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Abstract:  A new simplified-parametric model is proposed to describe the nonlinear displacement- 

dependent damping characteristics of a railway pantograph hydraulic damper and validated by the 

experimental results in this study. Then, a full mathematical model of the pantograph-catenary system, 

which incorporates the new pantograph damper model, is established to simulate the effect of the damping 

characteristics on the pantograph dynamics. The simulation results show that large Fconst and C0 in the 

pantograph damper model can improve both the raising performance and contact quality of the pantograph, 

whereas a large C0 has no obvious effect on the lowering time of the pantograph; the nonlinear damping 

characteristics described by the second item in the new damper model have dominating effects on the total 

lowering time, maximum acceleration and maximum impact acceleration of the pantograph. Thus, within 

the constraint of total lowering time, increasing the second item damping characteristics of the damper will 

obviously improve the lowering performance of the pantograph and reduce excessive impact between the 

pantograph and its base frame. The proposed concise pantograph hydraulic damper model appears to be 

more complete and accurate than the previous single-parameter model, so it is more useful in the context of 

pantograph-catenary dynamics simulation and further parameter optimizations. The obtained simulation 

results are also valuable and instructive for further optimal specification of railway pantograph hydraulic 

dampers. 

Keywords: Pantograph hydraulic damper; displacement-dependent; nonlinear damping characteristics; 
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1. Introduction 

The pantograph is a key device in the current collection by modern high-speed rail vehicles [1]; an 

optimal design of the structural and component parameters of the pantograph will improve the pantograph- 
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catenary interaction and enable more stable current collection. A hydraulic damper is often installed 

between the base frame and the lower arm mechanism of a pantograph, as illustrated in Fig. 1. When the 

pantograph is lowered, the damper is extended; when the pantograph is raised, the damper is compressed. 

The hydraulic damper is a crucial component in improving the pantograph-catenary interaction quality and 

obtaining the ideal raising and lowering performance of the pantograph. 

 

Fig. 1 A simple illustration of the motions of a high-speed rail pantograph and its hydraulic damper 

Previous studies have been performed to model the nonlinear characteristics of railway hydraulic 

dampers and analyse their effects on the yaw motion, stability [2–4] and riding comfort [5] of rail vehicle 

systems. Oh, et al. [6] introduced magneto-rheological dampers in the semi-active control of the rail vehicle 

secondary suspension. Stein, et al. [7] used an adjustable damper in the seat suspension of a locomotive 

driver to reduce fatigue and pursue better comfort of the locomotive driver. Croft, et al. [8] modelled and 

predicted the effect of rail dampers on the wheel-rail interaction and rail roughness growth. 

Pombo and Ambrósio [9] studied the effects of the pan-head mass, pan-head suspension stiffness and 

base frame damping on the pantograph-catenary interaction quality by establishing a lumped-mass linear 

dynamic model of the pantograph. In the pantograph model, the hydraulic damper was considered a 

single-parameter linear model with the damping coefficient as the only parameter. In many similar studies, 

in both lumped-mass [10–15] and multibody [16–18] pantograph models, the hydraulic damper was treated 

as a single-parameter model. 

Zhou and Zhang [19] optimized the pantograph parameters using the sensitivity analysis and experience, 

and the optimal results were experimentally validated. Similar design optimizations [20–23] of the 
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pantograph parameters were performed using automatic algorithms or robust design techniques. However, 

in these works, the pantograph models are almost lumped-mass linear ones, where the hydraulic damper is 

also considered a single-parameter model. 

Thus: 

(1) Research on modelling the nonlinear displacement-dependent characteristics of the pantograph 

hydraulic damper is notably limited.  

(2) In current studies on the pantograph-catenary interaction and parameter design optimization of the 

pantograph and catenary system, the hydraulic damper was considered a single-parameter linear model. The 

single-parameter linear model is notably different from the actual nonlinear displacement-dependent 

characteristics. In addition, during the raising or lowering process of the pantograph, the damper angle 

changes with the motion of the framework, so there is the problem of effective damping. Thus, the current 

damper model appears incomplete, and the accuracy must be improved. 

(3) Most existing works concern the problems of the pantograph-catenary interaction, but the effect of 

component characteristics, e.g., the hydraulic damper characteristics, on the raising and lowering 

performance of the pantograph is hardly addressed. 

In this work, a new simplified-parametric model is proposed to describe the nonlinear displacement- 

dependent damping characteristics of the pantograph hydraulic damper and validated by experimental 

results. Then, a full mathematical model of the pantograph-catenary system, which incorporates the new 

pantograph damper model, is established to simulate the effect of the damping characteristics on the 

pantograph dynamics, and valuable results are obtained. The concise pantograph hydraulic damper model 

appears to be more complete and accurate than previous single-parameter model, so it is more useful in the 

context of pantograph-catenary dynamics simulation and parameter optimization. The obtained simulation 

results are also valuable and instructive for further optimal specification of pantograph hydraulic dampers. 

