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ABSTRACT
Supply Chain Risk Management (SCRM) encompasses a wide variety of strategies
aiming to identify, assess, mitigate and monitor unexpected events or conditions
which might have an impact, mostly adverse, on any part of a supply chain. SCRM
strategies often depend on rapid and adaptive decision making based on potentially
large, multidimensional data sources. These characteristics make SCRM a suitable
application area for Artificial Intelligence (AI) techniques. The aim of this paper is
to provide a comprehensive review of supply chain literature that addresses prob-
lems relevant to SCRM using approaches that fall within the AI spectrum. To that
end, an investigation is conducted on the various definitions and classifications of
supply chain risk and related notions such as uncertainty. Then, a mapping study is
performed to categorise existing literature according to the AI methodology used,
ranging from mathematical programming to Machine Learning and Big Data An-
alytics, and the specific SCRM task they address (identification, assessment or re-
sponse). Finally, a comprehensive analysis of each category is provided to identify
missing aspects and unexplored areas and propose directions for future research at
the confluence of SCRM and AI.
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1. Introduction

Supply chains, especially global ones, have always been affected by predictable or
unforeseen events that threaten their profitability and continuity. Practitioners and
researchers have, thus, been interested in investigating the causes of these events in
an attempt to mitigate the effects of the associated risks. This interest has increased
significantly over the past two decades for three main reasons. First, the adoption of
lean management and just-in-time philosophy in production and logistics may have
increased efficiency but have left supply chains vulnerable to adverse events since they
leave little room for error and change (Snyder et al. 2016). Second, firms are increas-
ingly global and less vertically integrated, increasing the complexity of supply chains
and exposing them to much more risks (Behzadi et al. 2018). Third, numerous events
have been witnessed to disrupt global supply chains and have attracted worldwide
attention. These range from natural disasters, such as the 2011 Thailand floods which
caused a global shortage of hard disk drives (Chopra and Sodhi 2014), to man-made
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disasters such as the 9/11 terrorist attacks. They also include events that cause finan-
cial or political instability, such as the 2008 global financial crisis (World Economic
Forum 2012) and the subsequent Great Recession or the decision in 2016 of the UK
to withdraw from the European Union (Brexit) (Matthews 2017).

Research in supply chain risk management (SCRM) has included many different
methodologies, from qualitative ones such as empirical studies and conceptual the-
ories to quantitative approaches such as mathematical optimisation, statistics and
simulation (Ghadge, Dani, and Kalawsky 2012). In terms of implemented strategies,
SCRM can follow either a reactive or a proactive strategy: the former is applied after
a risk materialises, while the latter allows to identify and assess risks before they oc-
cur, in order to prepare suitable mitigation and contingency plans. Experience drawn
from cases such as the Philips/Ericsson one in 2000 (Norrman and Jansson 2004) led
researchers to place more focus on proactive strategies since delayed risk responses
have proven to be significantly damaging. Recent events such as the KFC chicken
supply crisis in early 2018 (Green 2018) strengthen the view that weighing risks and
preparing contingency plans ahead of a major switch in a supply chain can potentially
prevent significant losses. To achieve this, proactive strategies rely on the ability to
accurately predict the likelihood of occurrence and the potential impact of risks. This
necessary predictive capability can be achieved using techniques that fall within the
broad spectrum of Artificial Intelligence (AI).

AI research has had a long history since the creation of the Turing Test in 1950 and
the naming of the field at the 1956 Dartmouth workshop (Solomonoff 1985). Interest
in the field has seen wide variations, from periods of relatively low interest (known as
AI winters) to periods of resurgence and rapid progress. Starting in the early 2000s,
increasing computing power and advances in Big Data and Machine Learning research
have led to renewed interest in AI, going as far as being termed “the AI frenzy” in the
media (Lohr 2016), spearheaded by recent successes of systems such as IBM Watson 1

and DeepMind’s AlphaGo 2. This resurgence has also led to AI being considered in
research areas and applications where it has not played an important role in the past
(such as human resources and recruitment (Zhao et al. 2015)), or in areas where classic
AI techniques have been applied but more recent advances have not been explored.
This survey aims to contribute to the latter case.

Methodologies and techniques that fall under the umbrella of AI are numerous. For
the purposes of this survey, a classification into five broad categories is adopted: (1)
techniques that rely on some form of mathematical optimisation; (2) network-based
approaches that represent problems as sets of possible states and transitions among
them; (3) methodologies that adopt agent-based modelling and multi-agent system
interactions; (4) approaches that involve some form of automated reasoning based
on existing knowledge; and (5) machine learning and big data analytics techniques.
Exploiting these techniques can lead to several interesting applications in the field of
SCRM, including, but not limited to, risk-aware automated supplier selection, risk
propagation modelling in a supply network, identification and prediction of deceptive
supply chain practices, data-driven explanation of disaster resilience, and end-to-end
decision support to facilitate collaborative disruption management.

The main purpose of this paper is to conduct a comprehensive review of SCRM-
related studies that involve AI methodologies to achieve their goals, essentially an-
swering the following research question: to what extent has research in the field of

1https://www.ibm.com/watson/
2https://deepmind.com/research/alphago/
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SCRM exploited AI capabilities such as decision making, prediction, learning and abil-
ity to deal with complex and uncertain environments? In order to effectively answer
this question, a critical comparison and assessment of relevant literature is conducted
through answering the following sub-questions for each reviewed study:

(1) Is any decision-making capability provided and has it been applied to influence
SCRM-related decisions?

(2) Is any predictive capability provided, with regard to future situations that affect
the supply chain in terms of risk?

(3) Is any learning capability provided, adapting decisions according to updated
knowledge?

(4) How many risk-related (or uncertain) parameters are considered?
(5) Are large datasets exploited?
(6) Which SCRM-related tasks (e.g. identification, assessment, response) are re-

alised?

Several literature reviews on topics relevant to SCRM have been published in re-
cent years3. However, to the best of the authors’ knowledge, there has not been any
attempt to view SCRM literature under the prism of AI and assess how effectively
SCRM research has exploited the potential of AI techniques. In this context, the main
contributions of this survey are:

• A comprehensive analysis of SCRM literature, in terms of AI-related capabilities,
namely decision making, prediction and learning

• An investigation on the extent to which large datasets are exploited by existing
SCRM approaches

• A correlation between AI-related methodologies and the SCRM tasks on which
they are applied

• A detailed identification of research gaps and relevant future directions aiming
to harness the untapped potential of current advancements in AI research for
the benefit of SCRM

As succinctly presented in Olhager (2013), production research and especially plan-
ning and control, has witnessed several paradigm shifts since the 1960s, moving from
a shop floor level to enterprise resource planning and eventually supply chain-wide de-
cision making. It can be argued that AI has gradually brought about a new paradigm
shift, leading to automated systems that can harness knowledge and data to improve
decision making within supply chains. This survey contributes to understanding the
progression of this shift so far, in what concerns SCRM, and mapping the way forward.

The remainder of this paper is organised as follows. Section 2 offers a concise anal-
ysis of risk, uncertainty and related notions and provides the definitions of SCRM
and AI based on which this survey is constructed. Section 3 presents the methodology
followed for the review, also providing a comparison to related survey papers in liter-
ature. Section 4 contains a classification analysis of the reviewed studies, according to
publication year and venue, case studies and types of risk and uncertainty. Section 5
is the main part of the survey, answering the aforementioned research questions by
evaluating the reviewed studies in terms of their AI capabilities and the SCRM tasks
they realise. Finally, Section 6 discusses a set of research gaps that result from this
survey and proposes several interesting directions for future research.

3For a detailed analysis of relevant literature, please refer to Section 3.3
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2. Background of Study

This section is devoted to analysing the background knowledge relevant to this litera-
ture review. It begins with a series of definitions on supply chain risk, uncertainty and
related notions, as well as SCRM, based on a meta-review conducted on previously
published survey and research agenda articles on supply chain risk. Then, a definition
of AI is provided that is relevant for the purposes of this survey.

2.1. Risk and Uncertainty

While there have been several attempts to define supply chain risk, there is no uni-
versally accepted definition. Early attempts to define risk in SCRM literature re-
lied on existing definitions in finance and enterprise risk management. For instance,
Jüttner (2005) assumes March and Shapira’s definition of risk as “the variation in the
distribution of possible outcomes, their likelihoods, and their subjective value” (March
and Shapira 1987). Risk definitions tend to be vague and ambiguous, involving a wide
array of core characteristics (Heckmann, Comes, and Nickel 2015). Among the various
proposals, there has been consensus on some characteristics of risks. Specifically, there
is an agreement that risk involves exposure to an event (Holton 2004), which occurs
with varying likelihood and possible outcomes (Manuj and Mentzer 2008a).

On the other hand, there has been extensive debate on whether risk is a subjective
or objective phenomenon, whether it involves both negative and positive outcomes,
and the relation of risk and uncertainty (Khan and Burnes 2007). Those in favour of a
subjective view argue that a risk is determined by the viewpoints (social, political or
otherwise) of the stakeholders involved, while others maintain that risk is objectively
defined based on quantifiable and measurable dimensions (Lupton 2013). In terms
of outcomes, risk is more commonly associated with the negative consequences (i.e.
losses) that follow an event occurrence, with relatively fewer researchers stressing the
positive effects (i.e. gains) that may be possible in a risky situation.

On the connection between risk and uncertainty, Manuj and Mentzer (2008b) view
risk as the expected outcome of an uncertain event, while Rao and Goldsby (2009)
link a risk to an event and the uncertainty of possible outcomes. Vilko, Ritala, and
Edelmann (2014) model a complete spectrum of the knowledge that decision makers
hold about the supply chain, ranging from complete certainty to radical uncertainty.
In between, there are four distinct stages of increasing levels of uncertainty; the closest
one to complete certainty is the one that the authors view as a basis for typical SCRM:
the situation where the supply chain structure is fully known and the likelihood and
impact of future events is known in terms of objective probabilities. This is in contrast
to the next more uncertain level where these probabilities are not known and SCRM
can only rely on subjective beliefs.

In the context of managing supply chain risks, the aforementioned debates can be
resolved in order to obtain a more specific risk definition. First, SCRM can certainly
benefit from an objective rather than a subjective view, provided that the focus is
on wider applicability instead of individualised approaches. Second, the concept of
managing risks carries the connotation of adverse effects, in the sense of containing
or avoiding altogether the negative consequences accompanying risk. Finally, SCRM
is only effective when at least the supply chain structure is fully known. A recent risk
definition that captures these characteristics is provided by Ho et al. (2015), where
supply chain risk is defined as “the likelihood and impact of unexpected macro and/or
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micro-level events or conditions that adversely influence any part of a supply chain,
leading to operational, tactical or strategic level failures or irregularities”.

