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Abstract 

The optimisation of the pharmaceutical properties of carboxylic acid drugs is often conducted by 

salt formation. Often, the salt with the best solubility is not chosen due to other factors such as 

stability, solubility, dissolution and bioavailability that are taken into consideration during the 

preformulation stage. This work uses advanced imaging techniques to give insights into the 

preformulation properties that can aid in the empirical approach often used in industry for the 

selection of salts. Gemfibrozil (GEM) was used as a model poorly soluble drug. Four salts of GEM 

were made using cyclopropylamine (CPROP), cyclobutylamine (CBUT), cyclopentylamine 

(CPENT) and cyclohexylamine (CHEX) as counterions.  DSC, XRD and SEM were used to 

confirm and characterise salt formation. IDR obtained using UV-imaging up to 10 min for all the 

salts showed that an increase in the chain length of the counterion caused a decrease in the IDR. 

Past the 10 min mark, there was an increase in the IDR value for the CPROP salt, which was 

visualised using UV-imaging. The developed interfacial (surface) area ratio (Sdr) showed 

significant surface gains for the compacts. Full dosage form (capsule) imaging showed an 

improvement over the GEM for all the salts with an increase in chain length of the counterion 

bringing about a decrease in dissolution which correlated with the obtained UV-imaging IDR data.   

 

Keywords: Salts; Gemfibrozil; intrinsic dissolution rate; surface dissolution imaging; focus 

variation 

Abbreviations: GEM, gemfibrozil; DSC, differential scanning calorimetry; XRPD, x-ray powder 

diffraction; API, active pharmaceutical ingredient; BCS, biopharmaceutical classification system; 

NCE, new chemical entity; GIT, gastrointestinal tract; CPENT, cyclopentylamine; CPROP, 

cyclopropylamine; CBUT, cyclobutylamine; CHEX, cyclohexylamine; SEM, scanning electron 

microscope; FVI, focus variation microscope; SDI2, surface dissolution imaging instrument; Sdr, 
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developed interfacial (surface) area ratio; USP, United States pharmacopeia; IDR, intrinsic 

dissolution rate 

1. Introduction 

Poor aqueous solubility, which is now typical of the majority of emerging active pharmaceutical 

ingredients (API), can be a challenge in pharmaceutical development (Al-Hamidi et al., 2010a; 

Korn and Balbach, 2014; Ku and Dulin, 2012; Williams et al., 2013). As a result of their crystal 

structures, APIs can also have undesirable properties which can impact their physicochemical and 

mechanical properties thus affecting compaction, dissolution, bioavailability, hygroscopicity and 

stability to name a few (Asare-Addo and Conway, 2017; David et al., 2010; Ramirez et al., 2017). 

Many of these NCEs belong to the Biopharmaceutical Classification System (BCS) class II and are 

characterized by their high membrane permeability and low aqueous solubility; the rate and extent 

of absorption of these drugs from the gastrointestinal tract (GIT) is thus dependent on their 

solubility and dissolution rate (Amidon et al., 1995). 

Common methods used in overcoming the poor solubility of these APIs include particle size 

reduction, complexation, using additives in crystallization, cocrystals, liquisolid techniques and salt 

formation (Adebisi et al., 2016a; Adebisi et al., 2016b; Al-Hamidi et al., 2014, 2013, 2010a, 2010b; 

Asare-Addo et al., 2015; Nokhodchi et al., 2005; Rabinow, 2004; Stahl et al., 2008).  

A salt formation involves an acid/base reaction that involves neutralisation or a proton 

transfer making the drug molecule forming strong ionic interactions with a counterion that is 

oppositely charged (Berge et al., 1977; Stahl and Wermuth, 2011). Salt formation is usually the 

first consideration and remains an effective and widely used technique for improving the 

solubility, physicochemical and mechanical properties of ionisable drugs such as poor stability, 

physical quality, purity, optimising process chemistry, reducing toxicity and altering the 

absorption in the gastrointestinal tract (He et al., 2017; Stahl et al., 2008). Salt formation is also 

the preferred option regarding the solubility enhancement of drug molecules when compared 
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to co-crystals and polymorphs (Pindelska et al., 2017). Tsutumi et al. evaluated the use of 

miconazole salts on the physiochemical properties of the drug. Intrinsic dissolution tests were 

carried out to compare the dissolution rates of maleate, hemifumarate, hemisuccinate, nitrate 

