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Abstract 

Transmission electron microscopy (TEM) of ex-situ He ion irradiated bulk W has been performed to 

quantitatively compare the damage microstructure to that observed in regions of comparable thicknesses 

during in-situ ion irradiation with TEM experiments. Samples were irradiated to achieve He-appm/DPA 

ratios of 2,000 and 500 at temperatures of 500 and 800°C to 1.5 and 3.0 DPA. For irradiations at 500°C, 

bubble diameters (~2 nm) were larger and areal bubble densities (~1012 bubbles/cm2) were lower than 

those in the in-situ experiments. This is attributed to greater amounts of He being retained in the ex-situ 

bulk experiments whereas in the in-situ experiments some may escape due to the proximity of surfaces. 

Dislocation loops were observed in all samples and were characterised as b = ±½<111> type with no b 

= <100> type loops. Dislocation loop populations were dominated by interstitial type (~60%) agreeing 

with in-situ experiments. However, dislocation loops in this work were larger, ranging in size from 7–

100 nm and large concentrations of entangled dislocation lines were observed in the bulk of the grain 

as compared to in the in-situ experiments.  
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1 Introduction 

Tungsten is regarded as the primary candidate for use as a plasma facing material in the divertor of 

ITER and the Demonstration fusion power station (DEMO) due to its high melting temperature (~3700 

K), low sputter yield and high thermal conductivity (~170 W/m/K at room  temperature) [1]. During 

service, the divertor will be exposed to high heat fluxes, radiation damage from 14.1 MeV neutrons and 

He injection from the plasma as well as He production from (n,α) reactions [2]. Production of He from 

(n,α) reactions in W is low, with only around 5 atomic parts per million (appm) expected after two full-

power years in DEMO [3]. The α particles escaping from the plasma will generally be around 10s of 

eV, although particles with MeV energies have been measured escaping the plasma of the Joint 

European Torus (JET) reactor [4]. These particles will impact the W surface giving a range of He 

concentrations varying with depth and thus altering the He-appm to displacements per atom (DPA) ratio 

throughout the divertor structure. Hereafter, the He-appm/DPA ratio will be referred to as simply the 

He-appm/DPA ratio (in units of He appm per DPA). 
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Given the anticipated He-appm/DPA ratios in the bulk of the divertor (~0) compared to the surface 

(>1000s due to He bombardment), it is critical to know how this will affect the performance of the W. 

Previous [5]–[7] in-situ irradiation studies, in which the He-appm/DPA ratio, temperature and total 

fluence (dose) were varied, explored the way in which these parameters affect the damage 

microstructure of W. However, an inherent aspect of in-situ transmission electron microscopy (TEM) 

techniques is the proximity of the surfaces given the requirement for thin electron-transparent samples. 

For example, Ferroni et al. [8] examined the effects of high temperature (up to 1400°C) annealing of 

self-ion irradiated W noting that in-situ TEM experiments showed an accelerated loss of loops at 

1000°C compared to ex-situ annealing experiments which may have been due to the greater proximity 

of surfaces in the TEM foils. The current work aims to compare the effects of the proximity of surfaces 

from our previous work using the TEM with in-situ ion irradiation technique [5], [6] with bulk ex-situ 

irradiations of comparable thicknesses at similar He-appm/DPA ratios, irradiation temperatures and 

DPAs. 

2 Experimental 

Samples of W were prepared by punching 3 mm discs from 0.1 mm thick foil (Alfa-Aesar, 99.95 wt.%) 

main impurities as-received were C 0.005 wt.%, Ca 0.003 wt.% and Al, Cu, Mg, Si, Ti, Cr, Mn, Pb and 

Sn < 0.002 wt.%. The discs were annealed at 1400°C for 2 hours under vacuum (0.1 Pa) to remove pre-

existing defects from cold working. The grain sizes were between 10–50 μm as measured by focused 

ion beam-scanning electron microscope (FIB-SEM, FEI Quanta 3D).   

Ex-situ ion irradiations were performed at the Ion Beam Centre (IBC) at the University of Surrey. 