2.2. Related notions

While risk and uncertainty are the most common terms used in association with SCRM
in literature, there are several related notions that usually stress either negative con-
sequences of risk or positive outcomes of managing risk. A summary of definitions
for some of these notions follows, based on relevant discussions that have appeared in
SCRM literature.

Vulnerability and disturbance are frequently used by researchers and practitioners
to describe a supply chain affected by risk. Both Jüttner (2005) and Martin and
Peck (2004) define vulnerability as an exposure to disturbances due to supply chain
risks, affecting the ability to satisfy the end customer market needs. Disruption is
a synonym of disturbance, albeit one with graver consequences: while disturbance
may simply interrupt a normal situation, disruption causes a violent dissolution of
continuity (Pfohl, Köhler, and Thomas 2010). As further analysed in Section 2.4,
disruption has been widely used to denote risks caused by natural and man-made
disasters. Other terms with negative connotations that have been used in relation to
risk are threat, crisis, disaster, catastrophe, peril, hazard and emergency.

Other negative terms associated with risk are threat, which is either viewed as a
synonym for risk, or as a lower probability event than risk (Schlegel and Trent 2014)
and crisis, defined as ”the interruption of one or more supply chain activities, resulting
in a major disruption of the normal flow of goods or services” (Natarajarathinam,
Capar, and Narayanan 2009).

In terms of positive outcomes, risk is often associated with robustness and resilience,
which are usually viewed as means of decreasing supply chain vulnerability (Behzadi
et al. 2018). Robustness is defined by Colicchia and Strozzi (2012) as “the extent to
which the supply chain is able to carry its functions for a variety of possible future
scenarios”. Resilience puts more emphasis on the proactive ability to adapt in prepa-
ration for unexpected events so that it is possible to quickly recover from them and
reinstate continuity of operations in the supply chain (Ponomarov and Holcomb 2009).
Other terms with positive connotations that have appeared in literature relevant to
risk are security, safety, sustainability, opportunity, flexibility and agility.

It should be noted that the aforementioned notions are all qualitative in nature. Risk
is often quantified through a product of its probability and its impact, provided that
these can be represented numerically. Alternatively, SCRM researchers have proposed
the use of several measures, most of which are borrowed from research in financial
risk management. Among them, the most commonly used are deviation-based, aim-
ing to quantify risk in terms of how much it affects a situation compared to normal
circumstances. Examples include variance, standard, absolute or expected deviation,
or central semideviation. Another commonly used category includes the downside-risk
measures of value-at-risk (VaR) and conditional-value-at-risk (CVaR). VaR expresses
a loss threshold given a specific probability, while CVaR expresses the average loss be-
yond that threshold. For a more detailed analysis of risk measures, please refer to Heck-
mann, Comes, and Nickel (2015) and Govindan, Fattahi, and Keyvanshokooh (2017).
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2.3. Supply Chain Risk Management

As is the case with risk, there is no universally accepted definition of SCRM. However,
in contrast to risk, there seems to be more agreement than debate. Nearly all propos-
als define SCRM in terms of a set of actions that lead to an intended result, while
also stressing out the prerequisite of coordination and collaboration among supply
chain partners. SCRM-related actions are either collectively termed as management
(e.g. (Jüttner 2005; Tang 2006)), or are individually specified. In the latter case, SCRM
is defined to include identification (Jüttner 2005; Manuj and Mentzer 2008b), evalua-
tion (Manuj and Mentzer 2008b; Ho et al. 2015), mitigation and monitoring (Ho et al.
2015) of risks.

In terms of intended results of SCRM, researchers either stress the mitigation of
negative effects of risks or the strengthening of positive characteristics of the sup-
ply chain. Examples of the former case include reducing vulnerability (Jüttner 2005;
Martin and Peck 2004), losses, probability or exposure to risks (Manuj and Mentzer
2008b). On the other hand, positive effects of SCRM that are included in definitions
involve ensuring profitability and continuity (Tang 2006; Manuj and Mentzer 2008b).

For the purposes of this survey paper, an inclusive synthesis of the aforementioned
elements is proposed, which results in the following generalised definition: SCRM en-
compasses the collaborative and coordinated efforts of all parties involved in a supply
chain to identify, assess, mitigate and monitor risks with the aim to reduce vulnera-
bility and increase robustness and resilience of the supply chain, ensuring profitability
and continuity.

2.4. Risk classification

According to
SC Network
Level

External to network1

(Environmental2,3)
Environmental1

(SC Scope4,
Macro5)

Internal to network-
External to firm1

(Network2,
Industry3)

Supply1

(Source4)

Demand1

(Deliver4)

Internal to firm1

(Organisational2,3)

Process1

(Make4,
Manufacturing5)

Control1

(Infrastructural5)Problem-specific3

Decision-maker
specific3

According to
SC Process

1Martin and Peck (2004), 2Jüttner (2005), 3Rao and Goldsby (2009), 4Tang and Nurmaya Musa (2011), 5Ho

et al. (2015)

Figure 1.: Common supply chain risk classifications.

Risks have been classified in many different ways in SCRM literature, depending
on the scope and goals of each research article (Rangel, de Oliveira, and Leite 2015;
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Hudnurkar et al. 2017). The two most common supply chain risk classifications in
literature are shown in Fig. 1. The first, shown on the left side, classifies risks ac-
cording to the level within the supply chain network that they affect or are sourced
from (Martin and Peck 2004; Jüttner 2005; Rao and Goldsby 2009). Three main lev-
els are usually recognised. The first involves risks that are external to the network,
alternatively termed environmental. The second level groups risks that are internal to
the network but external to the focal firm, also named as network or industry risks.
The third level includes all risks that are internal to the firm, called organisational.
Rao and Goldsby (2009) recognise two additional levels related to the specific decision
problem at hand and characteristics of individual decision makers.

An alternative risk classification approach is based on the specific subset of the
supply chain that the risk affects or is sourced from (Martin and Peck 2004; Manuj
and Mentzer 2008b; Peidro et al. 2009; Tang and Nurmaya Musa 2011; Ho et al. 2015),
shown on the right side of Fig. 1. Five separate classes are identified. The first involves
risks that are related to the supply chain as a whole and not to any specific part of
it; this category directly corresponds to the aforementioned first level (external to the
network) and risks within are referred to as environmental (Martin and Peck 2004),
macro (Ho et al. 2015) or SC scope (Tang and Nurmaya Musa 2011). The second class
groups risks that are related to the supply side of the chain (or source, according to
the SCOR model). On the other hand, the third class contains all demand side risks
(deliver, according to SCOR). The fourth class involves risks that affect the supply
chain processes, alternatively termed manufacturing (Ho et al. 2015) or make (Tang
and Nurmaya Musa 2011) risks. The fifth and final class groups risks that relate
tocontrol over supply chain processes (equivalent to the infrastructural risks in Ho et
al. (2015)).

2.5. Artificial Intelligence

Ever since its introduction in the 1950s, the field of AI has witnessed alternating peri-
ods of intense growth and significant decline. In recent years, factors such as increasing
computational power and availability of Big Data, among others, have led to renewed
interest in the field. Due to this constant evolution in AI research, the definition of
what is considered AI is also continually evolving.

Legg and Hutter (2007) have attempted a thorough analysis of well known defi-
nitions of intelligence in order to come up with a formalised definition and measure
of Machine Intelligence. In their analysis, they identify two fundamental prerequisite
features for considering a human or machine intelligent: (1) the ability to carefully
choose their actions in a way that leads to success or profit, in terms of some kind
of objective or goal; (2) the ability to deal not with a fully known environment, but
with a range of possibilities which cannot be wholly anticipated, through learning and
adaptation.

For the purposes of this survey, an SCRM approach is considered as artificially
intelligent if it satisfies both of the aforementioned characteristics: it should be able
to autonomously decide on a course of action that leads to success in SCRM-related
objectives and do so under a partially unknown supply chain environment. The partic-
ular AI techniques that are exploited can range from traditional symbolic AI, relying
on mathematical, or knowledge-based problem representations, to sub-symbolic AI,
including, for instance, fuzzy systems and evolutionary computation, to statistical AI,
encompassing Machine Learning approaches.
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3. Review methodology

3.1. Search strategy

The literature review conducted for the purposes of this paper relies primarily on
automated search. Following recently published reviews (Fahimnia et al. 2015; Prakash,
Soni, and Rathore 2017), two levels of keywords are used, conjunctively combined
with AND. The first level defines the search context and includes the term “supply
chain”. The second level includes the following disjunction of terms related to risk and
uncertainty, as detailed in Sections 2.1 and 2.2: “risk OR uncertainty OR vulnerability
OR threat OR disruption OR disturbance OR crisis OR disaster OR catastrophe OR
peril OR hazard OR emergency OR opportunity OR resilience OR robustness OR
security OR safety OR flexibility OR agility OR sustainability”.

Bibliometric research (Mongeon and Paul-Hus 2016) suggests that the largest in-
dexing services currently are Elsevier’s Scopus (with a bias towards researchers in
Europe) and Clarivate’s Web of Science (with a bias towards researchers in the US).
While neither is a strict subset of the other, Scopus seems to have a slightly larger
coverage (22,800+ journals4 as opposed to Web of Science’s 20,300+5). Based on this,
Scopus was chosen as the primary resource for automated search.

To decide on a time period for the search, this survey relies on previously published
supply chain risk literature reviews, where the earliest reviewed study is published in
1978. Hence, it is reasonable to set the time period from 1978 up to and including
June 2018.

To assess and ensure completeness, three ancillary search procedures are included:
(1) backwards snowballing (i.e. checking reference lists) on select primary studies; (2)
title and abstract search on recent volumes of the most prominent journals in relevant
fields and (3) comparison against the articles explored by previous literature reviews
on supply chain risk (more details in Section 3.3).

3.2. Search scope

A series of inclusion and exclusion criteria frames the scope of this survey. First,
studies must be peer-reviewed and written in English. Second, each study must include
at least one practice, technique or methodology that has a proactive rather than a
reactive approach to a risk-related issue in supply chains. Note that studies do not
have to explicitly mention risk; instead, they may refer to uncertainty and/or any of
the related notions in Section 2.2. Third, the aforementioned practice, technique or
methodology must be artificially intelligent, according to the definition included in
Section 2.5.

Additional criteria focus on excluding studies that are not specifically related to
supply chain, risk management and AI. Specifically, supply chain management publi-
cations with no concrete link to risk-related issues are excluded. Moreover, enterprise
risk management publications with no clear connection to supply chain are also ex-
cluded. Studies are also excluded if the proposed approaches do not satisfy the AI
definition in Section 2.5, e.g. if they rely exclusively on AHP, TOPSIS or FMEA
methods. Finally, due to the Scopus limit of 2000 results per year, studies that have
not been referenced at least once have also been excluded (this applies only to years
2013-2016).

