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ABSTRACT 15 

Synthesis, characterization, thermal stability and pyrolysis of some alkaline earth picolinates  16 

M(C6H5NO2)2nH2O (where M = Mg(II), Ca(II), Sr(II) and Ba(II) and n = di (Mg), mono (Ca), hemi three 17 

(Sr) hydrated) were investigated using a range of techniques including simultaneous thermogravimetry and 18 

differential scanning calorimetry (TG–DSC), evolved gas analysis (EGA), differential scanning calorimetry 19 

(DSC), Hot-Stage microscopy (HSM), powder X-ray diffractometry (PXRD), complexometry with EDTA 20 

and elemental analysis (EA). The TG-DSC curves show that the hydrated compounds dehydrate in a single 21 

step of mass loss and the thermal stability of the anhydrous compound is little influenced from the 22 

atmosphere used. On the other hand, the mechanisms of thermal decomposition are profoundly influenced 23 

by the atmosphere used, as can also be observed in the EGA data. In addition, a comparison between two 24 

calorimetric techniques, Microwave Thermal Analysis (MWTA) and DSC, was made which showed similar 25 

profiles. Two evolved gas analysis (EGA) techniques: TG-DSC coupled to FTIR and HSM coupled to a 26 

quadrupole mass spectrometer (MS) were also used to provide additional information about the pyrolysis 27 

mechanism. 28 

Keywords: Alkaline earth picolinates; Microwave Thermal Analysis (MWTA); TG-DSC-FTIR; HSM-29 
MS. 30 

1. INTRODUCTION 31 

2-Pyridinecarboxylic acid, also known as picolinic acid, has a six-membered ring structure with 32 

two active groups: a carboxylic in the ortho-position to the nitrogen in the pyridine ring, therefore, the 33 

potential donor sites leads to a variety of ligation modes [1]. Picolinic acid is a natural compound that 34 
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exhibits chelating properties which facilitates the absorption of minerals such as: chromium, zinc, 35 

magnesium, copper, iron, and probably molybdenum [2-3]. Picolinates have been reported to possess a 36 

variety of therapeutic properties including neuroprotection, immunology, and anti-proliferative effects on 37 

the body [4–8]. Selective complexation of metal ions is also an important requirement for the use of metal 38 

complexes finding a range of applications within medicine. Indeed, chronic intoxication with a range of 39 

metal ions can be treated with the administration of a suitable chelating agent [9-11]. 40 

The literature reports studies with picolinic N-oxide forming bivalent transition metals ions [12], 41 

trivalent lanthanide ions [13–15], rare earth picolinate complexes [16-17] and others lanthanide complexes 42 

[18]. Previous papers demonstrating the thermal behavior of  lanthanides picolinates have been reported 43 

[14,17], however, no systematic study about the thermal behavior of the alkaline earth metal picolinates has 44 

been found.  45 

Microwave heating is dependent on a parameter, tan δ, which is dependent on the dielectric 46 

properties of the sample and is key to how well a material can convert electromagnetic energy into heat. 47 

Microwave Thermal Analysis (MWTA) uses microwave energy as a means of simultaneously heating a 48 

sample and detecting thermal transitions (phase changes, decomposition, etc.) through changes in the tan δ 49 

of a sample. MWTA is most often used in a differential temperature configuration [19] where the difference 50 

between the sample and an inert reference (SiC) is recorded.  If a sample undergoes enthalpic changes but 51 

no significant changes in tan δ then the trace produced approximates that seen with a DTA/DSC. However, 52 

if the sample undergoes a change that affects tan δ this is shown as steps on the differential temperature 53 

trace.  For certain systems, MWTA has the potential for greater sensitivity than conventional DSC but this 54 

is very sample dependent [20].  55 

In recent years microwave heating has been used for processing and drying of chemicals  56 

[21-23]. The suitability of the method for the drying of pharmaceuticals has been extensively investigated 57 

[24], for example, with the application for maintenance of drug stability [25]. To date, MWTA has only 58 

been applied to simple metal salts and hydrates and not more complex compounds such as picolinates.  59 