Helium ion irradiations were performed with 400 keV or 1.2 MeV ions to achieve He-appm/DPA ratios 

of 2000 and 500 He-appm/DPA, respectively, at depths of ~50–100 nm from the surface to match 

conditions from the in-situ irradiations. The incidence of the ion beam was normal to the sample surface 

and thus the same direction as the electron beam in post irradiation examination. The samples were 

irradiated at 500 and 800°C to 1.5 and 3.0 DPA. After irradiation, TEM samples were made by 

electropolishing the discs from the unirradiated side with 0.5 wt.% NaOH solution at room temperature 

with a Tenupol-5. Samples were washed in three separate baths of CH3OH to remove any residue from 

the electrolyte. Figure 1a shows the DPA and He concentration (in appm) for 400 keV at a fluence of 1 

x1018 ions/cm2 and Figure 1b shows the He-appm/DPA ratio at the foil depth analysed by TEM after 

electropolishing is ~2000. Figure 1c and d show the corresponding plots for 1.2 MeV He ions at a 

fluence of 2.8 x1018 ions/cm2  showing the region analysed by TEM had a He-appm/DPA ratio ~500. 

Samples were irradiated at 500 and 800°C to doses of 1.5 and 3.0 DPA. Irradiation temperatures were 

chosen as to best match previous temperatures studied in our in-situ irradiations [5]–[7] and to best 

mimic the irradiation conditions  relevant to fusion environments within the capability of the equipment. 

Damage and He concentrations were calculated using the Stopping and Range of Ions in Matter (SRIM-



3 

2013) Monte Carlo computer code [9]. DPA was calculated using the method proposed by Stoller et al. 

[10] using the ‘Quick’ Kinchin-Pease option of SRIM to 5000 ions with a displacement energy for W 

of 90 eV [11] and lattice and surface binding energies set to 0 eV. Helium concentrations were 

determined from SRIM calculations using the ‘Quick’ method to 99,999 ions to ensure good statistics. 

Bright-field (BF) micrographs of the irradiated samples were taken with a JEOL JEM-3010 TEM 

operated at 200 kV. Thickness measurements were made of both the in-situ and ex-situ irradiated TEM 

foils so that quantitative comparisons of the areal densities of defects could be made. Relative 

thicknesses were determined using a Gatan Model 666 parallel-detection electron energy-loss 

spectrometer (EELS). Regions analysed in the in-situ TEM foils were typically around 0.40–0.60λ and 

regions in the ex-situ foils were around 0.50–0.60λ (where λ is the inelastic mean free path for electrons 

and is ~90 nm (± 20%) for W under the conditions used in this work). Helium bubbles were imaged 

using Fresnel contrast where small cavities appear light in underfocus and dark in overfocus. The image 

processing software ImageJ [12] was used to measure bubble size. Bubbles analysed were imaged under 

consistent underfocus conditions with a defocus value of −1.0 μm in order for quantitative comparisons 

to be made. The mean bubble sizes are reported as the averages of 30 measurements. Helium bubble 

densities were measured from TEM images by counting the number of bubbles in three regions of the 

same grain with the reported value given as the mean and the range as the standard deviation.  

Analysis to determine the nature of dislocation loops was performed using the inside-outside contrast 

method [13], [14] on 20–30 loops. The loops analysed were at least 5 nm in size with b = ±½<111> and 

the sample was tilted about an electron beam direction of z = [001]. Excitation errors (sg) were set 

positive by tilting such that the Kikuchi line was on the opposite side of the corresponding diffraction 

spot with respect to the undiffracted beam [15]. In order to compare loops sizes between experiments, 

only loops with equivalent Burgers vectors imaged under the same two-beam diffraction conditions 

were compared. Dislocation loop size was measured as the major diameter of the core (i.e. the largest 

diameter of an oval shaped loop) as observed in projection. Areal dislocation loop densities were 

measured by superimposing images of the same regions taken under different two-beam diffraction 

conditions in order to include all loops present in the grain whilst also avoiding double counting. 

3 Results and Discussion 

3.1 Helium bubble characterisation 

Helium bubbles were observed under all the irradiation conditions studied. Figure 2a–d show BF-TEM 

images of bubbles in W samples irradiated ex-situ with 1.2 MeV He ions (He-appm/DPA ratio ~500). 

Figure 2a and b feature samples irradiated ex-situ to doses of 1.5 and 3.0 DPA, respectively, at a 

temperature of 500°C showing that the He bubble sizes and densities are similar for both. Figure 2c and 

d show samples irradiated ex-situ to 1.5 and 3.0 DPA, respectively, at a temperature of 800°C, showing 
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that He bubble size and density increased dramatically as a function of dose with the formation of large 

(>10 nm in diameter) faceted bubbles in the 800°C irradiation at 3.0 DPA. Figure 3a shows a plot of 

