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Abstract: Searching for places rather than traditional keyword-based search represents significant1

challenges. The most prevalent method of addressing place-related queries is based on place2

names but has limited potential due to the vagueness of natural language and its tendency to3

lead to ambiguous interpretations. In previous work we proposed a system-oriented logic-based4

formalization of place that goes beyond place names by introducing composition patterns of place5

which enable function-based search of space. In this study, we introduce flexibility into these patterns6

in terms of what is included when describing the spatial composition of a place using two distinct7

approaches, based on modal and probabilistic logic. Additionally, we propose a novel automated8

process of extracting these patterns relying on both theoretical and empirical knowledge, using9

statistical and spatial analysis and statistical relational learning. The proposed methodology is10

exemplified through the use case of locating all areas within London that support shopping-related11

functionality. Results show that the newly introduced patterns are capable of identifying more12

relevant areas, additionally offering a more fine-grained representation of the level of support of the13

required functionality.14

Keywords: Functions, Place, Patterns, Function-based search, Place-based GIS, Statistical Relational15

Learning, Modal Logic, Probabilistic Logic, Bayesian Network16

1. Introduction17

People live and act on space but deal and interact with place; Curry [1] argues that place is a human18

invention to describe space. Within the domain of Geographical Information Science (henceforth19

GIScience), place is the result of combining space, as defined in mathematics and physics, with human20

experience [2]. Two of the most fundamental queries that GIScience is tasked to address with regard21

to spatial information are the localization and identification or categorization of places (e.g “where22

is that” and “what is there”). The philosophical difficulties, however, of grasping the complicated23

nature of human experience, as well as the vague spatial projection of elusive entities, raises various24

challenges in the attempt to represent and process place within digital systems. An emerging question25

is whether elaborate and adequately quantifiable representations of place exist that can benefit from26

the capabilities of GIS and recent advancements, such as machine learning, in order to allow effective27

place search in the sense of localization and identification of places on space.28
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There have been several efforts to formalize the notion of place to, among others, enable a29

human-friendly way of searching space, a process that will henceforth be termed place search. A30

prominent approach is to use gazetteers [3], which treat place as typed place names associated spatial31

footprints, sometimes augmented with further semantics through the use of ontologies. However,32

gazetteers predominantly focus on thematic and spatial information and are unable to capture how33

people interact with places. Other approaches rely on narratives to extract place-related information [4]34

about place localization in the form of qualitative spatial relations associated with known locations;35

like gazetteers, their focus is solely on locating places of interest. Purely data-driven approaches [5]36

rely exclusively on statistical patterns, which may make search results less interpretable by humans.37

Hence, current place search approaches are not well-equipped to accurately and convincingly answer38

queries such as “locate shopping areas, even if they are not explicitly denoted as shopping malls”.39

As a step towards addressing these limitations, in previous work [6,7] we proposed the model of40

functional space, representing place as a system that satisfies one or more purposes by offering41

particular functions; such functions are enabled or disabled by the spatial organization of the42

constituent elements of a place. Places, then, are formalized as design patterns (henceforth referred to43

simply as patterns), which define how the composition of a place supports a particular set of functions.44

These patterns are extracted from text analysis and enable function-based search of space, that is,45

locating places that support particular functions. However, the patterns require that support (or46

non-support) of a function depends on fully satisfying a set of rules, without offering any choice in47

between. Also, the extraction process highly depends on narratives which may reflect ideal or generic48

definitions of a place. Because of these characteristics, place search using such patterns may be less49

effective when dealing with inconsistent, incomplete or vague data or when searching for places that50

do not strictly conform to narratives.51

Considering the aforementioned limitations, this work is dedicated to address the question of52

whether the existing formalizations of place can be adjusted to provide an adequately quantifiable53

representation that allows: (a) an elaborate conceptualization of place that goes beyond geolocated54

place names, (b) integration within GIS and (c) (semi-)automated extraction process of patterns of55

place that deal with the vague way that people describe places. In this article, which is a revised and56

extended version of [8], we increase the effectiveness, flexibility and applicability of function-based57

search of space by proposing two enhanced versions of the original patterns that lift both restrictions of58

exclusively relying on narratives and of only allowing a function to be “supported” or “not supported”.59

Specifically, the contributions of this article are the following:60

• Definition and formalization of empirical patterns of place that allow elements within to be61

necessarily or possibly included, using the relevant notions in modal logic in combination to62

empirical data63

• Enhanced pattern extraction process that utilizes empirical knowledge to revise and complement64

the knowledge derived from narratives65

• Definition and formalization of probabilistic patterns of place that assign probabilistic weights to66

the constituents of a function that is associated with a place67

• Automated calculation of weights in probabilistic patterns by relying on Statistical Relational68

Learning (SRL) [9,10], sometimes called Relational Machine Learning (RML) in the literature69

• Identification and delineation of places, along with a confidence rating denoting how close they70

are to the pattern used in the search71

We evaluate the potential benefits of these contributions to place search by investigating how72

each of the three different patterns can enable a place search system to locate all places in London, UK,73

that support functionality similarly to a shopping mall. In particular, in this work we will attempt to74

locate and grade all the regions within the city of London that operate similar to a shopping mall. In75

order to avoid confusion and/or biased results, we adapt a generic and widely acceptable definition76

of shopping mall (based on the western world standards): “[...] a large retail complex containing77
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a variety of stores and often restaurants and other business establishments housed in a series of78

connected or adjacent buildings or in a single large building”1. The experiment shows that the newly79

proposed patterns allow for increased accuracy in the delineation of place search results as well as a80

clear indication of the level of function support.81

The remainder of this article is organized as follows. Section 2 offers a concise summary of82

research efforts related to modeling and searching for places. Section 3 introduces empirical and83

probabilistic patterns of place and proposes methodologies for extracting them. Then, Section 484

presents results of an experiment applying the proposed methodologies for the use case of identifying85

and locating the shopping areas in London, UK. These results, along with advantages, limitations and86

potential applications of the proposed approach are discussed in Section 5, followed by concluding87

remarks and directions for future research in Section 6.88

2. Related Work89

The most prevalent method of place search relies on digital gazetteers [3], which are90

spatially-referenced catalogs of place names. They provide a linkage between the human and physical91

world, by encoding relations between place names, space footprints, spatial categories, temporal92

information and so on. Given these characteristics, searching places based on gazetteers amounts to93

actions such as keyword-based search on specific place names and types or extracting place names94

based on footprints. This severely limits their applicability in scenarios where more elaborate search95

conditions are required.96

The use of ontologies [11] overcomes these limitations by providing search based on semantics97

rather than keywords. The benefits of ontologies have been leveraged by several research efforts98

broadly within Geographic Information Retrieval (GIR). For instance, Jones et al. [12] define an99

ontological model of place including information about the place type, name, centroid, as well100

as relations to other places. They then use this model to match a place name in a query with101

others that refer to equivalent or nearby locations, based on partonomic, Euclidean and thematic102

distance. A more elaborate model is that of CIDOC CRM [13], an upper level ontology that provides a103

detailed representation of knowledge about places in the form of qualitative spatial descriptions of104

semantics-driven entities such as events. A place entity is identified by a representative place name105

and provides the intermediate (human-friendly) node between events and their spatial projection.106