and the free base and the authors found the miconazole salts showed approximately 2-2.5 

times higher dissolution rate than the free base (Tsutsumi et al., 2011). Supuk et al. observed 

that the choice of counterion for flurbiprofen salts significantly impacted its morphology, 

electrostatics and tabletability (Šupuk et al., 2013). David et al. compared the physical, mechanical 

and crystallographic properties of a series of gemfibrozil salts (David et al., 2012). The authors 

found that salt formation increased the aqueous solubility of gemfibrozil and that solubility 

increased with the number of hydroxyl groups on the counterion. They observed that the increased 

capacity for hydrogen bond formation had an influence on the crystal structure of the salt and that 

the increasing hydrophilicity of the counterion was beneficial in solubility enhancement. Ramirez et 

al. characterised the crystal packing, chain conformation and physiochemical properties of 

crystalline gemfibrozil amine salts (Ramirez et al., 2017). They observed that the cyclic amine 

counterions increased the melting point, which correlated with an increase in counterion molecular 

weight whereas the linear amine counterions had a decrease in melting point with an increasing 

molecular weight and volume. Yang et al. explored the structure-property relationship of three 

diamine gemfibrozil salts. Thermal analysis showed an increase in melting point with the use of the 

counterion. The three salts showed an increased dissolution rate compared to that of the free 

acid (Yang et al., 2016).  

 

An important parameter determined in early stage drug development is intrinsic dissolution rate 

(IDR) as it may help to predict API behaviour in vivo.  Intrinsic dissolution is a feasible 

alternative to equilibrium solubility to determine the BCS class and has several advantages, 

especially with respect to time, quantity of material, and handling of samples. Drugs with an 

intrinsic dissolution rate above 0.1 mg min
-1

cm
-2

 would be considered highly soluble, and rates 
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below this limit would indicate drugs with low solubility. The Surface Dissolution Imaging 

(SDI2) instrument (Pion-Inc, UK) allows the study of real-time surface and whole dosage form. 

This is version 2 of the SDI instrument with Actipix™ Technology from Sirius Analytical, UK now 

Pion Inc). The SDI instrument has been used extensively in characterising the IDRs of APIs as well 

as in other applications and requires little sample (Boetker et al., 2013; Gordon et al., 2013; Hulse 

et al., 2012; Niederquell and Kuentz, 2014; Nielsen et al., 2013; Østergaard et al., 2014). Ward et al. 

recently used a range of advanced imaging techniques to assess the surface properties of ibuprofen 

compacts used in an SDI study to determine IDR (Ward et al., 2017). X-ray powder diffraction 

(XRPD) and differential scanning calorimetry (DSC) showed no changes in the crystal structure of 

ibuprofen after compaction and SDI testing. Variable-focus microscopy revealed changes in the 

surface topography of the compacts that impacted IDR measurement.  

 

The choice of counterion for salt formation has a great impact on selection for drug development, 

the objectives of this research was to prepare and characterise four salts of the poorly soluble anti- 

hyperlipidaemia drug gemfibrozil (GEM) (Figure 1a) using a structurally-related series of 

counterions; cyclopropylamine (CPROP), cyclobutylamine (CBUT), cyclopentylamine (CPENT) 

and cyclohexylamine (CHEX) (Figure 1b-e). The authors aim to use a focus variation microscope to 

give insights to how the effects of the counterions potentially impact the topography of the 

compacts pre-IDR run on the novel SDI2 instrument and to understand how that impacts on 

determined IDR. In a development to the previous instrument, the SDI2 can image whole dosage 

forms and this was used to study the impact of the salt-form on drug release and imaging from hard 

gelatine capsules. 

 

2. Materials and Methods 

2.1. Materials 
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GEM was purchased from Sigma-Aldrich (UK). The counterions - CPROP, CBUT, CPENT and 

CHEX used in the preparation of the salts were all of analytical grade and purchased also from 

Sigma-Aldrich (UK). Although the counterions used in this experimentation are cyclic 

molecules, the term “chain length” is used to define the increase in carbon chain length for 

simplicity in the rest of the manuscript. Acetonitrile and ethanol, the solvents used in the 

preparation of the salts were of analytical grade purchased from Fisher (UK).  The media used for 

IDR determination and whole dosage imaging was phosphate buffer (pH 7.2) prepared according to 

the USP 2003 using sodium hydroxide and potassium phosphate monobasic purchased from Fisher 

(UK) and Acros Organics (Germany) respectively.  

