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Abstract 

This article introduces a revised common trend framework to monitor nonstationary and dynamic trends in 

industrial processes and shows needs for each improvement on the basis of three application studies.  These 

improvements relate to (i) the extension of the common trend framework to include sets that contain stationary 

and nonstationary variables, (ii) handling cases where residuals are not drawn from multivariate normal dis-

tributions and (iii) the application of the framework to larger variable sets.  Existing work does not adequately 

address these practically important issues.  Industrial application studies highlight the needs for (i) the ex-

tended framework to model data sets containing stationary and nonstationary variables, (ii) handling statistics 

that are not based on normally distributed residuals and (iii) the use of Chigira procedure to robustly extract 

common trends.  The extended framework is compared to traditional approaches. 
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1 Introduction 

The development of instrumentation and automation for modern industrial processes in the chemical and gen-

eral manufacturing industries allows large quantities of data to be utilized for assessing current operating 

conditions (Kruger & Xie, 2012; Ge & Song, 2013; Severson, Chaiwatanodom & Braatz, 2016).  Traditional 

approaches to monitor general processes include model-based (Ding, 2013; Zhong, Xue & Ding, 2018; Liu, 

Luo, Yang & Wu, 2016; Li, Gao, Shi & Lam, 2016; Zhao, Yang, Ding &  Li, 2018), signal-based (Lei, Lin, 

He & Zuo, 2013; Yan, Gao & Chen, 2014; Fan, Cai, Zhu, Shen, Huang & Shang, 2015; Wu, Guo, Xie, Ni & 

Liu, 2018), and knowledge-based (Gao, Cecati & Ding, 2015; Mohammadi & Montazeri-Gh, 2015; Chiremsel, 
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Said & Chiremsel, 2016; Davies, Jackson & Dunnett, 2017) techniques.  Based on their conceptual simplicity, 

techniques that relate to multivariate statistical process control (MSPC) (Kruger & Xie, 2012; Ge & Song, 

2013; Qin, 2012; Ge, Song & Gao, 2013; Yin, Li, Gao & Kaynak, 2015) have also gained attention over the 

past few decades, particularly for applications to industrial processes that produce larger variable sets. 

At present, MSPC-based techniques are firmly based on core component technologies that predominantly 

include principal component analysis, partial least squares, independent component analysis and their exten-

sions (Rato, Reis, Schmitt, Hubert & De Ketelaere, 2016; Li, Qin & Zhou, 2010; Lee, Qin & Lee, 2006; Yu, 

Khan & Garaniya, 2016; Zhang, Sun & Fan, 2015; Li & Yang, 2015; Cai, Tian & Chen, 2017).  These tech-

niques, however, rely on the fundamental assumptions that (i) the process operates at a predefined stationary 

operating condition, where the recorded variables set has a joint multivariate distribution with a time-invariant 

mean vector and covariance matrix, and (ii) the recorded set possess no serial correlation.  However, such 

assumptions are rarely satisfied in industrial practice, as recorded process variables usually describe (i) time-

varying behaviors that involve changes in operating conditions, variations in process feeds, emptying and 

filling cycles, the presence of unmeasured disturbances, and operator interventions, and (ii) controller feed-

back which produces inherently correlated process variables. 

To address serial correlation among and between measured process variables, the literature proposed a 

number of dynamic extensions for standard MSPC methods (Ku, Storer, & Georgakis, 1995; Li, Qin, & Zhou, 

2014; Dong & Qin, 2018; Lee, Yoo, & Lee, 2004; Huang & Yan, 2015; Fan & Wang, 2014).  Conversely, the 

problem of nonstationary process variables has only been sporadically addressed.  Adapting slowly time-

varying means and variances of process variables can accommodate mildly nonstationary behavior of process 

units (Wang, Kruger, & Lennox, 2003; Wang, Kruger, & Irwin, 2005; Xie, Li, Zeng, & Kruger, 2016; Jaffel, 

Taouali, Harkat, & Messaoud, 2016).  This, however, may accommodate incipient fault conditions, which is 

undesirable.  Another, more promising avenue is employing cointegration-based models, where the stationary 

cointegration relationships among nonstationary process variables are utilized for process monitoring (Chen, 

Kruger & Leung, 2009; Sun, Zhang, Zhao & Gao, 2017).  However, the use of long-term equilibria, i.e., the 

cointegration relationships, is insensitive in detecting anomalous events that are orthogonal to the cointegra-

tion space.   

More recently, a generic cointegration framework has been proposed, which can handle nonstationary 

variables that are serially correlated (Lin, Kruger & Chen, 2017).  This technique (i) separates nonstationary 

and stationary components from the nonstationary variable set on the basis of a cointegration model (Engle 

& Granger, 1987; Pfaff, 2008), (ii) extracts both latent nonstationary and stationary factors using a common 

trends model (Stock & Watson, 1988; Kasa, 1992), and (iii) defines two statistics for monitoring the two types 

of factors individually.  Although the detection of abnormal behavior in industrial nonstationary dynamic 
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processes has been presented through the application to a glass melter process (Lin, Kruger & Chen, 2017), 

the following practically relevant issues have not been considered: 

 the application studies presented herein contain recorded variable sets that are both, nonstationary 

and stationary, whereas Lin, Kruger & Chen (2017) addressed the problem of variable sets that 

are nonstationary only; 

 the model residuals may not be drawn from multivariate normal distributions, in contrast to the 

work in Lin, Kruger & Chen (2017) where this assumption is made; and  

 the conventional cointegration testing procedure by Johansen (1995) may run into difficulties if 

the number of variables is large, which is typically the case for complex industrial processes. 

This article is divided into the following sections.  Section 2 gives a detailed description of the processes, 

including the FCCU simulator, the polymerization and the distillation process, used in this article.  Section 3 

then summarizes the monitoring framework and introduces an improved common trends framework.  Sections 

4 to 6 summarize the applications to the three processes.  A concluding summary is given in Section 7. 

 

2 Process Descriptions 

This section provides a detailed description of the three processes that are used to demonstrate the working of 

the improved cointegration framework.  Subsection 2.1 gives a description of the simulated fluid catalytic 

cracking unit.  Subsections 2.2 and 2.3 then provide details of the polymerization and distillation processes, 

respectively. 

 

2.1 Fluid Catalytic Cracking Unit 

A fluid catalytic cracking unit (FCCU) is an important part of a refinery.  An FCCU receives several different 

heavy feed stocks from other refinery units and cracks these into more valuable components that are usually 

blended into gasoline and other products.  The main feed stream to an FCCU is gas oil, but heavier diesel and 

wash oil streams also contribute to the total feed stream that is first preheated in a heat exchanger and furnace 

and then passed to the riser.  The total feed stream, mixed with slurry from the main fractionator bottoms, is 

mixed with hot, regenerated catalyst from the regenerator in the riser.  The hot catalyst provides the necessary 

heat for the endothermic reactions producing gaseous reactants that pass through the main fractionator for 

separation.  Resulting from the cracking reactions, a carbonaceous material, coke, deposits on the surface of 

the catalyst and depletes its catalytic property.  Recycling the spent catalyst to the regenerator, where it is 

mixed with air in a fluidized bed, regenerates the catalyst.  Air, pumped to the regenerator with a high capacity 

combustion air blower and a smaller lift air blower, reacts with coke and produces carbon monoxide and 
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carbon dioxide.  McFarlane, Reineman, Bartee & Georgakis (1993) provide a very detailed discussion of the 

FCCU simulator.  Table 1 lists the 28 variables that were analyzed in Section 4.   

 

[Table 1 about here] 

 

2.2 Polymerization Process 

This process unit is a spinning cell that is part of a large polymerization process.  Polymers of synthetic fibers, 

for example nylon and polyethylene terephthalate, are usually produced by complex chemical reactions based 

on petroleum and natural gas.  Before the row product enters the spinning cell, it is molten and pumped 

through a spinneret, which the fluid polymer exits through a set of holes in the form of filaments.  The fila-

ments are then cooled by air, which converts them into a rubbery state first and finally into a solid state.  The 

spinning process involves extrusion and the subsequent solidification, after which the filaments are combined 

to produce threads that are collected on a take-up wheel.  The fibers, when stretched in both the molten and 

solid states, define the orientation of the polymer chains along the fiber axis.  A more detailed discussion 

concerning the operation of spinning cells may be available in Kricheldorf, Nuyken & Swift (2005).  Table 2 

lists the 7 variables that were recorded for the spinning cell analyzed in Section 5. 

 

  [Table 2 about here] 

 

2.3 Distillation Unit 

This unit purifies butane from a mixture of heavier hydrocarbons, mainly butane, pentane and impurities of 

propane that enter the unit as fresh feed.  The separation is achieved by trays in the distillation column.  Butane 

is taken off the top of the column and the heavier hydrocarbons are drawn from the bottom of the column.  

Large fan condensers condense the overhead stream and the liquid petroleum gas is fed to a reflux drum.  The 

reflux ratio is set to meet predefined impurity levels in the product stream.  The bottom stream contains heavier 

hydrocarbons and is split between a stream that is fed back to the column through a reboiler and a feed to a 

downstream processing operation.  A sufficient liquid level in the reboiler must be maintained to ensure that 

the steam coils are immersed to avoid accretion of the coils.  Table 3 lists the 12 variables that were analyzed 

in Section 6. 

 

[Table 3 about here] 
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3 Modeling and Monitoring Nonstationary and Dynamic Trends 

This section introduces the common trends framework and presents the practical refinements required to apply 

it in practice.  After briefly describing the underlying data structure in Subsection 3.1, Subsection 3.2 sum-

marizes the cointegration theory and then demonstrates how the common trends model can be applied in 

separating nonstationary components into latent nonstationary and stationary factors.  This is followed by 

highlighting how to construct monitoring statistics and discussing the issue of forecast recovery in Subsections 

3.3 and 3.4, respectively.  Finally, Subsection 3.5 outlines the practically important improvements for apply-

ing the common trends framework, which constitutes the main contributions in this article. 

 

3.1 Data Structure 

Let 𝐲 = (𝑦1 𝑦2 ⋯ 𝑦𝑛)T be a vector storing a recorded variable set of dimension 𝑛, generated by a set of 

non-observed factors.  We assume that each component in 𝐲 consists of linear combinations of a set of serially 

correlated nonstationary and stationary factors.  Defining 𝑧 as the time-shift operator, the corresponding data 

model for 𝐲 is as follows: 

 

   𝐲(𝑧) = 𝐀𝐭(𝑧) + 𝐁𝐮(𝑧) = [𝐀 𝐁] (
𝐭(𝑧)
𝐮(𝑧)

), (1) 

 

where 𝐭 ∈ ℝ𝑛ns  represents a set of nonstationary factors, 𝐮 ∈ ℝ𝑛s  is a set of stationary factors, and 𝐀 ∈

ℝ𝑛×𝑛ns and 𝐁 ∈ ℝ𝑛×𝑛s are parameter matrices that define the contributions of 𝐭 and 𝐮 to the recorded process 

variables 𝐲, respectively.  Without restriction of generality, we assume that 𝑛ns + 𝑛s ≤ 𝑛.  The random vec-

tors 𝐭 and 𝐮 are modeled by a vector auto-regressive integrated moving average, VARIMA, model and a vec-

tor auto-regressive moving average, VARMA, model, respectively: 

 

   𝐂ns(𝑧)∇
𝑑𝐭(𝑧) = 𝐃ns(𝑧)𝐞1(𝑧)        𝐂s(𝑧)𝐮(𝑧) = 𝐃s(𝑧)𝐞2(𝑧), (2) 

 

where 𝐂ns(𝑧) = 𝐈 + 𝐂ns,1𝑧
−1 + 𝐂ns,2𝑧

−2 + ⋯+ 𝐂ns,𝑝ns
𝑧−𝑝ns  and 𝐃ns(𝑧) = 𝐈 + 𝐃ns,1𝑧

−1 + 𝐃ns,2𝑧
−2 +

⋯+ 𝐃ns,𝑞ns
𝑧−𝑞ns are matrix polynomial functions of dimension 𝑛ns × 𝑛ns, 𝐂s(𝑧) = 𝐈 + 𝐂s,1𝑧

−1 + 𝐂s,2𝑧
−2 +

⋯+ 𝐂s,𝑝s
𝑧−𝑝s and 𝐃s(𝑧) = 𝐈 + 𝐃s,1𝑧

−1 + 𝐃s,2𝑧
−2 + ⋯+ 𝐃s,𝑞s

𝑧−𝑞s are matrix polynomial functions of di-

mension 𝑛s × 𝑛s, ∇ = 𝐈(1 − 𝑧−1), 𝑑 is the integration order of the nonstationary factors, and the stationary 

and serially uncorrelated sequence 𝐞𝑖 (𝑖 = 1, 2) are assumed to be drawn from multivariate normal distribu-

tions with zero means and full rank covariance matrices 𝐑e𝑖
, i.e, 𝐞𝑖 ∼ 𝒩(𝟎, 𝐑e𝑖

). 
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3.2 Cointegration and Common trends 

Engle & Granger (1987) coined the term cointegration to describe that a nonstationary variable set can have 

linear combinations that are stationary.  Let 𝛃𝑖 ∈ ℝ𝑛 be a parameter vector that yields: 

 

   𝜖𝑖 = 𝛃𝑖
T𝐲, (3) 

 

where 𝜖𝑖 is a serially correlated stationary sequence that is referred to as a cointegration residual.  It should 

be noted that there can be as many as 𝑛 − 1 different cointegrating vectors.  If there are 𝑟 (1 ≤ 𝑟 ≤ 𝑛 − 1) 

such linearly independent vectors 𝛃𝑖 (𝑖 = 1, 2,⋯ , 𝑟), 𝐲 is said to be cointegrated with a cointegrating rank of 

𝑟, or there are 𝑟 cointegration relationships embedded within the variable set 𝐲.  This allows defining the 

cointegtrating matrix 𝛃 = [𝛃1 𝛃2 ⋯ 𝛃𝑟] ∈ ℝ𝑛×𝑟. 

