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Abstract

Grewia polysaccharides were isolated using sodium metabisulphite and phosphate buffers and the
influence of the different extraction techniques on the chemical composition and structural
characteristics of the extracts were determined. Structure and chemical composition of the
resulting polysaccharide extracts were determined using FT-IR and NMR spectroscopy, neutral
sugar analysis, size exclusion chromatography coupled to multi-angle light scattering (SEC-
MALS), dilute solution viscometry and steady shear rheology. Chemical composition was similar
irrespectively of the extraction solvent used and ranged between 11.1-16.5 % for protein, 53.4—
66.9 % for total carbohydrate, 18.5-35.1 % for total uronic acid and 23.5-28.6 % for thamnose.
Predominate sugars in the extracts were thamnose and uronic acids with spectroscopy showing the
presence of esterified groups. Intrinsic viscosity varied between 6.5-9.1 dL g! and related with
molar mass (754-2778 x10% g mol!). Grewia polysaccharide dispersions at 1 g dL"! exhibited a
shear thinning flow behaviour with crude and sodium metabisulphite extracts having higher
viscosities. Overall, differences in extraction techniques produced grewia samples with tailored

bulk properties for use in the food and pharmaceutical industries.

Keywords: Grewia mollis, polysaccharides, sugars, isolation, viscosity
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1. Introduction

Polysaccharides are abundant in nature and form the major constituent of the cell wall
material of plants (e.g., cellulose or pectin) [1]. Plant polysaccharide extracts have been widely
used in food and pharmaceutical applications due to their valuable functional properties [2, 3]. In
addition, they may also display bioactivity including antidiabetic, antitumor, or
immunomodulatory properties [ 1, 4-7]. These functional characteristics have been related to their

chemical composition, molar mass, branching characteristics, and functional groups [7].

Grewia mollis is a tropical shrub which belongs to the Malvaceae family and is widely
distributed in Africa [8]. Polysaccharide extracts from the inner stem bark of the grewia plant have
been useful to the food and pharmaceutical industries as a thickening agent, emulsion stabilizer,
or as hydrophilic matrix for tablets [8-10]. For example, in Ghana, the crushed grewia stem bark
is used as a clarifying agent during the processing of an indigenous beverage referred to as pito
[11]. Natural plant-based polysaccharides have been known to demonstrate heterogeneity in
structural characteristics depending on the plant genotype and stage of ripening [3, 12]. The
physicochemical and rheological properties of polysaccharides also depend on the method,
conditions of extraction and purification, which subsequently produce biopolymers with unique
functionality [13, 14]. The extraction procedure used influences the yield, quality, structure and
bioactive properties of the resulting polysaccharides [1, 14]. Although polysaccharides from other
members of the Malvaceae family such as okra have been isolated to produce polysaccharides with
varied structural and molecular characteristics [3, 15-22], few studies have evaluated the effect of
different extraction strategies on the structure and chemical composition of grewia gum. The origin
of a plant material is a critical determinant of the chemical, macromolecular and functional

characteristics of its polysaccharide extracts. The presence of cellulose, hemicellulose, proteins,

3
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fibre and lipids in a plant polysaccharide extract is influenced by the botanical source of the plant
[14, 23]. Grewia is widely distributed in different locations of Africa including Nigeria, Sierra
Leone, Somalia, Angola, Zambia and Ghana. The quest for standardization of extraction protocols
as a requirement for the application of polysaccharides in food and pharmaceutical products have
made it imperative to characterize the physicochemical properties of the gum extracts from the
Grewia mollis plants. Grewia polysaccharides have been previously isolated from plants obtained
from Nigeria [8]. However, the understanding of how different plant sources (e.g., Ghana) and
different extraction protocols affect the molecular characteristics of grewia gum would be
informative to tailor extracts that meet a specific functionality. The present work aims to
investigate and characterize the structure and chemical constituents of polysaccharides from the
Ghanaian Grewia mollis isolated using different solvent extraction methods. The understanding of
the impact of sodium metabisulphite and phosphate buffer extraction solvents on macromolecular
characteristics would be relevant in selecting an appropriate extraction medium to isolate

polysaccharides with specific functionality.