Such ontologies can facilitate sophisticated search focusing on the semantics captured by classes,107

hierarchies and properties within the ontologies. However, in terms of spatial representation,108

ontologies predominantly rely on relative spatial information and any absolute information is either109

limited (e.g. point) or non-existent.110

Integrating ontologies within GIR has resulted in a number of geographical search engines,111

such as SPIRIT [14,15], which relies on a place ontology modeling place names, footprints and112

relations, similarly to the aforementioned approaches. The engine relies on a novel combination113

of textual and spatial indexing to reduce search time. The GeoShare project [16] also produced an114

ontology-based search engine that evaluates candidate regions based on conceptual, spatial and115

temporal relevance, relying on place names, relative spatial/partonomic distance and period names,116

respectively. Ontological gazetteers [17] represent another example of enhancing place search by117

enriching the traditional structure of place names and spatial footprints with additional semantics in118

the form of knowledge graphs. These involve thematic information about places of interest such as119

types, activities, hierarchies and so on. Spatial information is represented as geometric entities (points,120

lines or polygons) with fiat boundaries [18]. While the aforementioned GIR systems significantly121

enhance the ability to search places based on thematic and spatial information, they are unable to122

capture (and, hence, search based on) other facets of place, such as information on how people interact123

1 https://www.dictionary.com/browse/mall
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with places. As argued by MacEachren [19], most GIR research has been space-centric, focusing on124

recognising and geolocating place names rather than interpreting why a place is a relevant result even125

without an associated place name.126

The concept of semantic places [4] is established following a meta-modeling approach based on127

relational semantics derived from text corpora. This allows searching for places based not only on128

properties but also relations between different places (including implicit ones) and other entities. This129

formalisation is close to the human perception of space using objects and relations between them.130

However, this approach is highly dependent on natural language, which makes it context-dependent.131

Additionally, the focus is restricted to the problem of localizing place relative to a known location,132

without exploring the potential use of narratives to extract intrinsic characteristics of place that may133

enhance the search process.134

On the other side of the spectrum, the work in [5] follows a bottom-up, data-driven approach.135

Particularly, it gives emphasis on the extraction of semantic signatures of places, in the form of136

co-occurrence patterns of points of interest, using LDA topic modeling and statistical analysis.137

These patterns are then used to discover similar regions that comply with the aforementioned138

signatures. The unsupervised and purely data-driven nature of this method implies certain limitations139

in terms of interpretability: as the presented information is not framed by any model, it is not easily140

comprehensible from a human perspective whether and why the discovered regions are acceptable141

results for a particular place search request.142

In previous work [6,7], we proposed the function-based model of place, which is built on the143

assumption that place is space associated with particular functionality. According to this model, a144

place is regarded as a system of interconnected physical objects, whose spatial configuration, denoted145

as composition, enables particular functions and hence satisfies human purposes intertwined with146

the aforementioned functions. For instance, the human purpose of shopping is satisfied by a set of147

functions including shopping experience and walkability, which in turn are enabled by the existence148

of a variety of shops in a close distance, accessible via walkable routes. Under this model, places are149

formalized as patterns which are defined as sets of components, composition rules and functional150

implications, as shown in Table 1. Components refer to categories of physical entities that constitute151

a place and which enable, enhance, hinder or block certain functions. Composition rules, shown152

in Table 2 refer to the relations that frame the components of a place, in terms of both spatial and153

semantic configuration. Functional implications link each specific function to a first-order logic formula154

comprised of composition rules, with the semantics that a function is supported by a place if the155

associated formula is true.156

Table 1. Design pattern. [7]

Element Name Element Set Description

Functions F Functions the place offers
Components CMP Components that form the place

Composition Rules CR Composition rules
Functional Implications FI f ← φ(cr), f ∈ F , cr ∈ CR, φ logical formula

Table 2. Composition rules. [7]

Composition rule Semantics

Occurrence(A, T) Component A appears T times, T ⊆ N∪ {0}
Correlation(A, B, N) Ratio of occurrence of components A and B is N, N ⊆ R+

SpatialRelation(A, B, R) Spatial relation between any combination of
components from sets A and B is R, R ∈ DE-9IM [20]

Proximity(A, B, D)
Distance between any combination of

components from sets A and B is D, D ⊆ N∪ {0}
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Patterns are created through text analysis. Specifically, narratives, such as dictionaries, Wikipedia157

pages, design guidelines and similar sources, are analyzed to extract information about the functions158

and the composition of a place. The patterns enable function-based search of space [6], that is, locating159

places that support particular functions. However, the rigid rules that describe the patterns can160

be more restrictive than necessary in some use cases. In particular, since the composition rules are161

expressed as logical formulas, they can either hold or not hold (and the associated function can either162

be permitted or forbidden). This hinders the effectiveness of place search, especially when dealing163

with inconsistent data or in cases of increased vagueness that requires some elements of a pattern to be164

optional. Furthermore, pattern extraction highly depends on narratives, which often reflect the widely165

acceptable or the most general definition of a place, abstracting away the diversity that characterizes166

the real world.167

In the remainder of this article, we propose two novel patterns of place that refine and168

extend the original ones to address these limitations, using modal logic and statistical relational169

learning. Information retrieval researchers have employed relational learning, Bayesian learning and170

probabilistic logic methodologies previously; however, in the context of GIR, such efforts have purely171

focused on space. Examples include the seminal work of Califf and Mooney [21] on learning pattern172

matching rules, the work of Walker et al. [22] to integrate spatial knowledge into Bayesian learning173

and the use of Probabilistic Datalog to model GIR concepts [23]. To the best of our knowledge, this174

work is the first to exploit statistical relational learning for the purpose of modelling and searching for175

places.176

3. Methodology177

In this section, we first analyze the extensions required to represent and formalize empirical178

composition patterns of place, including the process of extracting such patterns automatically based179

on spatial analysis and statistics. Then, we explain the rationale behind probabilistic composition180

patterns, followed by the adaptations required for their formalization and extraction.181