4http://www.elsevier.com/solutions/scopus/content
5https://clarivate.libguides.com/webofscienceplatform/coverage
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Table 1.: Comparison with related surveys.

Survey Time period Reviewed Shared Focus
studies studies

(Behzadi et al. 2018) 1993-2017 42 5 Agribusiness SCRM
(Ivanov et al. 2017) 2001-2017 38 7 SC disruption recovery

(Govindan, Fattahi, and Keyvanshokooh 2017) 2000-2015 170 137 Supply chain network
design under uncertainty

(Ho et al. 2015) 2003-2013 224 20 SCRM in general
(Ghadge, Dani, and Kalawsky 2012) 2000-2010 120 1 SCRM from a holistic

systems thinking perspective
(Colicchia and Strozzi 2012) 1994-2010 55 6 SCRM in general

(Peidro et al. 2009) 1988-2007 103 27 Supply chain planning
under uncertainty

(Vanany, Zailani, and Pujawan 2009) 2000-2007 82 2 SCRM in general

A Scopus search as detailed in Section 3.1 yields more than 28,000 results. By care-
fully and thoroughly applying all aforementioned criteria and ancillary search strate-
gies, 276 studies remain and are analysed in the rest of this paper6.

3.3. Related surveys

Despite the relatively short history of SCRM as a distinct research field, several articles
have been published with the aim of reviewing related literature. In Table 1, survey
papers published in the past 10 years are summarised. Only surveys that present a
detailed account of the search process and reference all reviewed studies are included,
since their results can be replicated and compared. It should be noted that the only
SCRM survey that uses the term AI to refer to a subset of applied methodologies is
Peidro et al. (2009); however, it adopts a rather narrow view of AI, containing only
multi-agent systems, reinforcement learning, evolutionary and genetic algorithms and
fuzzy mathematical programming.

With the exception of Govindan, Fattahi, and Keyvanshokooh (2017), the number
of shared studies with other surveys is low. This is either due to surveys being less
recent (Vanany et al. (2009) and Peidro et al. (2009)), or due to adopting a more
restricted focus: Ghadge, Dani, and Kalawsky (2012) and Colicchia and Strozzi (2012)
focus mostly on strategic approaches to SCRM, Behzadi et al. (2018) include only
agribusiness-related studies, and Ho et al. (2015) include only results that match both
“supply chain” and risk.

Roughly 80% of the studies reviewed by Govindan, Fattahi, and Keyvan-
shokooh (2017) are also reviewed in this survey. This is due to the fact that quan-
titative approaches to supply chain network design under uncertainty most often in-
volve some form of mathematical programming, which falls under the definition of
AI in Section 2.5, since it is capable of autonomously making decisions (based on a
mathematical optimisation model) under partially known (uncertain) environments.
However, this survey includes a further 135 studies which have either been published
after Govindan, Fattahi, and Keyvanshokooh (2017) or are not related to supply chain
network design under uncertainty but are directly relevant to SCRM. Also, while their
goal is to study the selected studies in terms of mathematical modelling, solution meth-
ods and optimisation techniques, the goal in this survey is to evaluate their AI-related
capabilities, as well as their relevance to the typical phases in SCRM.

6The survey dataset can be provided in various formats (e.g. SciVal, EndNote, or .BIB/.RIS files) upon request

to the corresponding author.
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Figure 2.: Distribution of studies by publication year.

4. Classification of reviewed studies

In this section, the reviewed studies are classified according to the following charac-
teristics: (1) year of publication, (2) venue (journal or conference) where the study is
published and (6) the approach used to achieve SCRM-related goals.

4.1. Year of publication

As illustrated in Fig. 2, the trend of publishing AI-related research in SCRM confirms
the results of previous surveys (e.g. (Fahimnia et al. 2015)), with a roughly geometric
growth, from less than 5 studies before 2002, to more than 30 studies in 2014, fuelled
by worldwide phenomena that have a direct or indirect effect on supply chains such as
the post-2001 increase in terrorism, the 2008 global financial crisis and the post-2009
European debt crisis. There is a noticeable sharp drop in 2016 and a slight uptick in
2017. This can be attributed to a general decrease in the publication of SCRM studies
and possibly a saturation in terms of the most popular quantitative approaches to
SCRM which involve some form of stochastic or fuzzy programming. However, the
trend seems to have completely reversed during 2018: we have identified 26 studies
only during the first half of the year, which strongly suggests that the total for the
whole year may surpass the 2014 peak. This renewed interest in AI-focused SCRM
(and possibly SCRM in general) is likely linked to the recent AI resurgence and the
uncertainty in global economy that is fuelled by the ongoing European debt crisis and
global trade wars Hornby (2018).
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Figure 3.: Journals with the highest contribution in the conducted survey.

4.2. Venue of publication

Fig. 3 shows the top 10 journals ranked based on their contribution in the studies
selected in this survey (note that there are 12 entries due to a three-way tie in tenth
place). As should be expected, the most contributions come from production, logis-
tics and operational research journals. Also, the list includes journals that involve
computers, expert systems and engineering, due to this survey’s focus on AI.

4.3. Approach

In terms of the approach adopted to tackle SCRM-related issues, the reviewed studies
are classified in five categories, as shown in Fig. 4. The first category groups ap-
proaches that involve some form of mathematical programming and is divided into
six subcategories. The most common case, representing 50% of the reviewed studies,
is the use of stochastic programming to handle uncertainties, analysed in Section 5.1.
Other mathematical programming techniques include robust optimisation (Mulvey,
Vanderbei, and Zenios 1995) and fuzzy programming (11% and 19% of the reviewed
studies, respectively) and are discussed in Sections 5.2 and 5.3. A few studies propose
hybrid solutions that combine various forms of mathematical programming; these are
examined in Section 5.4.

The remaining four categories (representing 14% of the reviewed studies) exploit
various solutions proposed in AI research to achieve SCRM-related goals. These include
network-based models such as Petri Nets and Bayesian networks (Section 5.5), multi-
agent systems (Section 5.6), automated reasoning (Section 5.7) and Machine Learning
and Big Data Analytics (Section 5.8).
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Figure 4.: Distribution of reviewed studies according to the adopted approach.

5. AI-focused analysis of reviewed studies

In this section, the selected studies are evaluated in terms of their AI-related capa-
bilities: the number of risk/uncertain parameters considered, the exploitation of large
datasets and their decision-making, predictive and learning capabilities. Results are
presented in comparison tables, where a Yes/∼/No value indicates full, limited or
no support of the corresponding capability. Also, the SCRM tasks realised by each
approach are determined, choosing among identification, assessment and response.

It should be noted that mathematical programming approaches (based on stochas-
tic, fuzzy and robust optimisation models) fall under the umbrella of AI based on
the definition in Section 2.5, due to their ability to assist in making decisions under
partially unknown environments. However, such approaches exhibit limited decision-
making capabilities, while their nature precludes any form of prediction or learning.
As a compromise, this survey includes such studies, but they are only briefly discussed,
though detailed comparison tables can be found in Appendix B.

5.1. Stochastic Programming

The most common approach to SCRM is to use stochastic parameters to model any
aspect that is subject to risk or uncertainty and then optimise the resulting model with
regard to one or more objective functions, often cost-related. The heart of any stochas-
tic programming approach is the mathematical model which encodes the knowledge
and expertise of the practitioners and researchers that propose it.

5.1.1. Continuous parameters

Some models rely on the assumption that continuous distributions for all uncertain
parameters are known (or can be estimated) beforehand and all decisions are made
based on these distributions. In most cases, a single uncertain parameter (most often
demand) is included and evaluation is based on small-to-medium datasets, with the
exception of You and Grossmann (2008), which presents a slightly larger case study
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of a US supply chain. All of the reviewed studies relate to risk response in the form
of risk-aware or uncertainty-focused supply chain planning or design, while some of
them (Dal-Mas et al. 2011; Azad and Davoudpour 2013; Azad et al. 2014) also provide
risk evaluation by relying on risk measures such as CVaR.

In terms of decision making, research is mostly geared towards defining, solving and
evaluating the proposed stochastic model, with less focus on how it may be integrated
into an SCRM decision-making process. Some of the works (e.g. (Ryu, Dua, and Pis-
tikopoulos 2004) or (Marufuzzaman et al. 2014)) do offer some managerial insights
with regard to the obtained results without, however, incorporating these insights into
a decision support system. Table B1 in Appendix B details all reviewed studies that
incorporate stochastic programming with continuous parameters.

5.1.2. Scenario-based

Assuming a continuous distribution for uncertain parameters often leads to excep-
tionally complex problems that are hard to solve. Instead, parameter values can be
assumed to be discrete (and finite), leading to a finite number of possible realisations,
called scenarios, each one with an attached probability. This is usually combined with
a two-stage setting, where some decisions are made beforehand, leading to a set of pos-
sible realisations; then, corrective actions (known as recourse) may need to be taken,
in order to meet goals.

The scenario-based stochastic approach is by far the most popular modelling choice
for SCRM. Its characterisation with regard to AI is similar to that of the previous sub-
category; this should be expected as the approaches differ mainly in how values are
attributed to uncertain parameters. The number of uncertain parameters is slightly
increased in some studies (e.g. (You, Wassick, and Grossmann 2009; Schütz, Tomas-
gard, and Ahmed 2009; Ghavamifar, Makui, and Taleizadeh 2018)), though it should
be noted that the more parameters a model incorporates, the less scenarios can be
supported before the problem becomes exceedingly computationally complex. Tsiakis,
Shah, and Pantelides (2001) is notable for using a Europe-wide supply chain network
to evaluate the proposed model, while Koutsoukis et al. (2000) is one of the very few
stochastic programming approaches that implements a prototype decision support sys-
tem to assist the decision maker in addressing uncertain demand. All reviewed studies
in this category are provided in Table B2 in Appendix B.

5.1.3. Other

Other SCRM-related approaches that involve stochastic optimisation primarily rely
on chance-constrained (probabilistic) programming7 (Gupta, Maranas, and McDonald
2000; Mitra et al. 2008; Guillén-Gosálbez and Grossmann 2010; Scott et al. 2015)) or
dynamic programming (Huchzermeier and Cohen 1996; Fang et al. 2013). The former
is used when there are “soft” constraints which need only be satisfied with a pre-
specified probability (or reliability level), while the latter applies a divide-and-conquer
approach, by iteratively solving smaller sub-problems and reusing such solutions when
possible.