2. Material and Methods

2.1 Materials

The dried Grewia mollis inner stem bark was purchased from the local market in the
Northern Region, Ghana. L-Rhamonose (Rha), D-glucose (Glc), D-galactose (Gal), L-arabinose
(Ara), D(+)-galacturonic acid (GalA), buffer salts, ethanol and sodium metabisulphite were
purchased from Sigma-Aldrich (Poole, UK). Deionized water was used throughout the extraction

experiments. All reagents used were of analytical grade.
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2.2 Extraction of grewia gum

The dried Ghanaian Grewia mollis inner stem bark was milled to a particle size of 450 pm
and then subjected to extraction procedure using sodium metabisulphite solution (1 mg mL1), pH
4.5) [8] or 100 mM phosphate buffer at pH 6 [16]. The extraction protocols used are shown in Fig.
1. The first extraction step yielded crude polysaccharides (SMB crude, PB crude) and upon
exhaustive dialysis (molecular mass cut-off 12.000) against deionized water for 3 days produced

purified polysaccharides, which are referred throughout the manuscript as SMB pure or PB pure.
2.3 Chemical composition of grewia gum

Protein quantification was determined by Bradford assay [24] using bovine serum albumin
as standard, whereas the total sugar content of the polysaccharide extracts were determined by
phenol-sulphuric acid method [25] using D-galactose as standard. All determinations were done at
least in triplicate. The total uronic acid content of the polysaccharides was determined using m-
hydroxydiphenyl method [26]. The neutral sugar composition of the grewia gum extracts was
determined using methanolysis conducted with 1 M methanolic HCI at 85 °C for 24 h, as described
previously [27]. Sugar derivatives were analysed using an Agilent 7890A GC system (Santa Clara,
CA, USA) coupled to an Agilent 5675C quadrupole MS. The samples were eluted from an HP-5
column (30 m x 0.25 mm, 0.25um film) using helium as carrier at a flow rate of 1 mL min! by
applying the following temperature setting: start temperature 140 °C, hold time 1 min, and final

column temperature 220 °C with 25 °C min! gradient.
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2.4 Spectroscopic analysis

FTIR spectra were obtained between 400 and 4000 cm! for all the grewia gum samples in
attenuated total reflection (ATR) mode at a resolution of 4 cm! using 128 scans (Nicolet 380,
Thermo Scientific, UK). Spectral smoothing was applied using instrument software (OMNIC 3.1.
Thermo Scientific, UK). H NMR was conducted using a Bruker AV 500 spectrometer (Bruker
Co., Switzerland) by dispersing grewia gum extracts (3 g dL-') overnight in D,0 (99.9% D, Goss

Scientific Instruments Ltd., Essex), and run as described in our previous investigation [3].

2.5 Molar mass determination

The weight average molar masses (M,,) of the extracts were estimated using size exclusion
chromatography coupled to multi-angle light scattering (SEC-MALS) at 25 °C. Extracts were
solubilised in 0.1 M NaNOj solution (3 mg mL"!) at room temperature with stirring overnight.
Samples were subsequently injected onto a SEC system (15 pm particle size, 25 cm X 4 mm,
Agilent, Oxford, UK) which consisted of a PL Aquagel guard column linked in series with PL
Aquagel-OH 60, PL. Aquagel-OH 50 and PL Aquagel-OH 40. The samples were eluted with 0.1
M NaNO; solution at a flow rate of 0.7 mL min-!. The eluent was then detected online firstly by a
DAWN EOS light scattering detector (Wyatt Technology, Santa Barbara, U.S.A.) and finally by a
rEX differential refractometer (Wyatt Technology, Santa Barbara, U.S.A.). The refractive index

increment, dn/dc was taken to be 0.146 mL g! [28, 29].