3.1. Empirical Patterns of Place182

The initial definition of design patterns of place as introduced in [7], rely on the extraction of183

knowledge from textual descriptions, such as dictionary or encyclopedia definitions of a place. In this184

sense, they essentially offer a commonly accepted blueprint for the place under consideration. In the185

remainder of this document, we will refer to these patterns as theoretical patterns to differentiate them186

from the newly introduced ones.187

Theoretical patterns require that all of the composition rules for each function included within188

are supported by a particular area in order for it to be considered a place that conforms to the pattern.189

In relation to the elements in Table 1, a function in F is supported only if all composition rules cr in190

CR included in the related formula f in FI hold. In reality, however, not all of these composition191

rules are equally strongly associated with the particular function. Some of them may be considered192

essential, without which the place cannot function at all as expected, while others may simply improve193

the experience of a person and contribute an added value with regard to that function.194

Moreover, the threshold values within composition rules (values T, N, R and D in Table 2)195

are derived exclusively from textual descriptions and general assumptions. Hence, they tend to196

suggest lower or higher limits that are broader than what is usually expected, e.g. suggesting much197

larger distances in proximity rules than necessary. To address both of these issues, we introduce an198

extended pattern variant called empirical pattern, where empirical knowledge is utilized to differentiate199

composition rules within functional implications according to their necessity and adjust threshold200

values within.201

The proposed extension is made possible by applying the principles of modal logic [24]. This202

extension to standard formal logics, such as propositional and first-order logic, introduces operators203

that express modalities, i.e. expressions that qualify a logical statement. Several different modalities204
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have been expressed, ranging from alethic and temporal, to deontic and epistemic ones. For our205

purposes, only two alethic modalities are required, specifically those expressing necessity and206

possibility.207

As with theoretical patterns, empirical patterns conform to the fundamental assumption that208

“place is space with ascribed functions” and are formalized using the elements in Table 1. The209

fundamental difference is that the logical formulas φ within elements in FI can also include the210

modal operators “necessarily” and “possibly”, denoted as � and ♦, respectively, in order to attribute a211

certainty level for the included composition rules. Considering the above, the semantics of a functional212

implication change slightly: a particular function is enabled, if, at minimum, the necessary composition213

rules within the functional implication formula hold.214

3.2. Extracting Empirical Patterns215

Theoretical patterns are extracted by solely relying on narratives to derive functions supported by216

a place. However, following the same process is not enough for empirical patterns. This is because217

narratives such as dictionary or encyclopedia definitions rarely contain the level of information218

required to decide whether a composition rule is a necessary or possible prerequisite for a function to219

be supported. In order to achieve automated creation of empirical patterns, we propose an extraction220

process that utilizes both theoretical and empirical knowledge. According to this process, an empirical221

pattern of place is no longer a strict reflection of the written word, but a combination of text-based and222

data-based information acquired through the phases of theoretical design, collective analysis and empirical223

revision. Figure 1 illustrates the extraction process, which is analyzed in the rest of this section.224

THEORETICAL DESIGN COLLECTIVE ANALYSIS

EMPIRICAL REVISION PR
O

BA
BI

LI
ST
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LE
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Narratives Data

Text
Analysis

Statistical
Analysis

Spatial
Analysis
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Modality
Attribution

Threshold

Empirical
Pattern

ProbLog2
System

Probabilistic
Pattern

Figure 1. Empirical pattern extraction and probabilistic pattern learning processes.

The phase of theoretical design is, in essence, the process followed to derive a theoretical pattern225

and uses text analysis to derive knowledge about the components, composition rules and functions of a226
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place. This pattern is regarded as a collection of “echoes”, after Alexander’s 15 structural properties [25]227

and describes the expected features that would enable the functions of the place under question.228

The second phase, collective analysis, focuses on the analysis of regions that are considered as229

the ideal candidates of the place for which the theoretical pattern was created. More specifically,230

spatial and semantic data are acquired for a wide range of ideally defined instances of the place under231

question. Considering the latter as anchors, additional data is collected about adjacent components232

conforming to requirements listed in the theoretical pattern.233

The next step aims to extract and describe the most significant composition rules that characterize234

the ideal places under question. This is achieved by classifying the aggregated data into context-specific235

categories by conducting statistical and spatial analysis. Statistical analysis includes extraction of the236

population count and the average frequency of occurrences per category. Spatial analysis, on the other237

hand, focuses on the mean distance between components and the centroids of the ideal candidates of238

place.239

The final phase, empirical revision, essentially converts a theoretical pattern to an empirical240

pattern by deciding whether each of the composition rules within functional implications are necessary241

or possible. To achieve this, a context-specific significance threshold is required and classification242

follows a simple convention: in cases where this threshold is exceeded, this suggests that the associated243

composition rule is necessary; in all other cases the particular rule is considered possible.244

Additionally, we adjust numerical values within composition rules: (1) in case of minimum245

thresholds, e.g. minimum number of shops, we adjust the value to the minimum observed during246

analysis; (2) in case of maximum thresholds, e.g. maximum distance between shops, we adjust the247

value to the maximum observed during analysis. The output of the described process is an empirical248

pattern that includes the required and optional information that describe the composition of the place249

under question.250

3.3. Probabilistic Patterns of Place251

Empirical patterns allow for a more realistic view of function support in terms of the spatial252

composition that enables a function. The choice of modalities to achieve this is because they offer a253

concise and natural manner of assessing necessity. However, this assessment on the level of necessity254

of a composition rule is purely qualitative and is limited to the two levels of necessity and possibility.255