Econometricians and statisticians have developed a substantial body of research in developing the theory 

of cointegration and presented numerous applications.  This framework includes estimating the cointegrating 

rank and the cointegrating vectors and for applications to pairs of nonstationary variables, the Engle-Granger 

two-step procedure (Engle & Granger, 1987) has been proposed.  For 𝑛 > 2, the Johansen procedure (Johan-

sen, 1995) has been extensively used for constructing cointegration models. 

Given that cointegrated variables share common trends, Stock & Watson (1988) derived a representation 

for reformulating the cointegration model as a common trends model (Stock & Watson, 1988; Kasa, 1992; 

Gonzalo & Granger, 1995; Escribano & Peña, 1994).  Given that 𝐲 is a vector of 𝑛 nonstationary variables 

that have a cointegrating rank 𝑟, the common trends representation of 𝐲 is a linear combinations of 𝑛 − 𝑟 

nonstationary trends, i.e., common trends or common factors, and a set of stationary components: 

 

   𝐲 = 𝐲ns + 𝐲s = 𝛃⊥𝐟 + 𝐲s, (4) 

 

where 𝛃⊥ ∈ ℝ𝑛×(𝑛−𝑟) represents the orthogonal complement of the cointegrating matrix 𝛃, 𝐟 ∈ ℝ𝑛−𝑟 is a set 

of nonstationary variables that have no cointegration relationships and describe the common trends, and 𝐲s is 

the stationary components of 𝐲.  Moreover, Escribano & Peña (1994) proved that 𝐲 is driven by 𝑛 − 𝑟 non-

stationary factors and 𝑟 stationary factors, which implies that Eq. (4) is equivalent to a common trends model 

in the form of the Kasa decomposition (Kasa, 1992): 

 

  𝐲(𝑘) = 𝛃⊥[𝛃⊥
T𝛃⊥]−1𝛃⊥

T𝐲(𝑘) + 𝛃[𝛃T𝛃]−1𝛃T𝐲(𝑘), (5) 
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where 𝛃⊥
T𝐲 and 𝛃T𝐲 are the extracted nonstationary and stationary factors, respectively.  For the model in Eq. 

(5), 𝛃⊥ is referred to as the common trends loading matrix, and the identified nonstationary factors 𝛃⊥
T𝐲 con-

stitute the non-cointegrated part of 𝐲. 

 

3.3 Monitoring Statistics 

The decomposition described in Subsection 3.2 allows identifying the nonstationary factors 𝐟 = 𝛃⊥
T𝐲 and the 

stationary factors 𝐠 = 𝛃T𝐲 from the recorded variable set 𝐲.  Comparing Eqs. (1) and (5), it follows that 𝐟 ∝ 𝐭 

and 𝐠 ∝ 𝐮, implying that the vector spaces spanned by 𝐟 and 𝐠 converge, in probability, to the vector spaces 

spanned by 𝐭 and 𝐮 as the sample size of the recorded variable set approaches infinity, respectively – in terms 

of the statistical properties of the first and second moments (Chan & Wei, 1988; Tanaka, 1996).  Hence, the 

terms on the right hand side of Eq. (5) converge in probability to 𝐀𝐭 and 𝐁𝐮.  Following from Eq. (1), both 

the nonstationary factors 𝐭 and stationary factors 𝐮 are serially correlated.  Kruger, Zhou & Irwin (2004) and 

Xie, Kruger, Lieftucht, Littler, Chen & Wang (2006), however, demonstrated that serial correlation among 

and between the random variables can render nonnegative quadratic test statistics to be either insensitive or 

to produce excess numbers of false alarms.  This is because the assumption that the recorded data points are 

drawn independently, i.e., the 𝑘th data point is independently drawn from the (𝑘 − 1)th data point, is violated.   

To address this issue, Kruger, Zhou & Irwin (2004) and Xie, Kruger, Lieftucht, Littler, Chen & Wang 

(2006) proposed identifying a vector auto-regressive moving average, VARMA, model and construct 

nonnegative test statistics on the basis of the model residuals, which are not serially correlated.  Moreover, 

the Wold decomposition theorem (Box, Jenkins, Reinsel & Ljung, 2016) proves that a VARMA model can 

be converted into a vector auto-regressive (VAR) model.  In a similar fashion, it is possible to convert a vector 

auto-regressive integrated moving average (VARIMA) model to an equivalent vector auto-regressive inte-

grated (VARI) model.  VARI and VAR models can describe serially correlated nonstationary and stationary 

signals, respectively.  Therefore, the random vectors 𝐟 and 𝐠 can be described by VARI and VAR model 

structures, which can be identified using the computationally efficient Yule-Walker equation. 

The identified nonstationary factors 𝐟 are assumed to be integrated of order 𝑑 = 1.  Defining 𝑘 as a time-

based index, Appendix A shows that a VARI model for the nonstationary factors is given by: 

 

   𝐟(𝑘) = ∑ 𝚿𝑗𝐟(𝑘 − 𝑗)
𝑝ns+1
𝑗=1 + 𝐞f(𝑘), (6) 

 

where 𝑝ns is the number of lagged terms, 𝚿𝑗, 𝑗 = 1,⋯ , 𝑝ns, 𝑝ns + 1 are coefficient matrices, and 𝐞f denotes 

a random error vector that has a multivariate normal distributions with a mean of zero and the covariance 
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matrix 𝐑f.  As before, the observations of the random vector 𝐞f are independent and identically distributed, 

and do not contain any serial correlation.  Hence, the following Hotelling’s 𝑇2 statistic (Johnson & Wichern, 

2007) can be constructed to monitor the nonstationary factors in 𝐲: 

 

   𝑇ns
2 = 𝐞f

T�̂�f
−1𝐞f, (7) 

 

Here, �̂�f  is the sample covariance matrix of 𝐞f , estimated from a total of 𝑁  reference points, i.e., �̂�f =

𝑁−1 ∑ 𝐞f(𝑘)𝐞f
T(𝑘)𝑁

𝑘=1 .  If the random vector 𝐞f has a multivariate normal distribution, the critical value, or 

control limit, for the test statistic 𝑇ns
2  to reject the null hypothesis 𝐻0: the process is in-statistical-control, for 

a significance 𝛼, is given by a scaled 𝐹-distribution (Kruger & Xie, 2012): 

 

  𝑇ns,𝛼
2 =

𝑛ns(𝑁−1)

𝑁−𝑛ns
𝐹𝛼(𝑛ns, 𝑁 − 𝑛ns), (8) 

 

where 𝐹𝛼(𝑛ns, 𝑁 − 𝑛ns) is critical value of an 𝐹-distribution with 𝑛ns and 𝑁 − 𝑛ns degrees of freedom. 

Similarly, the VAR model structure for the identified stationary factors 𝐠 is as follows: 

 

   𝐠(𝑘) = ∑ 𝚽𝑗𝐠(𝑘 − 𝑗)
𝑝s
𝑗=1 + 𝐞g(𝑘), (9) 

 

where 𝑝s is the number of lagged terms, 𝚽𝑗, 𝑗 = 1,⋯ , 𝑝s, are coefficient matrices and 𝐞g denotes a random 

error vector that has a multivariate normal distributions with a mean of zero and the covariance matrix 𝐑g.  It 

is important to note that the random vector 𝐞g does not possess any serial correlation, implying that realiza-

tions of 𝐞g are independent and identically distributed.  Thus, the Hotelling’s 𝑇2 statistic (Johnson & Wichern, 

2007) is constructed for monitoring the variation of the stationary components of 𝐲: 

 

   𝑇s
2 = 𝐞g

T�̂�g
−1𝐞g. (10) 

 

Here, �̂�g is the sample covariance of the random vector 𝐞g, estimated from a total of 𝑁 reference points, i.e., 

�̂�g = 𝑁−1 ∑ 𝐞g(𝑘)𝐞g
T(𝑘)𝑁

𝑘=1 .  If the random vector 𝐞g has a normal distribution, the critical value, or control 

limit, for testing 𝐻0: the process is in-statistical-control, using the test statistic in Eq. (10), for a significance 

of α, is given by: 
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   𝑇s,𝛼
2 =

𝑛s(𝑁−1)

𝑁−𝑛s
𝐹𝛼(𝑛s, 𝑁 − 𝑛s), (11) 

 

where 𝐹𝛼(𝑛s, 𝑁 − 𝑛s) is the critical value of an 𝐹-distribution with 𝑛s and 𝑁 − 𝑛s degrees of freedom.  The 

alternative hypotheses for the test statistics in Eqs. (7) and (10) are 𝐻1: the process is-out-of-statistical-control. 

 

3.4 Forecast Recovery and Fault Magnitude Compensation 

A practically important issue that relates to the diagnosis of anomalous events using model residuals is fore-

cast recovery.  More precisely, the removal of correlation by applying vector auto-regressive models generates 

the problem of forecast recovery (Apley & Shi, 1999; Superville & Adams, 1994).  Considering the VARI 

model in Eq. (6) and computing the difference between the 𝑘th data point and its prediction yields: 

 

   𝐞f(𝑘) = 𝐟(𝑘) − ∑ 𝚿𝑗𝐟(𝑘 − 𝑗)
𝑝ns+1
𝑗=1 .  (12) 

 

In the presence of a fault condition, assuming a step-type fault of magnitude Δ𝐟 (for simplicity) that arises at 

the 𝑘th time index, we have: 

 

   𝐞f
(f)(𝑘) = 𝐞f(𝑘) + Δ𝐟 = [𝐟(𝑘) + Δ𝐟] − ∑ 𝚿𝑗𝐟(𝑘 − 𝑗)

𝑝ns+1
𝑗=1 , (13) 

 

Given that the diagonal matrix 𝛻 contains the backward finite difference term 1 − 𝑧−1, i.e., 𝛻𝐟(f) (𝑘 + 𝑚) =

𝛻[𝐟(𝑘 + 𝑚) + ∆𝐟] = 𝛻𝐟(𝑘 + 𝑚), it follows that lim
𝑚→+∞

 [𝐞f
(f)(𝑘 + 𝑚) − 𝐞f(𝑘 + 𝑚)] = 𝟎.  This phenomena is 

referred to as forecast recovery and implies that differencing a step-type fault does not manifest itself in a 

step-type fault signature of the residual sequence 𝐞f
(f)(𝑘 + 𝑚).  This can be circumvented by utilizing the 

following filter mechanism (Lieftucht, Kruger, Xie, Littler, Chen & Wang, 2006): 

 

  �̅�f
(f)(𝑘) = ∑ 𝐞f

(f)(𝑗)𝑘
𝑗=0 ,    𝐟(̅𝑘) = 𝐟(f)(𝑘) − �̅�f

(f)(𝑘). (14) 

 

More precisely, instead of using the realization 𝐟(f)(𝑘), the filtered realization 𝐟(̅𝑘) is used.  This compensa-

tion scheme is utilized in this article for estimating the correct magnitudes and signatures of general deter-

ministic fault conditions. 
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3.5 Practically Important Improvements of Common Trends Framework 

This subsection discusses three important issues that arise when applying the common trends framework: (i) 

how to address cases where the variable set contains nonstationary as well as stationary variables, (ii) how to 

handle model residuals that are not drawn from a multivariate normal distribution and (iii) how to obtain the 

cointegrating rank, the cointegration matrix and its orthogonal complement for larger variable sets. 