 

2.2. Salt preparation 

The salts were prepared as reported by Ramirez et al. (Ramirez et al., 2017). In brief, equimolar 

ratios of the drug (GEM) and counterion (CPROP, CBUT, CPENT and CHEX) were dissolved in 

50 mL of acetonitrile and the resultant precipitated salt filtered under vacuum. The recovered salts 

were re-crystallised from methanol after which they were dried at 50 °C for up to 12 h. All the salts 

produced were then sealed in glass vials and stored until required. 

 

2.3. Solid State characterisation 

2.3.1. Scanning electron microscopy (SEM) 

A scanning electron microscope (JSM-6060CV SEM, JEOL Inc, MA, USA) operating at 10 kV 

was used to obtain electron micrographs. Before observation, each of the samples (GEM and its 

salts with CPROP, CBUT, CPENT and CHEX) was mounted on a metal stub with double-sided 

adhesive tape and sputter-coated with an ultra-thin coating of gold/palladium (80:20) for 60 s using 



  

7 
 

a Quorum SC7620 Sputter Coater under vacuum with gold in an argon atmosphere. To aid the study 

of the morphology of the salts, micrographs with different magnifications were taken.  

2.3.2. Differential scanning calorimetry (DSC) 

The enthalpy, onset temperatures and melting points of GEM, and its salts with CPROP, CBUT, 

CPENT or CHEX were obtained using the software provided by Mettler-Toledo, Switzerland. This 

was done by first placing about 3-6 mg of GEM, or its salts with CPROP, CBUT, CPENT and 

CHEX in standard aluminium pans (40 µL) with a vented lid. The crimped aluminium pans were 

heated from 20 to 250 ˚C at a scanning rate of 10 °C/min using nitrogen gas as a purge gas in a 

DSC 1 (Mettler-Toledo, Switzerland).  

2.3.3. X-ray powder diffraction (XRPD) 

GEM and its salts with CPROP, CBUT, CPENT and CHEX were scanned in Bragg–Brentano 

geometry, over a scattering (Bragg, 2θ) angle range from 5 to 100°, in 0.02° steps at 1.5° min
−1

 

using a D2 Phaser diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) (Laity et al., 2015). 

The XRPD patterns were collected and analysed further using Microsoft Excel.   

 

2.4. Surface analysis using a focus variation microscope (FVI) and intrinsic dissolution rate 

(IDR) determination 

Compacts for IDR were produced by using 10 mg of either GEM or its salts with CPROP, CBUT, 

CPENT and CHEX at a compression force of 980 N or 0.98 kN using a hand-crank press (Pion 

Inc). Prior to IDR determination, surface assessment of the compacts for IDR was undertaken to 

determine the effect of the counterions on the developed interfacial (surface) area ratio (Sdr) of the 

compacts over the parent drug GEM. The true surface area of the textured sample compared to that 

of a uniform flat surface is known as the Sdr. It is expressed as a percentage by which the true 
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measured surface area exceeds that of the nominal uniform measurement area (Equation 1). The 

focus variation microscope Alicona™ microscope (Alicona Imaging GmbH, Graz, Austria) was 

used for this determination as previously reported by Ward et al. (Ward et al., 2017). Surfstand™ 

software (Taylor Hobson, UK, and University of Huddersfield, UK) was used to analyse the 

images. The SDI2 (Pion Inc) was used in the determination of IDR. The nominal surface area of the 

compact is taken into consideration with the way the software calculates IDR values. The molar 

extinction coefficient of the dissolved GEM was experimentally determined using a range of GEM 

concentrations in phosphate buffer (pH 7.2). The dissolution media (pH 7.2) was maintained at 37 

°C and used for UV-imaging and determination of IDR at a flow rate of 2 mL/min for 30 min . All 

experiments were conducted in triplicate and at a wavelength of 280 nm for the dissolved GEM. 