2.6 Intrinsic viscosity and steady shear measurements

Samples were dispersed at 0.01-1.0 g dL"! in deionized water. The polysaccharide solutions
were stirred overnight and intrinsic viscosity measurements were performed at 20 °C using an
Ubbelohde capillary viscometer (PLS Rheotek OB. C 80705). At least three efflux times at each

6
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concentration were monitored. Determination of the intrinsic viscosities were obtained by

extrapolation to infinite dilution using [30]:

"2 = ] + k[l M

where 7, and # are the specific and intrinsic viscosities, ¢ the biopolymer concentration in g dL!
and ky the Huggins constant. Steady shear measurements were carried out at 20 °C using a Bohlin
Gemini 200HR Nano rotational rheometer equipped with a cone-and-plate geometry (55 mm

diameter, cone angle 2°). Flow curves were determined in the range of 0.01-1000 s-! at 20 °C.

2.7 Data Analysis

Data obtained were analysed using Statgraphics (Graphics Software System, STCC, Inc.
USA). Comparisons between the different extracts were done using analysis of variance (ANOVA)

with a probability p < 0.05.

3. Results and discussion

3.1 Chemical composition of grewia gum

Sodium metabisulfite is a reducing agent that may aid the extraction of polysaccharides by
disrupting the protein matrix of inner stem bark whereas phosphate buffer does not have reducing
capacity. In addition, the solvents have been chosen so as to evaluate whether different
polysaccharide structures could be obtained at different mildly acidic pH values (4.5 vs. 6.0). The
isolation method used had a rather muted impact on the protein and carbohydrate contents of

grewia gum extracts. The phosphate buffer extraction protocol resulted in polysaccharides with
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relatively high total carbohydrate content and moderate amounts of protein (Table 1). It has been
reported that polysaccharides with different chemical compositions can be extracted depending on
the pH and temperature of the extraction medium [16, 19]. Higher solvent temperatures increases
the ability of the solvent to penetrate the raw material and solubilize the polysaccharides [19]. The
mildly acidic nature (pH 6) and high temperature (80 °C) of the phosphate buffer separated
successfully grewia polysaccharides from the other cell wall materials resulting in relatively high
total carbohydrate content. However, extraction at room temperature (25 °C) with metabisulfite
also yields comparable amounts of total carbohydrates, which is a particular advantage when
considering scaling up the isolation process. The extraction of polysaccharides from plants usually
results in protein-carbohydrate mixtures and the presence of these proteins either as contaminants
or structurally linked moieties to the polysaccharide is not well elucidated [31]. Nonetheless,
further purification is mostly required to reduce the protein content and isolate functional
polysaccharides [32]. In this study, further purification was achieved by dialysis of the crude
sample against deionized water with subsequent polysaccharide precipitation with ethanol.
Dialysis reduced significantly protein content and increased total carbohydrate in both sodium
metabisulphite and phosphate buffer extracts (Table 1). The ecological source of the grewia plant
seems to influence the protein-polysaccharide biopolymer composition of the extracts, as sodium
metabisulphite-extracted grewia polysaccharides obtained from Ghana had comparatively higher
protein content (14.5 to 16.5 %) than those previously obtained from samples obtained in Nigeria

(2.3 10 5.2 %) [8].

The constituent sugar composition of the samples is shown in Table 1. The total uronic acid
content varied from 18.5 % to 35.1 % (Table 1). The extraction protocol used significantly affected