 

Generalized Data Structure and Common Trends Model 

The common trends model assumes that all random variables stored in 𝐲 are nonstationary.  However, a rec-

orded variable set for an industrial process system may contain both nonstationary and stationary variables.  

As an example, a controlled variable is expected to be stationary, whilst a feedstream may be nonstationary.  

Whether a random variable is nonstationary or not can be tested using the augmented Dickey-Fuller or ADF 

test, which is briefly summarized in Appendix B. 

To be practically useful, the assumption that all variables in 𝐲 are nonstationary need to be relaxed, lead-

ing to a generalized data structure.  It should be noted that the 𝑖th (1 ≤ 𝑖 ≤ 𝑛) component of the recorded 

variable set 𝑦𝑖 in the term of Eq. (1) can be either nonstationary or stationary, whilst the data structure in Lin, 

et al. (2017) only assumed that all the components of 𝑦 have to be nonstationary with the same integration 

order.  If the variable 𝑦𝑖 is stationary, it means that latent nonstationary factors 𝐭 in the term of Eq. (1) have 

no impact on 𝑦𝑖 and the elements of the 𝑖th row vector of the nonstationary factor loading matrix 𝐀 in the 

term of Eq. (1) have to be all zeros, because the sum of a nonstationary and a stationary variable leads to 

nonstationarity.  This yields a two-step procedure for identifying nonstationary and stationary factors from 

the recorded set that can contain both nonstationary and stationary variables.  First, the recorded variable set 

𝐲 is divided into 𝐲ns
(g)

 and 𝐲s
(g)

 which contain the nonstationary and stationary subsets of 𝐲, respectively.   

Next, similar to Eq. (5), applying the Kasa decomposition allows extracting nonstationary and stationary 

factors from 𝐲ns
(g)

 by determining factor loading matrices 𝛃(g) and 𝛃⊥
(g)

.  Then, the stationary components as-

sociated with 𝐲ns
(g)

, i.e., [𝐈 − 𝛃⊥
(g)

[𝛃⊥
(g)T

𝛃⊥
(g)

]
−1

𝛃⊥
(g)T

] 𝐲ns
(g)

= 𝛃(g)[𝛃(g)T𝛃(g)]
−1

𝛃(g)T𝐲ns
(g)

 can be combined with 

𝐲s
(g)

 to subsequently extract the stationary factors by estimating the generalized factor loading matrix 𝛃 and 

its orthogonal complement, i.e., 𝛃⊥ = (𝛃⊥
(g)T

𝟎T)
T
.  With respect to Eqs. (1) and (5), the generalized data 

structure, referred to by the superscript (g), and its corresponding Kasa decomposition are: 

 

 𝐲 = (𝐲ns
(g)

𝟎
) + (

𝟎

𝐲s
(g)) ⇒ 𝐲 = (𝛃⊥

(g)

𝟎
) [(𝛃⊥

(g)

𝟎
)
T

(𝛃⊥
(g)

𝟎
)]

−1

(𝛃⊥
(g)

𝟎
)

T

(
𝐲ns

(g)

𝐲s
(𝑔)

) + 𝛃[𝛃T𝛃]−1𝛃T (
𝐲ns

(g)

𝐲s
(g)

) (15) 
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Each of the applications studies, detailed in Sections 4 to 6, exemplify that the generalized data structure and 

its corresponding Kasa decomposition is essential for the successful application of the common trends frame-

work. 

 

Chigira Procedure 

The conventional cointegration testing method for 𝑛 > 2 is the Johansen procedure, which has been widely 

used for modeling nonstationary processes.  However, two important practical issues render the Johansen 

procedure difficult to apply for constructing the model in Eq. (5).  The first issue relates to the fact that critical 

values of most cointegration tests depends on the dimension of the recorded set, 𝑛, and the cointegration rank 

under the null hypothesis, 𝑟.  The critical values, obtained empirically and reported in MacKinnon (1991), are 

not available for large 𝑛.  The second issue is the complexity of the cointegration models.  More precisely, 

the Johansen procedure depends on auto-regressive time series models and, hence, there may be hundreds of 

parameters to be estimated if the variable number is large. 

To directly address these issues, Chigira (2008) proposed a testing procedure for estimating the cointegra-

tion rank on the basis of principal component analysis.  This testing procedure relies on the fact that the 

smallest 𝑟 principal component loading vectors converge, asymptotically, to the cointegrating vectors whilst 

the largest 𝑛 − 𝑟 principal component loading vectors converge, asymptotically, to orthogonal complements 

of cointegrating vectors. 

Let 𝐂y be the sample covariance matrix of the 𝑛-dimensional observed nonstationary time series 𝐲(𝑘) and 

𝐁 be principal component loading vectors such that 𝐂y = 𝐁𝚲𝐁T, where 𝚲 is a diagonal matrix that consists 

of eigenvalues.  𝐁 can be divided into two component matrices 𝐁 = [𝐁𝑛−𝑟 𝐁𝑟], where 𝐁𝑛−𝑟 and 𝐁𝑟 are the 

principal component loading vectors corresponding to the largest 𝑛 − 𝑟 and the smallest 𝑟 eigenvalues, re-

spectively.  According to the convergence proof in Chigira (2008), 𝐁𝑛−𝑟

𝑝
→ 𝛃⊥𝐐 and 𝐁𝑟

𝑝
→ 𝛃𝐑 as the sample 

size goes infinity, where 𝐐 and 𝐑 are (𝑛 − 𝑟) × (𝑛 − 𝑟) and 𝑟 × 𝑟 constant matrices, respectively.  A more 

detailed convergence proof may be found in Chigira (2008). 

Put differently, if the sample size of the reference data set is large enough, 𝐁𝑟 is an estimate of 𝛃 up to a 

similarity transformation, such that 𝐁𝑛−𝑟
T  𝐲(𝑘) is nonstationary whilst 𝐁𝑟

T𝐲(𝑘) is stationary.  Thus, the prob-

lem of estimating the cointegration rank becomes a problem of verifying the stationarity of principal compo-

nents.  On the basis of these properties, Chigira (2008) developed a sequential procedure to test the cointegra-

tion rank by applying a unit root test (Dickey & Fuller, 1981; Phillips & Perron, 1988; Fan & Gencay, 2010) 



Monitoring Nonstationary and Dynamic Trends    

- 12 - 

to verifying whether or not a principal component is nonstationary.  The null hypothesis and the alternative 

are: 

 

𝐻0: the cointegration rank is 𝑟; and 

𝐻1: the cointegration rank is 𝑟 − 1. 

 

which can be reformulated as follows: 

 

𝐻0: the (𝑛 − 𝑟 + 1)th principal component is stationary; 

𝐻1: the (𝑛 − 𝑟 + 1)th principal component is nonstationary. 

 

In practice, the testing procedure commences by testing 𝑟 = 𝑛, that is, apply a unit root test to verify the 

stationarity of the first principal component.  If the null hypothesis is accepted, the cointegration rank is de-

termined to be 𝑟 = 𝑛.  If it is rejected, the hypothesis becomes 𝑟 = 𝑛 − 1, or the stationarity of the second 

principal component is tested.  The procedure carries out sequentially until a null hypothesis 𝑟 = 𝑛 − 𝑟 + 1 

is accepted.  In the testing procedure, a unit root test is applied to verify the stationarity of the (𝑛 − 𝑟 + 1)th 

principal component.  More details of the procedure implement can be found in Chigira (2008). 

In contrast to the commonly used Johansen’s framework, the Chigira procedure (i) is not compromised by 

larger numbers of process variables, whilst the critical values of the Johansen procedure are unavailable for 

larger 𝑛 and (ii) unlike the Johansen procedure, the Chigira procedure does not require a pre-identified auto-

regressive model for each recorded process variable.  Moreover, the Monte Carlo experiments reported in 

Chigira (2008) show that the proposed Chigira procedure performs well for large cointegrated systems even 

if the sample size is small.  Hence, we utilized the Chigira procedure for constructing the model structure in 

Eq. (15) for processes with a larger number of recorded variables, an example of which is given in Section 4.  

Conversely, both the Johansen and Chigira procedures showed to work well for smaller variable sets, which 

is exemplified in Sections 5 and 6.   

Chigira (2008) confirmed by using Monte Carlo simulations that the Chigira procedure performs better in 

terms of correctly estimating the cointegrating rank for small sample sizes.  For larger sample sizes, however, 

both procedures produced identical estimates.  Following from the preceding discussion, the Chigira proce-

dure is, in our view, conceptually simpler, robust and closely related to the traditional MSPC framework.  We 

therefore advocate for the use of the Chigira procedure in industrial practice, as (i) it can deal with larger 

numbers of variables (exceeding 10) and (ii) and it is conceptually simple and robust. 
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Control Limits for Monitoring Statistics 

The two monitoring statistics, 𝑇ns
2  and 𝑇s

2, defined in Subsection 3.3, are 𝐹 distributed, as they are nonnega-

tive quadratic statistics based on filtered sequences that are assumed to be drawn from a multivariate normal 

distribution.  In industrial practice, however, the filtered residual sequences may not be drawn from a multi-

variate normal distribution, which can be tested by the well known Anderson-Darling (Anderson & Darling, 

1954), Shapiro-Wilk (Shapiro & Wilk, 1965) or Jarque-Bera (Jarque & Bera, 1987) tests.  If a sample is not 

drawn from a normally distributed population, the control limits of the nonnegative squared statistics in Eqs. 

(8) and (11) are incorrect.  To address this problem, the control limits of the 𝑇ns
2  and 𝑇s

2 statistics can be ob-

tained from the probability density function that is estimated using kernel density estimation (KDE) (Silver-

man, 1986; Chen, Wynne, Goulding & Sandoz, 2000).  A univariate estimator for a kernel function 𝐾(·) is 

defined by: 

 

   𝑓(𝑥) =
1

𝑁ℎ
∑ 𝐾 {

𝑥−𝑥𝑖

ℎ
}𝑁

𝑖=1 .  (16) 

 

Here, 𝑥 is the data point under consideration, 𝑥𝑖 is a recorded reference point, ℎ is the smoothing parameter, 

𝑁 is the sample size, and 𝐾 is the kernel function.  The kernel function 𝐾 must satisfy: 

 

   ∫ 𝐾(𝑥)d𝑥
∞

−∞
= 1.  (17) 

 

In practice, the Gaussian kernel function, adopted in this article, is widely used. 

From the estimated PDF, the control limits can be calculated as follows.  First, the 𝑇ns
2  and 𝑇s

2 values are 

computed from the reference data set.  Then the univariate kernel density estimator is used to estimate the 

density functions of the 𝑇ns
2  and 𝑇s

2 statistics.  Finally, the area under the PDFs that is equal to 0.99 can be 

determined, and the upper boundaries of the numerical integration become the control limit of the 𝑇ns
2  and 𝑇s

2 

statistics.  Section 6 discusses an application to an industrial data set that does not yield residuals sequences 

that are drawn from a multivariate normal distribution and demonstrates that an incorrect control limit can 

have a profound effect on the process monitoring application. 

Figure 1 presents a flowcharts summarizing the monitoring approach, which directly addresses practical 

issues that existing work in this area does not. 

 

[Figure 1 about here] 
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4 Application to a Fluid Catalytic Cracking Unit 

This section summarizes the application of the improved monitoring scheme to the FCCU simulator, described 

in Subsection 2.1.  Subsection 4.1 gives details to guarantee that the simulated data set reflects a practically 

realistic scenario.  Subsection 4.2 shows how to establish monitoring models.  Subsection 4.3 then shows how 

to detect two abnormal events.  Finally, Subsection 4.4 discusses the practical importance of the improvements 

detailed in Subsection 3.5. 

 

4.1 Details of Simulation 

To simulate a practically realistic behavior, some of the heavy feeds, i.e., the slurry and wash oil feed, the 

temperature of the total feed after leaving the preheater and the airflow of the combustion air blower were 

simulated to be mildly nonstationary.  In addition to that, the riser temperature was controlled by the PI con-

troller detailed in Kruger & Xie (2012, Eq. 7.49).  McFarlane, Reineman, Bartee & Georgakis (1993) describe 

other regulatory controllers, for example to guarantee a smooth catalyst flow between the riser and regenera-

tor.  To guarantee that the simulator describes a practically relevant scenario, the measured and unmeasured 

disturbances were selected to ensure that the recorded variables show a similar variance and pattern compared 

to that of the industrial examples in Sections 5 and 6.  Figure 2 presents the time-based trends of the simulated 

variables. 