The present paper aims to investigate the thermal behavior of picolinic acid and its compounds with 60 

some alkaline earth ions: Mg(C6H4NO2)22H2O, Ca(C6H4NO2)2.H2O, Sr(C6H4NO2)21.5H2O and 61 

Ba(C6H4NO2)2. The characterization was performed using thermoanalytical techniques  62 

(TG-DSC, DSC, MWTA, and HSM) and complementary techniques such as PXRD. A comparison has 63 

been made between hyphenated techniques to evaluate gaseous decomposition products of metal picolinates 64 

through EGA using TG-DSC-FTIR and HSM-MS. 65 

 66 

2. Experimental 67 

2.1. Chemicals 68 



Picolinic acid (99% purity) was obtained from Sigma and was used as received. The calcium, 69 

strontium and barium carbonates were obtained from Fluka (Ca, 99.5%), Merck (Sr, Ba, 99% purity) and 70 

magnesium carbonate was prepared as described in reference [28].  71 

 72 

2.2.Preparation 73 

Solid-state alkaline earth metal picolinates (Mg to Ba) were synthesized following methodology 74 

previously reported [28].  75 

 76 

2.3.Experimental equipment and conditions 77 

The composition of the compounds was determined by elemental analysis (CHN Elemental 78 

Analyzer from Perkin Elmer, model 2400), TG data and EDTA complexometry [26, 27].  79 

Simultaneous TG-DSC curves were obtained by using a TG–DSC 1 STARe system, from Mettler 80 

Toledo and according to the methodology described in reference [14]. The purge gas used was either dry 81 

air or nitrogen with a flow rate of 50 mL min−1 and a heating rate of 10 ° C min−1, and samples weighing 82 

approximately 10 mg in open alumina crucibles.  83 

The DSC curves were obtained by using DSC STARe system, from Metter Toledo. The purge gas 84 

was nitrogen with a flow rate of 100 mL min-1. A heating rate of 10 °C min−1 was adopted, with samples 85 

weighing about 3 mg placed in aluminum crucibles with a perforated lid. 86 

The identification of evolved gases (EGA) in dynamic dry nitrogen atmosphere were carried out 87 

using a TG-DSC 1 Mettler Toledo coupled to a Nicolet FTIR spectrophotometer with gas cell and DTGS 88 

KBr detector using the method described in reference [29]. The furnace and heated gas cell (250 °C) were 89 

coupled through a heated (225 °C) 120 cm stainless steel transfer line with diameter of 3.0 mm, both purged 90 

with dry air and nitrogen (50 mL min−1). The FTIR spectra were recorded with 16 scans per spectrum at a 91 

resolution of 4 cm. 92 

Hot-stage microscopy (HSM) measurements were performed using a system developed at 93 

Huddersfield [30] which utilizes a stereoscopic microscope (Leica) and a water cooled hot-stage (HSM5, 94 

Stanton-Redcroft). Samples were placed in 5-6 mm alumina crucibles using sample masses of 10 mg, linear 95 

heating rates of 10 °C min-1 under an inert atmosphere. Micrographs were recorded every 5 °C.  96 

The HSM system was coupled to a quadrupole mass spectrometer (HPR20, Hiden, Warrington, 97 

UK). Evolved sample gases were transferred via a heated capillary line to the inlet of the spectrometer, full 98 

mass scans were recorded between 4 and 300 mass units with an accumulation time of 200 ms per scan. 99 

Microwave thermal analysis was performed using an instrument previously developed at 100 

Huddersfield [19]. The system utilizes a 300 W 2.45 GHz generator (Sairem) and a single mode waveguide. 101 