The paper is structured as follows: a full mathematical modelling of the pantograph-catenary system 

with a new damper model is performed in Section 2, the effect of the damper characteristics on the 

pantograph dynamics is simulated in Section 3, and conclusions are drawn in the final section. 

 

2. Mathematical modeling of the pantograph-catenary system with a new damper model 

Figure 2 schematically illustrates the configuration, geometry and parameters of the pantograph- 

catenary system. The structures of the upper arm, lower arm, guiding rod, coupling rod and hydraulic 

damper are considered a united multibody mechanism, i.e., the framework; the pantograph head includes 

mass mh and a suspension with stiffness kh and damping ch; the pantograph head is connected with the 

framework by joint E. The moving pantograph-catenary interaction is simplified as a variable stiffness kc, 
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Fig. 2 Schematic illustrations of the configuration (a), geometry and parameters (b) of the pantograph-catenary system 

so the dynamic interaction force between the pan-head and the catenary can be readily obtained. 

2.1. Multibody dynamic model of the pantograph framework 

2.1.1 Relations among key kinematic parameters 

To model the multibody dynamics of the pantograph framework, it is necessary to first deduce the 

kinematic relations among the components of the framework. Using the parameters and coordinates in Fig. 

2(b) and only considering the vertical motion of the pantograph, it is easy to deduce the positions and 

angles of all nodes in the framework in terms of raising angle α of the lower arm. 

    For example, the raising angle of the coupling rod in terms of α can be formulated by 
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and the raising angle of the connection rod BC in terms of α can also be written as 
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    The displacement of joint E, which is also a crucial parameter, can be deduced as follows 

e 0 3 4 1sin s n( )) i(y h l l         (4) 

2.1.2 Multibody dynamic model of the pantograph framework 

In Fig. 2(b), all rods are considered rigid bodies; because the masses of the guiding rod and connection 

rod BC are small, the guiding rod is negligible, and the connection rod BC can be considered a rod with no 

mass and no moment of inertia. Thus, the multibody dynamics of the pantograph framework can be 

described by the following Lagrange differential equation 

F

d L L
G
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  

  
  (5) 

where L is the Lagrangian function and L=T-U; T is the kinetic energy of the framework; U is the potential 

energy of the framework when the potential energy in the plane across point A is considered to be zero. 

Thus, according to Fig. 2(b), we obtain 
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In Eq. (5), GF is the generalized force, which includes interaction forces from the pantograph head and 

hydraulic damper and the uplift moment from the pneumatic actuator. According to the principle of virtual 

work, GF can be formulated [24] by 

F 4 h h e h h h e 5h d= [ ( ) ( ) ]G M k k y y l y y kgc m F         (8) 

where coefficients k4 and k5 are defined as variations of the displacement of joint E ye to α and hydraulic 

damper length s to α, respectively; k4 and k5 are written as 

e
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Referring to Fig. (3), we can calculate the dynamic damper length s in terms of α in Eq. (9) as follows 

  2 2

d d[ cos( )] [ sin( )]s x l y l          (10) 

Thus, we substitute Eqs. (6)-(10) into Eq. (5) to obtain a dynamic model of the framework in terms of α 

2
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where the effective moment of inertia Jf of the framework, coefficient Uf, effective damping coefficient Cf 

of the framework, generalized force Ff of the framework and uplift moment Mα from the pneumatic actuator 
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can be described as follows 
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Fig. 3 Geometric parameters to calculate the motion of the hydraulic damper 
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where coefficients k6 and k7 are defined as the variations of the coupling rod raising angle θ2 to α and the 

angle of the connecting rod BC to horizontal line θ1 to α, respectively; k6 and k7 are written as 

2 1
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Coefficients k8 and k9 are defined as 
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In the pantograph dynamics research, sometimes it is more interesting to study the dynamic model in 

terms of the displacement of joint E, i.e., ye; hence, except for using Eq. (4), it is easy to deduce and use the 

following relations to transform α to ye 
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where coefficient k10 is defined as 

4
10 =

dk
k

d
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2.2. Dynamic model of the pantograph head with catenary interaction 

Referring to Fig. 2(b) and according to Newton’s second law, the dynamic model of the pantograph 

head is written as 
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where the pantograph-catenary interaction force Fc can be further written as 
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where kc is the changeable catenary stiffness and given by the following model [25] 
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Eq. (23) describes the fluctuating stiffness of the catenary in terms of the pantograph moving speed and 

time; it is a law fitted from the finite element model [25] of the common Chinese catenary. 