 

  [Figure 2 about here] 

 

4.2 Identification of a Dynamic Monitoring Model 

From this process, a data set containing a total of 20000 data points was used as a reference set to identify the 

dynamic models.  To assess which of the 28 recorded process variables are nonstationary, we applied the ADF 

test (Dickey & Fuller, 1981).  Table 4 reports the results of the ADF test statistic for which the critical value 

was determined for a significance of 0.01.  This yielded that 27 variables were nonstationary and the other 1 

was stationary, i.e., 𝐲ns
(g)

∈ ℝ27 and 𝐲s
(g)

∈ ℝ .  The stationary variable was the riser temperature, which was 

adjusted by feedback control.  Next, the dimension of nonstationary factors was determined to be 𝑛ns = 3 

using the Chigira procedure (Chigira, 2008), i.e., 𝛃⊥
(g)T

𝐲ns
(g)

∈ ℝ3.  Figure 3 shows the eigenvalues of the sam-

ple covariance matrix of the stationary vector and highlights 𝑛s = 5.  The Chigira procedure yielded the factor 

loading matrices 𝛃 ∈ ℝ28×5 and 𝛃⊥ ∈ ℝ28×3 to be: 
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  𝛃 =

[
 
 
 
 
 
 
−0.015 0.207 −0.386 0.428 0.571
−0.110 0.161 −0.053 0.070 −0.152
−0.086 −0.49 0.263 −0.529 0.477

⋮ ⋮ ⋮ ⋮ ⋮
0.003 0.022 0.028 −0.027 0.031
0.026 0.046 0.006 −0.023 −0.115
0.004 0.015 0.018 −0.035 0.028 ]

 
 
 
 
 
 

 ,  (18a) 

   𝛃⊥ =

[
 
 
 
 
 
 
−0.134 −0.164 −0.491
0.080 0.282 −0.207

−0.168 0.164 −0.313
⋮ ⋮ ⋮

0.263 −0.035 −0.030
0.050 0.288 −0.262
0.262 −0.039 −0.039]

 
 
 
 
 
 

. (18b) 

 

[Table 4 about here] 

 

[Figure 3 about here] 

 

The next step was to construct the VARI model for the 3 nonstationary factors and the VAR model for 

the 5 stationary factors.  Applying the BIC criteria (Hannan, 1980), the number of lagged term for the VARI 

and VAR model were estimated to be 𝑝ns = 13 and 𝑝s = 6, respectively.  The resultant auto-regressive coef-

ficient matrices for both models are listed in Appendix C.1.  The estimated covariance matrices for the model 

residuals 𝐞f and 𝐞g were: 

 

   �̂�f = [
0.0003 −0.0008 0.0002

−0.0008 0.0059 −0.0008
0.0002 −0.0008 0.0002

],  (19a) 

   �̂�g =

[
 
 
 
 

0.0002 −0.0002 −0.0000 0.0003 −0.0002
−0.0002 0.0010 0.0001 −0.0012 0.0010
−0.0000 0.0001 0.0005 −0.0001 −0.0006
0.0003 −0.0012 −0.0001 0.0015 −0.0012

−0.0002 0.0010 −0.0006 −0.0012 0.0058 ]
 
 
 
 

. (19b) 

 

4.3 Application of Identified Monitoring Scheme 

The estimated dynamic model was applied to a fault scenario.  The simulated fault scenario was recorded over 

a period covering 3000 data points, and the fault was injected 500 data points into the recorded data set.  The 

fault condition is a 1% increase of the coefficient describing the friction in the spent catalyst line, which yields 

a degeneration in the spent catalyst circulation.  The residuals for the data set were produced by the estimated 
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VARI and VAR models.  In addition to that, the compensation scheme introduced in Subsection 3.4 was 

employed to avoid forecast recovery.  Plots (a) and (b) in Figure 4 show the 𝑇ns
2  and 𝑇s

2 statistics for the iden-

tified nonstationary and stationary factors of the fault scenario, respectively.  With respect to the control limits, 

determined for a significance of 0.01, both plots illustrate that the fault condition was detected 500 data points 

into the data set.  

For comparison, plots (c) and (d) in Figure 4 demonstrates the monitoring performances of a PCA-based 

monitoring scheme could also detect the fault condition but produced several false alarms during the first 500 

samples where the fault had not occurred, compared to the improved common trends framework.   

 

[Figure 4 about here] 

 

More importantly, however, the standard MSPC process monitoring methodology relies on the assumption 

that the process variables are stationary and hence, it cannot correctly model nonstationary behavior that is 

embedded within recorded data sets.  This is exemplified here by applying a standard PCA model to an addi-

tional data set that contains 5000 data points, describing normal process behavior.  This set was neither used 

to identify the VARI and VAR models nor to identify which of the 28 variables were nonstationary.  Figure 

5 shows the standard nonnegative quadratic statistics based on a PCA monitoring model (Kruger & Xie, 2012) 

for the additional data set and confirms, as expected, a considerable number of false alarms. 

 

[Figure 5 about here] 

 

4.4 Conclusions 

The model, based on the improved common trends framework, introduced in Section 3, has shown a substan-

tially better performance for monitoring the FCCU compared to a conventional MSPC-based approach.  This 

is because data structure in Eq. (15) and its corresponding Kasa decomposition is designed specifically to 

handle nonstationary and serially correlated process variables.  Conversely, conventional MSPC methods can 

handle serial correlation but assume stationary variables, which has led to the considerable number of false 

alarms according to Figure 5.  Concerning the improvements reported in Subsection 3.5, this application has 

confirmed: 

 the need to invoke the Chigira procedure, given that there are no critical values for 𝑛 = 27 nonstation-

ary variables – for practical applications, the Chigira procedure is to be generally preferred, as it is 

not compromised by the number of nonstationary variables; and 
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 the need to utilize the generalized data structure in Eq. (15), as the recorded variable set contained 

stationary and nonstationary variables. 

In addition to that, this application study has confirmed that differencing the nonstationary variables once 

produced stationary sequences, which has highlighted that the assumption 𝑑 = 1 is justifiable in practice.  For 

all application studies, Table 8 summarizes the results and confirms that, as far as the detection of the fault is 

concerned, the common trends framework is as successful as a conventional PCA approach.  However, the 

false alarm rate (FAR) of the PCA-based monitoring approach is unacceptable.  In addition to that, the missing 

alarm rate (MAR) is defined here as the number of instances correctly detected as abnormal over the total 

number of data points that describe the fault condition. 

 

5 Application to the Polymerization Process 

This section applies the improved common trends framework to the industrial polymerization process, de-

scribed in Subsection 2.2.  Details on how the monitoring model was established are given in Subsection 5.1.  

This is followed by applying the monitoring model to detect an abnormal event in Subsection 5.2.  Finally, 

subsection 5.3 concludes this application study.  Figure 6 presents time-based plots for the 7 recorded varia-

bles to highlight that some variables are stationary, whilst others show nonstationary trends (𝑦1: gas flow, 𝑦2: 

positional gas heater temperature and 𝑦4: head metal temperature). 

 

[Figure 6 about here] 

 

5.1 Identification of a Dynamic Monitoring Model 

For this process, a reference data set containing a total of 10000 data points was used to identify the dynamic 

models.  Table 5 reports the results of applying the ADF test (Dickey & Fuller, 1981), which yielded 𝐲ns
(g)

∈

ℝ3 and 𝐲s
(g)

∈ ℝ4.  Moreover, applying the Chigira and Johansen procedures both revealed that 𝛃⊥
(g)T

𝐲ns
(g)

∈

ℝ2 and 𝛃(g)T𝐲ns
(g)

∈ ℝ.  Whilst 𝑛ns = 2, the Chigira procedure also yielded 𝑛s = 5 and produced the follow-

ing factor loading matrices 𝛃 ∈ ℝ7×5 and 𝛃⊥ ∈ ℝ7×2: 

 

   𝛃 =

[
 
 
 
 
 
 
−0.007 0.017 0.386 0.423 −0.081
−0.010 0.023 0.544 0.595 −0.114
−0.368 −0.641 −0.478 0.470 0.072
0.000 −0.001 −0.018 −0.019 0.004

−0.489 −0.483 0.532 −0.490 −0.074
−0.559 0.426 0.039 0.074 0.707
−0.560 0.417 −0.204 0.029 −0.686]

 
 
 
 
 
 

,     𝛃⊥ =

[
 
 
 
 
 
 
−0.770 0.270

0.557 −0.161
0 0

0.313 0.949
0 0
0 0
0 0]

 
 
 
 
 
 

, (20) 
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[Table 5 about here] 

 

The next step was to construct the VARI model for the 2 nonstationary and the VAR model for the 5 

stationary factors.  Applying the BIC index (Hannan, 1980), the number of lagged term for the VARI and 

VAR model were estimated to be 𝑝ns = 12 and 𝑝s = 9, respectively.  The resultant auto-regressive coeffi-

cient matrices for both models are listed in Appendix C.2.  The estimated covariance matrices for the model 

residuals 𝐞f and 𝐞g were: 

 

   �̂�f = [
0.122 −0.001

−0.001 0.183
]      �̂�g =

[
 
 
 
 

0.850 0.031 −0.164 0.021 0.012
0.031 0.803 0.222 −0.028 0.051

−0.164 0.222 0.561 0.091 −0.055
0.021 −0.028 0.091 0.593 0.183
0.012 0.051 −0.055 0.183 0.879 ]

 
 
 
 

. (21) 

 

The application of the Anderson-Darling or AD test (Anderson & Darling, 1954) confirmed, for a significance 

of 𝛼 = 0.01, that the calculated residual sequences were drawn from multivariate normal distributions. 

 

5.2 Application of Identified Monitoring Model 

The recorded data also contains a segment containing 5000 data points that describe a fault condition that 

affected variables 𝑦3 and 𝑦4.  The root cause for this fault condition could not be determined but it was con-

firmed that the anomalous event affected the quality of the threads.  Figure 7 outlines that the fault condition 

emerged 600 to 650 data points into the data set.  As discussed in Section 3, the improved common trends 

framework scheme relied on the estimated VARI and VAR models, and the compensation scheme to avoid 

the problem of forecast recovery.  Plots (a) and (b) in Figure 8 show the 𝑇ns
2  and 𝑇s

2 statistics describing the 

variation of the identified nonstationary and stationary factors, respectively.  With respect to the control limits 

that were determined for a significance of 0.01, both plots show that the fault condition was detected around 

600 samples into the data set. 

 

[Figure 7 about here] 

 

For comparison, a standard MSPC approach, based on PCA, was also applied.  Plots (c) and (d) in Figure 

8 display the corresponding Hotelling’s 𝑇2 and SPE statistics, which produced a considerable number of false 
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alarms prior to the occurrence of the fault condition.  This is not surprising, given that the assumptions im-

posed on conventional MSPC do not allow modeling nonstationary variables, as highlighted in the previous 

section.  In addition to that, the PCA-based monitoring model provided a sporadic detection of this abnormal.  

To examine this further, we recomputed the monitoring statistics based on the improved common trends model 

but without applying the compensation scheme.  Plots (a) and (b) in Figure 9 show the recomputed 𝑇ns
2  and 

𝑇s
2 statistics.  Comparing plots (a) and (b) in Figures 8 and 9 highlights that the compensation scheme yields 

a fault signature that is consistent with the effect it had on the product quality.   

 

[Figure 8 about here] 

 

[Figure 9 about here] 

 

5.3 Conclusions 

This industrial application study has shown that the polymerization process requires the use of the improved 

common trends framework to monitor the seven recorded variables.  Similar to the simulated study in the 

previous section, although conventional MSPC approach can deal with serial correlation that is embedded 

within the recorded data it is not capable of modeling the three nonstationary variables 𝑦1, 𝑦2 and 𝑦4.  The 

diagnosis of the detected fault condition has confirmed that extracting the fault signature required the use of 

the compensation scheme, as the original residuals do only show sporadic violations that did not reflect the 

undesired impact of this event upon the product quality.  The application of the common trends framework to 

this process has required the following improvements, detailed in Subsection 3.5: 

 given that the variable set contained stationary and nonstationary variables, the generalized data struc-

ture in Eq. (15) had to be utilized; and 

 although critical values for the Johansen procedure are available for 𝑛 = 3 nonstationary variables, 

the Chigira procedure produced an identical estimate for the number of nonstationary factors; and the 

Chigira procedure is conceptually simpler than the Johansen procedure and closely related to the 

MSPC framework. 