In some use cases, these characteristics may not be desired. For instance, it may be necessary to explain256

in quantifiable terms the level of support of a particular function, such as a functionality rating. Also,257

since a threshold is employed to decide whether a rule is necessary or possible, this may lead to cases258

where two rules are associated with different modalities, even though both are close to the threshold,259

due to one being slightly lower and the other slightly higher.260

One way to provide a quantitative alternative to the flexibility offered by modalities is through the261

use of probabilities. Probabilistic logic has been an active research field ever since the term was coined262

in Nilsson’s seminal work [26] but has received renewed attention as the foundation for a wide array of263

machine learning techniques. The fundamental difference of probabilistic logics compared to standard264

logics is that probabilities, instead of true/false values, are attached to logical statements. Based265

on a probabilistic logic foundation, we propose an additional variant of theoretical patterns called266

probabilistic patterns, where the level of support of composition rules within functional implications is267

quantified using probabilities.268

As previously, probabilistic patterns are formalized using the elements in Table 1. The main269

difference is that formulas φ within elements in FI are probabilistic logic formulas, with probabilistic270

weights attached to each composition rule statement contained within. Given this, a functional271

implication now states that a particular function is enabled with a probability that depends on the272

individual probabilities of the composition rules within. We assume that all probabilities for each273

composition rule are independent, which is the basic instance of the so-called distribution semantics of274

probabilistic logic, as explained in [27].275
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Each functional implication in a probabilistic pattern is related to an instance of a Bayesian276

network [28]. For instance, a functional implication for a function f that is related to three composition277

rules cr1, cr2, cr3 is represented by the Bayesian network in Figure 2. Each composition rule is associated278

with a prior probability, while edges represent conditional dependencies. Based on this network, we279

want to calculate the conditional probabilities of cr1, cr2, cr3, given that f is supported.280

Function f

Composition
rule cr1

Composition
rule cr2

Composition
rule cr3

Figure 2. Bayesian network for a functional implication in a probabilistic pattern.

3.4. Learning Probabilistic Patterns281

As is the case with empirical patterns, extracting probabilistic patterns requires three phases.282

The first two phases of theoretical design and collective analysis are similar to the ones described in283

Section 3.2. The third phase is dedicated to calculating probabilities for the composition rules in the284

theoretical pattern. We propose a statistical relational learning approach, specifically learning from285

interpretations of probabilistic inductive logic programs [27]. An overview of the complete process is286

shown in Figure 1.287

Logic programming, in general, refers to querying and reasoning based on rule-based formal288

logic representations. Inductive logic programming is an extension that is capable of learning logic289

programs by extracting knowledge from positive and negative examples. Probabilistic inductive logic290

programming combines the flexibility of probabilities with the interpretability and intuitive nature of291

logic programming and the potential of machine learning based on induction.292

Learning based on probabilistic logic programming is an appropriate solution for extracting293

probabilistic patterns for three main reasons. First, probabilistic patterns (as well as theoretical and294

empirical ones) are easily translatable to logic programs due to their first-order logic encoding and295

the rule-based structure of functional implications. Second, probabilities are the defining feature of296

both probabilistic patterns and probabilistic logic programming. Finally, the use of machine learning297

techniques that rely on models that are comprehensible from a human perspective, will enable an298

explainable place search process. In other words, it will be possible to answer whether and why299

particular areas are returned as answers to a given place search request.300

Learning probabilistic patterns follows the process of learning from interpretations [29].301

Particularly, probabilities for each composition rule and associated functional implication are learned302

based on example areas from real-world data that belong to one of the four possible cases: (1) areas303

where the composition rule holds and the function is supported by that area; (2) areas where the304

composition rule does not hold and the function is not supported by that area; (3) areas where the305

composition rule is true but the function is not supported by that area; and (4) areas where the306

composition rule is not true and the function is not supported by that area. Cases 1 and 4 are called307

positive examples, since they conform to the initial theoretical pattern, with cases 2 and 3 representing308

negative examples.309

To extract positive and negative examples, we rely on statistical and spatial analysis, as in the310

empirical revision process described in Section 3.2. We also take into account the revised values311

for parameters within composition rules (e.g. lower bounds for occurrence or higher bounds for312

proximity). We use these values, instead of the ones in the theoretical pattern, since they are considered313

less broad and more accurate. For each candidate area, we calculate truth values for all composition314



Version February 13, 2019 submitted to ISPRS Int. J. Geo-Inf. 9 of 22

rules and functions. Depending on the availability of data, each candidate area can contribute a315

maximum number of examples equal to the number of functions in the pattern.316

Having extracted positive and negative examples, we then feed them into ProbLog2 [30], a317

probabilistic logic programming system capable of learning from interpretations. The system learns318

the probabilities for each dependency in the corresponding Bayesian network, as well as the prior319

probabilities for each composition rule. Using these probabilities, the system infers the conditional320

probabilities attached to composition rules, given that the associated functions are supported. This321

concludes the process of creating probabilistic patterns.322

4. Experiment and Results323

This section demonstrates the proposed methodology and evaluates the application of empirical324

and probabilistic patterns in place search using the example of shopping malls in London, UK. The325

objective of the described experiment is to create patterns which can enable a place search system to326

locate places that offer functions similar to a shopping mall, even if they are not explicitly defined as327

such. By convention, we refer to these places as shopping areas, for which the ideal representatives are328

the standard shopping malls.329

4.1. Theoretical Pattern330

To create a theoretical pattern for places functioning as shopping areas we perform textual analysis331

on the following sources: Wikipedia reference2, Oxford dictionary definition3 and an Irish government332

report on retail design guidelines [31]. This analysis is performed manually by the authors for the333

purposes of this demonstration. Automating the analysis is out of the scope of this manuscript and334

is planned to be explored in future work. Indicatively, since the dictionary definition of a shopping335

mall discusses “[...] variety of stores and often restaurants [...]”, we conclude that a mall includes336

stores and restaurants. In return, store and restaurant definitions state that the former is a place “[...]337

where merchandise is sold [...]”, while the latter’s owner “[...] prepares and serves food and drinks to338

customers [...]”. Consequently, a shopping mall is equipped with the functions of shopping experience339

and sustenance (which is part of leisure). Based on the analysis demonstrated here, we consider a340

simplified structure of shopping areas, consisting of shops, amenities, road junctions and transport341

stops (including both public transport stops and taxi stands). Through these components, shopping342

areas support five functions: (1) shopping experience, based on the existence of shops; (2) leisure,343

based on the existence of amenities; (3) walkability, requiring that shops and amenities are within344

a walkable distance; (4) accessibility to drivers, through road junctions within a minimum driving345

distance; and (5) accessibility to non-drivers, through transport stops within a walkable distance. The346

list of components and functions are summarized in Table 3.347

Table 3. Components and functions of a shopping area.