Almost all studies in this category propose models that include a single uncertain pa-
rameter (related to demand or product quality) in order to design supply chains that
are risk-aware, with the notable exception of Pasandideh, Niaki, and Asadi (2015),

7Note that probabilistic constraints are included in other studies as well, but as part of a hybrid approach,

hence they are discussed in Section 5.4.
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which includes 11 uncertain parameters and relies on genetic algorithms to find opti-
mal solutions. None of the reviewed studies in this category support large datasets. In
terms of decision-making capabilities, the work of Scott et al. (2015) stands out since
it proposes a decision support system for order portfolio recommendation that com-
bines chance-constrained optimisation with supplier selection using analytic hierarchy
process. Table B3 in Appendix B offers a detailed comparison of the studies belonging
to this category.

5.2. Robust Optimisation

If distributions for uncertain parameters are unavailable, robust optimisation tech-
niques are a suitable alternative. In such techniques, uncertain parameters are assumed
to have a finite set of possible realisations. Model solutions are evaluated in terms of
solution-robustness and model-robustness. Solution-robustness determines how “close”
to optimal a given solution is, measured using a cost function. Model-robustness eval-
uates how “feasible” the solution is, by examining which constraints are violated.

Robust optimisation approaches tend to focus on a limited number of parameters,
usually 1 to 3, mostly focusing on supply or demand uncertainties. In terms of ex-
ploiting large datasets, only two approaches consider this in a limited manner, in that
they conduct evaluations with larger-than-average test sets: Pishvaee, Rabbani, and
Torabi (2011) consider problems of size up to roughly 14 million elements while Dubey,
Gunasekaran, and Childe (2015) include a scenario where the problem size rises up to
165 × 109.

Regarding decision-making capabilities, the only study that explicitly integrates the
proposed robust optimisation model into a decision-making framework is that of Hahn
and Kuhn (2012), although the decision-making process is still purely manual. Finally,
all robust optimisation studies focus only on the risk response phase of SCRM. For
a comparison of all studies based on robust optimisation, please refer to Table B4 in
Appendix B.

5.3. Fuzzy Programming

In handling the inherent uncertainty of SCRM, it is sometimes useful to incorporate
a level of flexibility in the assumed values of parameters or in the satisfaction of
goals. This is realised through the use of fuzzy programming methods, where uncertain
parameters are treated as fuzzy numbers and constraints as fuzzy sets. Note that, since
the focus of this survey is on the risk aspects of supply chain, studies that rely solely
on flexible programming have been excluded, since they assume uncertainty only on
goals and not parameters.

While earlier approaches seem to support only a small number of fuzzy parameters,
more recent studies have proposed models with more than 50 of them, as is the case of
Pishvaee, Razmi, and Torabi (2014) and Babazadeh et al. (2017), with both reducing
computational complexity by relying on techniques such as Benders decomposition or
the ε-constraint method. As should be expected, no approach directly supports large
datasets, since model validation is almost always based on a limited case study.

In terms of decision making, there are three notable cases that propose decision
support frameworks exploiting the defined fuzzy models. The latter three are analysed
in more detail. Selim and Ozkarahan (2008) employ a simple feedback loop to modify
coefficient values until an acceptable solution is reached. Tang, Lau, and Ho (2008)
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propose a two-phase knowledge framework for risk assessment, with experts formulat-
ing the initial input to genetic algorithms. Micheli, Mogre, and Perego (2014) propose
a decision support system that involves the decision maker throughout the SCRM
process, from the identification of risks and corresponding mitigation measures and
budget to the definition of risk profiles in terms of likelihood and impact. It should also
be noted that the work of Tang, Lau, and Ho (2008) is the only fuzzy programming
study that focuses on risk assessment, rather than risk mitigation, as is the case for
all others. Table B5 in Appendix B includes all reviewed studies that fall under the
fuzzy programming category.

5.4. Hybrid Approaches within Mathematical Programming

A small subset of the SCRM approaches that exploit mathematical programming
techniques do not belong strictly to one of the previous categories, either because they
compare different techniques or because they attempt to combine two or more of them
in a hybrid framework. Most cases involve employing fuzzy sets in relation to stochastic
programming or robust optimisation. Two studies put different approaches head-to-
head for the problem of supplier selection under risk but do not propose a full-fledged
hybrid: Wu and Olson (2008) compare chance-constrained programming, data envel-
opment analysis and multi-objective programming, while Li and Zabinsky (2011) com-
pare two-stage stochastic programming with chance-constrained programming models,
noting that the latter requires less computational effort but does so at the penalty of
discretising the relationships between parameters.

A hybrid approach combining chance-constrained and fuzzy models has been pro-
posed by Pishvaee, Torabi, and Razmi (2012) for the design of a green supply chain
under uncertainty. The proposed model includes constraints on fuzzy events (e.g. re-
lated to fuzzy demands) which do not need to always hold but which need to exceed a
specific credibility threshold. Similar constraints are also used by Bai and Liu (2016)
but within a robust optimisation setting. Vahdani et al. (2013) approach the design of a
closed loop supply chain under uncertainty with a similar fuzzy chance-constrained hy-
brid, incorporating, however, interval programming as well. This allows their model to
deal with uncertain parameters presented as intervals without knowing their distribu-
tion. Another fuzzy chance-constrained hybrid is proposed by Zhalechian et al. (2016)
to simultaneously address the facility location and vehicle routing problems under un-
certainty. Due to its complexity, a hybrid metaheuristic combining the self-adaptive
genetic algorithm and variable-neighbourhood search is applied to solve it.

Instead of chance-constrained models, other proposals for supply chain network de-
sign under uncertainty combine fuzzy features with standard stochastic programming,
such as the work of Felfel, Ayadi, and Masmoudi (2016), which uses a typical two-stage
three-objective stochastic formulation; however, to select the preferred solution among
Pareto-optimal alternatives, they maximise a fuzzy membership function that corre-
sponds to a compromise among the three objectives. Vahdani et al. (2012) propose a
similar hybrid for supply chain design under uncertain capacity and costs, but also
calculate the robust counterpart of the model before solving it. Keyvanshokooh, Ryan,
and Kabir (2016) propose a hybrid robust-stochastic programming approach due to
their model incorporating stochastic uncertainty for transportation costs and polyhe-
dral uncertainty sets for demand and return. Haddadsisakht and Ryan (2018) propose
a similar robust-stochastic hybrid for closed-loop supply chain network design, but
use stochastic uncertainty for demand and polyhedral uncertainty sets for carbon tax.
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Finally, Zahiri and Pishvaee (2017) propose a robust possibilistic model for supply
chain network design with uncertain parameters following trapezoidal distributions
and determining robustness based on the credibility measure.

Pavlov et al. (2018) address the problem of assessing the resilience of a supply
chain using a hybrid methodology that combines fuzziness and the genome method.
Supply chain reliability is modelled through possibility of failure, while the genome
method is used to determine the most efficient structure for the supply chain network
that achieves a certain (or maximum) reliability level. Jabbarzadeh, Fahimnia and
Sabouhi (2018) use fuzzy c-means clustering to score supplier sustainability based on
several criteria. These scores are then used as input parameters to a stochastic model
that aims to minimise total cost and maximise sustainability performance, when the
percentage of a supplier’s capacity that is disrupted is uncertain.

Less common hybrids are centred around simulation techniques. Tong, Feng, and
Rong (2012) present a two-stage scenario-based stochastic programming model for
supply chain planning under fluctuating demand and yield and solve it using a
simulation-based heuristic that can handle large scenario numbers. Claypool, Norman,
and Needy (2014) model supply, demand and exposure risk within a mixed-integer pro-
gramming model, whose solutions are used as inputs in a simulation that analyses the
results of implementing them.

Regardless of the combination examined, the aforementioned studies exhibit a sim-
ilar profile with regard to their AI-related features. Table B6 in Appendix B offers
a comparison of hybrid mathematical programming approaches to SCRM. Most of
them deal with a low number of uncertain parameters, with the exception of Vahdani
et al. (2012) and Zhalechian et al. (2016), while none of them exploit large datasets.
Almost all of them offer managerial insights on how the proposed models can assist in
decision making but none propose a full-fledged decision support system. Finally, with
the exception of Pavlov et al. (2018) which focuses on risk assessment, the rest focus
on risk mitigation by addressing various issues in relation to supply chain network
design under uncertainty.

5.5. Network-based

The complex and dynamic nature of SCRM decision making, especially under uncer-
tainty, has led several researchers to adopt a network-based model to represent the
various possible states, their outcomes and the possible transitions between them.
Four studies have been identified that use some form of Petri Nets and five that use
Bayesian Belief Networks8. In addition, a Generalised Semi-Markov Process is used in
a single study (Deleris, Elkins, and Paté-Cornell 2004) along with Monte Carlo sim-
ulation in order to estimate the probability distribution of supply chain losses caused
by disruptions.

Reasoning Petri Nets are employed by Asar et al. (2006) to model supply chains
as a discrete event system. The networks include rules that concern frequency and
cause-effect relationships of events, as well as probability of threats. Using the net-
works, the authors are able to determine how threats propagate and what preventive
actions are necessary. Supply chains have also been modelled using attributed Petri
Nets (Rossi and Pero 2012), in order to be able to embed logistic parameters within
the network. The authors compute the coverability graph of the network to identify

8Bayesian networks are only used in these studies only for inference. Studies that use such models for learning

as well are classified within the Machine Learning and Big Data category, discussed in Section 5.8
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events that carry risk and assess that risk using simulation. Other variants include P-
Trans-Nets (Blackhurst, Wu, and O’Grady 2004), which employ probabilities and are
used to simulate the performance of a supply chain, and Colored Petri Nets, used by
Zegordi and Davarzani (2012) to model change propagation and calculate the impact
of supply chain disruptions.

Bayesian networks have also been used for risk identification and assessment in
literature. Badurdeen et al. (2014) use them to create a risk network map that captures
the interrelations among risks and various driving factors; by inputting probabilities
for these factors, the network is able to calculate probabilities for specific risks. The
SCOR metrics model has also been mapped to a Bayesian network (Abolghasemi,
Khodakarami, and Tehranifard 2015), in order to assess supply chain performance
and evaluate potential affecting risks. Nepal and Yadav (2015) combine FMEA with
Bayesian networks and decision trees for the particular case of supplier selection,
computing probability and impact for sourcing risks, then calculating the total incurred
cost per supplier in order to rank them.

Qazi et al. (2017) propose a holistic SCRM approach that uses FMEA to identify
risks and risk sources, then employs Bayesian networks to build a risk dependency
network and use it to determine risk propagation, rank risks based on appropriate
measures and determine a fair allocation of budget to mitigation strategies. In a follow-
up work (Qazi et al. 2018), the authors use fault tree analysis instead of FMEA
and extend their approach to employ expected utility theory to capture different risk
strategies and to include different decision criteria apart from cost.