By applying the Anderson-Darling test, not shown here, the residual sequences of the VARI and VAR models 

were drawn from multivariate normal distributions.  Finally, differencing the three nonstationary variables 

has produced stationary sequences and hence, this industrial application study has also confirmed that the 

assumption 𝑑 = 1 has been met.  Table 8 summarizes the above results and also confirm, as observed in 

Figures 8 and 9, that the standard PCA approach produced false alarms, particularly the T2 statistic, and had 
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very high levels of missed alarms, which are around 40% for the T2 statistic and in excess of 98% for the SPE 

statistic.  Table 8 also outlines the importance of the compensation procedure. 

 

6 Application to the Distillation Unit 

This section applied the introduced monitoring scheme to an industrial instance of a distillation unit that is 

described in Subsection 2.3.  Details of identifying the monitoring model are given in Subsection 6.1.  This is 

followed by an application to detect an abnormal process event in Subsection 6.2.  Finally, Subsection 6.3 

concludes this industrial application.  Figure 10 presents time-based plots for the 12 recorded variables to 

highlight that some variables are stationary, whilst others show nonstationary trends (𝑦3: tray 2 temperature, 

𝑦6: reflux flow, 𝑦8: butane product flow and 𝑦12: reboiler outlet temperature). 

 

[Figure 10 about here] 

 

6.1 Identification of a Dynamic Monitoring Model 

To model the distillation process, a reference set containing a total of 10000 data points was used to identify 

the monitoring model.  Applying the ADF test (Dickey & Fuller, 1981) to each of the 12 recorded variables, 

for a significance of 0.01, yielded that 4 of them are nonstationary, i.e., 𝑦3, 𝑦6, 𝑦8 and 𝑦12, whilst the remain-

ing 8 are stationary.  Table 6 lists the results of the ADF tests.  A further analysis of the 4 nonstationary 

variables using the Johansen and Chigira procedures revealed 𝑛ns = 2 nonstationary and 𝑛s = 10 stationary 

factors, and extracted the following factor loading matrices 𝛃 ∈ ℝ12×10 and 𝛃⊥ ∈ ℝ12×2: 

 

   𝛃 =

[
 
 
 
 
 
 
 
 
 
 
 
−0.157 −0.661 0.128 ⋯ −0.098 0.027
0.051 0.005 0.635 ⋯ −0.039 −0.012
0.002 0.003 0.020 ⋯ −0.263 0.011
0.055 0.185 0.302 ⋯ −0.018 −0.000
0.553 −0.026 0.170 ⋯ 0.237 0.082

−0.004 0.003 0.012 ⋯ −0.352 0.726
0.059 −0.719 0.002 ⋯ 0.119 −0.022
0.011 0.006 0.043 ⋯ −0.375 −0.677
0.021 0.015 0.641 ⋯ −0.024 −0.004
0.553 −0.103 −0.208 ⋯ −0.384 −0.055
0.595 −0.001 −0.037 ⋯ 0.116 0.002

−0.006 −0.008 −0.049 ⋯ 0.650 −0.048]
 
 
 
 
 
 
 
 
 
 
 

,     𝛃⊥ =

[
 
 
 
 
 
 
 
 
 
 
 

0 0
0 0

−0.447 0.842
0 0
0 0

0.551 0.148
0 0

0.553 0.138
0 0
0 0
0 0

0.437 0.500]
 
 
 
 
 
 
 
 
 
 
 

. (22) 

 

[Table 6 about here] 
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The next step was identifying the VARI model for the 2 nonstationary factors and the VAR model for the 

10 stationary factors.  By applying the BIC index (Hannan, 1980), the number of lagged terms for the VARI 

and VAR model were estimated to be 𝑝ns = 4 and 𝑝s = 7, respectively.  The resultant auto-regressive coef-

ficient matrices for both models are listed in Appendix C.3.  The sample covariance matrices for the model 

residuals 𝐞f and 𝐞g were: 

 

  �̂�f = [
0.003 0.001
0.001 0.008

],     �̂�g =

[
 
 
 
 
 
 
 
 
 

0.020 0.004 0.029 ⋯ 0.028 0.016
0.004 0.050 0.066 ⋯ −0.042 0.010
0.029 0.066 0.430 ⋯ −0.023 0.016

−0.000 −0.018 −0.127 ⋯ 0.005 0.017
0.002 −0.001 −0.003 ⋯ 0.017 −0.038
0.015 0.022 −0.009 ⋯ 0.017 0.012

−0.009 0.003 0.045 ⋯ −0.016 −0.068
0.001 0.015 −0.026 ⋯ −0.043 0.071
0.028 −0.042 −0.023 ⋯ 0.702 0.041
0.016 0.010 0.016 ⋯ 0.041 0.499 ]

 
 
 
 
 
 
 
 
 

. (23) 

 

6.2 Application of Identified Monitoring Model 

The recorded data set also contained a series of severe drops in fresh feeds.  This section of the data set 

contained 5000 data points and described two drops in feed that arose after around 1100 and 3000 points into 

this data set.  The plant operators responded to the presence of the first drop, but did not notice the second 

feed drop.  Without operator intervention, a prolonged drop in fresh feed upsets the diffusion conditions within 

the column, which is predominantly noticeable by an increase in the measured temperatures. 

The residuals, computed by the estimated VARI and VAR models, and the application of the compensa-

tion scheme, introduced in Subsection 3.4, to avoiding the problem of forecast recovery, were then used to 

calculate the 𝑇ns
2  and 𝑇s

2 statistics for each data point.  The results of applying the Anderson-Darling or AD 

test (Anderson & Darling, 1954) to the calculated statistics to the residuals of the VARI and VAR models, 

listed in Table 7 for a significance of 0.01, showed that some residual sequences were not drawn from normal 

distributions.  This required estimating the probability density function of the 𝑇ns
2  and 𝑇s

2 statistics in order to 

numerically compute their control limits, as described in Subsection 3.5.3.   

 

[Table 7 about here] 

 

Plots (a) and (b) in Figure 11 show time based plots of the 𝑇ns
2  and 𝑇s

2 statistics, respectively.  Plots (a) 

and (b) were briefly sensitive to the presence of the first drop at around 1100th sample, although this event 

lasted only for a short period.  The stationary 𝑇s
2 statistic in plot (b) had a substantially response to the second 
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drop in feed around 3000 data points into the data set.  In contrast, the 𝑇ns
2  statistic in plot (a) became signifi-

cant to the second feed drop around 3300 points into the data set.  The fresh feed, i.e., variable 𝑦11, was 

characterized as a stationary variable.  Any significant and abnormal variation of 𝑦11 relative to the remaining 

stationary variables or the stationary components of the nonstationary variables must manifest itself in the 

residuals of the VAR model and, hence, the 𝑇s
2 statistic.   

 

[Figure 11 about here] 

 

Thermodynamically, a prolonged drop in fresh feed upsets the diffusion conditions within the column, 

which, in turn, impacts the column temperatures first and subsequently the flow rates.  Consequently, the 

effect of the feed drop to the relationship of the nonstationary butane product flow relative to the other non-

stationary variables was felt with some delay by the 𝑇ns
2  statistic, whilst the drop in feed affected the temper-

atures almost instantly which resulted in a significant response by the 𝑇s
2 statistic. 

For comparison, a conventional MSPC approach, based on PCA, was also applied to model the data for 

this distillation unit.  Plots (c) and (d) in Figure 11 show the monitoring performance based on a PCA-based 

monitoring statistics.  As witnessed in the previous two application studies, plots (c) and (d) both show a 

significant number of false alarms prior to the second and more severe and prolonged drop in fresh feed.  This 

is not surprising, given that a standard MSPC approach assumes that the recorded process variables are sta-

tionary. 

We finally examined the impact of violating the assumption that the calculated residual samples were 

drawn from multivariate normal distributions.  Plots (a) and (b) in Figure 12 show the 𝑇ns
2  and 𝑇s

2 monitoring 

statistics, constructed from a third data set, containing 3000 data points, and describing normal process oper-

ation when benchmarked against the control limits computed from Eqs. (8) and (11), respectively.  The 𝑇ns
2  

statistic, constructed by two residual variables of which only one has a normal distribution, did not show an 

unexpectedly large number of false alarms.  In fact, the relative number of violations did not exceed the 

significance of 0.01.  However, a different picture emerged when benchmarking the 𝑇s
2 statistic against its 

control limit in plot (b).  In this case, the relative number of violations well exceeded the significance of 0.01 

and implied that the control limit was calculated to be too small.  Hence, the considerably larger control limit, 

computed with respect to the estimated PDF, was required, which highlights the importance of the improve-

ment detailed in Subsection 3.5.3. 

 

[Figure 12 about here] 
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6.3 Conclusions 

This application study has also shown that the improved common trends framework has been required for 

monitoring the distillation process.  With 4 out of the recorded 12 process variables being nonstationary, the 

application of PCA has shown that the MSPC methodology is not capable to model such behavior, although 

the two drops in fresh feed were noticeable in both statistics.  To make the common trends framework appli-

cable to this process has required incorporating the following improvements, detailed in Subsection 3.5: 

 the presence of stationary and nonstationary variables required the use of the generalized data structure 

in Eq. (15); 

 although critical values for the Johansen procedure are available for 𝑛ns = 4 nonstationary variables, 

the Chigira procedure produced an identical estimate for the number of nonstationary factors; and the 

Chigira procedure is conceptually simpler than the Johansen procedure and closely related to the 

MSPC framework; and 

 a number of residuals sequences were not drawn from normal distributions, which required the use of 

estimated probability density functions in order to determine the control limits. 

The effect of incorrectly assuming that the control limits can be computed from Eqs. (8) and (11) has also 

been demonstrated and has yielded that, particularly for the 𝑇s
2 statistic, it has the potential to produce false 

alarms.  Finally, differencing the 4 nonstationary variables has produced stationary sequences, which confirm 

that this industrial application study could also rely on the assumption 𝑑 = 1.  These results are also summa-

rized in Table 8.  In addition to that, Table 8 also summarizes the percentage of false alarms by the traditional 

PCA-based monitoring approach, which exceeds 40% for the T2 statistic and 90% for the SPE statistic.  Table 

8 also confirms that relying on the assumption that the residuals of the VAR and VARI models were drawn 

from a multivariate normal distribution can produce a false alarm rate of over 5% although the significance 

was selected to be 1% only. 

 

[Table 8 about here] 

 

7 Concluding Summary 

This article has introduced practically important improvements to a recently proposed common trends frame-

work for monitoring industrial production systems that yield process variables that are serially correlated and 

nonstationary.  In industrial practice, this is a typical scenario and result from controller feedback, changes in 

process feeds, unmeasured disturbances etc.  The improvements that have been discussed here (i) include the 

development of a generalized data structure to model variable sets that contain stationary as well as nonsta-

tionary variables, (ii) highlight that the standard Johansen method for identifying cointegration models is not 
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suitable for monitoring applications in a general context and (iii) outline how to handle model residual se-

quences that are not drawn from multivariate normal distributions.  The paper has argued for the need of these 

improvements on the basis of three application studies that include the simulation of a fluid catalytic cracking 

unit and the analysis of two industrial data sets that involve a spinning process and a distillation unit. 

