1992)

19. Khandelwal, P., Zhang, S., Sinapov, J., Leonetti, M., Thomason, J., Yang, F., Gori,
I., Svetlik, M., Khante, P., Lifschitz, V., Aggarwal, J.K., Mooney, R.J., Stone, P.:
Bwibots: A platform for bridging the gap between AI and human-robot interaction
research. International Journal of Robotics Research 36(5-7), 635–659 (2017)

20. Krüger, J., Lien, T.K., Verl, A.: Cooperation of human and machines in assembly
lines. CIRP Annals 58(2), 628 – 646 (2009)

21. Lee, J., Lifschitz, V., Yang, F.: Action language BC: preliminary report. In: Rossi,
F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intel-
ligence (IJCAI 2013). pp. 983–989. IJCAI/AAAI (2013)

22. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence
Journal 138(1-2), 39–54 (2002)

23. Nair, A., Chen, D., Agrawal, P., Isola, P., Abbeel, P., Malik, J., Levine, S.: Combin-
ing self-supervised learning and imitation for vision-based rope manipulation. In:
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). pp. 2146–2153. IEEE (2017)

24. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273
(1999)

25. Schäpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., Schaub, T.: ASP-Based
Time-Bounded Planning for Logistics Robots. In: Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS). pp. 509–517. AAAI
Press (2018)

26. Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through
the use of non-rigid registration. In: Proceedings of the International Symposium
on Robotics Research (ISRR). pp. 339–354. Springer (2013)

27. Wakamatsu, H., Arai, E., Hirai, S.: Knotting/unknotting manipulation of de-
formable linear objects. International Journal of Robotic Research 25(4), 371–395
(2006)

28. Yamakawa, Y., Namiki, A., Ishikawa, M.: Dynamic high-speed knotting of a rope
by a manipulator. International Journal of Advanced Robotic Systems 10, 1–12
(2013)