Components
Shop Amenity Road Junction Transport Stop

Functions
Shopping Experience (FS) Existence of Shops
Leisure (FL) Existence of Amenities
Walkability (FW ) Shops and Amenities within walkable distance
Accessibility to Drivers (FAD) Roads and Road Junctions within driving distance
Accessibility to Non-drivers (FAN) Transport Stops within walkable distance

2 https://en.wikipedia.org/wiki/en/Shopping_mall
3 https://en.oxforddictionaries.com/definition/mall

https://en.wikipedia.org/wiki/en/Shopping_mall
https://en.oxforddictionaries.com/definition/mall
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In order to keep the design pattern as generic as possible we consider a number of assumptions348

and common trends that would facilitate the least strict composition of the aforementioned functions,349

while maintaining their nature. In particular, based on Azmi et al. [32, p. 4], we assume that a walkable350

distance between two neighboring facilities cannot exceed 500m, while the driving distance between351

a shopping area and the closest highway junction cannot be more than 5000m; the latter ensures a352

tolerable driving time within a low-speed road network. Shopping experience implies a number353

of shopping opportunities for a potential customer, consequently a shopping area is required to be354

equipped with at least two shops in order to facilitate the minimum number of options. The function355

of leisure is more flexible requesting the existence of at least one amenity within the shopping area,356

whereas the ratio of shops and amenities is adjusted to 2:1 in order to enforce the trade of goods, as357

opposed to facilities, as the primary function of a shopping area. Finally, walkability and accessibility358

conform to the walkable and driving distance assumptions stated earlier.359

Every component used in our example complies with the definitions provided by the360

OpenStreetMap platform4. A shop5 is considered as a merchandise business specialized on trading361

goods that cover basic and/or more advanced needs such as clothing, groceries, luxury products362

and so on. Since amenities6 cover a great variety of facilities, we only include those that focus on the363

provision of community facilities: “entertainment, arts & culture” (e.g. movie theaters, coffee shops,364

bars), “sustenance” (e.g. restaurants, snack bars, food court), “healthcare” (i.e. hairdressers, massage365

and beauty services) and “financial” (i.e. cash points or banks). Transport stop components, on the366

other hand, are specialized by the category “transportation”, while road junctions correspond to the367

category “highway” in OpenStreetMap 7.368

To represent the five functions we use composition rules Occurrence, Correlation and Proximity369

in Table 2. This results in the theoretical pattern depicted in Table 4.370

Table 4. Theoretical pattern for places functioning as shopping areas.

Function Formula for Functional Implication

FS Occurrence(Shop, [2, ))
FL Occurrence(Amenity, [1, )) AND Correlation(Shop, Amenity, [2, ))

FW
Proximity(Shop, Amenity, [, 500m]) AND Proximity(Shop, Shop, (, 500m])
AND Proximity(Amenity, Amenity, [, 500m])

FAD Occurrence(RoadJunction, [1, )) AND Proximity(Shop, RoadJunction, (, 5000m])
FAN Occurrence(TransportStop, [1, )) AND Proximity(Shop, TransportStop, (, 500m])

4.2. Empirical Pattern371

To extract an empirical pattern for places functioning as shopping areas, we conduct empirical372

revision as discussed in Section 3.2. We use data acquired from OpenStreetMap8, collecting a set of373

65 polygons outlining shopping malls in London, UK. Using the centroids of these polygons, we374

aggregate: (1) point geometries of shops, amenities, and transport stops within a 500m radius; and375

(2) road junction points within a 5000m radius. Table 5 illustrates indicative results of the spatial and376

statistical analysis applied on the acquired components for all the collected instances of shopping377

malls. For the calculation of mean values and coefficients of variation, we exclude extreme outliers (e.g.378

isolated instances of malls with more than 300 shops, while the rest do not exceed 100). The complete379

dataset and analysis results are available at https://github.com/gmparg/IJGI-Patterns.380

4 https://wiki.openstreetmap.org/wiki/Main_Page
5 https://wiki.openstreetmap.org/wiki/Key:shop
6 https://wiki.openstreetmap.org/wiki/Key:amenity
7 https://wiki.openstreetmap.org/wiki/Key:highway
8 https://www.openstreetmap.org/

https://github.com/gmparg/IJGI-Patterns
https://www.openstreetmap.org/
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Table 5. Indicative results of spatial and statistical analysis.

Count(Shop) Count(Amenity) Proximity(Shop, Proximity(Shop, Count(Stop)Amenity) Stop)

minimum 5 0 26 93 0
average 33 5 95 409 7

maximum 87 71 218 971 63
coefficient 69% 240% 60% 80% 170%of variation

For the construction of the empirical pattern, we assume that a variable is significant and, hence, it381

implies a necessary composition rule, if the coefficient of variation for the corresponding mean value is382

less than 80%. Values more than this level result to less significant variables and, thus, refer to possible383

rules. For instance, for the indicative results in Table 5, Count(Shop) and Proximity(Shop, Amenity) are384

considered necessary composition rules, while the rest are considered possible composition rules. Note385

that a different choice of threshold and metric may be made depending on how flexible the pattern386

needs to be.387

Using the results of spatial and statistical analysis, we attribute necessity (�) or possibility (♦)388

to all composition rules. We also adjust numerical values within composition rules, as described in389

Section 3.2. As a result, we obtain the empirical pattern shown in Table 6, where changes compared to390

the theoretical pattern are marked in bold.391

Table 6. Empirical pattern for places functioning as shopping areas.

Function Formula for Functional Implication

FS ��� Occurrence(Shop, [5, ))
FL ♦♦♦ Occurrence(Amenity, [1, )) AND ♦♦♦ Correlation(Shop, Amenity, [2, ))

FW
��� Proximity(Shop, Amenity, (, 220m]) AND ��� Proximity(Shop, Shop, (, 240m])
AND ��� Proximity(Amenity, Amenity, (, 218m])

FAD ♦♦♦ Occurrence(RoadJunction, [1, )) AND ��� Proximity(Shop, RoadJunction, (, 4978m])
FAN ♦♦♦ Occurrence(TransportStop, [1, )) AND ♦♦♦ Proximity(Shop, TransportStop, (, 275m])

4.3. Probabilistic Pattern392

To create a probabilistic pattern for places functioning as shopping areas, we first convert the393

functional implications within a theoretical pattern into a probabilistic logic program. The encoding394

for the leisure function using ProbLog syntax is shown in Listing 1; the full ProbLog code can be found395

at https://github.com/gmparg/IJGI-Patterns.396

Listing 1. ProbLog encoding for leisure function.

f_l :- occ_amen, corr_s_a, p_occ_corr.
f_l :- \+occ_amen, corr_s_a, p_corr_s_a.
f_l :- occ_amen, \+corr_s_a, p_occ_amen.
f_l :- \+occ_amen, \+corr_s_a, p_neither.