To be able to construct a common trends model, the paper has advocated the use of the Chigira procedure 

instead of the Johansen method.  The Chigira procedure is closely related to the MSPC framework and not 

compromised by the problems of the Johansen method, i.e., the lack of empirical confidence limits for larger 

variable sets and the need of pre-identified auto-regressive models for each nonstationary variable.  To the 

best of our knowledge, such a detailed practical comparison for different methods to obtain cointegration 

models has not been presented in the literature.  The paper also has compared the improved common trends 

framework with a conventional MSPC approach.  This comparison has shown that the standard MSPC ap-

proach is unable to adequately model the nonstationary data, whilst the improved common trends framework 

has not resulted in the production of false alarms.  In addition to that, the improved common trends framework 

has been able to diagnose two simulated fault conditions for the FCCU and the recorded fault conditions for 

the spinning process and the distillation unit.   
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Appendix A: Vector Auto-Regressive Integrated Models 

The stochastic vector 𝐲 is assumed to be integrated of order 𝑑 = 1 and does not have a cointegration relation-

ship.  That is, its difference 𝛻𝐲(𝑘) ≡ 𝐲(𝑘) − 𝐲(𝑘 − 1) is stationary and can be represented in the form of a 

VAR model: 

 

   ∇𝐲(𝑘) = ∑ 𝚯𝑗∇𝐲(𝑘 − 𝑗)𝑝
𝑗=1 + 𝐞(𝑘), (A1) 

 

where 𝑝 is the number of lagged terms that can be estimated using the Bayesian information criteria, or BIC 

(Hannan, 1980), 𝚯𝑗, 𝑗 = 1,⋯ , 𝑝ns, are coefficient matrices, and 𝐞 denotes a random error vector that has a 

multivariate normal distributions with a mean of zero and the covariance matrix 𝐑.  Eq. (A1) can be reformu-

lated in the form of a VARI model for random vector 𝐲 
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   𝐲(𝑘) = ∑ 𝚿𝑗𝐲(𝑘 − 𝑗)
𝑝+1
𝑗=1 + 𝐞(𝑘), (A2) 

 

where the coefficient matrices 𝚿𝑗, 𝑗 = 1,⋯ , 𝑝, 𝑝 + 1 are given by 

 

   𝚿𝑗 = {

𝐈 + 𝚯1

𝚯𝑗 − 𝚯𝑗−1

−𝚯𝑝ns

if 𝑗 = 1
if 𝑗 = 2,⋯ , 𝑝
if 𝑗 = 𝑝 + 1

.  (A3) 

 

Appendix B: Augmented Dickey-Fuller Test 

A recorded serially correlated sequence is said to be stationary if its mean and auto-correlation function are 

time-invariant; otherwise the sequence follows a nonstationary process.  The auto-correlation function is a 

useful tool for analyzing such recorded sequences where a set of data points, recorded within a small time 

window, are statistically dependent upon each another.  Each data point in a recorded set is modeled as a 

linear combination of the previous records to which an element of excitation noise from a random innovation 

process is superimposed.  Generally, a 𝑝-order auto-regressive model is of the following form: 

 

   𝑦(𝑘) = 𝑎1𝑦(𝑘 − 1) + 𝑎2𝑦(𝑘 − 2) + ⋯+ 𝑎𝑝𝑦(𝑘 − 𝑝) + 𝑒(𝑘),  (B1) 

 

where 𝑦(𝑘) denotes to the 𝑘th data point of the recorded process variable 𝑦, 𝑎𝑖 (𝑖 = 1,⋯ , 𝑝) are model pa-

rameters, and 𝑒 represents a stationary serially uncorrelated variable with zero mean and variance 𝜎2.  The 

characteristic equation of Eq. (B1) is 1 − 𝑎1𝑧 − 𝑎2𝑧
2 − ⋯− 𝑎𝑝𝑧𝑝 = 0, and if the absolute value of all its 

roots is less than 1, the sequence {𝑦(𝑘)} is stationary, otherwise, {𝑦(𝑘)} is nonstationary.  Thus, the test for 

nonstationarity reduces to a test for the presence of unit roots, namely, transferring the nonstationary test to 

verify the presence of at least one unit root. 

Detecting the presence of the unit root for each recorded process variable is the starting point of nonsta-

tionary process modeling.  Many approaches for testing the presence of unit roots in serial sequences have 

been proposed (Dickey & Fuller, 1981; Phillips & Perron, 1988; Fan & Gencay, 2010).  The Augmented 

Dickey-Fuller or ADF test (Dickey & Fuller, 1981), has obtained the widest application in practice over the 

past decades due to its simplicity and reliability, and a brief outline of the ADF test procedure is given below. 

The ADF test constructs a parametric correction for higher-order correlation by assuming that the recorded 

serial sequence {𝑦(𝑘)} follows an auto-regressive process with an order of 𝑝 and adding 𝑝 lagged differenced 

terms of the data points 𝑦(𝑘 − 𝑖), (𝑖 = 1,2,⋯ , 𝑝) to the right side of the testing equation as: 
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   Δ𝑦(𝑘) = 𝜌𝑦(𝑘 − 1) + ∑ 𝑎𝑖Δ𝑦(𝑘 − 𝑖)𝑝
𝑖=1 + 𝑒(𝑘), (B2) 

 

after estimating the parameters of the model in Eq. (B2), the null and alternative hypothesis include 𝐻0: 𝜌 =

0; 𝐻1: 𝜌 < 0.  If the null hypothesis 𝐻0, where the critical values of the 𝑡 statistic were tabulated by Dickey 

and Fuller, fails to be rejected, it must be concluded that there is a unit root.  More details about the testing 

procedure can be found in Pfaff (2008). 

 

Appendix C: Identified Time Series Models for Industrial Processes 

C.1 Identified Parameter Matrices of VARI and VAR Models for FCCU Application 

The identified dynamic VARI model for the nonstationary factors of the FCCU has the following parameter 

matrices: 

 

   𝐟(𝑘) = ∑ 𝚿𝑖𝐟(𝑘 − 𝑖)14
𝑖=1 + 𝐞f(𝑘),  (C1) 

 

where: 

 

   𝚿1 = [
1.658 0.001 0.080
1.478 1.491 0.357

−0.439 0.009 1.556
], (C2a) 

   𝚿2 = [
−0.946 0.010 −0.075
−1.823 −0.667 −0.556
0.566 −0.031 −0.661

],  (C2b) 

   𝚿3 = [
0.462 −0.013 −0.001
0.539 0.333 0.219

−0.179 0.021 0.338
],  (C2c) 

  𝚿4 = [
−0.250 0.005 −0.025
−0.312 −0.191 −0.092
0.102 −0.000 −0.207

],  (C2d) 

  𝚿5 = [
0.129 −0.000 0.021
0.143 0.071 −0.035

−0.045 0.011 0.092
],  (C2e) 

  𝚿6 = [
−0.062 0.002 −0.015
−0.115 −0.055 0.033
0.028 0.001 −0.082

],  (C2f) 

  𝚿7 = [
0.027 −0.004 −0.011
0.153 0.033 0.081

−0.036 −0.003 −0.008
],  (C2g) 
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  𝚿8 = [
−0.029 −0.001 0.012
−0.111 −0.016 −0.033
0.016 0.002 −0.013

],  (C2h) 

  𝚿9 = [
0.011 −0.001 0.023
0.072 −0.002 −0.097

−0.011 0.000 0.013
],  (C2i) 

  𝚿10 = [
0.012 −0.003 −0.038

−0.074 0.023 0.196
0.020 −0.006 −0.050

],  (C2j) 

  𝚿11 = [
0.014 0.006 0.005

−0.004 −0.028 −0.055
0.002 0.007 0.017

],  (C2k) 

  𝚿12 = [
−0.056 −0.004 0.026
0.112 0.007 −0.075

−0.026 −0.009 −0.022
],  (C2l) 

  𝚿13 = [
0.047 −0.003 −0.024

−0.095 0.011 0.130
−0.001 0.000 0.005

],  (C2m) 

  𝚿14 = [
−0.017 0.005 0.021
0.035 −0.011 −0.071
0.003 −0.002 0.021

].  (C2n) 

 

The identified dynamic VAR model for the stationary factors of the FCCU has the following parameter ma-

trices: 

 

   𝐠(𝑘) = ∑ 𝚽𝑖𝐠(𝑘 − 𝑖)6
𝑖=1 + 𝐞g(𝑘),  (C3) 

 

where: 

 

   𝚽1 =

[
 
 
 
 

1.314 0.160 −0.030 0.130 0.029
0.153 1.143 0.062 −0.167 −0.106

−0.002 −0.030 1.455 −0.026 −0.013
−0.225 0.865 −0.121 2.115 0.044
0.953 −3.910 0.397 −2.861 1.476 ]

 
 
 
 

,  (C4a) 

  𝚽2 =

[
 
 
 
 
−0.471 −0.218 0.033 −0.211 −0.021
−0.032 −0.688 −0.017 −0.068 0.097
0.066 −0.144 −0.651 −0.106 0.023
0.027 −0.458 0.062 −1.078 0.027

−0.535 3.255 −0.231 2.532 −1.047]
 
 
 
 

,  (C4b) 
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  𝚽3 =

[
 
 
 
 

0.196 0.154 −0.016 0.175 −0.003
−0.014 0.472 −0.022 0.119 −0.045
−0.086 0.207 0.304 0.174 −0.031
0.072 −0.130 0.024 0.280 −0.009

−0.003 −0.323 −0.109 −0.437 0.548 ]
 
 
 
 

,  (C4c) 

  𝚽4 =

[
 
 
 
 
−0.075 −0.075 0.012 −0.095 0.001
−0.028 −0.219 0.014 −0.062 0.036
0.038 −0.057 −0.158 −0.059 0.025
0.019 0.023 −0.011 −0.149 −0.028

−0.129 0.122 0.132 0.120 −0.146]
 
 
 
 

,  (C4d) 

  𝚽5 =

[
 
 
 
 

0.051 −0.029 −0.003 −0.010 −0.002
−0.071 0.374 −0.031 0.268 −0.005
−0.020 0.025 0.082 0.018 −0.007
0.101 −0.359 0.034 −0.235 −0.003

−0.238 0.898 −0.162 0.784 0.097 ]
 
 
 
 

,  (C4e) 

  𝚽6 =

[
 
 
 
 
−0.016 0.007 0.004 0.010 −0.003
−0.007 −0.082 −0.005 −0.087 0.015
0.005 −0.002 −0.032 −0.001 0.003
0.006 0.058 0.012 0.062 −0.021

−0.049 −0.042 −0.026 −0.130 0.042 ]
 
 
 
 

.  (C4f) 

 

C.2 Identified Parameter Matrices of VARI and VAR Models for Polymerization Process 

The identified dynamic VARI model for the nonstationary factors of the polymerization process has the fol-

lowing parameter matrices: 

 

   𝐟(𝑘) = ∑ 𝚿𝑖𝐟(𝑘 − 𝑖)13
𝑖=1 + 𝐞f(𝑘),  (C5) 

 

where: 

 

  𝚿1 = [
0.509 −0.064

−0.086 0.212
],  (C6a) 

  𝚿2 = [
0.030 0.011
0.021 0.174

],  (C6b) 

  𝚿3 = [
0.243 −0.024
0.003 0.134

],  (C6c) 

  𝚿4 = [
−0.498 0.078
0.099 0.101

],  (C6d) 

  𝚿5 = [
0.220 −0.018

−0.004 0.100
],  (C6e) 

  𝚿6 = [
0.175 0.006

−0.023 0.062
],  (C6f) 
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  𝚿7 = [
0.012 0.019
0.013 0.068

],  (C6g) 

  𝚿8 = [
0.028 −0.002

−0.002 0.038
],  (C6h) 

  𝚿9 = [
0.082 −0.004

−0.013 0.029
],  (C6i) 

  𝚿10 = [
0.078 −0.001
0.007 0.039

],  (C6j) 

  𝚿11 = [
−0.003 0.004
−0.000 0.014

],  (C6k) 

  𝚿12 = [
0.004 −0.004

−0.002 −0.016
],  (C6l) 

  𝚿13 = [
0.104 0.003

−0.017 0.019
].  (C6m) 

 

The identified dynamic VAR model for the stationary factors of the polymerization process has the following 

parameter matrices: 

 

   𝐠(𝑘) = ∑ 𝚽𝑖𝐠(𝑘 − 𝑖)9
𝑖=1 + 𝐞g(𝑘),  (C7) 

 

where: 

 

   𝚽1 =

[
 
 
 
 

0.074 0.011 −0.027 −0.001 −0.006
−0.014 0.104 −0.111 0.136 −0.069
0.047 −0.031 0.173 −0.233 0.130

−0.020 −0.176 0.118 0.498 −0.202
0.012 0.067 −0.041 −0.230 0.152 ]

 
 
 
 

,  (C8a) 

  𝚽2 =

[
 
 
 
 
0.095 0.018 0.020 −0.029 −0.003
0.018 0.051 −0.005 0.088 −0.057
0.038 −0.005 0.095 −0.050 0.040
0.021 −0.057 0.075 −0.042 0.054
0.007 0.018 −0.040 0.004 0.048 ]

 
 
 
 

,  (C8b) 

  𝚽3 =

[
 
 
 
 

0.079 −0.024 0.056 −0.009 −0.007
0.019 0.047 0.007 −0.023 0.006
0.026 −0.033 0.105 0.009 0.001

−0.022 0.019 −0.070 0.182 −0.066
0.013 −0.057 0.031 −0.032 0.057 ]

 
 
 
 

,  (C8c) 

  𝚽4 =

[
 
 
 
 

0.078 −0.001 0.025 0.010 −0.013
0.007 0.072 −0.011 0.008 −0.003
0.011 −0.034 0.078 0.057 −0.019
0.027 0.012 0.037 −0.353 0.190

−0.003 −0.038 −0.020 0.193 −0.067]
 
 
 
 

,  (C8d) 



Monitoring Nonstationary and Dynamic Trends    

- 30 - 

  𝚽5 =

[
 
 
 
 

0.043 0.001 0.030 0.001 −0.021
0.002 0.055 0.006 −0.042 0.015
0.016 −0.035 0.090 0.025 −0.015