Table 2.: Network-based approaches to SCRM.
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(Blackhurst, Wu, and O’Grady 2004) 7 No No No No X X
(Deleris, Elkins, and Paté-Cornell 2004) N/A No No No No X

(Asar et al. 2006) N/A No No No No X X
(Rossi and Pero 2012) N/A No No No No X X

(Zegordi and Davarzani 2012) N/A No No No No X X
(Badurdeen et al. 2014) N/A No ∼ No No X X

(Abolghasemi, Khodakarami, and Tehranifard 2015) N/A No No No No X X
(Nepal and Yadav 2015) N/A No ∼ No No X X

(Qazi et al. 2017) N/A No ∼ No No X X X
(Qazi et al. 2018) N/A No ∼ No No X X X

In contrast to the approaches discussed so far, network-based approaches rarely fo-
cus on a specific set of uncertain parameters or risks. Instead, they provide a generalised
model that can be applied to model dynamic characteristics caused by uncertainty or
risk. Hence, in most cases, the number of parameters is not relevant so it is marked
as not applicable (N/A) in Table 2. No approaches utilise large datasets or support
learning, while some of them offer limited decision-making support, by discussing how
the proposed networks can be used by supply chain practitioners. Finally, all of the
studies in this category provide for risk identification and risk assessment, instead of
risk response which was the focus of almost all of the studies presented so far.
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5.6. Agent-based

SCRM is, by nature, a problem that involves several different entities interacting
with each other, each with different and possibly conflicting requirements. Hence, it
lends itself to agent-based formalisations, where entities within the supply chain are
modelled as agents and SCRM-related issues are addressed by relying on multi-agent
system research.

The earliest use of agents in the context of SCRM is the work of Kiekintveld et
al. (2004), where an agent handles interactions with suppliers, customers, manufactur-
ing and shipping operations, under circumstances of fluctuating supply and demand.
The agent observes supply and demand conditions based on continuous market anal-
ysis and attempts to find a balance between them, which then has to be maintained
by controlling all sales and procurements actions. Bansal et al.(2005) propose a simi-
lar agent-based approach that monitors key performance indicators (KPIs) to identify
disruptions, then evaluates corrective actions and finds the optimal one. Note that
these works are the first approaches in this survey so far to offer a holistic approach.

Multi-agent systems have also been used as simulation tools for inventory man-
agement to reduce costs and improve fill rate (Chan and Chan 2006), to resolve col-
laboration issues among supply chain entities that arise due to uncertain supply and
demand (Kwon, Im, and Lee 2007) and to reduce costs and the bullwhip effect in a
multi-stage supply chain (Zarandi, Pourakbar, and Turksen 2008). In all the afore-
mentioned approaches, agent technology is preferred over mathematical optimisation
due to its inherent capability to capture negotiation and coordination among differ-
ent parties and the relatively less computational effort required. In contrast, Mele et
al. (2007) propose a hybrid approach for retrofitting a production/distribution supply
chain design to address uncertain demand, transport and processing times. A genetic
algorithm is employed to solve a multi-stage stochastic model of the problem, but the
fitness of each iteration’s individuals is calculated using agent-based simulation.

The work of Giannakis and Louis (2011) is notable as it goes beyond simulation
to explore the learning capabilities of multi-agent systems in the context of SCRM.
The proposed framework addresses all SCRM phases and starts similarly to others by
monitoring KPIs to identify deviations, which are then assessed in order to pinpoint
the root cause. Through case-based learning, successful past decisions are leveraged
when similarities with the current situation are identified (e.g. with regard to root
causes). The optimal decision is selected and its results simulated and quantified, with
all the information stored in order to be considered in similar situations in the future.

Recent work by Blos, da Silva and Wee (2018) proposes a holistic disruption man-
agement framework that combines multi-agent systems with variants of Petri Nets
called Production Flow Systems and Place-Transition Petri Nets. The latter are used
to model complex supply chain networks in several disruption scenarios. An agent-
based system is used to generate more scenarios based on the existing ones, choose the
most appropriate mitigation actions and evaluate the resulting effect in performance.
Then, based on a risk event database, the supply chain is monitored in order to detect
disruptions and immediately propose mitigation plans.

As shown in Table 3, the aforementioned agent-based approaches usually focus on
very few parameters (up to 4), since it is difficult and computationally complex to
simultaneously support a large number of policies that formalise agent behaviour.
Similarly to previous categories, large datasets and predictive or learning capabili-
ties are not supported, with the exceptions of the learning capability of Giannakis
and Louis (2011) and the predictive capability of Blos, da Silva and Wee (2018). In
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Table 3.: Agent-based approaches to SCRM.
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(Kiekintveld et al. 2004) 2 No Yes No No X X X
(Bansal et al. 2005) 1 No Yes No No X X X

(Chan and Chan 2006) 2 No ∼ No No X
(Kwon, Im, and Lee 2007) 4 No Yes No No X

(Mele et al. 2007) 4 No Yes No No X
(Zarandi, Pourakbar, and Turksen 2008) 2 No Yes No No X

(Giannakis and Louis 2011) N/A No Yes No Yes X X X
(Blos, da Silva, and Wee 2018) N/A No Yes Yes No X X X

stark contrast to previous categories, all but one of the agent-based approaches use
multi-agent systems as a bona-fide decision support system for SCRM. This is prob-
ably because the very purpose of a multi-agent system is to solve problems through
automated decision making.

5.7. Reasoning

Some researchers have addressed SCRM issues by exploiting automated reasoning
techniques which rely on encoding expert knowledge in the form of rules or cases,
making decisions based on these and the available data. These studies are summarised
in Table 4.

Table 4.: Reasoning-based approaches to SCRM.
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(Kumar and Viswanadham 2007) N/A No Yes No No X X X
(Behret, Öztayi, and Kahraman 2011) 4 No ∼ No No X X

(Hofman 2011) N/A Yes ∼ No No X X
(Emmenegger, Laurenzi, and Thönssen 2012) N/A Yes Yes No No X X

(Kayis and Karningsih 2012) N/A No No No No X
(Solanki and Brewster 2013) N/A Yes No No No X X

(Paul 2015) 18 No Yes No No X

Kumar and Viswanadham (Kumar and Viswanadham 2007) propose a decision
support system for construction supply chains that relies on case-based reasoning. By
using fault-tree analysis, important features of past projects that induce risk events
are identified, categorised and stored. Then, for any future risk event, similar cases
are retrieved and the corresponding solutions are adapted for the current case, which,
in turn, gets stored to be reused in the future.

Behret, Öztayi, and Kahraman (2011) propose a fuzzy inference system that uses
if-then rules to identify and assess potential risks, given risk indicator values. Trian-
gular fuzzy numbers are used for all values, expressing low, medium or high levels of
risk indicators and risks themselves. Paul (2015) proposes a similar approach for the
particular case of supplier selection under risk, with rules associating selection factors
with supplier rankings. Note that these are the only studies in this category that in-
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clude a specific number of parameters; in the rest, the reasoning process is assumed
to apply to any type of risk.

Standard (i.e. not fuzzy) rules are employed in the works of Kayis and Karn-
ingsih (2012) and Emmenegger, Laurenzi, and Thönssen (2012). The former study
encodes SCRM knowledge in the form of rule chains and uses them to identify risks as
follows: specific characteristics of a supply network derive the occurrence of risk sub
factors, sub factors derive risk factors, risk factors derive risk events and finally, the
occurrence of a risk event leads to the system communicating this to the user. The
latter study is notable as one of the few that aims to exploit large datasets collecting
information from sources both within and beyond the supply chain in order to realise
automatic identification, validation and quantification of risks.

Large datasets are also included in the studies of Hofman (2011) and Solanki and
Brewster (2013) with the aim of increasing visibility in global supply chains. The
authors argue that administrative burden can be decreased if supply chain participants
share information such as product traceability as Linked Open Data, with appropriate
privacy, security and access control mechanisms. By minimising the amount of data
that is not visible, missing or uninterpretable, supply chain risk analysis may yield
improved results.

5.8. Machine Learning and Big Data

Within the broad field of AI research, a rapid growth has been witnessed in recent
years in relation to research that involves Machine Learning. This includes techniques
that allow a computer program to learn by analysing input data, with or without
being given information about the corresponding output (supervised and unsupervised
forms). At the same time, the closely associated research strand of Big Data Analytics
focuses on processing and extracting knowledge from datasets that are characterised
by high volume, velocity and variety. As shown in Table 5, only a few SCRM studies
have followed these recent AI developments.

Table 5.: Machine Learning and Big Data Analytics for SCRM.
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(Bruzzone and Orsoni 2003) 2 No ∼ Yes Yes X
(Jiang and Sheng 2009) 1 No Yes No Yes X

(Chen, Xia, and Wang 2010) 1 No ∼ Yes Yes X
(Zhao and Yu 2011) 7 No Yes No Yes X

(Zage, Glass, and Colbaugh 2013) N/A Yes Yes Yes Yes X
(Fan, Heilig, and Voss 2015) N/A Yes Yes No Yes X X X

(Garvey, Carnovale, and Yeniyurt 2015) N/A No ∼ No Yes X
(He et al. 2015) N/A Yes Yes Yes Yes X X X

(Ye, Xiao, and Zhu 2015) N/A Yes No Yes No X
(Li and Wang 2017) 2 Yes ∼ Yes No X

(Mani et al. 2017) N/A Yes ∼ No No X
(Papadopoulos et al. 2017) N/A Yes ∼ No No X

(Shang, Dunson, and Song 2017) 1 Yes Yes Yes No X
(Ojha et al. 2018) N/A No ∼ No Yes X

The earliest SCRM study that involves some form of Machine Learning is Bruzzone
and Orsoni (2003), which employs Artificial Neural Networks (ANNs) for risk assess-
ment with regard to production losses. The ANNs are supplied with specific scenarios
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with production times, quantities and capacities (input), along with corresponding
cost estimates (output). Based on these training data, the ANNs learn how to corre-
late input and output, gaining the capability of calculating cost estimates for different
scenarios.

ANNs are also exploited in Zhao and Yu (2011) to solve the problem of supplier
selection, while Jiang and Sheng (2009) propose a reinforcement learning algorithm to
improve the supplier selection process. Chen, Xia, and Wang (2010) employ Bayesian
learning to evaluate different responses to the problem of unreliable suppliers. Finally,
Garvey, Carnovale, and Yeniyurt (2015) use Bayesian networks to model risk depen-
dency graphs which have the ability to adapt when new knowledge is acquired, thus
making sure that risk propagation is modelled accurately.

The most recent studies in this category use Big Data Analytics for various SCRM
tasks. Generic SCRM frameworks based on Big Data are proposed in Fan, Heilig, and
Voss (2015) and He et al. (2015), based on monitoring data both within and external
to the supply chain. The case of fleet management is explored in Mani et al. (2017)
with vehicle tracking systems employed to identify social and environmental risks (e.g.
theft of vehicles and goods). On the other hand, Big Data are used in Papadopoulos
et al. (2017) to determine how best to achieve supply chain resilience in the face of
disaster. While the latter three studies do not use data sources for any predictive or
learning purposes, there is a handful of recent studies that do and are briefly described
next.