Thus, as shown in Fig. 2(b), the dynamics of the pantograph head and catenary are coupled by kc; the 

dynamics of the pantograph head and framework are coupled by joint E, i.e., the dynamic forces from the 

pantograph head act on the framework through joint E, and in return the framework motions affect the 

pantograph head also through joint E. 
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2.3. Nonlinear displacement-dependent characteristics of the hydraulic damper 

   The pantograph damper has nonlinear displacement-dependent damping characteristics. Figs. 1 and 4(a) 

show that when the pantograph is in the normal working position, the damper has the shortest length, 

vibrates with very small amplitudes, and provides the pantograph with a small damping. 

When the pantograph is lowered, the damper is extended and the fluids in the damper are displaced 

from the left chamber of the piston to the right chamber of the piston through the orifices in the rod. At the 

beginning of the extension, the damper produces small damping forces. However, with continuing 

extension of the damper, the orifices in the rod are sequentially obstructed by the guide seat, and the 

pressure in the left chamber of the piston increases, so the damper produces notably high damping forces to 

stop the pantograph to the vehicle roof. 

When the pantograph is raised, the damper is compressed and the fluids in the damper are displaced 

from the inner tube to the reservoir through the foot valve with small resistances. In this process, the 

damper also provides the pantograph with a small damping. 

 

Fig. 4 (a) Cross-section of the pantograph damper; (b) engineering drawing of the cross-sections and dimensions of the orifices in 

the rod 

   A full parametric model of the pantograph damper has been built in the literature [26]; however, in the 

pantograph dynamics simulation, a simplified parametric model is wieldier and more efficient. 

2.3.1 Damping performance in the extension stroke 
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   During the extension stroke of the damper, referring to Fig. 4, it is easy to write the following fluid 

continuity equations 

 
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where the pressure action area Ax of the piston during the extension stroke of the damper and the constant 

cross-section area Af of the orifices in the rod for fluids outflow are written as 
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The changeable cross-section area An of the orifices in the rod for fluids inflow is described by 
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We combine Eqs. (24) and (25) to obtain 

 2 2 2

x f 2

2 2 2

d1 f

= ( )
2

n

n

A A A
P x t

C A A

 

                                                             
(28) 

Thus, the damping force during the extension stroke of the damper is 
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it is easy to obtain 
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Therefore, the damping coefficient of the pantograph damper during extension can be written as 

2
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Eq. (32) indicates that the damping coefficient of the damper during extension is governed by its 

displacement in relation to parameter An, and its speed ẋ(t). 

2.3.2 Damping performance in the compression stroke 

During the compression stroke of the damper, referring to Fig. 4, it is also easy to write the following 
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fluid continuity equation 
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where the pressure action area Ac of the piston during the compression stroke of the damper is written as 
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the amount of fluid that passes through the small constant orifice d0 in the inner tube is very small and on a 

different scale, when compared with the amount of fluid that passes through the compression shim-stack 

valve in the foot valve assembly. Thus, if we neglect the flow relating to constant orifice d0 in Eq. (33) and 

define a constant for the shim-stack valve 
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it is easy to solve Eq. (33) and obtain 
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Hence, the damping force during the compression stroke of the damper is 
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We continue to define a constant 
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to obtain 
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Thus, the damping coefficient of the pantograph damper during compression can be written as 

 
1
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com 13 ( )C k x t


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2.3.3 Simplified-parametric pantograph damper model 

In engineering, it is feasible to assume that the pantograph is lowered with a constant speed before the 

orifices in the rod begin to be sequentially shielded by the guide seat. Thus, referring to Eq. (32), Cext can be 

considered a constant in this process and defined as C0. 

However, when the orifices in the rod begin to be sequentially shielded, the damping coefficient 
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becomes large and complex; Eqs. (31) and (32) are available to describe the notably nonlinear behaviour in 

this process. 

Similarly, we can assume that the pantograph is raised with a constant speed, and the speed is mainly 

determined by the performance of the pneumatic actuator. In addition, Eq. (39) indicates that the speed ẋ(t) 

weakly affects the damping force, so Fd can be considered a constant. In fact, the compression shim-stack 

valve in the foot valve assembly is similar to a relief valve; when the damper is compressed, the damping 

forces are approximately constant and defined as Fconst. 