−0.030 0.013 −0.040 0.190 −0.062
−0.028 0.007 0.005 −0.057 0.082 ]

 
 
 
 

,  (C8e) 

  𝚽6 =

[
 
 
 
 

0.052 0.002 −0.009 0.000 0.004
0.013 0.046 −0.032 −0.014 −0.018
0.014 −0.023 0.068 0.003 −0.001

−0.010 0.026 −0.029 0.075 −0.017
−0.008 −0.043 0.017 −0.028 0.060 ]

 
 
 
 

,  (C8f) 

  𝚽7 =

[
 
 
 
 

0.066 0.005 0.005 −0.007 −0.008
0.008 0.069 −0.048 0.006 −0.022
0.008 −0.017 0.057 0.045 −0.018

−0.009 0.022 −0.002 −0.033 0.019
−0.018 −0.036 0.005 0.042 −0.021]

 
 
 
 

,  (C8g) 

  𝚽8 =

[
 
 
 
 

0.051 0.002 0.040 −0.028 −0.002
0.007 0.066 −0.029 −0.046 0.008
0.021 −0.017 0.046 0.002 −0.000

−0.007 0.007 −0.011 0.034 0.003
−0.023 0.013 −0.006 0.028 0.006 ]

 
 
 
 

,  (C8h) 

  𝚽9 =

[
 
 
 
 

0.048 0.007 0.030 0.008 0.009
0.029 0.065 −0.009 −0.060 0.002
0.016 −0.020 0.038 0.035 −0.027

−0.016 0.027 −0.050 0.036 −0.014
0.016 −0.020 0.006 −0.044 0.030 ]

 
 
 
 

.  (C8i) 

 

C.3 Identified Parameter Matrices of VARI and VAR Models for Distillation Unit 

The identified dynamic VARI model for the nonstationary factors of the distillation unit has the following 

parameter matrices: 

 

   𝐟(𝑘) = ∑ 𝚿𝑖𝐟(𝑘 − 𝑖)5
𝑖=1 + 𝐞f(𝑘),  (C9) 

 

where: 

 

   𝚿1 = [
0.491 0.066
0.175 0.597

],  (C10a) 

  𝚿2 = [
0.252 −0.031

−0.081 0.162
],  (C10b) 

  𝚿3 = [
0.124 −0.028

−0.086 0.118
],  (C10c) 

  𝚿4 = [
0.086 −0.005
0.005 0.060

],  (C10d) 



Monitoring Nonstationary and Dynamic Trends    

- 31 - 

  𝚿5 = [
0.047 −0.001

−0.013 0.062
].  (C10e) 

 

The identified dynamic VAR model for the stationary factors of the distillation unit has the following param-

eter matrices: 

 

   𝐠(𝑘) = ∑ 𝚽𝑖𝐠(𝑘 − 𝑖)7
𝑖=1 + 𝐞g(𝑘),  (C11) 

 

where: 

 

   𝚽1 =

[
 
 
 
 
 
 
 
 
 

0.612 0.231 0.001 ⋯ −0.006 −0.003
0.035 0.609 −0.135 ⋯ 0.034 −0.003

−0.282 −0.125 −0.228 ⋯ 0.060 −0.010
0.007 −0.050 0.134 ⋯ 0.004 −0.021

−0.006 0.139 0.232 ⋯ −0.022 0.037
−0.203 0.272 0.119 ⋯ −0.004 −0.003
−0.070 −0.339 −0.130 ⋯ 0.016 0.028
0.224 0.471 0.002 ⋯ 0.002 −0.025

−0.348 −0.664 −0.085 ⋯ 0.204 −0.018
0.895 0.619 −0.260 ⋯ −0.022 0.212 ]

 
 
 
 
 
 
 
 
 

,  (C12a) 

  𝚽2 =

[
 
 
 
 
 
 
 
 
 

0.225 −0.102 0.010 ⋯ 0.012 −0.007
−0.067 −0.056 0.024 ⋯ 0.017 −0.006
0.221 −0.559 0.247 ⋯ 0.020 −0.000

−0.432 0.034 0.058 ⋯ 0.088 −0.035
0.447 0.084 −0.069 ⋯ −0.113 0.041

−0.015 −0.186 0.013 ⋯ 0.017 −0.001
0.118 0.028 −0.009 ⋯ −0.030 0.022

−0.218 −0.090 0.051 ⋯ 0.046 −0.037
0.242 0.299 −0.137 ⋯ 0.161 0.023

−0.010 −0.208 −0.025 ⋯ 0.022 0.170 ]
 
 
 
 
 
 
 
 
 

,  (C12b) 

  𝚽3 =

[
 
 
 
 
 
 
 
 
 

0.106 −0.076 0.011 ⋯ 0.014 −0.003
−0.116 0.050 0.100 ⋯ 0.007 0.008
−0.093 −0.099 0.399 ⋯ 0.073 0.000
0.157 −0.039 0.039 ⋯ −0.035 −0.025

−0.133 0.044 −0.169 ⋯ 0.021 0.035
0.045 −0.088 0.024 ⋯ 0.003 0.005

−0.084 0.029 0.087 ⋯ −0.009 0.012
−0.013 −0.127 −0.006 ⋯ 0.005 −0.005
0.002 0.231 −0.039 ⋯ 0.122 0.004

−0.028 −0.034 −0.036 ⋯ −0.002 0.134 ]
 
 
 
 
 
 
 
 
 

,  (C12c) 
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  𝚽4 =

[
 
 
 
 
 
 
 
 
 

0.014 0.002 0.005 ⋯ 0.016 −0.000
−0.025 0.090 0.011 ⋯ 0.011 −0.006
−0.057 0.157 −0.024 ⋯ 0.076 −0.008
−0.011 0.071 0.034 ⋯ −0.010 −0.023
0.025 −0.141 −0.011 ⋯ −0.003 0.029
0.032 0.040 −0.003 ⋯ 0.006 0.011

−0.127 −0.037 0.032 ⋯ 0.005 0.009
0.029 0.002 0.016 ⋯ −0.005 −0.015
0.227 0.043 −0.065 ⋯ 0.064 0.006

−0.140 −0.012 0.041 ⋯ −0.003 0.093 ]
 
 
 
 
 
 
 
 
 

,  (C12d) 

  𝚽5 =

[
 
 
 
 
 
 
 
 
 

0.061 −0.023 −0.003 ⋯ 0.008 0.003
−0.003 0.123 0.034 ⋯ 0.011 −0.005
0.093 0.214 0.059 ⋯ 0.086 −0.009

−0.056 0.079 0.050 ⋯ −0.032 −0.004
0.051 −0.150 −0.077 ⋯ 0.009 0.011
0.060 −0.001 0.008 ⋯ 0.005 0.004

−0.013 0.114 0.004 ⋯ 0.012 −0.013
−0.085 −0.104 0.043 ⋯ −0.012 −0.001
−0.133 0.043 −0.014 ⋯ 0.030 0.015
0.031 −0.098 −0.046 ⋯ −0.039 0.105 ]

 
 
 
 
 
 
 
 
 

,  (C12e) 

  𝚽6 =

[
 
 
 
 
 
 
 
 
 
−0.005 −0.022 −0.002 ⋯ 0.010 0.000
−0.009 0.058 −0.002 ⋯ 0.014 −0.008
−0.019 0.154 −0.015 ⋯ 0.082 −0.002
0.114 0.018 0.000 ⋯ −0.017 0.001

−0.108 −0.046 −0.001 ⋯ −0.004 0.000
0.037 −0.043 −0.015 ⋯ 0.005 −0.003
0.058 0.082 −0.006 ⋯ 0.004 −0.010

−0.025 −0.065 0.005 ⋯ −0.007 0.012
0.033 0.035 0.004 ⋯ −0.002 −0.026

−0.230 −0.104 0.056 ⋯ 0.004 0.085 ]
 
 
 
 
 
 
 
 
 

,  (C12f) 

  𝚽7 =

[
 
 
 
 
 
 
 
 
 
−0.023 −0.005 0.019 ⋯ 0.005 0.006
0.172 0.114 −0.035 ⋯ −0.007 −0.003
0.060 0.165 0.079 ⋯ 0.037 0.025
0.245 −0.073 −0.031 ⋯ −0.023 0.002

−0.279 0.067 −0.005 ⋯ 0.014 −0.009
0.039 0.020 −0.014 ⋯ 0.002 0.001
0.128 0.124 −0.029 ⋯ 0.001 −0.008
0.083 −0.099 −0.037 ⋯ −0.008 0.004

−0.051 −0.009 −0.026 ⋯ −0.011 0.003
−0.527 −0.181 0.239 ⋯ −0.016 0.052 ]

 
 
 
 
 
 
 
 
 

.  (C12g) 
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Figure 1: Flowchart of the proposed approach for nonstationary and dynamic process monitoring; the new components 

added to the common trend framework are marked by the shaded boxes. 
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Figure 2: Section of reference data for FCCU application. 

 

 

Figure 3: Estimating the number of stationary factors for FCCU application. 

 

 

 

y
1

y
2

y
3

y
4

y
5

y
6

y
7

y
8

y
9

y
10

y
11

y
12

y
13

y
14

y
15

y
16

y
17

y
18

y
19

y
20

y
21

y
22

y
23

y
24

0 1000 2000

Data Point

y
25

0 1000 2000

Data Point

y
26

0 1000 2000

Data Point

y
27

0 1000 2000

Data Point

y
28

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Order

E
ig

en
v

al
u

e

Selected number



Monitoring Nonstationary and Dynamic Trends    

- 41 - 
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(c) (d) 

Figure 4: Monitoring charts for fault condition of FCCU application: (a) 𝑻𝐧𝐬
𝟐  statistic based on the compensated VARI model 

residuals of nonstationary factors, (b) 𝑻𝐬
𝟐 statistic based on the compensated VAR model residuals of stationary factors, (c) 

Hotelling’s 𝑻𝟐 statistic based on the PCA model, and (d) SPE statistic based on the PCA model. 
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(a) (b) 

  

(c) (d) 

Figure 5: Monitoring charts for the normal operating data of FCCU application: (a) 𝑻𝐧𝐬
𝟐  statistic based on the compensated 

VARI model residuals of nonstationary factors, (b) 𝑻𝐬
𝟐 statistic based on the compensated VAR model residuals of stationary 

factors, (c) Hotelling’s 𝑻𝟐 statistic based on the PCA model, and (d) SPE statistic based on the PCA model. 

 

 

Figure 6: Section of reference data for application to polymerization process. 
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Figure 7: Section of recorded data for application to polymerization process describing a fault condition. 
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Figure 8: Monitoring charts for fault condition of polymerization process: (a) 𝑻𝐧𝐬
𝟐  statistic based on the compensated VARI 

model residuals of nonstationary factors, (b) 𝑻𝐬
𝟐 statistic based on the compensated VAR model residuals of stationary fac-

tors, (c) Hotelling’s 𝑻𝟐 statistic based on the PCA model, and (d) SPE statistic based on the PCA. 
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(a) (b) 

Figure 9: Monitoring charts for fault condition of polymerization process: (a) 𝑻𝐧𝐬
𝟐  statistic based on VARI model residuals 

of nonstationary factors without application of compensation scheme, and (b) 𝑻𝐬
𝟐 statistic based on VAR model residuals of 

stationary factors without application of compensation scheme. 