The generator is computer controlled with a power resolution corresponding to 1W. The standing wave is 102 



tuned to achieve the maximum of the E-field over the position of the sample. Samples of 40 mg were placed 103 

within silica crucibles (fundamentally microwave transparent) and heated at a rate of 10 °C min-1 up to an 104 

upper temperature of 450 °C. DTA microwave measurements are made between the sample and a reference 105 

of silicon carbide. 106 

Powder X-Ray Diffraction (PXRD) patterns analyses were obtained using a Bruker D2 Phaser 107 

employing CuKα radiation (λ = 1.5418 Å) and settings of 30 KV and 10 mA. The analysis were performed 108 

in an angular range from 5 - 80 º (2θ), scanning speed 0.5 seconds, and 0.02º steps. 109 

 110 

3. Results and discussions 111 

3.1. Analytical results 112 

The analytical results (TG, EA and EDTA complexometry) of the synthesized compounds are 113 

shown in Table 1. These results are in close agreement with each other and with the calculated theoretical 114 

values, which shows that the compounds were obtained with excellent purity. In addition, from these results 115 

it was possible to determine the empirical formula of these compounds, which is in agreement with the 116 

general formula: M(L)2nH2O, where M represents Mg, Ca, Sr and Ba, L is picolinate and n = 2 (Mg), 1 117 

(Ca), 1.5 (Sr) and 0 (Ba). 118 

Insert Table 1 119 

 120 
3.2.Thermal Analysis 121 

The simultaneous enthalpy and mass loss curves from TG-DSC curves in dynamic dry air and 122 

nitrogen atmospheres are shown in Fig.1 (a-d) and (a*-d*), respectively. In an air atmosphere, these curves 123 

exhibit mass losses in either a single (Ba), three (Mg, Sr) or four (Ca) steps. While for nitrogen three (Mg, 124 

Sr, Ba) and four (Ca) steps were observed.  125 

Thermal decomposition of the picolinate compounds in an oxidative atmosphere was monitored up 126 

to 1000°C, the final residues for Mg, Ca and Sr were the respective oxides and carbonate for barium. In 127 

contrast, the pyrolytic atmosphere (N2) shows gradual mass losses that are still apparent up to 1000 °C for 128 

Mg, Sr and Ba (forming a mixture of respective oxides and charred material) with only Ca picolinate 129 

forming its oxide within this temperature range. 130 

The TG-DSC profiles of the compounds in air atmosphere are not the same in N2, thus these curves 131 

in each atmosphere are discussed separately below. 132 

The DSC and MWTA provided information necessary for identification of the physical phenomena 133 

of melting (Mg, Ca), glass transitions (Mg, Ca), and phase transitions (Ba, Ca). The dehydration of all the 134 

compounds, except barium, is more clearly observed using DSC rather than simultaneous TG-DSC data. 135 

 136 



 137 

3.2.1. TG-DSC under an air atmosphere 138 

The simultaneous TG-DSC curves of the compounds in an air atmosphere are shown in Fig. 1  139 

(a-d). The TG curve shows that the barium compound was obtained as anhydrous, while calcium compound 140 

as mono-hydrate, strontium and magnesium as hemi-three and di-hydrated, respectively. These curves also 141 

show that the dehydration in all the compounds (except barium) occurs in a single step. The thermal stability 142 

of the hydrated compounds, as well as the final temperature of thermal decomposition to the respective 143 

oxides as shown by TG-DSC curves, depends on the nature of the metal ion and follow the order: 144 

Dehydration stability: Mg > Ca > Sr 145 

Decompoition stability: Ba > Sr > Ca = Mg 146 

The thermal behavior of the compounds is also dependent on the nature of the metal ion and so the 147 

features of each of these compounds are discussed individually. 148 

Magnesium picolinate 149 

The simultaneous TG-DSC curves are shown in Fig.1 (a). The first mass loss between 50 and 175 150 

ºC, with a corresponding endothermic peak at 148 ºC is attributed to the dehydration with loss of  151 

2 H2O (mcalc. = 11.76%, mTG = 12.27%). The anhydrous compound is stable up to 390 ºC. Above this 152 

temperature the mass losses occurs in two overlapping steps between 390-415 ºC (mTG = 35.07%) and 153 