Zage, Glass, and Colbaugh (2013) analyse large amounts of Web data using semi-
supervised learning to determine the trustworthiness of vendors, thus allowing identi-
fication of deceivers. Risk identification is also explored by Ye, Xiao and Zhu (2015),
focusing, however, on financial risk. Publicly available economic performance data
for Chinese firms are collected are used to train multi-class Support Vector Machine
(SVM) classifiers. These models are able to determine whether a firm is prone to sup-
ply, demand, product or external disruptions. Bayesian prediction is used in Shang,
Dunson, and Song (2017) to assess transport time risks in air cargo supply chains.
Li and Wang (2017) use big data collected by sensors in a food supply chain to dy-
namically predict the product time-temperature profile and adjust prices accordingly.
Finally, Ojha et al. (2018) perform analysis of risk propagation using Bayes networks,
automatically learning the interconnections between several risk factors for different
supply chain stakeholders and using this knowledge to determine probability of occur-
rence and cost for risks.

6. Discussion and Conclusions

Based on the analysis in the previous section, answers to the research questions stated
at the beginning of this survey are provided and a set of research gaps are identified
with regard to applying AI technologies in SCRM. Then, for each one of the identified
gaps, recommendations for future research are offered.

6.1. Gaps

While most of the reviewed studies focus on designing and evaluating a mathematical
model that takes a number of uncertainties and risks into account, there is less focus
on establishing and analysing the applicability of the proposed models. Indeed, as
shown in Fig. 5a, 53% of the reviewed studies do not provide any decision-making
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Figure 5.: Decision-making, prediction and learning capabilities of reviewed studies.

capability whatsoever, while 39% offer some form of managerial insights to assist in
decision making. Only 8% provide some form of decision support system, mainly in the
agent-based, reasoning, Machine Learning and Big Data categories. Hence, the vast
majority of studies exhibit a limited ability to act as a basis for a decision-making
framework that can effectively support practitioners in managing supply chain risks.
This hinders the potential benefits of the proposed models as it is difficult to answer
“whether” and “how” they can be applied to relevant SCRM problems. Also, relatively
little attention has been given to using the intelligence and knowledge gained from the
proposed models to automate, at least partially, the decision-making process.

In terms of AI in the form of predictive and learning capabilities, SCRM research is
still in its infancy, as illustrated in Fig. 5b. It is clear that, by definition, mathemati-
cal programming techniques do not have these capabilities. Although agent-based and
network-based approaches are capable of prediction and learning, there is only one
reported study (Giannakis and Louis 2011) that proposes a multi-agent system for
SCRM that is capable of learning. On the other hand, Machine Learning approaches
are, by definition, geared towards creating systems that can predict and learn based on
provided input. However, initial studies (Bruzzone and Orsoni 2003; Jiang and Sheng
2009; Chen, Xia, and Wang 2010; Zhao and Yu 2011) have only explored few Machine
Learning techniques, such as ANNs or Bayesian models. Newer techniques and recent
advances in more established ones have yet to be exploited in the context of SCRM.
The more recent studies of He et al. (2015) and Fan, Heilig, and Voss (2015) have pro-
vided conceptual SCRM frameworks that rely on Machine Learning techniques and
Big Data but have not proceeded to implementing, applying and evaluating the frame-
works. To the best of the authors’ knowledge, the only recent studies that implement
learning algorithms in the context of SCRM are Zage, Glass, and Colbaugh (2013),
Garvey, Carnovale, and Yeniyurt (2015) and Ojha et al. (2018).

While the so-called Big Data and associated analysis techniques have made a con-
siderable impact in various research fields and applications, this has not yet been
made evident in the field of supply chain research, despite the potentially transforma-
tive capabilities of data science (Waller and Fawcett 2013; Choi, Wallace, and Wang
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Figure 6.: Complexity of reviewed studies in terms of datasets and parameters.

2018). The results of this survey, illustrated in Fig. 6a, show that very few SCRM
approaches exploit large datasets: 4% use Big Data aiming to improve supply chain
visibility (Solanki and Brewster 2013), security (Zage, Glass, and Colbaugh 2013) and
sustainability (Mani et al. 2017) and a further 3% employ larger than average case
studies, although in a Big Data scale. Much like the case of Machine Learning, SCRM
research has yet to exploit the full potential of Big Data Analytics.

The complexity of the studies examined, with regard to the number of risk (or
uncertainty) aspects taken into consideration, varies considerably from one category
to another and even within categories. As shown in Fig. 6b, 38% of those that ex-
plicitly state the employed models focus on a single uncertain parameter, 23% focus
on two, 11% on three, 8% on four and the rest, 20% include models with 5 or more
uncertain parameters. On average, it seems that using fuzzy programming techniques
allows for the inclusion of a comparatively larger number of uncertain parameters.
This is in line with the observation in literature that fuzzy models are, in general,
easier to solve than stochastic ones and, hence, may accommodate more parameters
in comparison(Inuiguchi and Ramı́k 2000).

Fig. 7 examines the reviewed studies with regard to the specific SCRM tasks they
realise. The vast majority (84%) focuses on risk response, most prominently supply
chain models that avoid or mitigate risk and uncertainty effects. An additional 4% ac-
companies response with some form of risk assessment, while another 4% combines as-
sessment with risk identification. Identification and assessment are tackled individually
by very few studies (2% and 3%, respectively). Finally, only 9 out of the 276 reviewed
studies (3%) offer holistic approaches, encompassing all three major phases of SCRM
(identification, assessment and response). This imbalance parallels the difference in
popularity among the employed techniques. Mathematical programming techniques
have been applied by the majority of the examined studies and such techniques are
suitable for risk response, sometimes augmented with assessment capabilities through
the use of a variety of risk measures. Such techniques are not capable of identify-
ing risks. This can only be achieved within the minority of studies that apply other
solutions, from agents and network-based models, to automated reasoning, Machine
Learning and Big Data Analytics.
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6.2. Managerial insights

The results of the survey indicate that supply chain and production researchers, in
general, are more inclined to investigate tried and proven mathematical program-
ming solutions rather than explore the potential of other AI techniques. This can be
attributed to the relatively less exposure techniques such as machine learning, au-
tomated reasoning and multi-agent systems have had within production and supply
chain research, despite the fact that they have been fruitful in other research areas.
Additionally, researchers are considerably less familiar with such techniques than they
are with stochastic or fuzzy programming, for instance.

A direct result of this imbalance is that decision makers in the industry are still
widely unaware of the potential of AI, especially in terms of managing risks and
uncertainty. However, this survey has uncovered the fact that relatively unexplored AI
techniques are more capable of providing automated decision making, predictive and
learning capabilities. Hence, decision makers should embrace these newer technologies
and collaborate with researchers to determine ways in which SCRM decision-making
can be improved. Note that this does not mean using AI as the sole decision maker,
but rather relying on AI to uncover new knowledge that decision makers can then
combine with their own expertise to arrive at the optimal decisions within the SCRM
process.

A related aspect is the observed gradual shift from analytical models to data-driven
ones, as evidenced in the work of Kuo and Kusiak (2018) for production research,
in general. This, however, is directly dependent on the availability of large amounts
of multi-dimensional data that should be as accurate as possible, since data-driven
techniques can often result in trivial or even incorrect decisions if the available data
is scarce or invalid. Thus, industry decision makers and stakeholders must strive to
enhance and safeguard data collection processes and also be ready to provide any
available data to SCRM researchers.

Availability of relevant data is often hindered by justifiable concerns related to data
safety, security and transparency. Especially in the context of a supply chain, stake-
holders may be unwilling to provide detailed data even to their supply chain partners.
Fortunately, research in data security has led to several advances that guarantee pro-
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tected collection, storage and sharing of data. Blockchains are just one example of
a promising technology that has the potential to increase trust among supply chain
partners and increase adoption of techniques that rely on access to data (Mendling
et al. 2018). Therefore, the concerns of supply chain decision makers and stakeholders
should gradually be alleviated, removing data-related barriers to progress in terms of
the adoption of AI technologies in SCRM.

6.3. Future research directions

The potential of modern AI techniques in realising proactive and predictive SCRM
has only been explored by a minority of supply chain researchers. Hence, there are
plenty of opportunities for research on the confluence of AI and SCRM that addresses
the identified gaps. Some of these are outlined in the rest of this section.

6.3.1. Decision making and applicability

In terms of automating the decision-making process in relation to SCRM, there are
several different alternatives that can be explored. Multi-agent systems, coupled with
semantic reasoning on large datasets, can be used as a basis for a decision support sys-
tem for SCRM, as explored in Giannakis and Louis (2016) for the purpose of increasing
supply chain agility. To the extent that SCRM-related knowledge can be encoded in
the form of rules, automated rule-based reasoning can be exploited, similarly to its
use by Paul (2015) for supplier selection. The advantage, in this case, is that such a
system can assist in various different SCRM tasks: rules can help in identifying risks,
assessing their probability and impact and choosing a response strategy.

6.3.2. Prediction and learning

Machine learning techniques can also be employed to not only automate SCRM de-
cisions but also transform traditional SCRM practices of of modelling supply chains
statically to a dynamic representation of the supply chain adapted through learning
and prediction. There are several different tasks within Machine Learning that can be
exploited for SCRM. Indicatively, unsupervised learning algorithms can be employed
to mine patterns in supply chain data that may be related to specific risks, assisting in
risk identification. Alternatively, the algorithm can be trained to identify risk patterns
based on example patterns that have been identified by practitioners. Learning-based
classification and prediction can also facilitate the risk estimation, assessment and mit-
igation processes, as applied in other fields such as economics (Galindo and Tamayo
2000).

6.3.3. Big Data

In close correlation to Machine Learning, Big Data Analytics can also prove beneficial
to SCRM, even if adoption is still relatively low. It is notable that, while research
in other fields very often combines Machine Learning techniques with Big Data, the
presented analysis only yielded a single SCRM study that features both of these char-
acteristics, that of Zage, Glass, and Colbaugh (2013). This low adoption rate may be
due to reasons such as lack of understanding and skills, inability to identify suitable
data and low acceptance by SC partners (Nguyen et al. 2017).

As discussed by Waller and Fawcett (2013), data relevant to the supply chain can
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come from disparate sources, such as sales, consumer behaviour, product inventory,
transportation and distribution. All of these sources, especially in the case of global
supply chains, are characterised by large volumes, frequent updates and wide vari-
ability due to different materials, products and consumers. Several applications can
be envisioned, from reducing demand uncertainty based on consumer behaviour, to
using sensor data in distribution centres to mitigate transportation-related risks, to
increasing visibility and trust among suppliers.