For instance, the first logic programming clause is read as follows: f_l is true,397

if both occ_amen and corr_s_a are true, with a probability p_occ_corr. occ_amen is a398

simplified predicate for Occurrence(Amenity, [2, )), while corr_s_a is a predicate representing399

Correlation(Shop, Amenity, [2, )). \+ is the negation as failure operator, meaning failure to prove400

that the predicate operand holds. p_occ_corr is the probability that the leisure function is supported,401

https://github.com/gmparg/IJGI-Patterns
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Figure 3. Bayesian network for a place functioning as a shopping area.

given that both composition rules for occurrence and correlation hold. p_corr_s_a, p_occ_amen and402

p_neither are defined accordingly. These four clauses are equivalent to a Bayesian network that403

links the leisure function with the associated composition rules. The full Bayesian network for all five404

functions is shown in Figure 3.405

We then use the results of spatial and statistical analysis to extract positive and negative examples.406

Given the nature of the dataset (actual shopping malls), we can extract the following example types:407

(1) shopping malls that support a particular function, while at the same time all relevant composition408

rules are satisfied; (2) shopping malls that support a particular function, but do so without satisfying409

all composition rules. Hence, for each shopping mall in the dataset we attribute truth values to all410

composition rules in Figure 3, while all functions are considered to be true.411

Having extracted positive and negative examples, we encode them as evidence for the ProbLog412

system. For example, an instance of a shopping area which supports the function of leisure without413

satisfying the composition rule on correlation between shops and amenities is encoded using the logic414

programming facts in Listing 2.415

Listing 2. Example ProbLog encoding for evidence.

evidence(occ_amen, true).
evidence(corr_s_a, false).
evidence(f_l, true).

We then task the ProbLog v2.1 system (the latest version capable of both inference and learning)416

to learn probabilities for all predicates (facts in logic programming) based on the positive and negative417
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examples supplied as evidence. This results in a new probabilistic logic program containing these418

probabilities. For instance, the encoding for the leisure function after learning probabilities is shown in419

Listing 3.420

Listing 3. Example ProbLog encoding for evidence.

f_l :- occ_amen, corr_s_a, p_occ_corr.
f_l :- \+occ_amen, corr_s_a, p_corr_s_a.
f_l :- occ_amen, \+corr_s_a, p_occ_amen.
f_l :- \+occ_amen, \+corr_s_a, p_neither.
0.538461538461538::occ_amen.
0.538461538461538::corr_s_a.
0.999999999999679::p_occ_corr.
0.688997112547912::p_corr_s_a.
0.952464846231911::p_occ_amen.
0.999999999948175::p_neither.

Finally, using inference on the probabilistic logic program, we calculate the conditional421

probabilities for all composition rules, given that the associated functions are supported; e.g. for422

the program above we include the facts in Listing 4.423

Listing 4. Example ProbLog encoding for evidence.

evidence(f_l, true).
query(occ_amen).
query(corr_s_a).

The resulting probabilistic pattern which includes all calculated probabilities is shown in Table 7.424

Table 7. Probabilistic pattern for places functioning as shopping areas.

Function Formula for Functional Implication

FS 100% Occurrence(Shop, [5, ))
FL 50.63% Occurrence(Amenity, [1, )) AND 57.81% Correlation(Shop, Amenity, [2, ))

FW
51.44% Proximity(Shop, Amenity, [, 220m]) AND 30.88% Proximity(Shop, Shop, [, 240m])
AND 39.2% Proximity(Amenity, Amenity, [, 218m])

FAD 77.06% Occurrence(RoadJunction, [1, )) AND 31.31% Proximity(Shop, RoadJunction, (, 4978m])
FAN 58.46% Occurrence(TransportStop, [1, )) AND 23.68% Proximity(Shop, TransportStop, (, 275m])

4.4. Place Search Results425

To evaluate the three patterns, we conduct three function-based search processes for shopping426

areas, each relying on one of the patterns. Pattern matching is realized by converting each pattern to427

a sequence of spatial queries and procedures, implemented using PostGIS9 v2.4 and QGIS10 v3.0.2.428

Particularly, every function included in the patterns is expressed as a query that reflects the implied429

composition rules. Afterwards, the generated queries are issued on the database.430

9 https://postgis.net/
10 https://www.qgis.org/
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To decide whether a candidate region is included in the results using theoretical patterns, we use431

the following formula: FS AND(FL OR FW OR FAD OR FAN). This means that a candidate region432

is considered to be able to function as a shopping area if it provides, as minimum, the function of433

shopping experience (considered as an essential function), as well as one of the other four functions.434

Note that more or less restrictive function combinations can be used, depending on the scenario at435

hand.436

The results are illustrated in Figure 4, where the study area is split using a grid of 500m x 500m437

cells, with a total of 10647 cells. The cell size is selected based on the assumption that a walkable438

distance should not exceed 500m. A heat map representation is employed, based on the number of439

functions satisfied within a particular cell. The lighter colour represents minimum support (shopping440

experience and only one of the others, with a score value of 1), while the darkest colour represents441

highest support (shopping experience and all four other functions, meaning a score value of 4). Green442

circles are used to indicate the locations of actual shopping malls.443

Figure 4. Results using theoretical pattern.

Similarly to the theoretical pattern, a candidate region for the empirical case must again support444

the function of shopping experience and at least one of the others as minimum, in order to be included445

in the results. However, if two candidate regions support the same function, the score is proportional446

to the number of possible composition rules that are satisfied. For instance, if two regions support the447

shopping experience and leisure functions, but one only satisfies the minimum number of amenities448

(necessary rule), while the other also achieves the required ratio between shops and amenities (possible449

rule), the first is scored with 1.5 while the second with 2. Figure 5 illustrates the results retrieved using450

the empirical pattern, where the heat map representation follows this scoring scheme.451

In the case of the probabilistic pattern, probability calculations with ProbLog allow for a more452

fine-grained score attribution. For each function, we have previously calculated different probabilities,453

depending on which associated composition rules are satisfied, e.g. probabilities of supporting leisure454

when neither, both, or only one of the occurrence and correlations rules hold. We use these probabilities455
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Figure 5. Results using empirical pattern.