 

     
                                             

                    
                                     Equation 1 

 

2.5. Whole dosage form dissolution  

Capsules containing 150 mg of GEM (powder – used as from Sigma-Aldrich) or salts 

(formulation powder produced as used from section 2.2) equivalent to 150 mg GEM content 

were prepared using size 0 hard gelatine capsules. These samples were then mounted using a wire 

holder (Figure 2a) and placed within the sample holder (Figure 2b). The whole dosage cell was 

inserted and connected to the fluid lines. The experiment was conducted using phosphate buffer (pH 

7.2) maintained at 37 °C at a flow rate of 8.2 mL/min. The release of GEM was imaged at various 

time points over a period of 60 min at a wavelength of 280 nm. All experiments were conducted in 

triplicate. 
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3. RESULTS AND DISCUSSION 

3.1. Solid-state analysis 

DSC showed GEM to have a melting point of 60.3 °C. This was a sharp narrow peak similar to 

that published by Ramirez et al. (Ramirez et al., 2017) and Aigner et al. (Aigner et al., 2005) who 

reported a melting temperature of 61.2 °C and 59.3 °C respectively. The single endotherm 

confirmed the thermal stability of GEM and thus the absence of polymorphism within GEM.  

The melting points for the CPROP, CBUT, CPENT and CHEX salts are recorded in Table 1. The 

CBUT and CHEX salts are also in direct agreement with data previously published however, the 

CPROP salt melt was about 5 °C different to that published (Ramirez et al., 2017). All the salts 

produced were found to be crystalline in nature. There was also no degradation observed up to 

the temperature studied. There was also no evidence of any hydrate/solvate formation in all of 

the salts studied. XRPD confirmed the characteristic peaks of GEM at numerous and sharp 

reflections at 2θ at 11.6°, 14°, 18° and 24° (Chen et al., 2010) (Figure 3) showing GEM to be 

crystalline in nature as expected. XRPD also showed all the salt made were crystalline in nature 

(Figure 3). The SEM images are depicted in Figure 4. The surface morphology of GEM consisted 

mainly of columnar crystals with rounded edges (Figure 4a). This was observed also by 

Ambrus et al (Ambrus et al., 2012). The CPROP and CPENT salts were columnar and rod like 

in shape with the CPROP exhibiting more agglomeration. The CBUT samples were needle-

like in morphology whereas the CHEX salts showed a network of fine needles on larger 

particles. 

 

3.2. Intrinsic dissolution rate 
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It must be noted that the IDR values reported here were taken after the 5 min mark with the flow 

cell operating at 0.2 mL/min. Hulse et al. reported using IDR values from a UV imaging technique 

after the 3 min mark due to potential erroneous measurements as a result of drug particles on the 

surface (Hulse et al., 2012). In an earlier study conducted by Niederquell and Kuentz, SEM images 

showed that the APIs studied had uneven surfaces on the IDR discs (Niederquell and Kuentz, 

2014). Using a focus variation microscope, Ward et al. reported that loose particulates were indeed 

at the rim and on the surface of IDR compacts which can give rise to inflated IDR values (Ward et 

al., 2017). In this current work, we have demonstrated that the compression of the compacts 

influences the surfaces of the compacts which may be as a result of the properties of the materials 

thereby impacting IDR measurements (Figure 5). Surfstand analysis of GEM compacts at a 5x 

optical magnification showed that Sdr had a surface gain of up to 10.5 % (Table 1). There was a 

general decrease of the developed interfacial (surface) area ratio for all the salts compared to the 

free acid with the exception of the CHEX salt, which had an Sdr value of up to 23 % at the same 

magnification. This gives a formulator an idea as to how the salts may compact with regards to 

possible elasticity due to potential elastic recovery or how brittle the salt formed may be due to 

potential crack on the surface. This is an area of interest, which the authors are currently 

investigating. The zoom analysis on Figure 5 at the 10 to 50x magnification also shows the rings 

picked up on the surface of the compacts from the tooling surface as well as individual particulates 

on the surface of especially GEM and the CPROP salt (highlighted by the black dashed circles in 

Figure 5). All of these findings highlighted the importance of observing the surface to ensure 

accurate IDR data is obtained.  

Data gathered at the 10 min mark showed GEM to have a poor IDR. Salt formation significantly 

improved the IDR for all products (Table 1). The data also suggest a potential trend in the IDR 

values with increasing chain length bringing about a general decrease in IDR. This however is not 

true for the CPENT salt. It was observed over the 30 min period that the IDR value for the CPROP 
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salt had changed significantly. A closer inspection of the images in Figure 6 explained this 

phenomenon. The CPROP image showed wave developments (highlighted by red arrows) at around 

the 15 min time point to be the potential cause of its highly inflated IDR value. This was observed 

post IDR run to be caused by a crack in the compact potentially caused during media ingress.  