The untapped potential of Big Data Analytics and AI with regard to SCRM has also
been identified by Ivanov and Dolgui (2018), who present a digitalisation framework
that envisions a cyber supply chain sitting on top of traditional supply chain analytics.
This cyber supply chain relies on and harnesses the power of big data, Internet of
Things, cloud and blockchain technologies. The authors highlight the need for research
that examines the relationships between these technologies and SCRM, a need that
has also been made evident throughout this survey.

6.3.4. Hybridisation

Something evident throughout this survey is the fact that different AI techniques have
a varying degree of applicability to the various phases of SCRM, due to possessing a
different set of capabilities. For instance, mathematical programming approaches are
successful in risk avoidance and mitigation but are incapable of automated decision
making and learning or handling large amounts of data. These are achievable through
automated reasoning, agents and Machine Learning techniques, which, however, are
not so effective in modelling highly complex systems such as supply chains. Hence, it
makes sense to investigate some form of hybridisation, which has previously only been
attempted among different mathematical programming techniques. Research geared
towards a hybrid framework that successfully combines powerful mathematical mod-
elling and optimisation along with some other AI technique that is capable of auto-
mated decision making based on prediction and learning has the potential to achieve
effective proactive and predictive management of risks in supply chains.
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Blos, Mauŕıcio Fontoura, Robson Marinho da Silva, and Hui-Ming Wee. 2018. “A framework
for designing supply chain disruptions management considering productive systems and
carrier viewpoints.” International Journal of Production Research 0 (0): 1–17.

Bruzzone, A., and A. Orsoni. 2003. “AI and simulation-based techniques for the assessment
of supply chain logistic performance.” In Proceedings - Simulation Symposium, Vol. 2003-
January, 154–164.

Chan, F.T.S., and H.K. Chan. 2006. “A simulation study with quantity flexibility in a supply
chain subjected to uncertainties.” International Journal of Computer Integrated Manufac-
turing 19 (2): 148–160.

Chen, M., Y. Xia, and X. Wang. 2010. “Managing supply uncertainties through Bayesian
information update.” IEEE Transactions on Automation Science and Engineering 7 (1):
24–36.

Choi, T.-M., S. W. Wallace, and Y. Wang. 2018. “Big Data Analytics in Operations Manage-
ment.” Production and Operations Management .

Chopra, S., and M. S. Sodhi. 2014. “Reducing the Risk of Supply Chain Disruptions.” MIT
Sloan Management Review Spring (3): 73–80.

Claypool, E., B.A. Norman, and K.L. Needy. 2014. “Modeling risk in a Design for Supply
Chain problem.” Computers and Industrial Engineering 78: 44–54.

Colicchia, C., and F. Strozzi. 2012. “Supply chain risk management: A new methodology for
a systematic literature review.” Supply Chain Management 17 (4): 403–418.

Dal-Mas, M., S. Giarola, A. Zamboni, and F. Bezzo. 2011. “Strategic design and investment
capacity planning of the ethanol supply chain under price uncertainty.” Biomass and Bioen-
ergy 35 (5): 2059–2071.
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Figure A1.: Distribution of reviewed studies according to industrial case study pre-
sented.

Appendix A. Additional classification metrics

This appendix extends the classification presented in Section 4, to include three more
metrics: (1) industry used as case study, (2) country used within case study and (3)
risk or uncertainty types modelled.

A.1. Case studies

Fig. A1 shows the different industries that have been used as case studies in the
reviewed literature. Note that only real-world case studies have been considered and
not hypothetical supply chains or artificially generated numerical examples. The most
common cases involve supply chains that manufacture and distribute various products,
as well as supply chains that deal with fuel (from oil to biomass). The majority (66%)
of the reviewed studies does not include such a case study, a higher percentage than
what has been reported in other surveys (e.g. Qazi, Quigley, and Dickson (2015) report
38%). This is probably due to the quantitative nature of AI-related techniques: it is
more likely to resort to randomly or otherwise generated test sets for such techniques,
as opposed to qualitative and strategic approaches, which may also be informed by
specific industries.

The countries related to the aforementioned case studies (if stated) are shown in
Fig. A2. As should be expected, countries of case studies closely mirror the countries
of the authors’ affiliations.

A.2. Risk and uncertainty types

Most of the reviewed studies mention explicitly a set of parameters which they consider
risky or uncertain and which they address through the proposed approach. The ratio
of explicitly referencing uncertainty and risk is roughly 3:1, with 176 studies describing
their research in relation to uncertainty and 66 studies relating it to risk. As mentioned
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Figure A2.: Distribution of reviewed studies according to country of case study.

in Section 2.1, risk is most closely associated to disruptions or financial parameters,
with other supply chain aspects more often linked to uncertainty.
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Fig. A3 shows the distribution of parameters associated with risk or uncertainty in
the reviewed studies. The most common case, by far, is uncertain demand (or demand
risk), followed by parameters related to cost and financial exposure. Supply risk (or
uncertain supply) is also quite commonly tackled. Parameters such as return and
capacity are primarily included in the case of reverse or closed-loop supply chains.

Appendix B. Additional comparison tables

In this appendix, detailed comparison tables are provided for the reviewed studies
that involve some form of mathematical programming, which are briefly summarised
in Sections 5.1, 5.2, 5.3 and 5.4.

Table B1.: Stochastic programming approaches to SCRM with continuous parameters.
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(Gupta and Maranas 2000) 1 No No X
(Guillén et al. 2003) 1 No No X

(Lin and Chen 2003) 1 No No X
(Miranda and Garrido 2004) 1 No No X

(Ryu, Dua, and Pistikopoulos 2004) 4 No ∼ X
(Han and Damrongwongsiri 2005) 1 No No X

(Tapiero and Grando 2006) 2 No No X
(Gaonkar and Viswanadham 2007) 1 No No X

(Lieckens and Vandaele 2007) 3 No No X
(Qi and Shen 2007) 2 No No X

(Miranda and Garrido 2008) 1 No No X
(You and Grossmann 2008) 1 ∼ No X
(You and Grossmann 2008) 1 No No X

(Guillén-Gosálbez and Grossmann 2009) 2 No No X
(You and Grossmann 2009) 1 No No X

(Cui, Ouyang, and Shen 2010) 1 No No X
(Hnaien, Delorme, and Dolgui 2010) 1 No No X

(Park, Lee, and Sung 2010) 1 No No X
(Qi, Shen, and Snyder 2010) 4 No No X
(You and Grossmann 2010) 1 No No X

(Dal-Mas et al. 2011) 2 No No X X
(Taleizadeh, Niaki, and Barzinpour 2011) 1 No No X

(You and Grossmann 2011) 1 No No X
(Liu, Shah, and Papageorgiou 2012) 1 No No X

(Azad and Davoudpour 2013) 1 No ∼ X X
(Benyoucef, Xie, and Tanonkou 2013) 1 No No X

(Kumar and Tiwari 2013) 1 No No X
(Meena and Sarmah 2013) 1 No No X

(Azad et al. 2014) 3 No No X X
(Jeong, Hong, and Xie 2014) 2 No ∼ X

(Mari, Lee, and Memon 2014) 1 No ∼ X
(Marufuzzaman et al. 2014) 1 No No X

(Nasiri, Zolfaghari, and Davoudpour 2014) 1 No No X
(Hnaien, Dolgui, and Wu 2016) 2 No No X

(Yongheng et al. 2014) 1 No No X
(Nooraie and Parast 2015) 1 No No X

(Sharifzadeh, Garcia, and Shah 2015) 2 No No X
(PrasannaVenkatesan and Goh 2016) 1 No No X

(Rayat, Musavi, and Bozorgi-Amiri 2017) 1 No No X
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Table B2.: Scenario-based stochastic programming approaches to SCRM.

Reference #
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(Koutsoukis et al. 2000) 1 No Yes X
(Chan, Carter, and Burnes 2001) 1 No No X

(Lucas et al. 2001) 1 No No X
(Tsiakis, Shah, and Pantelides 2001) 1 ∼ No X

(Alonso-Ayuso et al. 2003) 3 No No X
(Lababidi et al. 2004) 2 No No X

(Levis and Papageorgiou 2004) 1 No No X
(Guillén et al. 2005) 1 No No X
(Santoso et al. 2005) 4 No No X

(Guillén, Espuña, and Puigjaner 2006) 1 No No X
(Guillén et al. 2006) 1 No No X

(Goh, Lim, and Meng 2007) 2 ∼ No X
(Lee et al. 2007) 3 No No X

(Salema, Barbosa-Povoa, and Novais 2007) 2 No No X
(Azaron et al. 2008) 6 No No X

(Bonfill, Espuña, and Puigjaner 2008) 3 No No X
(Poojari, Lucas, and Mitra 2008) 1 No No X X

(Lee and Dong 2009) 2 No No X
(Schütz, Tomasgard, and Ahmed 2009) 11 No No X

(Sodhi and Tang 2009) 1 No No X
(You, Wassick, and Grossmann 2009) 22 No No X

(Franca et al. 2010) 1 No ∼ X
(Kara and Onut 2010) 2 No ∼ X

(Kumar, Tiwari, and Babiceanu 2010) 3 No ∼ X
(Lee, Dong, and Bian 2010) 2 No No X

(Sabio et al. 2010) 2 No No X
(Shu, Ma, and Li 2010) 7 No No X

(Cardona-Valdés, Álvarez, and Ozdemir 2011) 1 No No X
(Georgiadis et al. 2011) 1 No No X

(Kim, Realff, and Lee 2011) 5 No No X
(Longinidis and Georgiadis 2011) 1 No No X

(Bidhandi and Yusuff 2011) 3 No No X
(Rajgopal et al. 2011) 8 No No X

(Sawik 2011) 1 No No X X
(Shimizu, Fushimi, and Wada 2011) 7 No No X

(Shukla, Lalit, and Venkatasubramanian 2011) 1 No No X
(Almansoori and Shah 2012) 1 No No X

(Chen and Fan 2012) 1 No No X
(Gebreslassie, Yao, and You 2012) 2 No No X

(Giarola, Shah, and Bezzo 2012) 2 No ∼ X
(Kiya and Davoudpour 2012) 2 No No X

(Klibi and Martel 2012) 2 No No X
(Mak and Shen 2012) 2 No ∼ X

(Nickel, Saldanha-da Gama, and Ziegler 2012) 2 No No X
(Noyan 2012) 4 No No X

(PrasannaVenkatesan and Kumanan 2012) 4 No No X
(Ahmadi-Javid and Seddighi 2013) 2 No No X

(Amin and Zhang 2013) 2 No No X
(Awudu and Zhang 2013) 2 No No X

(Cardoso, Barbosa-Pvoa, and Relvas 2013) 1 No No X
(Kazemzadeh and Hu 2013) 2 No No X