Therefore, a simplified-parametric pantograph damper model is proposed as follows 
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   Equation (41) is a concise model with apparent physical meaning to describe the nonlinear 

displacement-dependent damping characteristics of the pantograph damper. For a given type of pantograph 

damper, the second item in Eq. (41) can be subdivided according to the concrete configuration of the orifice 

network. For example, for the damper structure in Fig. 4, Eq. (41) can be concretely written as 
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where A0–A5 can be calculated using Eq. (27). In addition, according to Fig. 4, we have 

0 ( ),  ( )s s x t s x t  
                                                                 

(43) 

Thus, the above simplified-parametric damper model can be easily coupled with the pantograph dynamics 

model and used for pantograph dynamics simulations. 

2.3.4 Damper model validation 

   Both computer simulation and experimental research (Fig. 5) were performed to verify the proposed 

simplified-parametric pantograph damper model, and the results are shown in Fig. 6. 

   Fig. 6 compares the tested nominal-speed force vs. displacement (Fd-x(t)) characteristics with the 

simulated Fd-x(t) characteristics of a high-speed rail pantograph hydraulic damper (Type: J6H36-02-00). 

Fig. 6 demonstrates that the test result is consistent with the simulation result, except for small biases in 

lower-level damping forces, and the biases are notably small and tolerable. In addition, the tested damping 

force sometimes appears less stable than the simulated damping force, which is common in practical 

product tests. 

In section “a-b”, the pantograph begins to be lowered, so the damper begins to extend. Because all 

 

Fig. 5 Bench testing of a high-speed rail pantograph hydraulic damper 



13 
 

 

Fig. 6 Nominal-speed force vs. displacement (Fd-x(t)) characteristics of a high-speed rail pantograph hydraulic damper (Type: 

J6H36-02-00) with a harmonic excitation of displacement amplitude of ± 24.38 mm, a frequency of 0.65 Hz and a velocity 

amplitude of ± 0.1 m/s 

 

orifices in the rod are available to charge the fluids, the damping force slowly increases although the 

excitation speed improves, so this is good for fast descending of the pantograph. 

However, in section “b-c”, the orifices in the rod begin to be sequentially shielded, so the damping 

forces drastically increase, and the descending speed of the pantograph quickly decreases. In section “c-d”, 

although only the constant orifice in the inner tube works, the pantograph speed is approaching zero, so the 

damping force quickly descends to zero, and the pantograph is stopped and rests on the compartment roof. 

In section “d-e-a”, the pantograph is raised, so the damper is compressed. Because the compression 

shim-stack valve in the foot valve assembly plays a dominate role and acts as a relief valve in this process, 

the damper supplies a low-level and approximately constant damping force to the pantograph. 

Thus, the proposed simplified-parametric model is validated by experimental results; the concise model 

accurately captures the nonlinear displacement-dependent damping characteristics of the pantograph 

hydraulic damper, and it appears more complete and accurate. 
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3. Effect of the damper characteristics on the pantograph dynamics 

   A detailed MATALB/Simulink model was developed using the deduced full mathematical model of the 

pantograph-catenary system in Section 2, with which the proposed simplified-parametric pantograph 

damper model was coupled. The parameter values in the MATALB/Simulink model for the dynamics 

simulation are summarized in the Appendix. 

In the simulation, three cases of damper characteristics were used. Case 1 has high-level damping 

characteristics with C0=15.57 kN s/m, maximum damping performance at section “b-c-d”, which can be 

calculated by the second item in Eq. (41), and Fconst=927.7 N. Case 2 has medium-level damping 

characteristics with C0=9.50 kN s/m, medium damping performance at section “b-c-d”, and Fconst=480 N. 

Case 3 has low-level damping characteristics with C0=4.00 kN s/m, minimum damping performance at 

section “b-c-d”, and Fconst=31 N. 

3.1. Raising performance 

When the pantograph is raised (the vehicle is stationary), the damper is compressed and works in 

section “d-e-a” as shown in Fig. 6, the Fconst in Eq. (41) represents the level of damping in section “d-e-a”. 

Fig. 7 demonstrates the instantaneous current collector height and contact force of the pantograph when 

it is raised. Fig. 7(a) shows that the pantograph with a small Fconst (Case 3) is quickly raised, but the 

collector fluctuates with large amplitudes, and for a long time after its first impact with the catenary, the 

contact (impact) forces during fluctuation are large, as shown in Fig. 7(b). The pantograph with a high-level 

Fconst (Case 1) is quickly stabilized (Fig. 7(a)), although it is raised for a relatively longer time, and the 

contact forces are small and quickly stabilized (Fig. 7(b)). The performance of the pantograph with a 

medium-level Fconst (Case 2) is between that of Cases 3 and 1. 