the total uronic acid content of the different grewia polysaccharide extracts. Grewia gum extracted
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using sodium metabisulphite solution (34.5 to 35.1 %) generally had a higher total uronic acid
content than the phosphate buffer extracts (18.5 to 27.4 %), which is attributed to its lower pH (~
4.5). Total uronic acid content (34.5 to 35.1 %) of grewia gum extracted with sodium
metabisulphite was comparable to values previously reported (~30 %) [8] but remarkably lower
in phosphate buffer extracts. The difference in total uronic acid is attributed to variations in the
source of the raw material, extraction conditions and method of determination [16]. It should be
noted, however, that the mol% of total uronic acids is not particularly different for the samples
after dialysis. This could be due to free uronic acids or small oligomers that are lost during the
dialysis process. The total uronic acid content of Grewia mollis gum, although lower than
polysaccharides from Abelmoschus esculentus (42.8 to 63.4%) [3], Hoheria populnea (40.5%)
[33], Abelmoschus manihot (38.8 to 43.4%) [34] and Althaea officinalis (37.5%) [35] were higher
than polysaccharides extracted from the mallow Malva aegyptiaca (5.7 to 6.1 %) [36]. The main
neutral sugar present was rhamnose (~44 mol%), followed by arabinose (~10 mol%), glucose (~3
mol%), and galactose (~ 0.3 mol%) that also contributed into the neutral sugar make-up of the
samples. The low glucose content indicates lower amounts of a-glucans (e.g., starch) than those
observed in our previous investigation [8]. Although the chemical composition of grewia gums
extracted in this study is very similar to those characterised previously [8], it is not unexpected
that there are some differences, as polysaccharide composition is influenced by extraction
conditions (metabisulphite vs. phosphate buffer), growing conditions (Ghana vs. Nigeria) as well
as seasonal, climatic or genetic variations. It should be also noted that the overall composition of
dialysed samples is essentially invariable between the two solvents revealing that similar

polysaccharides are obtained with either protocol. Having explored the compositional
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characteristics of the extracts we proceeded to explore other physicochemical parameters that are

described in the next sections.

3.2 FT-IR and NMR spectroscopy

FT-IR spectra (4000 to 800 cm!) were used to compare the different extracts and the
overlapping of their infrared spectra confirmed that they had similar functional groups (Fig. 2).
Samples displayed the characteristic broad and intense band within the range of 3600 to 3200 cm!
for the stretching absorption of the hydroxyl group. A similar O-H stretching absorption peak has
been reported within the range of 3600 to 3000 cm™! for lacebark polysaccharides [33] and in the
region of 3200 cm! for polysaccharides extracted from Malva aegyptiaca [36]. This absorption
band has been attributed to the inter- and intra- molecular hydrogen bonding of the D-GalA
backbone [3, 16]. The peak in the range of 3000-2800 cm! is characteristic of the C—H stretch of
methyl groups and corresponds to CH, CH, and CHj stretching vibrations [2, 5]. For
polysaccharide extracts from Abelmoschus manihot an intense peak around 2888 cm! was
assigned to the C-H stretch vibration [37]. The spectra of all grewia extracts revealed two critical
peaks associated with the carboxyl group esterification. A band that occurred around 1600 cm!
and thus corresponds to the symmetrical stretching vibration of the carboxylic group (COO"). The
second band which corresponds to esterified groups occurred at around 1731 cm! [8, 38]. These
two major peaks of esterification are typical of polysaccharides from other members of the
Malvaceae family such as okra [3, 16], lacebark mucilage [33] and marshmallow [35]. The bands
at 1416, 1380 and 1230 cm! correspond to bending of CH,, OH and -CH3;CO stretching
respectively [39, 40]. Polysaccharides have generally shown specific bands between 1200 and 800
cm}, hence signals in this region correspond to the fingerprint of carbohydrates as described in the

literature [5].