415-550 ºC (mTG = 39.26%), corresponding to an endothermic peak at 408 ºC and is attributed to the 154 

beginning of thermal decomposition. An exothermic peak at 490 ºC, with shoulder at 460 ºC is attributed 155 

to the thermal decomposition and oxidation of the organic matter and/or the gaseous products evolved 156 

during the thermal decomposition, respectively. The total mass loss up to 535 ºC is in agreement with the 157 

formation of magnesium oxide (MgO), as the final residue (mcalc. = 86.61%, mTG = 86.85%). 158 

 The small endothermic peak at 398 ºC, at the beginning of the mass loss is due to the melting of 159 

the compound as discussed in the DSC and MWTA sections. 160 

 161 

Calcium picolinate 162 

The simultaneous TG-DSC curves are shown in Fig 1 (b). The first mass loss up to 170 ºC, 163 

corresponding to an endothermic peak at 145 ºC and is attributed to the dehydration with loss of H2O (mcalc. 164 

= 5.92%, mTG = 6.23%). 165 

The anhydrous compound is stable up to 390 ºC and above this temperature the thermal 166 

decomposition occurs in three consecutive steps, with the first two overlapping. The two overlapping mass 167 

loss steps observed between 390-460 ºC (mTG = 35.89%) and 460-515 ºC (mTG = 23.95%) have an 168 



exothermic peak centred at 460 ºC. These changes are attributed to oxidation of the organic matter and/or 169 

the loss of gaseous products evolved during the thermal decomposition. The total mass loss up to 515 ºC is 170 

in agreement with the formation of calcium carbonate as a residue (mcalc. = 66.89%, mTG = 66.91%) 171 

which is stable until about 570 °C. 172 

The final mass loss step observed between 570 ºC and 700 ºC (mTG = 14.75%), is attributed to the 173 

thermal decomposition of the carbonate to the calcium oxide as a final residue (mcalc. = 14.56%, mTG = 174 

14.43%). The total mass loss up to 670 ºC is in agreement with the formation of calcium oxide, CaO, as 175 

final residue (Calcd. = 81.59%, TG = 81.55%). 176 

The very small exothermic peak at 275 ºC and the endothermic peak at 360 ºC (both not associated 177 

with a mass loss from the TG curve) are attributed to crystallization process and melting of the compound. 178 

These processes were more apparent HSM, DSC and MWTA as discussed latter. 179 

 180 

Strontium picolinate 181 

The simultaneous TG-DSC curves are shown in Fig. 1 (c). A gradual mass loss is observed up to 182 

300 ºC, although no events on the DSC curve are apparent. To evaluate this mass loss, the sample was 183 

heated in a glass tube up to 300 °C for 15 min where evaporation followed by condensation was observed. 184 

The residue condensed on the wall of the tube was analyzed using FTIR which confirmed that water was 185 

evolved. Therefore the gradual mass loss was attributed to dehydration with loss of 1.5H2O (mcalc. = 186 

7.49%, mTG = 7.11%).  187 

The anhydrous compound remained stable up to 415 ºC but above this temperature mass loss occurs 188 

through a fast process corresponding to a large and sharp exothermic peak at 450 ºC.  This mass change is 189 

attributed to thermal decomposition and oxidation of the organic matter. The mass loss up to 500 ºC is in 190 

agreement with the formation of strontium carbonate as residue (mcalc. = 55.51%, mTG = 55.43%), which 191 

is stable up to 790 ºC. 192 

The last mass loss occurs between 790 ºC and 940 ºC is attributed to the thermal decomposition of 193 

the carbonate to the strontium oxide SrO, as final residue (mcalc. = 11.40%, mTG = 12.04%). 194 