Fig. 8 summarizes the concrete indices of the pantograph when it is raised and shows that Case 3 has 

the highest maximum contact force and longest raising time of the pantograph, Case 1 has the lowest 

maximum contact force and shortest raising time of the pantograph, and the indices in Case 2 are between 

those of Cases 3 and 1. 
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Fig. 7 Instantaneous collector height yh (a) and contact force Fc (b) during the raising process of the pantograph 

 

Fig. 8 Maximum contact force and raising time during the raising process of the pantograph 
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Thus, from the viewpoint of raising performance, Fconst in the pantograph damper model Eq. (41) should 

not be designed to be too small or zero; otherwise, severe impacts between the pan-head and the catenary 

and a longer stabilization time of the pantograph will be induced; in other words, Fconst has an optimal 

value. 

3.2. Holding performance 

   When the pantograph is operating, i.e., the moving pantograph is holding with the catenary, the 

pantograph and hydraulic damper experience both high-frequency-low-amplitude vibrations and 

low-frequency-big-amplitude discrete disturbances. The hydraulic damper works in sections “a-b” and 

“d-e-a” (Fig. 6) during the holding process, so both parameters C0 and Fconst in Eq. (41) are crucial to the 

contact quality of the pan-head and catenary. 

3.2.1 Pulse responses of the pantograph 

The pulse responses of pantograph reflect the stabilization ability of the pantograph against disturbances. 

When the pantograph is subject to a positive force pulse input, the response of contact force Fc and its 

Power Spectrum Density (PSD) are demonstrated in Fig. 9. Fig. 9(a) shows that the pantograph with large 

C0 and Fconst (Case 1) is more easily stabilized in contact force than that with smaller C0 and Fconst (Cases 2 

and 3). Fig. 9(b) also shows that the pantograph with large C0 and Fconst has weaker energies at the main 

frequencies of 2.6 Hz and 5.2 Hz than the pantograph with smaller C0 and Fconst. 

Fig. 10 demonstrates the displacement pulse response of pantograph collector height yh and its PSD 

when the pantograph is holding with the catenary, and indicates that the pantograph with large C0 and Fconst 

(Case 1) is more easily stabilized in collector height and has weaker energies at the main frequencies of 1 

Hz and 2.6 Hz than that with smaller C0 and Fconst (Cases 2 and 3). 
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Fig. 9 Force pulse response of contact force Fc (a) and PSD of Fc (b) when the pantograph is holding with the catenary 

 

 

Fig. 10 Displacement pulse response of collector height yh (a) and PSD of yh (b) when the pantograph is holding with the catenary 
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3.2.2 Dynamic contact performance of the pantograph and catenary 

Fig. 11 demonstrates the instantaneous current collector height yh and its PSD when the pantograph 

moves between the fifth and the seventh spans of the catenary at a speed of 200 km/h. The pantograph with 

large C0 and Fconst (Case 1) has lower vibration amplitudes in collector height (Fig. 11(a)) and weaker 

energy at the main frequency of 2.6 Hz (Fig. 11(b)) than that with smaller C0 and Fconst (Cases 2 and 3). 

However, the energy intensities at the main frequencies of 0.85 Hz and 1.77 Hz do not show remarkable 

differences among the three cases. 

 

 

Fig. 11 Instantaneous current collector height yh (a) and PSD of yh (b) when pantograph moves between the fifth to the seventh 

spans of the catenary at a speed of 200 km/h 

Fig. 12 demonstrates the instantaneous contact force Fc and its PSD when the pantograph moves 

between the fifth and the seventh spans of the catenary at a speed of 200 km/h. Fig. 12 shows that the 

pantograph with large C0 and Fconst (Case 1) has lower-level fluctuating amplitudes in contact force (Fig. 

12(a)) and weaker energy at the main frequency of 2.6 Hz (Fig. 12(b)) than that with smaller C0 and Fconst 

(Cases 2 and 3). The differences in energy intensity at other main frequencies are not obvious among the 

three cases. 
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Fig. 12 Instantaneous contact force Fc (a) and PSD of Fc (b) when the pantograph moves between the fifth to the seventh spans of 

the catenary at a speed of 200 km/h 

 

Fig. 13 Normal contact force distributions (a) and extreme contact force distributions (b) of the pantograph 
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Fig. 13 summarizes and compares the contact force distributions of the pantograph when the pantograph 

has different levels of C0 and Fconst. When 60 N≤ Fc ≤80 N, the contact force is considered in the normal [27] 

contact zone, as shown in Figs. 9(a) and 12(a). When Fc >80 N or Fc <60 N, the contact force is considered 

higher or lower than the normal value. If Fc >90 N, the contact force is considered too high and may 

damage the pan-head and catenary; if Fc <50 N, the contact force is considered too low and the pan-head is 

about to lose contact with the catenary. 