10
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TH-NMR spectra of both extracts revealed comparable resonance patterns suggesting
similarities in compositional characteristics (Fig. 3). The 'H-NMR spectra for the pure
polysaccharide extracts from both solvents showed proton signals in the low field region around
5.0 ppm. These signals have been assigned to protons originating from anomeric sugars [6, 40,
41]. The acetyl groups were detected in the region of 2.45 — 2.60 ppm for all extracts [3, 42].
Similar peaks indicative of the presence of O-acetyl groups have been reported in lacebark
mucilage at 2.14 — 2.22 ppm [33]. The methyl group of the rhamnosy] residues were detected as a
dominant signal at 1.64 ppm confirming the high rhamnose content in polysaccharide as
determined by the neutral sugar analysis. In the case of phosphate buffer, only one clear signal is
present, however, in the case of the metabisulfite extracts there is a doublet (1.57, 1.65 ppm)
indicating different rhamnosal branching patterns. Comparable peaks have been previously
reported from a Nigerian crude grewia extract [43]. Overall, it appears that grewia extracts tend
to have similarities with polysaccharides extracted from other members of Malvaceae family (e.g.
okra [3, 16], lacebark [33], or cola [44]). Spectroscopy has revealed the presence of acetyl groups,
however, TH-NMR also reveals the presence of a peak at 3.64-3.75 ppm, which could be indicative

of uronic acid methyl esterification.
3.3 Molar mass of grewia gum

The weight-average molar mass values of the samples ranged widely from 0.75 to 2.8 x106
g mol"! (Table 2). The crude polysaccharide samples recorded relatively high molar masses and
this may be due to the presence of other aggregates such as proteins or hemicelluloses [14, 23],
considering the crude nature of the samples. The pure grewia polysaccharides were also obtained
by precipitation at two successive stages with two volumes of ethanol. It has been reported that

the continuous exposure of polymer chains to organic solvents, for instance, ethanol [16] or

11
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isopropanol [32], facilitates the cleavage of polysaccharides. Hence the main reason for the molar
mass reduction of the polysaccharides in the purified samples is attributed to the breakdown of the
biopolymer chains in the presence of successive ethanol precipitation and protein removal.
Extraction solvent has also influenced the molar mass of the polysaccharides. Samples extracted
using sodium metabisulphite at a relatively lower temperature (25 °C) recorded higher molar
masses (1.7 to 2.8 x 10% g mol!) than the phosphate buffer extracts (0.75 to 0.92 x 10¢ g mol!).
This variation in molar mass of the SMB and PB polysaccharide extracts is attributed to
temperature differences, duration of extraction, and pH [45,46]. The phosphate buffer extraction
at 80 °C and pH 6.0 may result in limited acid hydrolysis or S-elimination reactions resulting in
low molar mass polymers. On the contrary, even though metabisulfite is more acidic (pH 4.5) the
milder extraction temperatures (~25 °C) affords protection to the size of the extracted
macromolecules. Molar masses of the polysaccharides studied were higher than polysaccharides
from Abelmoschus esculentus (5.0 — 6.0 x 10* g mol!) [3, 20, 47], Abelmoschus manihot (8.8 x
103 g mol!) [37], Hibiscus sabdariffa (8.7 x 103 — 1.4 x 10° g mol™!) [48], but lower than Althaea
officinalis polysaccharides (33.3 x 106 g mol!) [35] revealing that a range of macromolecular sizes

can be obtained from members of Malvaceae family.

3.4 Intrinsic viscosity and flow behaviour

Dilute polymer solutions are characterized by negligible interactions between polymer
chains, hence intrinsic viscosity gives a measure of the hydrodynamic volume of the polymer in
dilute solutions [49]. Intrinsic viscosity ranged from 6.5 to 9.1 dL g (Table 2) and sodium
metabisulphite extracts recorded higher values. Intrinsic viscosity of samples obtained in this study
were higher than reported values for grewia samples in the presence (3.78 dL g™!) or absence (4.40

dL g!) of starch [8] with differences in plant sources contributing to this variation, although the