He bubble sizes as a function of DPA for both the 500 and 800°C ex-situ irradiations performed for the 

current work along with previous results from in-situ experiments [5], [7]. From this it can be seen that 

bubble sizes were around 2.0 nm and did not increase significantly between 1.5 and 3.0 DPA at an 

irradiation temperature of 500°C which agrees well with the in-situ experiments. From Figure 3a and b 

it can be seen that at an irradiation temperature of 500°C, bubble diameters were larger, > 2 nm in the 

ex-situ irradiations compared to ~1.5 nm in the in-situ irradiations although this falls within 

experimental errors. However, the areal bubble densities were significantly lower in the ex-situ ion 

irradiations as compared to in-situ. The larger He bubbles sizes with lower areal density observed in the 

ex-situ experiments may be attributed to lower fluxes of the ex-situ ion irradiations (~1012 ions/cm2/s 

compared with ~1013 ions/cm2/s in the in-situ irradiations) allowing increased time for coalescence and 

growth of He bubbles.  

Helium bubble diameters (Figure 3a) for the ex-situ irradiation temperature of 800°C increased from 

~3 nm at 1.5 DPA to ~8 nm at 3.0 DPA which may be attributed to the high mobility of defects at the 

elevated temperature as compared to the irradiations at 500°C. Defect mobility in W has been studied 

by electrical resistivity recovery mechanisms [8], [16]–[20]. Stage I recovery is attributed to the 

diffusion of free interstitials which are mobile at temperature below –173°C [8]. Stage II recovery is 

defined as above -173°C where interstitials are able to escape from traps and annihilate at sinks (e.g. 

immobile vacancies, grain boundaries or surfaces) [8]. Stage III is attributed to monovacancy migration 

in W and is associated with an activation energy of 1.7 eV and becomes active at temperatures above 

~350°C [8], [21]. Stage IV occurs at temperatures above ~720°C and is due to the mobility of vacancy-

impurity complexes. Stage V (above ~870°C) is attributed to the migration of larger vacancy clusters 

[8].  

Helium bubble diameter was not observed to increase significantly as a function of dose for an 

irradiation temperature of 500°C, which is attributed to the irradiation temperature being just at or below 

the stage IV recovery step in W where vacancy-impurity complexes (i.e. small He-vacancy clusters) 

become mobile. The increase in size of the bubbles at the irradiation temperature of 800°C can be 

attributed to the increased mobility of monovacancies at 800°C and the activation of stage IV which 

occurs above ~720°C due to the migration of vacancy-impurity complexes. The plot of bubble densities 

against irradiation temperature in Figure 3b shows that at 800°C the ex-situ areal bubble density was 

initially similar to that at 750°C in the in-situ experiments at 1.5 DPA from our previous work [5], [7]. 

However, as the dose is increased to 3.0 DPA the ex-situ density decreases and matches the areal density 

of bubbles observed in the in-situ experiments at 1000°C. This decrease in areal bubble density as a 

function of dose may be attributed to the agglomeration of bubbles as they grow. Unfortunately, the in-

situ experiments at 1000°C were terminated at ~2.0 DPA due to intergranular fracture of the TEM foils. 
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However, these bulk experiments suggest that the areal density would have decreased due to increased 

agglomeration. 

Unlike in-situ experiments where bubble lattices formed under all He-appm/DPA ratios at 500°C [6], 

random arrangements of bubbles were observed for the irradiation temperature of 500°C at both doses 

and He-appm/DPA ratios studied ex-situ. However, Figure 4 shows an area of bubble ordering in a W 

sample irradiated with a He-appm/DPA ratio ~500 at 500°C to 3.0 DPA. From Figure 4 it can be seen 

that bubbles are randomly distributed towards the centre of the grain. However, towards the grain 

boundary, ordering can be observed both in the image and via faint lines in the fast Fourier transform 

(FFT). However, this alignment appears to be along {200} planes and is not along the {110} planes 

along which bubble and void lattices are known to form in BCC metals [22]. Whereas helium bubble 

lattices have been observed in our previous in-situ work [6], the longer irradiation times of the ex-situ 

ion irradiation may have led to increased agglomeration of He bubbles leading to larger bubbles forming 

and destroying any bubble ordering. 

3.2 Dislocation loop characterisation 

Dislocation loops were observed for both He-appm/DPA ratios studied in the ex-situ irradiations at 

irradiation temperatures of 500°C and 800°C. From Figure 5 it can be seen that at lower doses and lower 

irradiation temperatures the dislocation populations consisted of a mixture of line and loop dislocations 

for both He-appm/DPA ratios. However, at higher doses and temperatures the dislocation population 

appears to be dominated by entangled dislocation loops and lines. Due to the large concentrations of 

dislocation loops and lines in the bulk of the grains, dislocation imaging and analysis could only be 

performed on samples with lower density of dislocations and at grain boundaries where their 

concentrations were lower so as to get good resolution of their contrast.  