Fig. 13 shows that the percentage of normal contact forces of the pantograph with large C0 and Fconst 

(Case 1) is over 66.5% (Fig. 13(a)) and that of extreme contact forces is below 2.5% (Fig. 13(b)). However, 

the percentage of normal contact forces of the pantograph with small C0 and Fconst (Case 3) is only 39.3% 

(Fig. 13(a)) and that of extreme contact forces exceeds 21% (Fig. 13(b)). The percentages of Case 2 are 

between those of Cases 3 and 1. 

Thus, from the viewpoint of contact quality, large C0 and Fconst in the pantograph damper model (Eq. 

(41)) can increase the percentage of normal contact forces and reduce that of extreme contact forces. In 

other words, it can improve the pantograph-catenary contact quality. In engineering, C0 and Fconst should not 

be designed to be too small or zero. 

3.3. Lowering performance 

When the pantograph is lowered (the vehicle can be stationary or moving), the damper is stretched and 

works in section “a-b-c-d” as shown in Fig. 6. If we divide section “a-b-c-d” into “a-b” and “b-c-d”, C0 

represents the damping performance in section “a-b”, and the second item in Eq. (41) represents the 

damping performance in section “b-c-d”. 

Figs. 14(a) and (b) show the instantaneous height ye of joint E and velocity ẏe of joint E when the 

pantograph is lowered. As an example (Case 1), Fig. 14(b) shows the lowering process of the pantograph; 

sections “a-b” and “b-c-d” correspond to sections “a-b” and “b-c-d” in Fig. 6, respectively. In section “a-b”, 

the pantograph descends against a relatively small damping of C0, so the pantograph speed increases; 

however, in section “b-c-d”, because the pantograph is subject to a very large nonlinear damping, the 

pantograph speed is drastically reduced in section “b-c” and decreases to zero in section “c-d” when the 

pantograph impacts the base frame. Fig. 14(b) also illustrates the lowering times t1 in section “a-b” and t2 in 

section “b-c-d”; the sum of t1 and t2 is equal to the total lowering time of the pantograph. 

Fig. 14(b) indicates that speed of the pantograph with high-level damping (Case 1) is quickly reduced 

but requires a longer time to reach zero, whereas the speed of the pantograph with low-level damping (Case 

3) is slowly reduced but quickly reaches zero. However, because of the considerable impact of the 

pantograph and base frame in Case 3, the final speeds drastically fluctuate. The final impact intensity is also 

observed in Fig. 14(c), where the pantograph with low-level damping (Case 3) has the largest velocity 
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Fig. 14 Instantaneous height ye (a) and velocity ẏe (b) of joint E and PSD of ẏe (c) when the pantograph is lowered 

impact energy at the main frequency of 2.6 Hz. 
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Fig. 15 demonstrates the instantaneous acceleration ÿe of joint E and PSD of ÿe when the pantograph is 

lowered. Fig. 15(a) shows that the pantograph with a high-level damping (Case 1) has the largest maximum 

acceleration in the speed reduction process, i.e., section “b-c” of Fig. 14(b), and the smallest maximum 

impact acceleration in the final process, i.e., section “c-d” of Fig. 14(b). Fig. 15(a) also shows that the 

pantograph with low-level damping (Case 3) has the largest maximum impact acceleration in the final 

process. In the frequency domain, Fig. 15(b) obviously shows that the pantograph in Case 3 has the largest 

acceleration impact energies at the main frequencies of 9.2 Hz and 13.8 Hz. 

 

 

Fig. 15 Instantaneous acceleration ÿe of joint E (a) and PSD of ÿe (b) when the pantograph is lowered 

Fig. 16 demonstrates the instantaneous vertical momentum and PSD of the vertical momentum of the 

pantograph when the pantograph is lowered. In the main section of speed reduction “b-c”, the pantograph 

with a high-level damping (Case 1) has the largest vertical momentum (Fig. 16(a)) and vertical momentum 

energies (Fig. 16(b)) at the main frequencies of 0.2 Hz and 1.2 Hz. However, in the final impact process, 

the pantograph with low-level damping (Case 3) has the largest vertical momentum (Fig. 16(a)) and vertical 
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momentum energies (Fig. 16(b)) at the main frequency of 4.2 Hz. 

Fig. 17 summarizes the lowering time in terms of t1 and t2, maximum acceleration and maximum impact 

acceleration of the pantograph during the lowering process. Fig. 17(a) indicates that the differences in 

lowering time t1 in the first stage “a-b” are not obvious among the three cases, so the damping coefficient 

C0 has no obvious effect on the lowering time of the pantograph. Fig. 17(a) also indicates that the higher 

level of damping in section “b-c-d” of the damper corresponds to a longer total lowering time of the 

pantograph. In other words, the damping performance in section “b-c-d” (Fig. 6 and the second item in Eq. 