12
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molar mass and solution conformation of the polysaccharides are also important. The intrinsic
viscosity values of the polymers were in agreement with molar mass of the samples. The solvent
extraction method used likewise influenced the intrinsic viscosity of grewia polysaccharides,
where polymers extracted with phosphate buffer recorded decreased intrinsic viscosity values (6.5
— 8.3 dL g!). The Ky value is indicative of polymer interactions with the solvent and reflects the
state of aggregation of the polymer [50]. In a good solvent and for flexible polymers, Ky values
range between 0.3 and 0.5, 0.5 — 0.8 in theta solvents whereas higher than 1 in the case of
aggregated polymers [51, 52]. Ky values for SMB samples were above 1 in crude samples
indicative of possible polymer aggregation and were alleviated after dialysis (SMB pure). This
trend was not consistent, as in the PB samples removal of low molecular mass species after dialysis
seems to have changed the specific interaction forces between macromolecules resulting in partial

aggregation.

The final step of the present investigation was to explore the steady shear viscosity of the
samples that gives first insights of the bulk properties of the isolated polysaccharides. Samples
were dispersed in deionized water (1 g dI! at 20 °C) and the effect of polymer type on flow
behaviour was examined (Fig. 4). All the polymers exhibited shear thinning flow behaviour with
sodium metabisulphite extracts demonstrating flow curves at higher viscosities relative to the
phosphate buffer extracts. At neutral pH, previous investigations have reported that polymers with
repeating units of uronic acids are deprotonated resulting in anionic polyelectrolytes exhibiting
intra- and inter- chain repulsions [53]. Irrespectively of the extraction solvent used, the crude
samples demonstrated higher viscosities than the purified extracts. The samples showed decreasing
viscosities in the order of SMB crude extracts > SMB pure extracts > PB crude extracts > PB pure

extracts. The key molecular characteristics of the grewia gum that are relevant in relating structure
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and viscosity appears to be molar mass and the uronic acid content of the samples. In the present
study, a corresponding decreasing trend was generally observed in uronic acid and molar mass, as
reported for viscosity. Polymers extracted with phosphate buffer recorded lower uronic acid and
molar masses with correspondingly decreased viscosities (Fig. 4). Overall, it becomes evident that
initial bulk properties, such as viscosity, is easily tailored (to one order of magnitude) for grewia
polysaccharides by choosing the appropriate extraction solvent. This is a significant development,

as viscosity is in most cases critical factor in applications of natural biopolymers.

4. Conclusions

In the present study grewia polysaccharides were extracted using different solvents to
produce biopolymers as functional ingredients for the pharmaceutical and food industries. The
isolated biopolymers had similar chemical composition but different physicochemical properties
due to the differences in size and the specific interactions of the polymer chains. The dominant
neutral sugar in the extracts was rhamnose, and irrespective of extraction solvent employed the
samples had high rhamnose and total uronic acid contents and spectroscopy revealed the presence
of esterified groups. Intrinsic viscosity of the polymers related with molar mass and extraction
solvent used, with phosphate buffer extracts recording the least intrinsic viscosity and molar mass
values. The sodium metabisulphite extracts showed higher viscosities attributable to their higher
molar masses. The present findings show that different physicochemical properties and
functionality of grewia extracts are obtained depending on the source and extraction techniques

employed.
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FIGURE CAPTIONS

Figure 1: Isolation of grewia polysaccharide gum with two different extraction solvents.
Figure 2: FTIR spectra of grewia gums extracted with different solvents.

Figure 3: Typical 'H-NMR spectra of (a) phosphate buffer (PB) grewia gum extract and (b)

sodium metabisulphite (SMB) grewia gum extract.

Figure 4: Apparent viscosity dependence on shear rate of grewia gum dispersions at 1 g dI-L.
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Table 2: Intrinsic viscosity, Huggins constant, 7%, and Mw characteristics of grewia extracts. SMB

is sodium metabisulphite extract and PB is phosphate buffer extract.

Sample [71(dL g Ky r? My, (x10% g mol™)
SMB Crude 9.1 1.6 0.99 2.8
SMB Pure 9.6 0.3 0.90 1.7
PB Crude 8.3 0.6 0.79 0.92
PB Pure 6.5 1.0 0.98 0.75
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