as score values, instead of adding 1 to the score for each supported function. The resulting score456

formula is P(FS) ∗ (0.25 ∗ P(FL)+ 0.25 ∗ P(FW)+ 0.25 ∗ P(FAD)+ 0.25 ∗ P(FAN)), essentially expressing457

the actual numerical probability that a particular area satisfies the functionality of a shopping mall,458

as described in the pattern. With this formula, not supporting the essential function of shopping459

experience results in a score of 0, while in all other cases, the score is increased proportionally to the460

number of supported functions and the associated probabilities of supporting them. The results of461

using probabilistic patterns and the aforementioned scoring scheme are shown in Figure 6.462

The aforementioned scoring scheme assumes clear cut cases: for a function that is associated with463

two rules, specific scores are given when both, or either of them are satisfied. If a composition rule464

is not satisfied, the scheme does not take into account the distance from the minimum or maximum465

thresholds that led to the rule not being satisfied. For instance, the same score is attributed if two466

regions do not satisfy the rule of limiting distance between shops and road junctions to 4978m, even467

if one of them is really close to the threshold, while the other one is very far. To address this, we468

employ an alternative score formula, where the score for each function is adjusted proportionally to469

the distances from thresholds within those composition rules that are not satisfied. Results using this470

formula are presented in Figure 7. Table 8 summarizes the results presented in figures in a numerical471

form.472

5. Discussion473

5.1. Results Analysis474

As evidenced by the results in Figure 4, searching for shopping areas using the theoretical pattern475

achieves perfect recall: all actual shopping malls extracted from the OpenStreetMap database using476
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Figure 6. Results using probabilistic pattern.

Figure 7. Results using probabilistic pattern with adjusted scores.
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Table 8. Scores and population results.

Theoretical Empirical Probabilistic
Score Population Score Population Probability Population Population (Adjusted)

0 9355 0 9481 0 9454 9334
0.5 54 10 0 43

1 169 1 137 20 52 70
1.5 297 30 0 20

2 702 2 256 40 360 361
2.5 286 50 4 41

3 340 3 60 60 7 6
3.5 0 70 602 585

4 81 4 76 80 7 19
90 77 79
100 84 89

Total 10647 10647 10647 10647

the filter “mall”11 (indicated with green circles) are within one of the identified areas. Additionally,477

a number of other areas are identified, which have a varying level of support of the five functions478

included in the pattern but are not explicitly identified as shopping malls in OpenStreetMap. This479

exemplifies the benefits of function-based search of places as opposed to simple keyword-based search:480

instead of only returning regions that are annotated with terms similar to keywords such as “shopping481

areas”, function-based search is also capable of including regions that support a minimum level of482

functionality associated with a shopping area, while also providing a rough indication of the level of483

function support. Furthermore, searching places using patterns assigns an estimated spatial extent to484

the candidate shopping areas; this extent does not have to be supplied beforehand, as is the case with485

gazetteer placename entries.486

The results using the empirical pattern (Figure 5) improve on the ones based on the theoretical487

one in three ways. First, an increased number of cells are excluded from being potential shopping areas488

(126 more, see Table 8) colorblue and other cells are scored lower than previously; this is due to the489

stricter threshold values in composition rules that were calculated by the empirical revision process.490

Second, a number of cells get higher scores, due to composition rules having a possibility rather than a491

necessity modality. The way cells have shifted from one score category to another is better illustrated492

in Figure 8. Finally, there is a more fine-grained representation of the level of support, since there are493

now 7 different score levels, as opposed to 4. These improvements allow for a more accurate coverage494

and a better understanding of how well each area satisfies the functions of a shopping mall, without495

however compromising recall: areas occupied by actual shopping malls are still included in the results.496

In what concerns the probabilistic pattern (Figure 6), an even more fine-grained representation497

is achieved, with score values occupying the complete probability range of 0-100%. The number of498

cells that are scored under 10% is more in agreement with the empirical rather than the theoretical499

pattern, since probabilistic patterns include the empirically revised thresholds. In general, cells are500

attributed higher probabilities than the corresponding empirical or theoretical scores. This is the benefit501

provided by probabilistic logic learning as opposed to first-order logic with modals: the learning502

process assigns a probabilistic value ranging from 0 to 100% to each composition rule as opposed to a503

standard Boolean value. Note that every cell assigned with a non-zero score in the empirical pattern504

results is also included in probabilistic pattern results and vice-versa; the difference is only in the value505

of the assigned score.506

As expected, results with the adjusted score formula for probabilistic patterns (Figure 7) show507

that less cells are scored with less than 10%. This is because a non-zero probability is attributed when a508

11 https://wiki.openstreetmap.org/wiki/Tag:shop%3Dmall
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Figure 8. Comparison of populations per score for theoretical and empirical patterns.

particular composition rule has been violated but this was a result of only slightly exceeding thresholds.509

For the same reason, probability values are more well distributed, with more cells having probabilities510

in the 10-39% range. Flexibility is increased, since scoring does not depend on the duality of Boolean511

values: even if a composition rule is violated, it still contributes slightly to the overall probability, to a512

degree proportional to the distance from the threshold that caused the violation. The adjusted score513

formula for probabilistic patterns essentially reduces the effects of the Modifiable Area Unit Problem514

(MAUP) [33].515

Figure 9 is a comparative evaluation of an indicative subset of the cells identified by each pattern516

with regard to the stated land use of the area in OpenStreetMap. In all cases, industrial areas are517

correctly excluded from search results (ranked lowest), while all commercial areas are included, with a518

single exception on the mid-right part of the grid; this exception is due to OpenStreetMap flagging this519

area as commercial, without, however, including any shop or amenity data points within. In terms520

of residential areas, some of them are included in the results because of the cell size, which is large521

enough to contain pairs of residential and commercial areas that are adjacent. Others, however, are522

correctly included, since they indicate parts of residential areas which are spatially organized in a way523

that enables, in part, the functionality described in the patterns.524

5.2. Advantages and Limitations525

Based on the individual pattern characteristics and the results presented here, we can deduce526

the following use cases for each different pattern type. Theoretical patterns have the least amount527

of dependencies, since they can produce results without relying on the availability of suitable and528

relevant data or the skillset necessary for statistical and spatial analysis and statistical relational529

learning. Hence, they are capable of producing function-based search results when the aforementioned530

data and skills are unavailable. Empirical and probabilistic patterns, on the other hand, are suitable531

when there is a need for a more accurate and detailed view of the level of support of a functionality set532

of a place, taking into account empirical evidence. Probabilistic patterns and their results are especially533

interpretable compared to the rest, since they represent the likelihood of an area functioning as a534

specific place; for instance, areas that have a probability higher than 90% can easily be understood as535

operating equivalently to a shopping mall.536
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Figure 9. Evaluation of results against stated land use in OpenStreetMap.