(41)) of the damper has an obvious effect on the lowering time of the pantograph. 

 

 

 

Fig. 16 Instantaneous vertical momentum (a) and PSD of the vertical momentum (b) of the pantograph when the pantograph is 

lowered 

 



24 
 

 

Fig. 17 Lowering time in terms of t1 and t2 (a), maximum acceleration (b) and maximum impact acceleration (c) of the pantograph 

Figs. 17(b) and (c) show that the higher level of damping in section “b-c-d” of the damper corresponds 

to the larger maximum acceleration and smaller maximum impact acceleration of the pantograph. In other 

words, the speed of the pantograph with high-level damping (Case 1) is quickly reduced, and the 

pantograph is more softly dropped on the base frame, but a longer total lowering time (Fig. 17(a)) is 

induced by the high-level damping. 

Therefore, from the viewpoint of lowering performance, the damping coefficient C0 in section “a-b” of 

the damper has no obvious effect on the lowering time of the pantograph, whereas the nonlinear damping 

characteristics in section “b-c-d” of the damper, which are described by the second item in Eq. (41), have 

dominating effects on the total lowering time, maximum acceleration and maximum impact acceleration of 

the pantograph. Thus, within the constraint of the total lowering time, increasing the damping 

characteristics in section “b-c-d” will obviously improve the lowering performance of the pantograph. 

 

4. Concluding remarks 

   (1) A new simplified-parametric model was proposed to describe the nonlinear displacement-dependent 

damping characteristics of the railway pantograph hydraulic damper and validated by experimental results. 

A full mathematical model of the pantograph-catenary system, which incorporated the new pantograph 

damper model, was established to simulate the effect of the damping characteristics on the pantograph 

dynamics, which includes the raising, holding and lowering performance of the pantograph. 

(2) Large Fconst and C0 in the pantograph damper model have three benefits: increased response quality 

of the pantograph when the pantograph is raised; avoidance of excessive impact between the pan-head and 

the catenary; and improved pantograph-catenary contact quality by increasing the percentage of normal 

contact forces and reducing the percentage of extreme contact forces. Let alone, a large C0 has no obvious 
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effect on the lowering time of the pantograph; thus, in engineering design, C0 and Fconst should not be too 

small or zero. 

(3) The nonlinear damping characteristics described by the second item in the new damper model have 

dominating effects on the total lowering time, maximum acceleration and maximum impact acceleration of 

the pantograph. Thus, within the constraint of total lowering time, increasing the second item damping 

characteristics of the damper will obviously improve the lowering performance of the pantograph and 

reduce excessive impact between the pantograph and its base frame. 

(4) The proposed concise pantograph hydraulic damper model appears to be more complete and 

accurate than the previous single-parameter model, so it is more useful in pantograph-catenary dynamics 

simulations and further parameter optimizations. The obtained simulation results are also useful and 

instructive for optimal specification of pantograph hydraulic dampers. However, this work was performed 

by neglecting the performance and time delay of the pneumatic actuating system, so it will be interesting to 

incorporate the pneumatic system dynamics in the next study. 
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Appendix: 

Parameters and values in the pantograph-catenary dynamics modelling and simulation 

Notation (Unit) Description Value Remarks 

m1 (kg) Coupling rod mass 3.90 
 

J1 (kg m2) Coupling rod moment of inertia 1.88 
 

l1 (m) Coupling rod length 1.20 
 

lm1 (m) 
Length from the center of gravity of the coupling rod to 

joint A 
6.03E-001 

 

θ2 (°) Angle from the coupling rod to level Variable 
 

l2 (m) Length of connecting rod BC 3.40E-001 
 

θ1 (°) Angle from the connecting rod BC to level Variable 
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m3 (kg) Lower arm mass 2.10E+001 
 

J3 (kg m2) Lower arm moment of inertia 1.75E+001 
 

l3 (m) Lower arm length 1.58 
 

lm3 (m) 
Length from the center of gravity of the lower arm to 

joint D 
7.93E-001 

 