 

 

Figure 10: Section of reference data for application to distillation unit. 
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(a) (b) 

  

(c) (d) 

Figure 11: Monitoring charts for fault condition of distillation process (a) 𝑻𝐧𝐬
𝟐  statistic based on the compensated VARI 

model residuals of nonstationary factors, (b) 𝑻𝐬
𝟐 statistic based on the compensated VAR model residuals of stationary fac-

tors, (c) Hotelling’s 𝑻𝟐 statistic based on the PCA model, and (d) SPE statistic based on the PCA model. 
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(a) (b) 

Figure 12: Monitoring charts for the normal operating data of distillation unit (a) 𝑻𝐧𝐬
𝟐  statistic based on the VARI model 

residuals of nonstationary factors, and (b) 𝑻𝐬
𝟐 statistic based on the VAR model residuals of stationary factors.  The control 

limits were computed from a scaled 𝑭-distribution. 
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Tables 

Table 1: Recorded variable set of FCCU simulator 

variable number description 

1 wash oil feed flowrate 𝑦1 

2 total fresh feed flowrate 𝑦2 

3 slurry flowrate 𝑦3 

4 furnace fuel flowrate 𝑦4 

5 preheat train outlet temperature 𝑦5 

6 fresh feed temperature to reactor 𝑦6 

7 furnace firebox temperature 𝑦7 

8 riser temperature 𝑦8 

9 wet gas compressor suction pressure 𝑦9 

10 wet gas compressor suction flowrate 𝑦10 

11 wet gas flowrate to vapor recovery unit 𝑦11 

12 regenerator bed temperature 𝑦12 

13 stack gas (cyclone exit) temperature 𝑦13 

14 stack gas O2 concentration 𝑦14 

15 stack gas CO concentration 𝑦15 

16 standpipe catalyst level 𝑦16 

17 combustion air blower suction flowrate 𝑦17 

18 combustion air blower throughput 𝑦18 

19 combustion air flowrate 𝑦19 

20 combustion air blower suction pressure 𝑦20 

21 combustion air blower discharge pressure 𝑦21 

22 lift air blower suction flowrate 𝑦22 

23 lift air blower speed 𝑦23 

24 lift air blower throughput 𝑦24 

25 lift air flowrate 𝑦25 

26 lift air blower discharge pressure 𝑦26 

27 wet gas compressor suction valve 𝑦27 

28 regenerator stack gas valve 𝑦28 
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Table 2: Recorded variable set of spinning process 

variable number description (controller output) 

1 gas flow 𝑦1 

2 positional heater gas temperature 𝑦2 

3 plenum gas temperature 𝑦3 

4 head metal temperature 𝑦4 

5 cell wall temperature 𝑦5 

6 upper mid temperature 𝑦6 

7 lower mid temperature 𝑦7 

 

Table 3: Recorded variable set of distillation unit 

variable number description 

1 tray 14 temperature 𝑦1 

2 column overhead pressure 𝑦2 

3 tray 2 temperature 𝑦3 

4 reflux vessel level 𝑦4 

5 butane product flow 𝑦5 

6 reflux flow 𝑦6 

7 fresh feed temperature 𝑦7 

8 butane product flow 𝑦8 

9 reboiler vessel level 𝑦9 

10 reboiler steam flow 𝑦10 

11 fresh feed flow 𝑦11 

12 reboiler outlet temperature 𝑦12 

 

Table 4: Results of ADF test applied to recorded variable set of FCCU simulator 

variable AR order 𝑡  statis-

tic 

critical 

value 

test result 

wash oil feed flowrate 𝑦1 3 -1.2346 -3.4335 nonstation-

ary 

wash oil feed flowrate (differ.) Δ𝑦1 2 -22.7284 -3.4335 stationary 
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total fresh feed flowrate 𝑦2 4 -1.7450 -3.4335 nonstation-

ary 

total fresh feed flowrate (differ.) Δ𝑦2 3 -6.1039 -3.4335 stationary 

slurry flowrate 𝑦3 3 -2.0412 -3.4335 nonstation-

ary 

slurry flowrate (differ.) Δ𝑦3 2 -22.2858 -3.4335 stationary 

furnace fuel flowrate 𝑦4 3 -0.9473 -3.4335 nonstation-

ary 

furnace fuel flowrate (differ.) Δ𝑦4 2 -21.8103 -3.4335 stationary 

preheat train outlet temperature 𝑦5 4 0.1269 -3.4335 nonstation-

ary 

preheat train outlet temperature (differ.) Δ𝑦5 3 -21.6231 -3.4335 stationary 

fresh feed temperature to reactor 𝑦6 4 0.1145 -3.4335 nonstation-

ary 

fresh feed temperature to reactor (differ.) Δ𝑦6 3 -19.9465 -3.4335 stationary 

furnace firebox temperature 𝑦7 3 -0.6527 -3.4335 nonstation-

ary 

furnace firebox temperature (differ.) Δ𝑦7 2 -21.5982 -3.4335 stationary 

riser temperature 𝑦8 3 -6.0901 -3.4335 stationary 

wet gas compressor suction pressure 𝑦9 3 -1.0770 -3.4335 nonstation-

ary 

wet gas compressor suction pressure (differ.) Δ𝑦9 2 -22.0375 -3.4335 stationary 

wet gas compressor suction flowrate 𝑦10 3 -1.0792 -3.4335 nonstation-

ary 

wet gas compressor suction flowrate (differ.) Δ𝑦10 2 -22.0268 -3.4335 stationary 

wet gas flowrate to vapor recovery unit 𝑦11 3 -1.0773 -3.4335 nonstation-

ary 

wet gas flowrate to vapor recovery unit (differ.) Δ𝑦11 2 -22.0286 -3.4335 stationary 

regenerator bed temperature 𝑦12 4 -1.7319 -3.4335 nonstation-

ary 

regenerator bed temperature (differ.) Δ𝑦12 3 -6.3228 -3.4335 stationary 
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stack gas (cyclone exit) temperature 𝑦13 5 -1.5365 -3.4335 nonstation-

ary 

stack gas (cyclone exit) temperature (differ.) Δ𝑦13 4 -7.1144 -3.4335 stationary 

stack gas O2 concentration 𝑦14 5 -1.3042 -3.4335 nonstation-

ary 

stack gas O2 concentration (differ.) Δ𝑦14 4 -14.1361 -3.4335 stationary 

stack gas CO concentration 𝑦15 5 -3.2802 -3.4335 nonstation-

ary 

stack gas CO concentration (differ.) Δ𝑦15 4 -9.1446 -3.4335 stationary 

standpipe catalyst level 𝑦16 3 -1.1643 -3.4335 nonstation-

ary 

standpipe catalyst level (differ.) Δ𝑦16 2 -25.2470 -3.4335 stationary 

combustion air blower suction flowrate 𝑦17 3 -1.3136 -3.4335 nonstation-

ary 

combustion air blower suction flowrate (differ.) Δ𝑦17 2 -21.9990 -3.4335 stationary 

combustion air blower throughput 𝑦18 3 -1.3136 -3.4335 nonstation-

ary 

combustion air blower throughput (differ.) Δ𝑦18 2 -21.9989 -3.4335 stationary 

combustion air flowrate 𝑦19 3 -1.3135 -3.4335 nonstation-

ary 

combustion air flowrate (differ.) Δ𝑦19 2 -22.0024 -3.4335 stationary 

combustion air blower suction pressure 𝑦20 3 -1.3137 -3.4335 nonstation-

ary 

combustion air blower suction pressure (differ.) Δ𝑦20 2 -22.0010 -3.4335 stationary 

combustion air blower discharge pressure 𝑦21 3 -1.3148 -3.4335 nonstation-

ary 

combustion air blower discharge pressure (differ.) Δ𝑦21 2 -22.0084 -3.4335 stationary 

lift air blower suction flowrate 𝑦22 4 -1.2256 -3.4335 nonstation-

ary 

lift air blower suction flowrate (differ.) Δ𝑦22 3 -20.3767 -3.4335 stationary 

lift air blower speed 𝑦23 4 -1.2227 -3.4335 nonstation-

ary 
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lift air blower speed (differ.) Δ𝑦23 3 -20.4341 -3.4335 stationary 

lift air blower throughput 𝑦24 4 -1.2256 -3.4335 nonstation-

ary 

lift air blower throughput (differ.) Δ𝑦24 3 -20.3767 -3.4335 stationary 

lift air flowrate 𝑦25 4 -1.2256 -3.4335 nonstation-

ary 

lift air flowrate (differ.) Δ𝑦25 3 -20.3784 -3.4335 stationary 

lift air blower discharge pressure 𝑦26 4 -1.2215 -3.4335 nonstation-

ary 

lift air blower discharge pressure (differ.) Δ𝑦26 3 -20.4633 -3.4335 stationary 

wet gas compressor suction valve 𝑦27 3 -1.0676 -3.4335 nonstation-

ary 

wet gas compressor suction valve (differ.) Δ𝑦27 2 -22.0840 -3.4335 stationary 

regenerator stack gas valve 𝑦28 3 -1.3066 -3.4335 nonstation-

ary 

regenerator stack gas valve (differ.) Δ𝑦28 3 -20.4084 -3.4335 stationary 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Results of ADF test applied to recorded variables set of polymerization process 

variable AR order 𝑡 statistic critical value test result 

gas flow 𝑦1 12 -2.6918 -3.4334 nonstationary 

gas flow (differ.) Δ𝑦1 11 -18.6111 -3.4334 stationary 

positional heater gas temperature 𝑦2 13 -3.1408 -3.4334 nonstationary 
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positional heater gas temperature (differ.) Δ𝑦2 12 -23.0953 -3.4334 stationary 

plenum gas temperature 𝑦3 10 -5.9883 -3.4334 stationary 

head metal temperature 𝑦4 6 -2.7970 -3.4334 nonstationary 

head metal temperature (differ.) Δ𝑦4 5 -27.8522 -3.4334 stationary 

cell wall temperature 𝑦5 10 -7.6864 -3.4334 stationary 

upper mid temperature 𝑦6 2 -21.9061 -3.4334 stationary 

lower mid temperature 𝑦7 2 -22.5715 -3.4334 stationary 

 

Table 6: Results of ADF test applied to recorded variables set of distillation unit 

variable AR order 𝑡 statistic critical value test result 

tray 14 temperature 𝑦1 5 -4.4290 -3.4323 stationary 

column overhead pressure 𝑦2 2 -37.5481 -3.4323 stationary 

tray 2 temperature 𝑦3 4 -1.0703 -3.4323 nonstationary 

tray 2 temperature (differ.) Δ𝑦3 3 -36.7893 -3.4323 stationary 

reflux vessel level 𝑦4 5 -19.7659 -3.4323 stationary 

butane product flow 𝑦5 4 -7.0230 -3.4323 stationary 

reflux flow 𝑦6 5 -0.9983 -3.4323 nonstationary 

reflux flow (differ.) Δ𝑦6 4 -35.8335 -3.4323 stationary 

fresh feed temperature 𝑦7 5 -5.4104 -3.4323 stationary 

butane product flow 𝑦8 1 -1.4268 -3.4323 nonstationary 

butane product flow (differ.) Δ𝑦8 0 -58.4056 -3.4323 stationary 

reboiler vessel level 𝑦9 9 -18.3997 -3.4323 stationary 

reboiler steam flow 𝑦10 3 -5.0873 -3.4323 stationary 

fresh feed flow 𝑦11 5 -5.1321 -3.4323 stationary 

reboiler outlet temperature 𝑦12 17 -1.9700 -3.4323 nonstationary 

reboiler outlet temperature (differ.) Δ𝑦12 16 -20.4594 -3.4323 stationary 

 

Table 7: Results of AD test applied to residuals of VARI and VAR models of distillation unit 

variable statistic critical value test result 

𝑒f1  1.2612 1.0338 non-normal 

𝑒f2  0.2940 1.0338 normal 
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𝑒g1  0.3720 1.0338 normal 

𝑒g2  0.6278 1.0338 normal 

𝑒g3  1.6915 1.0338 non-normal 

𝑒g4  0.7235 1.0338 normal 

𝑒g5  0.5559 1.0338 normal 

𝑒g6  0.2299 1.0338 normal 

𝑒g7  0.9293 1.0338 normal 

𝑒g8  1.1159 1.0338 non-normal 

𝑒g9  1.2709 1.0338 non-normal 

𝑒g10  1.4040 1.0338 non-normal 

 

Table 8: Summary of monitoring results for industrial application studies 

case approach statistic 
occurrence / detection 

time index 

fault data normal data introduced improvements 

FAR MAR FAR data structure Chigira test KDE 

FCCU 

proposed 
𝑇ns

2  501 / 501 0% 0% 0.30% 
√ √ × 

𝑇s
2 501 / 501 0% 0% 0.12% 

PCA 
𝑇2 501 / 501 6.00% 0% 57.56% 

N/A 
SPE 501 / 501 29.60% 0% 76.50% 

polymerization 

proposed 
𝑇ns

2  601 / 628 0.20% 17.77% 
N/A √ √ × 

𝑇s
2 601 / 616 0.20% 28.52% 

PCA 
𝑇2 601 / 618 14.17% 38.20% 

N/A N/A 
SPE 601 / 620 0.67% 98.64% 

uncompensated 
𝑇ns

2  
N/A N/A 

98.20% 
N/A √ √ × 

𝑇s
2 95.57% 

distillation 

proposed 
𝑇ns

2  3001 / 3424 0.53% 21.75% 
N/A √ √ √ 

𝑇s
2 3001 / 3001 0.68% 0% 

PCA 
𝑇2 3001 / 3001 44.00% 2.20% 

N/A N/A 
SPE 3001 / 3001 93.30% 5.50% 

without KDE 
𝑇ns

2  
N/A 

0.93% 
N/A N/A √ √ × 

𝑇s
2 5.21% 

 