Barium picolinate 195 

The simultaneous TG-DSC curves are shown in Fig 1 (d). The anhydrous compound is stable up 196 

to 400 ºC and above this temperature the thermal decomposition occurs through a fast process 197 

corresponding to a large and a sharp exothermic peak at 475 ºC with shoulder at 440 ºC. These changes are 198 

attributed to oxidation of the organic matter and/or the loss of gaseous products evolved during the thermal 199 

decomposition. The mass loss up to 500 ºC is in agreement with the formation of barium carbonate as 200 



residue (mcalc. = 50.27%, mTG = 50.66%). The barium carbonate, BaCO3, formed is stable to 920 ºC but 201 

above this temperature begins further decomposition which has not completed by 1000 ºC. 202 

The very small endothermic peaks at 211 ºC and 780 ºC, (both not associated with a mass loss from 203 

the TG curve) , have been tentatively assigned to crystalline phase transition (corresponding to the 204 

endothermic peak on DSC curve at 241 ºC, see in Figure 4) and phase transformation (α-β) of the barium 205 

carbonate, respectively. 206 

Insert Figure 1 207 

3.2.2.  TG-DSC – N2 atmosphere 208 

The simultaneous TG and DSC curves of the compounds are shown in Fig. 1 (a*-d*). These curves 209 

show mass losses in consecutive steps and endothermic peaks corresponding to the losses or due to physical 210 

phenomenon. 211 

The thermal stability of the hydrated and anhydrous compounds depends on the nature of the metal 212 

ion and they follow the order: 213 

Dehydration stability:  Ca > Mg > Sr 214 

Decomposition stability:  Ba > Sr > Ca = Mg 215 

For all hydrated compounds, the dehydration step is, as expected, very similar to that observed in 216 

the oxidizing atmosphere. However, a significant difference is observed in the thermal decomposition of 217 

these compounds, suggesting a strong influence of the atmosphere. The final temperature of the thermal 218 

decomposition is observed only for the calcium compound, for the other compounds the mass loss is 219 

incomplete by 1000 ºC. 220 

As previously observed in an air atmosphere, and as will be shown for a N2 one, the thermal 221 

behavior also depends on the nature of the metal ion, features of each of these compounds are discussed 222 

individually. 223 

Magnesium picolinate 224 

The simultaneous TG-DSC curves are shown in Fig. 1 (a*). The first step between 50 ºC and 170 225 

ºC, corresponding to an endothermic peak at 165 ºC is attributed to dehydration with loss of 2H2O in the 226 

same way as the oxidative atmosphere (mcalc. = 11.83%, mTG = 11.42%). The anhydrous compound is 227 

stable up to 385 ºC and above this temperature the thermal decomposition occurs in two consecutive steps, 228 

a sharp step between 385-490 ºC (mTG = 42.34%) and a slow mass loss starting 490  ºC (mTG = 27.78%) 229 

which correspond to small, broad endothermic peaks at 450 ºC and 950 ºC. These steps have been attributed 230 

to the thermal decomposition and incomplete pyrolysis of the compound. The endothermic peak at 390 ºC 231 

has been attributed to the melting of the magnesium compound.  232 



Calcium picolinate 233 

The simultaneous TG-DSC curves are shown in Fig. 1 (b*). The first mass loss with a 234 

corresponding endothermic peak at 175 ºC is attributed to the dehydration which, again, shows similarities 235 

to the air example (mcalc. = 5.96%, mTG = 5.83%). 236 

The anhydrous compound remains stable up to 390 ºC and above this temperature the thermal 237 

decomposition occurs in three consecutive steps between 390-520 ºC (mTG = 46.68%), 520-740 ºC (mTG 238 

= 20.57%) and 740-920 ºC (mTG = 9.40%), corresponding to endothermic peaks at 415 ºC, 425 ºC, 435 239 

ºC, 730 ºC and 845 ºC, the first step is attributed to the thermal decomposition of the compound with 240 

formation of calcium carbonate and carbonized residue and the last two steps to the pyrolysis of the 241 

carbonized residue and thermal decomposition of calcium carbonate leading to calcium oxide (mcalc. = 242 