α (°) Rising angle of the lower arm (pantograph) Variable 
 

h0 (m) Vertical distance of joints A and D 1.30E-001 
 

l0 (m)  Horizontal distance of joints A and D 7.20E-001 
 

m4 (kg) Upper arm mass 1.60E+001 
 

J4 (kg m2) Upper arm moment of inertia 2.02E+001 
 

l4 (m) Upper arm length 1.95  

lm4 (m) 
Length from the center of gravity of the upper arm to 

joint C 
9.14E-001  

β (°) Angle from the connecting rod BC to upper arm 1.15E+001  

ye (m) Height of joint E Variable  

mh (kg) Pan-head mass 5.00  

kh (N/m) Equivalent stiffness of the pan-head suspension 7.60E+003  

ch (N/m) 
Equivalent damping coefficient of the pan-head 

suspension 
5.00E+001  

lh (m) Height between the collector and joint E 1.00E-001  

yh (m) Height of the pantograph collector Variable  

yc (m) Height of the catenary 1.70  

Lc (m) Span length of the catenary 6.30E+001  

Ld (m) Dropper interval 9.00  

kc (N/m) Catenary stiffness Variable 
 

k0 (N/m) Static stiffness of the catenary 3.6845E+003 
 

a1 Coefficient 4.665E-001  

a2 Coefficient 8.32E-002  

a3 Coefficient 2.603E-001  

a4 Coefficient -2.801E-001  
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a1 Coefficient -3.364E-001  

Fc (N) Pantograph-catenary contact force Variable  

v (km/h)
 

Vehicle speed 2.00E+002  

L Lagrangian function Function  

T (J) Kinetic energy of the framework Variable  

U (J) Potential energy of the framework Variable  

GF (N m) Generalized force Variable  

Jf (kg m2) Equivalent moment of inertia of the framework Variable  

Uf (N s2/m) Coefficient of ẏe
2 in dynamic model of the framework Variable  

Ff (N m) Equivalent generalized force of the framework Variable  

Mα (N m)
 

Uplift moment Variable  

Fu (N) Static uplift force 7.00E+001  

Cf (N s/m) Equivalent damping coefficient of the framework Variable  

Fd (N) Damping force of the hydraulic damper Variable 
 

g (m/s2) Acceleration of gravity 9.80  

l (m) Length of the connection rod DP 1.80E-001  

xd (m) Horizontal distance between point P and joint N 3.50E-001 
 

yd (m) Vertical distance between joints D and N 0.00 

Joints D and 

N are on the 

same level 

s (m) Instantaneous length of the hydraulic damper  Variable 
 

γ (°) Angle from the connection rod DP to lower arm 5.56E+001 
 

s0 (m) 
Hydraulic damper length when the pantograph is 

completely raised 
3.65E-001 

 

x(t) (m) Instantaneous displacement of the hydraulic damper Variable 
 

k1-k13 Coefficients Variable 

The unit 

depends on 

concrete 

meaning of 

the coefficient 

t (s) Time Variable 
 

Ac (m2) 
Pressure action area of the piston during the extension 

stroke of the damper 
Variable 
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Af (m2) 
Cross-section area of the orifices in the rod for fluid 

outflow 
Variable 

 

A1-An (m2) 
Changeable cross-section area of the orifices in the rod 

for fluid inflow 
Variable 

n=1, 2, … 6 in 

this work 

Ax (m2)
 

Pressure action area of the piston during the  

compression stroke of the damper 
Variable  

Ccom (N s/m)
 

Damping coefficient of the damper during compression Variable  

Cd1 
Discharge coefficient of the orifice 7.20E-001  

Cd2 
Discharge coefficient of the shim-stack valve 6.10E-001  

Ce Equivalent-pressure correction factor 3.15E-001 FEA identified 

Cext (N s/m) Damping coefficient of the damper during extension Variable  

Cw (m6/N) Deflection coefficient of the shim Variable  

C0 (N s/m) 
Initial damping coefficient of the damper during 

extension 
Variable  

D (m) Piston diameter 3.60E-002  

E (Pa) Elastic modulus of the shim 2.00E+011  

Fconst (N) Damping force of the damper during compression Variable  

P (Pa) Instantaneous working pressure of the damper Variable  

Pi (Pa) Instantaneous pressure in the hollow passage of the rod Variable  

Qwork (m3/s) Instantaneous working flow of the damper Variable  

d (m) Rod diameter 1.58E-002  

d0 (m) Diameter of the orifice in the inner tube 6.00E-004  

d1 (m) Diameter of the orifice in the rod for fluid inflow 1.10E-003  

d2 (m) Diameter of the orifice in the rod for fluid outflow 1.20E-003  

d3 (m) Diameter of the orifice in the rod for fluid outflow 1.10E-003  

d4 (m) Diameter of the orifice in the rod for fluid outflow 1.10E-003  

h1-hn (m) Thickness of the shims in a shim-stack 5.00E-004  

rs (m) Outer radius of the shim 8.00E-003  

sa (m) Displacement amplitude of the damper 5.00E-002  

s1 (m) Distance from the first orifice in the rod to point (0, sa/2) 2.10E-002  

∆s1 (m) Orifice interval 1.40E-003  

∆s2 (m) Orifice interval 3.20E-003  

ρ (kg/m3) Oil density 8.75+002  
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