(Longinidis and Georgiadis 2013) 7 No No X
(Oliveira et al. 2013) 1 No No X

(Pimentel, Mateus, and Almeida 2013) 1 No No X
(Qin, Liu, and Tang 2013) 1 No ∼ X

(Ramezani, Bashiri, and Tavakkoli-Moghaddam 2013a) 7 No No X
(Ruiz-Femenia et al. 2013) 1 No No X

(Sawik 2013) 1 No No X X
(Singh, Jain, and Mishra 2013) 1 No No X

(Cardona-Valdés, Álvarez, and Pacheco 2014) 1 No No X
(Dayhim, Jafari, and Mazurek 2014) 1 No No X

(Li and Hu 2014) 3 No ∼ X
(Liu and Guo 2014) 6 No No X

(Madadi et al. 2014a) 2 No No X
(Madadi et al. 2014b) 2 ∼ ∼ X X

(Sawik 2014) 1 No ∼ X X
(Soleimani and Govindan 2014) 4 No No X X

(Soleimani, Seyyed-Esfahani, and Kannan 2014) 5 No No X X
(Zeballos et al. 2014) 2 No ∼ X

Continued on next page
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Table B2.: (continued)

Reference #
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(Ayvaz, Bolat, and Aydin 2015) 2 No No X
(Fattahi et al. 2015) 1 No No X

(Govindan, Jafarian, and Nourbakhsh 2015) 1 No No X
(Khatami, Mahootchi, and Farahani 2015) 2 No No X

(Kilic and Tuzkaya 2015) 3 No No X
(Sawik 2015) 1 No No X
(Sawik 2016) 1 No ∼ X

(Behzadi et al. 2017) 1 No ∼ X
(Chatzikontidou et al. 2017) 1 No No X

(Kamalahmadi and Parast 2017) 1 No ∼ X
(Ghavamifar, Makui, and Taleizadeh 2018) 9 No ∼ X

(Jalali, Seifbarghy, and Niaki 2018) 2 No ∼ X
(Jerbia et al. 2018) 6 No No X

(Namdar et al. 2018) 4 No ∼ X
(Pariazar and Sir 2018) 3 No ∼ X

(Rahimi and Ghezavati 2018) 3 No ∼ X
(Sawik 2018) 2 No ∼ X

(Song, Chen, and Lei 2018) 2 No ∼ X
(Weskamp et al. 2018) 1 No ∼ X
(Xie and Huang 2018) 1 No ∼ X

(Zahiri et al. 2018) 2 No ∼ X

Table B3.: Other stochastic programming approaches to SCRM

Ref #
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(Huchzermeier and Cohen 1996) 1 No No X X

(Gupta, Maranas, and McDonald 2000) 1 No No X
(Mitra et al. 2008) 1 No No X

(Guillén-Gosálbez and Grossmann 2010) 1 No No X
(Fang et al. 2013) 1 No No X

(Pasandideh, Niaki, and Asadi 2015) 11 No No X
(Scott et al. 2015) 1 No Yes X

(Chibani et al. 2018) 1 No No X
(Liu et al. 2018) 2 No No X

(Quddus et al. 2018) 1 No ∼ X

Table B5.: Fuzzy programming approaches to SCRM.

Reference #
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(Petrovic, Roy, and Petrovic 1998) 2 No ∼ X
(Petrovic, Roy, and Petrovic 1999) 2 No ∼ X

(Petrovic 2001) 3 No ∼ X
(Giannoccaro, Pontrandolfo, and Scozzi 2003) 2 No ∼ X

(Chen and Lee 2004) 2 No No X
(Wang and Shu 2005) 4 No ∼ X

(Amid, Ghodsypour, and O’Brien 2006) 3 ∼ No X
(Kumar, Vrat, and Shankar 2006) 4 No ∼ X

(Xie, Petrovic, and Burnham 2006) 1 No ∼ X
(Peidro, Mula, and Poler 2007) 11 No ∼ X

(Selim and Ozkarahan 2008) 1 No Yes X
Continued on next page
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Table B5.: (continued)

Reference #
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(Tang, Lau, and Ho 2008) 1 No Yes X
(Xu, Liu, and Wang 2008) 2 No ∼ X

(Amid, Ghodsypour, and O’Brien 2009) 4 No ∼ X
(Mitra et al. 2009) 2 No ∼ X

(Peidro et al. 2009) 11 No ∼ X
(Xu, He, and Gen 2009) 3 No ∼ X

(Bilgen 2010) 1 No ∼ X
(Mula, Peidro, and Poler 2010) 1 No No X
(Peidro, Mula, and Poler 2010) 11 No ∼ X

(Peidro et al. 2010) 11 No ∼ X
(Pishvaee and Torabi 2010) 28 No ∼ X

(Qin and Ji 2010) 3 No No X
(Wu et al. 2010) 11 No ∼ X

(Haleh and Hamidi 2011) 9 No ∼ X
(Kabak and lengin 2011) 4 No ∼ X

(Pishvaee and Razmi 2012) 19 No ∼ X
(Bouzembrak et al. 2013) 10 No ∼ X

(Fazlollahtabar, Mahdavi, and Mohajeri 2013) 5 No No X
(Jouzdani, Sadjadi, and Fathian 2013) 8 No ∼ X

(Tabrizi and Razmi 2013) 11 No ∼ X
(Wu et al. 2013) 8 No ∼ X

(Jindal and Sangwan 2014) 20 ∼ No X
(Khalili-Damghani, Tavana, and Amirkhan 2014) 24 No ∼ X

(Micheli, Mogre, and Perego 2014) 4 No Yes X
(Mirakhorli 2014) 2 No ∼ X

(Özceylan and Paksoy 2014) 17 No No X
(Pishvaee, Razmi, and Torabi 2014) 54 No No X

(Ramezani et al. 2014) 37 No ∼ X
(Tong et al. 2014) 4 No ∼ X

(Vahdani et al. 2014) 32 No ∼ X
(Yilmaz Balaman and Selim 2014) 1 No ∼ X

(Hatefi et al. 2015a) 17 No No X
(Hatefi et al. 2015b) 17 No No X
(Moghaddam 2015) 3 No ∼ X

(Mousazadeh, Torabi, and Zahiri 2015) 7 No No X
(Salehi Sadghiani, Torabi, and Sahebjamnia 2015) 4 No ∼ X

(Subulan et al. 2015) 15 No ∼ X
(Torabi, Baghersad, and Mansouri 2015) 7 No ∼ X

(Yang, Liu, and Yang 2015) 4 No ∼ X
(Yang and Liu 2015) 4 No ∼ X

(Babazadeh et al. 2017) 51 No ∼ X
(Tsao et al. 2018) 5 No No X

Table B6.: Hybrid mathematical programming approaches to SCRM.
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(Wu and Olson 2008) 3 No ∼ X
(Li and Zabinsky 2011) 2 No ∼ X

(Pishvaee, Torabi, and Razmi 2012) 6 No ∼ X
(Tong, Feng, and Rong 2012) 2 No No X

(Vahdani et al. 2012) 14 No ∼ X
(Vahdani et al. 2013) 7 No ∼ X

(Claypool, Norman, and Needy 2014) 3 No ∼ X
(Bai and Liu 2016) 4 No ∼ X

(Felfel, Ayadi, and Masmoudi 2016) 1 No ∼ X
(Keyvanshokooh, Ryan, and Kabir 2016) 3 No ∼ X

(Zhalechian et al. 2016) 29 No ∼ X
(Zahiri and Pishvaee 2017) 15 No No X

(Haddadsisakht and Ryan 2018) 3 No No X
(Jabbarzadeh, Fahimnia, and Sabouhi 2018) 1 No ∼ X

(Pavlov et al. 2018) N/A No ∼ X
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Table B4.: Robust Optimisation approaches to SCRM
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(Aghezzaf 2005) 1 No ∼ X
(Soner Kara and Onut 2010) 2 No ∼ X

(Pan and Nagi 2010) 2 No ∼ X
(Ben-Tal et al. 2011) 1 No No X

(Mirzapour Al-E-Hashem, Malekly, and Aryanezhad 2011) 6 No ∼ X
(Peng et al. 2011) 1 No ∼ X

(Pishvaee, Rabbani, and Torabi 2011) 3 ∼ No X
(Babazadeh and Razmi 2012) 3 No No X

(Hahn and Kuhn 2012) 1 No Yes X
(Hasani, Zegordi, and Nikbakhsh 2012) 2 No ∼ X

(Baghalian, Rezapour, and Farahani 2013) 2 No No X
(De Rosa et al. 2013) 2 No ∼ X

(Ramezani, Bashiri, and Tavakkoli-Moghaddam 2013b) 2 No No X
(Hatefi and Jolai 2014) 3 No No X

(Huang and Goetschalckx 2014) 5 No No X
(Jin et al. 2014) 2 No No X

(Kaya, Bagci, and Turkay 2014) 2 No No X
(Akbari and Karimi 2015) 1 No No X

(Dubey, Gunasekaran, and Childe 2015) 1 ∼ No X
(Hasani, Zegordi, and Nikbakhsh 2015) 3 No ∼ X

(Hasani and Khosrojerdi 2016) 2 No ∼ X
(Govindan and Fattahi 2017) 1 No No X

(Zhang and Jiang 2017) 1 No No X
(Zokaee et al. 2017) 8 No ∼ X

(Buhayenko and den Hertog 2017) 1 No ∼ X
(Behzadi et al. 2018) 5 No ∼ X

(Jabbarzadeh, Haughton, and Khosrojerdi 2018) 3 No ∼ X
(Kim et al. 2018) 3 No ∼ X

(Prakash et al. 2018) 2 No ∼ X
(Rahmani 2018) 4 No ∼ X
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Cardona-Valdés, Y., A. Álvarez, and D. Ozdemir. 2011. “A bi-objective supply chain design
problem with uncertainty.” Transportation Research Part C: Emerging Technologies 19 (5):
821–832.
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Özceylan, E., and T. Paksoy. 2014. “Interactive fuzzy programming approaches to the strategic
and tactical planning of a closed-loop supply chain under uncertainty.” International Journal
of Production Research 52 (8): 2363–2387.

Pan, F., and R. Nagi. 2010. “Robust supply chain design under uncertain demand in agile
manufacturing.” Computers and Operations Research 37 (4): 668–683.

Pariazar, Mahmood, and Mustafa Y. Sir. 2018. “A multi-objective approach for supply chain
design considering disruptions impacting supply availability and quality.” Computers and
Industrial Engineering 121: 113 – 130.

Park, S., T.-E. Lee, and C.S. Sung. 2010. “A three-level supply chain network design model with
risk-pooling and lead times.” Transportation Research Part E: Logistics and Transportation
Review 46 (5): 563–581.
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