81.45%, mTG = 81.48%). 243 

The minor exothermic peak at 305 º C and the endothermic peak at 390 º C, (both not associated 244 

with a mass loss from the TG curve) are attributed to crystallization process and fusion of the compound, 245 

respectively.  246 

 247 

Strontium picolinate 248 

The simultaneous TG-DSC curves are shown in Fig. 1 (c*). A small broad mass loss is noted 249 

between 50 and 300 ºC which has been attributed to dehydration with loss of 1.5H2O (mcalc. = 7.49%, 250 

mTG = 7.08%). The anhydrous compound is stable up to 420 ºC but above this temperature, the mass losses 251 

occur in three consecutive steps, between 420-550 ºC (mTG = 36.33%), 550-800 ºC (mTG = 25.16%) and 252 

800-1000 ºC (mTG = 7.17%).  The first mass loss is attributed to thermal decomposition and the second 253 

one to the pyrolysis of the strontium carbonate formed and/or charred residue. However, there is some 254 

indication that the final mass loss is incomplete by 1000 °C. 255 

 256 

Barium picolinate 257 

The simultaneous TG-DSC curves are shown in Fig. 1 (d*). The anhydrous compound is stable up 258 

to 450 ºC but above this temperature the mass losses occur in three consecutive steps between 450-530 ºC 259 

(mTG = 27.66%), 530-800 ºC (mTG = 19.73%) and 800-1000 ºC (mTG = 10.32%). The first mass loss 260 

(with an associated endotherm at 490 °C) is attributed to thermal decomposition to barium carbonate and 261 

organic residue. This occurs at a much lower temperature under nitrogen due to the absence of CO2 262 

in this atmosphere as was previously reported [28]. The second broad mass loss step (with an associated 263 



endotherm at 750 °C) is attributed to pyrolysis of the residue. However, there is some indication of further 264 

mass loss which is incomplete by 1000 °C.  265 

The endothermic peak at 245 ºC without mass loss is due to the crystalline transition of the 266 

compound (see in section 3.3, discussion about Figure 5). 267 

 268 

3.3.Differential Scanning Calorimetry (DSC) 269 

The DSC curves under a nitrogen atmosphere are shown in Figs. 2 to 5 together with associated 270 

HSM and PXRD data to aid the visualization of the phonomenon attributed to physical or chemical 271 

processes. This combination of data sets has provided information that expands on what the TG-DSC curves 272 

have already shown, but has helped elcucidate unresolved thermal events. 273 

Figure 2 shows the DSC curve for the magnesium picolinate with three thermal events attributed 274 

to dehydration (endothermic peak at 200 ºC), melt (endothermic peak at 391 ºC), where the enthalpies found 275 

for the compound were -0.453 kJ g-1 and -0.002 kJ g-1, respectively, and glass transition (midpoint at 254 276 

ºC). PXRD analysis shows that the structure varies with heating (see insert 1 diffractogram at 25 °C and 277 

insert 2, diffractogram at 270 ºC) are significantly different from each other as above the glass transition 278 

temperature the compound becomes amorphous. Changes in the color of the compound were observed after 279 

the glass transition and also at the start of melt at 370 ºC.  The slight darkening of the sample above 370 °C 280 

is attributed to be the onset of decomposition. 281 

                                                       Insert Figure 2 282 

 283 

Figure 3 (a) shows the DSC curve with four thermal events attributed to dehydration (endothermic 284 

peak at 188 ºC), phase transition (peak at 303 ºC), melt (peak at 388 ºC), where the enthalpies found for the 285 

compound were -0.254 kJ g-1, +0.055 kJ g-1 and -0.096 kJ g-1 respectively, and a possible glass transition 286 

(midpoint at 246 ºC). The three PXRD patterns (1, 2 and 3) show a reduction in Bragg peaks as the 287 

temperature is increased attributed to the loss of crystallinity. The thermally cycled DSC experiment (Figure 288 