Using the g.b = 0 criterion, the loops were characterised as b = ±½<111> type with no <100> type 

observed. Figure 6 shows an example of Burgers vector analysis for a sample irradiated at 500°C using 

1.2 MeV He ions to 3.0 DPA imaged close to the z = [001] zone axis. It can be seen that the dislocation 

loops marked with squares are visible in Figure 6a, b, e and f where g = 020, 02̅0, 1̅10  and 11̅0, 

respectively, and that they are invisible in Figure 6c and d where g = 1̅1̅0 and 110, respectively. The 

loops marked with squares also showed no contrast when g = 2̅1̅1 imaged close to z = [113] which is 

consistent with b = ±½[11̅1]. The observation of only b = ±½<111> is contrary to previous work on 

self-ion irradiation reported in the literature [27]. However, it is in agreement with the in-situ He ion 

irradiations that we previously reported [5], [7].  

In BCC structures, <100> type loops have been proposed to form via two mechanisms. Eyre and 

Bullough [28] reported that faulted loops nucleate on {110} planes which then shear as they grow, due 

to their containing a stacking fault, into either b = ±½<111> or <100> type loops with the un-faulting 
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into the b = ±½<111> being much more favourable [29]. However, the formation of <100> loops via 

the reaction of two ±½<111> loops has was proposed by Masters [30] and this has been shown in FeCr 

alloys experimentally [31], [32]. Under dual self-ion and He irradiations, damage microstructures of 

FeCr were found to be dominated by b = ±½<111> loops as compared to the single self-ion irradiation 

case which was a mixture of b = ±½<111> and <100> type loops [31], [32]. This is attributed to He 

decreasing the mobility of ±½<111> type loops, leading to lower probability of interaction and 

coalescence with another ±½<111> type loop [31]. Recent MD simulations by Sand et al. [33] found 

that the formation of b = <100> loops occurred as a direct result of the cascade collapse, agreeing well 

with the work of Yi et al. [34], [35]. This is attributed to the large energy density of cascades giving 

rise to longer lived thermal spikes and higher chance of loops un-faulting into b = <100> type [36]. 

Helium ions will produce widely spaced, dilute cascades formed with many isolated Frenkel pairs [37] 

and a very low energy density as compared with self-ions. We have previously shown [38] that He has 

no effect on the type of dislocation loop formed in self-ion irradiated W, unlike in the FeCr alloys [31], 

[32] and that b = <100> type loops arise in the presence of dense cascade damage. Thus, the lack of b 

= <100> in this work is attributed to the lack of dense cascade damage.  

The nature of the loops (i.e. vacancy or interstitial) for the samples irradiated to a He-appm/DPA ratio 

of 500 to a dose of 3.0 DPA at 500°C was characterised using the inside-outside method; an example 

of which is shown in Figure 6. The loops in the solid squares were characterised as b = ±½ [11̅1] using 

the g.b = 0 criterion. It can be seen that these loops show outside contrast in Figure 6a and e where g = 

020 and 1̅10, respectively, with sg > 0 leading to the loop inclination being determined to be b = −½[11̅1] 

(for outside contrast (g.b)sg > 0). As z = [001], b.z < 0 and therefore these loops are interstitial in nature 

[13], [14], [39]. Dashed circles in Figure 6 show vacancy-type loops with b = +½[111] and the solid 

circles indicate interstitial loops with b = −½[111]. The formation of vacancy type-loops in the He ion 

irradiation case [5] is an intriguing one, and would not appear to be compatible with a nucleation 

mechanism from cascade collapse as in the Au [40]  and W ion [27], [34], [35] irradiations in which 

vacancy-type loops can nucleate via cascade collapse. As the irradiation temperatures in the He ion 

irradiation case [5] were all at or above 500°C this will be above the Stage III recovery stage in W 

where monovacancies are mobile [8], [21]. Thus, in the absence of dense cascade damage (as in the 

case of our He ion irradiation) vacancy-type loops are likely to nucleate via vacancies accumulating 

and coalescing by thermal migration and forming extended defect clusters which then collapse into 

dislocation loops. From Figure 6 it can be seen that at 3.0 DPA at 500°C some vacancy loops were of 

the order of ~100 nm in diameter. As their suspected mechanism for nucleation and growth requires the 

mobility of monovacancies it seems surprising that loops of this size may form at 500°C, which is only 

just above the monovacancy migration temperature of ~350° (Stage III recovery). Ferroni et al. [8] 

noted the formation of large (>100 nm) dislocation loops in self-ion irradiated W annealed to 800°C. 