This is also highlighted in Figure 7b. The red rectangular insert in Figure 7a also depicts the initial 

higher IDR values that can alter reliable IDR values thereby highlighting the relevance of the use of 

the infinite focus variation microscope. A slight decrease in IDR over time with this imaging 

technique and the shape of the IDR plots as seen in Figure 7 have been observed by other authors 

and could account for some of the differences in values between the 10 min and 30 min time points 

(Hulse et al., 2012; Østergaard, 2018).  This work therefore brings to light the fact that the actual 

disc surface in the IDR runs may not be a uniform smooth surface as thought when geometric 

assessment of the surface area for IDR calculations in the traditional way are conducted. Care 

should therefore be taken to ensure that the surfaces are taken into consideration for future IDR 

measurements to ensure accurate IDR values are reported.  

 

3.3 Whole dosage dissolution 

Figure 8 shows the cumulative release of GEM and its salts with CPROP, CBUT, CPENT and 

CHEX from the capsules. Ostergaard showed the capabilities of this instrumentation in successfully 

imaging an anti-diabetic drug on a prototype of this instrument (Østergaard, 2018). Here, the 

authors have been able to demonstrate for the first time the full capabilities of this instrument in 

imaging a dosage form (capsule) and understanding its behaviour over a period of 60 min. It was 

interesting to note that initial concentration of GEM seemed to be about 4x higher than its 

salts counterparts. This may be as a result of the actual “content” (amount in weight) within 

the capsules. The addition of the counterions in the production of the salts meant “more 
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sample” being weighed for the capsule filling. The dissolution of the capsule shell would 

therefore have meant more of the free particles of the GEM drug being exposed to the pH 

media as compared to the other salts. Over time, the increase in solubility as a result of salt 

formation may be the driver for improved dissolution of the parent drug. It is also important 

to note that there was a higher deviation in the GEM drugs full dosage dissolution. The full 

dosage dissolution showed a trend also in the dissolution of GEM and its salts with CPROP, CBUT, 

CPENT and CHEX.  GEM had an average concentration of 15.99 ± 11.05 µg/mL over the 60 min 

period. The CPROP, CBUT, CPENT and CHEX salts had average concentrations of 43.93 ± 1.88 

µg/mL, 42.71 ± 4.08 µg/mL, 28.09 ± 4.65 µg/mL and 26.20 ± 2.86 µg/mL respectively showing a 

decrease in dissolution with an increase in the chain length of the counterion. There was a similar 

generally trend observed in the IDR determination. It was also interesting to note the 

reproducibility of the data with the low standard deviations for the produced salts. The spikes 

observed at the 45 and 55 min time point for the CBUT salt may have been as a result of 

aggregated particulates at the bottom of the dosage cell finally getting in full dissolution on 

some of the triplicate runs causing a higher deviation.  

The full dosage imaging depicted in Figure 9 shows the ability of the instrumentation to image the 

capsule shell as well as the API present therein. The poor solubility of GEM compared to the salts is 

evident in Figure 9. After the 60 min time point, about half the capsule shell was still within the 

capsule holder while this has completely disappeared for the salts. The images also show how the 

concentration of drug release of the CPROP, CBUT, CPENT and CHEX salts varied over the 60 

min time period (depicted by the intense images declining over time). It was observed that this 

correlated with the chain length of the counterion used and provided a quick visual aid in 

understanding the effects of the counterion in ranking the salts. 

 

4. CONCLUSIONS 
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Amine salts (CPROP, CBUT, CPENT and CHEX) of GEM, a carboxylic acid drug, was 

successfully prepared and confirmed using DSC and XRD. IDR results obtained using UV-imaging 

showed all the salts to have improved values over that of the free acid. Using the UV imaging 

technique to determine IDR confirmed the impact of surface anomalies, not visible to the eye, on 

the measured values. The developed interfacial (surface) area ratio (Sdr) obtained from using the 

focus variation microscope showed a variation of the surface gain for all the salts which could give 

insights into how the compacts undergo compression. The use of various counterions could affect 

plasticity and therefore elastic recovery and this may also be a contributory factor to surface gain. 