3 (b)) shows that the thermal event at 303 ºC is irreversible. The micrographs show that the sample contracts 289 

between 240 °C and 275 °C   which may be due to a glass transition. The final micrograph at 390 °C clearly 290 

shows the effect of melting. 291 

  Insert Figure 3 292 

 Figure 4 (a) show the DSC curve for strontium picolinate which is poorly resolved at the heating 293 

rate used. Figure 4 (b) show the cycled DSC curve using a slow heating rate (2 ºC min-1) to increase 294 

resolution. An endothermic event with peak at 176 ºC was observed where the dehydration enthalpy found 295 

was -0.332 kJ g-1. Neither DSC curves clearly show other thermal events.  However, for confirmation, the 296 



sample was analyzed using PXRD before and after dehydration. The PXRD patterns indicate that the 297 

compound increases in crystallinity after dehydration. Large changes in the color of the compound are 298 

shown in the HSM micrographs before and after dehydration and, unlike the other picolinates, the strontium 299 

compound starts to degrade without showing signs of melting. 300 

Insert Figure 4 301 

Figure 5 (a) shows the DSC curve for barium picolinate with two thermal events attributed to phase 302 

transformation (endothermic peak at 113 ºC) and crystalline transition (endothermic peak at 241 ºC), the 303 

enthalpies found were – 0,003 kJ g-1 and -0,016 kJ g-1, respectively. For this compound, the DSC analysis 304 

was very important since phase transformation cannot be observed directly using TG-DSC curves in both 305 

atmospheres. The source of the sharp endothermic peak at 241 ºC is unassigned. Although very similar to 306 

what would be observed for melting, the HSM clearly shows that this does not occur.  The cycle DSC 307 

experiment (Fig. 5b) show that the endothermic peaks at 113 ºC and 241 ºC are both reversible so it was 308 

not possible to obtain material for PXRD analysis. 309 

 310 

Insert Figure 5 311 

 312 

3.4. Microwave Thermal Analysis (MWTA) 313 

Figure 6 (a-d) displays differential temperature traces obtained using MWTA for the four picolinate 314 

compounds. It should be noted that the relatively large drift in the baseline is not uncommon for this 315 

technique.  316 

Figure 6 (a) shows the MWTA trace for magnesium picolinate. The first noticable transition is an 317 

endothermic peak around 200 °C attributed to the dehydration of the compound as also observed with DSC. 318 

Further heating yeilds a slight increase in coupling with microwave energy possibly linked to the glass 319 

transition shown in the DSC curve. The the onset of decomposition, as confirmed by TG-DSC curve, is 320 

apparent from the variation in the basline folowed by a sharp step above 400 °C. Upon cooling two main 321 

steps are seen, but are diffciult to assign because full decomposition was not achieved.  322 

Insert Figure 6 323 

 324 

Figure 6 (b) show the MWTA trace for calcium picolinate. The endothermic dehydration can be 325 

seen at 200 °C and is clearly observed mirroring the signal obtained by the DSC. No indication of a glass 326 

transition was observed, although the attributed crystaline phase change at 300 °C shows a corresponding 327 



step change in tan δ. The melting/decomposition step at 380 °C is at a similar temperature to that noted on 328 

the DSC, since the calcium picolinate exists in a liquid state now the sample can be seen to couple more 329 

strongly with the microwave enegry. 330 

The MWTA trace for strontium picolinate is shown in Figure 6 (c). Unlike the DSC, the MWTA 331 

has few features and no discrnible sign of dehydration. There is a suggestion of a change at 413 °C that 332 

could be associated with decomposition onset although this process unlikely reached completion by 450 333 

°C.  334 

The MWTA trace for barium picolinate is shown in Figure 6 (d). The small step change at 250 °C 335 

has been attributed to the crystaline phase change observed using DSC. The baseline does not vary 336 

significantly after this event and no significant events are seen during cooling. 337 

3.5.Evolved Gas Analysis (EGA) of magnesium picolinate  338 

Initial experiments using TG-DSC-FTIR showed all the four picolinates studied yielded water, carbon 339 

monoxide, carbon dioxide and pyridine (except water for barium compound which is anhydrous). The 340 

decomposition of magnesium picolinate was probed in more detail using HSM-MS. Figure 7 shows the IR 341 

spectra of the gaseous products evolved during the thermal decomposition of magnesium picolinate at 10 342 