The loops were predominantly interstitial in nature with ~20% being vacancy type, however, the authors 
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do not discriminate between the sizes of the interstitial and vacancy type loops. Rau et al. [41] annealed 

neutron irradiated W to 1100°C and reported the presence of vacancy dislocation loops with b = 

±½<111> type only which had an average diameter of ~100 nm. Although these dislocation sizes seem 

to match well with the loop sizes in Figure 6, samples were annealed to higher temperatures than the 

irradiation temperature in this work. Although the irradiation temperature in this work is just above the 

vacancy diffusion temperature, the production of dilute cascades consisting mainly of isolated Frenkel 

pairs may enhance their diffusivity dramatically enough to grow to the sizes comparable with higher 

temperature anneals over the longer timescales of the ex-situ ion irradiations. The relative populations 

of interstitial- and vacancy-type loops is ~60:40, agreeing well with the TEM with in-situ ion irradiation 

experiments [5] at 500°C. This relatively-higher number of interstitial-type loops compared to vacancy-

type is attributed to the stronger bias of dislocations for interstitial absorption whereas other sinks such 

as grain boundaries and cavities are neutral [37]. Helium bubbles will also act as trapping sites for 

vacancies reducing the number in flux leading to fewer vacancy type loops growing to visible sizes in 

the TEM.  

Compared with the in-situ experiments however, dislocation loop sizes were much larger and areal 

dislocation densities were lower in this ex-situ study. For example, in the in-situ irradiations, dislocation 

loop sizes at 3.0 DPA at 500°C were ~5–15 nm for a He-appm/DPA of ~500 and had an areal density 

of ~1011 dislocations/cm2. However in the ex-situ experiments, dislocation loops of the same type (i.e. 

interstitial) and Burgers vector imaged under the same diffraction conditions (to allow valid comparison) 

showed a much larger range of sizes from ~7–100 nm and a much lower areal density of  ~1010 

dislocations/cm2. In addition, there was a change in the dislocation microstructure from the in-situ 

experiments, which predominantly consisted of isolated loops compared to larger more-complex 

networks of dislocation loops and lines in the ex-situ experiments. This difference may be attributed to 

the nature of the experiments with the surfaces in the in-situ irradiations providing large sinks for the 

annihilation of migrating point defects, small clusters and mobile dislocations. This will lead to a higher 

density of small, immobile clusters or dislocation loops that grow much more slowly as there will be a 

lower point-defect flux due to the increased annihilation at the surfaces. However, in the ex-situ 

experiments where these surface effects are likely to be significantly lower than in the in-situ work, 

dislocation networks will grow at a much faster rate, become larger and lead to the dislocation networks 

observed. 

4 Conclusions 

Bulk samples of W have been irradiated ex-situ with He ions at 400 keV and 1.2 MeV to achieve He-

appm/DPA ratios of 2000 and 500, respectively, at temperatures of 500 and 800°C up to a maximum 

dose of 3.0 DPA. These conditions were chosen to match in-situ irradiations performed in a TEM [5]–

[7] to compare the damage microstructures from the two sets of experiments. Bubble diameters were 
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larger and areal bubble density was lower in the ex-situ, compared to the in-situ, experiments. Unlike 

in-situ TEM experiments, random arrangements of bubbles were observed for the irradiation 

temperature of 500°C and all doses at both He-appm/DPA ratios studied ex-situ. Dislocation loops were 

characterised as b = ±½<111> type with no b = <100> type loops detected due to the absence of dense 

cascade damage. Dislocation loops in this work were larger than in the TEM with in-situ ion irradiation 

experiments and ranged in size from ~7–100 nm with a lower areal density of ~1010 dislocations/cm2. 

A mixture of entangled dislocation loops and lines have been observed in the ex-situ bulk irradiation 

experiments unlike the in-situ TEM experiments.  

The differences in the defect microstructures in the in-situ and ex-situ cases may be attributed to larger 

concentrations of He and defect clusters being retained in the ex-situ bulk experiments leading to larger 

defects (He bubbles and dislocations); these may annihilate at the TEM foil surface in the in-situ case. 

In addition, the lower flux of the ex-situ irradiations will lead to increased coalesce and growth of 

defects resulting in fewer, larger defects observed in this work.   
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Figure 5. BF-TEM images of bulk W ex-situ irradiated samples imaged under two-beam conditions 

with g = (200): The scale bar in lower left image applies to all micrographs in figure. 
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