As is the case with any data-driven approach, the success of empirical revision and statistical537

relational learning heavily depends on data quantity and quality, which is not the case with theoretical538

patterns. Indicatively, learning probabilities is affected by the correctness of examples, i.e. whether539

they are correctly perceived as positive or negative based on the available data. Also, action must be540

taken to ensure that there is no bias within the dataset; for instance, in the shopping area example, we541

make sure to represent equally positive and negative examples for each particular function. Moreover,542

spatial and statistical analysis are computationally expensive, since they involve determining relations543

between spatial entities, which is not required by less elaborate approaches, such as gazetteers.544

It should be noted that the described methodologies are affected by the inability to indicate545

ground truth. The only exception is the case of shopping areas resulting from our methodologies546

which contain actual shopping malls, in which case we can safely trust that these results are accurate.547

In terms of regions not considered as shopping areas by our methodologies, evaluation can only rely on548

aggregations such as land use. In particular, Figure 9 depicts that none of the shopping areas identified549

by the proposed methodologies falls within industrial or green areas, which, by definition, would not550

be able to support shopping-related functions. However, due to the grid size and incomplete data,551

some identified shopping areas contain segments of areas of incompatible land use. With regard to552

evaluating whether our methodologies attribute correct or trustworthy scores to each cell, we are553

unable to rely on either of the aforementioned processes. Since place is a product of human-thinking,554

judging whether one place is correctly rated higher than another can only be evaluated based on555

human opinion. Hence, a more accurate evaluation of the presented results could be possible through556

survey-based processes where people interested in a particular place functionality comment on whether557

higher-scored areas better serve their purposes. A further limitation in terms of the theoretical design558

process is that it depends on choosing widely accepted and extended descriptions of the place under559

question; composition rules must then be determined by experts. Other approaches such as searching560

using gazetteers only need a vocabulary of places.561

In contrast to other purely data-driven approaches, such as [5], the proposed combination of a562

formal model of place and statistical relational learning makes the search results based on probabilistic563
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patterns highly interpretable. Based on the learned probabilities and the composition rules that make564

up the functions within a pattern, it is straightforward to explain why a particular area is included or565

excluded from search results for a particular place. This is not possible in cases where either the search566

process is not underpinned by a formal model of place or the employed machine learning technique is567

opaque, such as deep neural networks.568

The dependency of pattern-based representations on narratives raises important obstacles;569

indicatively, natural language processing has many technical difficulties and the extracted information570

is often highly vague and context-dependent. The latter raises a notable trade-off that affects the571

transferability of patterns to other geographical areas (e.g. cities in countries with different cultures):572

as a theoretical pattern becomes more specific, it depends more on source narratives and, in return,573

becomes less transferable. Consequently, it is less likely to identify places of the same category that may574

differ in culture or architecture. For instance, Section 4 demonstrates the identification/localization575

of shopping areas based on the standards of the western world; this specialization is achieved by576

relying on narratives that deal with descriptions of shopping areas in the western countries and would,577

naturally, be less accurate when applied to areas where eastern world cultural standards are the norm.578

However, it is still generic enough to apply to any city in the western world, though this requires579

further experiments to be confirmed.580

Empirical and probabilistic patterns build upon theoretical ones; consequently, they inherit581

context dependency issues. However, they are able to address vagueness issues by relying on empirical582

evidence to determine the significance of each composition rule within each function, provided that583

the data set used is representative enough. Even so, the theoretical pattern remains the nucleus of all584

pattern types, ensuring that data-driven decisions conform to a well-defined “mold” that serves the585

original purpose of place search, which is to emphasize a humanistic point of view, rather than adopt586

a pure data science perspective.587

5.3. Potential Applications588

The use of theoretical patterns can allow search engines to go beyond traditional search of589

semantically infused, geo-located place names. Geographic search engines that rely on such patterns590

can facilitate dynamic search of place using elements that are closer to human understanding of place,591

such as activities, functions and real objects. Furthermore, the constructive nature of the patterns592

allows for the localization and identification of places from simple components, which is ideal when593

searching for places without specific names or categories.594

Empirical patterns can improve the functionality of geographic search engines even more,595

allowing the discovery of places that share similar characteristics or belong in the same category596

but differ in a cultural sense without relying on predefined semantics but utilizing empirical data.597

Finally, the introduction of statistical relational learning brings a new perspective in the traditionally598

theoretical work of digital place representation. It allows (semi-)automated ways of extracting patterns599

of places, as well as identifying places and hence attributing a region with place-related properties600

even in the case of the region under question is described by incomplete or vague information (e.g. a601

strip mall without a specific name or a flea market).602

6. Conclusion603

This study contributes to the formalization of place and its application in place search. In604

particular, we introduced two pattern-based formalizations of place that loosen restrictions in terms of605

how a particular place supports a function. Empirical patterns provide the capability to express that a606

composition rule is necessary or possible, while probabilistic patterns attach numerical weights to each607

composition rule. Furthermore, we proposed methodologies to extract such patterns beginning from608

theoretical, narrative-based patterns. Empirical patterns rely on empirical revision based on statistical609

and spatial analysis, while probabilistic patterns use the same analysis results to extract positive and610

negative examples based on which probabilities are learned using statistical relational learning.611
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The proposed patterns provide a more detailed representation of the functionality supported by a612

place that is closer to reality and can lead to more accurate results in function-based search of space;613

this is evidenced by the conducted experiment of locating shopping areas in London, UK. Particularly,614

depending on the availability of relevant data, empirical patterns employ more realistic thresholds and615

provide a more fine-grained scoring scheme for candidate areas, while probabilistic patterns combine616

these benefits with the well-understood notion of probability.617

This work indicates that place can be treated as a functional region and be formalized as a system618

using both narratives and spatial data, which can then be used to power function-based place search619

engines. Research directions to explore function-based place search further include: (1) extending620

the formalization of composition rules to allow the introduction of new rules or the modification of621

existing ones; (2) investigating ways to improve extraction of knowledge from narratives, such as622

corpus analysis; (3) conducting survey-based experiments to better evaluate the effectiveness of the623

proposed methodologies; and (4) examining whether learning can be used at lower or higher levels, to624

learn values within composition rules, or overall probabilities for functions, respectively.625
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