°C min-1.  Figure 7 (a) shows the Gram-Schmidt trace which gives an indication of the FTIR intensity over 343 

time with three steps evident that can be linked to the TG-DSC curves in Figure 1(a*). Figutre 7 (b) shows 344 

the FTIR spectra at 160 °C (Step1) 430 °C (Step 2). The first spectra clearly shows the water produced 345 

during dehydration while the second spectra confirms that pyridine is produced during decomposition.  346 

Insert Figure 7 347 

 348 

Figure 8 shows the decomposition of magesium picolinate monitored using HSM-MS with an inert 349 

atmosphere. Three gaseous compounds are plotted water (18 Da), carbon dioxide (44 Da) and pyridine (79 350 

Da). The pyridine was confirned by monitoring of the pyridine fragment ions (26, 27, 39 and 52 Da) but 351 

these have not been shown for clarity. The results confirm those observed with TG-DSC-FTIR with water 352 

being the sole product during the dehydration and pyridine being apparent during the decomposition stage. 353 

The HSM-MS indicates that both water and carbon dioxide are released during the decomposition 354 

indicating that the process is more complex than suggested by FTIR.   355 

Insert Figure 8 356 

 357 

 358 



4. CONCLUSIONS 359 

From the elemental analysis, complexometry and thermogravimetric results the stoichiometry of 360 

the compounds were determined as the having the empirical formula: M(L)2.nH2O.  361 

The TG–DSC results provided previously unreported information about the thermal stability and 362 

thermal decomposition of these compounds under oxidative and inert atmospheres. These results show that 363 

the atmosphere used plays a significant role in the thermal decomposition process of this class of 364 

compounds, since thermal stability, thermoanalytical curves and mass loss steps are all affected.  365 

TG-DSC-FTIR analysis of the gaseous products from magnesium picolinate demonstrates that the 366 

main decomposition proceeds with release of pyridine, CO and CO2. The ability of HSM-MS to monitor 367 

multiple ions confirms the evolution of pyridine and suggests that thermal degradation occurs by a much 368 

more complex mechanism than suggested by TG-DSC-FTIR. 369 

The DSC and MWTA data provided information about the physical transformation undergone by 370 

the picolinates. For these compounds the decomposition did not appear to lead to significant changes in tan 371 

δ and thus MWTA was less sensitive than DSC. 372 

The results further demonstrate the use of powder X-ray diffractometry in the elucidation of thermal 373 

processes. 374 
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 467 

Figures 468 



 469 

Figure 1: TG-DSC curves in air (a-d) and nitrogen (a*-d*) atmospheres of the compounds, where ( a and 470 

a*) represents Mg; (b and b*) represents Ca; (c and c*) represents Sr and (d and d*) represents Ba. 471 

 472 



Figure 2: DSC curve,  HSM micrographs and PXRD of magnesium picolinate. 473 

 474 

Figure 3: DSC curve (a), thermally cycled DSC experiment (b), HSM micrographs and PXRD of calcium 475 

picolinate. 476 

 477 



Figure 4: DSC curve (a), thermally cycled DSC experiment (b), HSM micrographs and PXRD of strontium 478 

picolinate. 479 

 480 

Figure 5: DSC curve (a), thermally cycled DSC experiment (b) and HSM micrographs of barium picolinate. 481 



 482 

Figure 6: MWTA plots obtained for picolinate compounds. (a) magnesium picolinate, (b) calcium 483 

picolinate, (c) strontium picolinate and (d) barium picolinate. 484 



 485 

Figure 7:  (a) Gram–Schmidt curve in nitrogen atmosphere; (b) IR spectra of gaseous products evolved 486 

during the decomposition of the magnesium picolinate. 487 



 488 

Figure 8: Mass spectra of the gaseous products evolved during the thermal decomposition of magnesium 489 

compound in helium atmosphere. 490 

 491 