This however has to be investigated further. Imaging of the powders dissolving from capsule also 

confirmed the differences in dissolution behaviour. The results suggested an increase in the chain 

length of the counterion to bring about a decrease in the dissolution of the salts over the free acid 

i.e. CPROP > CBUT > CPENT > CHEX > GEM. This study is of importance to a formulator as it 

provides quick insights into how the dissolution of salt forms can be ranked quickly using SDI2 and 

combining with visual imagery allows for troubleshooting of any anomalies due to surface 

disparities is adding value to the empirical approach often used in the salt screening process during 

the preformulation stages. 
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Figure captions 

Figure 1. Structure of (a) gemfibrozil, (b) cyclopropylamine, (c) cyclobutylamine, (d) 

cyclopentylamine and (e) cyclohexylamine 

Figure 2. (a) Image of the wire holder designed for holding the capsule, (b) capsule holder inserted 

into the flow cell to aid acquisition of full dosage imaging 

Figure 3. XRPD analysis for the (a) free acid GEM and its salts with (b) CPROP, (c) CBUT, (d) 

CPENT and (e) CHEX 

Figure 4. SEM images of (a) GEM and its salts with (b) CPROP, (c) CBUT, (d) CPENT and (e) 

CHEX 

Figure 5. Surfstand
TM

 images of the representative compacts of (a) GEM and its salts with (b) 

CPROP, (c) CBUT, (d) CPENT and (e) CHEX. Images shown from 5-50x magnification to 

highlight particulates (dashed black circular lines) and impressions from the tooling that could 

potentially affect IDR measurements. 

Figure 6. Surface dissolution imaging of GEM and its salts with CPROP, CBUT, CPENT and 

CHEX at the 5, 15 and 30 min time points. Red arrow depicts the wave development that resulted in 

a largely inflated IDR value for the CPROP salt. Note: As discussed earlier, IDR was taken after the 

5 min time point only 

Figure 7. IDR as a function of time for the GEM and its salts with CBUT, CPENT and CHEX (b) 

IDR of the CPROP salt. The unpredictability and large variations were due to wave developments 

as a result of a crack in the surface of the compact after 10 min that was observed post IDR run 

Note: IDR data was reported after the 5 min mark only. Red insert on Figure 6a is to elaborate the 

differences or relatively higher IDR values possibly due to drug/salt dust or particulates being on 

the surfaces of the compacts produced at early time points. Purple line insert in Figure 6b around 
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the 11 min mark indicates where the surface crack on the compact of CPROP might have occurred 

to cause further wave developments and thereby erratic IDR measurements 

Figure 8. Cumulative amount of GEM and its salts with CPROP, CBUT, CPENT and CHEX 

released over 60 min using the whole dosage cell inserted in the figure. The whole dosage form 

contains 150 mg of GEM powder as from the supplier or 150 mg GEM content from the four 

salts formulated in a size 0 hard gelatine capsules.   

Figure 9. Full dosage imaging of GEM and its salts with CPROP, CBUT, CPENT and CHEX over 

the 60 min period. The whole dosage form contains 150 mg of GEM powder as from the 

supplier or 150 mg GEM content from the four salts formulated in a size 0 hard gelatine 

capsules.   
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Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

(b)



  

21 
 

 

Figure 3. 
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Figure 4. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Tables 

Table 1. Melting points, intrinsic dissolution rates and developed interfacial (surface) area ratio for 

GEM and CPROP, CBUT, CPENT and CHEX salts  

Drug 

Melting 

point (°C) 

IDR 

(µg/min/cm2)* 

IDR 

(µg/min/cm2)** Sdr (%) 

GEM 60.3 2.01 ± 0.39 2.00 ± 0.38 10.49 

CPROP salts 79.9 93.17 ± 4.02 333.78 ± 189.26$ 9.99 

CBUT salts 105.0 91.63 ± 2.12 81.43 ± 13.89 4.82 

CPENT salts 101.9 127.61 ± 1.87 122.92 ± 3.66 5.87 

CHEX salts 134.2 52.97 ± 1.10 35.82 ± 13.00 28.34 

 

Note: * depicts IDR values after 10 min data collection on the SDI2 and ** depicts IDR values after 

30 min collection on the SDI2. $ depicts the inflated IDR value for the CROP salt as a result of 

wave developments arising from a defect on the surface of the compacts visualised post IDR 

analysis. 
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Highlights 

1. There was a decrease in intrinsic dissolution rate (IDR) with an increase in the chain length 

of the counterion using UV-imaging 

2. The developed interfacial (surface) area ratio (Sdr) showed significant surface gains for the 

compacts for IDR determination  

3. Loose particulates on surface compacts and observed cracks responsible for inflated IDR values 

4. Advanced imaging of surface should be taken into consideration prior IDR determiantion 
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