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Abstract 13 
 14 
Intelligent sampling can be used to influence the efficiency of surface geometry measurement. With no design model information 15 
provided, reconstruction from prior sample points with a surrogate model has to be carried out iteratively, thus the next best sample 16 
point(s) can be intelligently selected. But, a lack of accurate and fast reconstruction models hinders the development of intelligent 17 
sampling techniques. In this paper, a smart surrogate model based on free-knot B-splines is used for intelligent surface sampling 18 
design with the aid of uncertainty modelling. By implementing intelligent sampling in a Cartesian, parametric or specific error space, 19 
the proposed method can be flexibly applied to reverse engineering and geometrical tolerance inspection, especially for high-20 
dynamic-range structured surfaces with sparse and sharply edged features. Extensive numerical experiments on simulated and real 21 
surface data are presented. The results show that this parametric model-based method can achieve the same or higher sampling 22 
efficiency as some recent non-parametric methods but with far less computing time cost. 23 
 24 
Keywords: adaptive sampling; free-knot B-splines; surface reconstruction; uncertainty analysis; structured surfaces  25 
 26 
 27 
1. Introduction 28 
 29 
Sampling is an essential part of all measurement processes. As shown in Figure 1, sampling decomposes real-world continuous 30 
signals into discretised data points. Numerical characterisation of the discrete data is then conducted with a computer [1, 2]. With a 31 
dense and uniform sampling scheme, discretised data are normally directly processed for parametric characterisation. If sampling 32 
points are sparse and non-uniform, reconstruction of the sample data to a uniformly dense or continuous substitute form is an essential 33 
step towards a reliable measurement [3]. Specification standard ISO 25178 and 17450 [4, 5] on surface texture and form measurement 34 
recommends that a continuous substitute surface reconstruction (e.g. a dense uniform format) is the default route for surface 35 
characterisation (see the dashed flow in Figure 1). In recent years, smart sampling designs and reconstruction have been recognised 36 
as a fundamental add-in value to the cyber-physical manufacturing-oriented “industry 4.0” evolution [6]. 37 
 38 
Uniform sampling, which is well founded on Shannon’s sampling and reconstruction theorems [7], is the most widely adopted 39 
strategy in surface measurement. However, recent non-uniform sampling theorems [8] have shown that uniform sampling is by no 40 
means a necessary condition for distortion-free reconstruction. It has been demonstrated that uniform sampling may lack efficiency 41 
when considering measurement time and data storage aspects. Intelligent sampling strategies, which aim to reduce sampling cost 42 
without loss of accuracy by smartly designing sample sizes or locations, has been demonstrated to be more efficient than uniform 43 
sampling in many applications [9-11].  44 
 45 

 46 
Figure 1. A complete measurement pipeline in modern surface metrology. (solid arrows: the current flow; dashed arrows: the future flow) 47 
 48 
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 49 
Figure 2. Classification of intelligent sampling methods with respect to optimisation approaches. 50 

 51 
Given a specific type of signal and a reconstruction model (e.g. a band-limited signal and sinc reconstruction kernel [8]), the sample 52 
size and the positions of sample points can be optimised using intelligent sampling strategies, hence the reconstructed substitute 53 
surface can approximate the original surface without, or with limited, error. Many intelligent sampling methods have been proposed 54 
recently and these methods can be divided into four categories, as shown in Figure 2, including sample size optimisation, sampling 55 
pattern optimisation, pre-learned sampling pattern optimisation and adaptive sampling [12-14]. In the following, a brief review of 56 
these solutions are provided. For more details, readers can refer to the latest references in [6, 15, 16]. 57 
 58 
1.1 Brief	review	of	sampling	techniques	59 
 60 
Optimisation of the sample size [17-20] or sampling patterns [9, 21, 22] are “blind” methods with very limited intelligence. Such 61 
methods assume a stationary or homogeneous distribution of manufacturing errors over a primitive surface model. Hence, an 62 
optimised sample design usually has a fixed pattern, such as uniform grids, or Halton or Hamersley patterns. These blind sampling 63 
methods generate limited measuring efficiency improvements [13, 23, 24]. Pre-learned sampling optimisation is a relatively new and 64 
smart approach which allocates sample points according to a surface complexity analysis of a design model [25-27] or pre-acquired 65 
coarse surface data [12-14, 28, 29]. With sufficient a priori knowledge and adequate optimisation function design [12, 14, 27], pre-66 
learned intelligent sampling can provide significant efficiency improvements for the measurement of surfaces with spatially 67 
heterogeneous characteristic distributions.   68 
 69 
In many situations, e.g. in high-accuracy reverse engineering or customised production, a design model or pre-measurement is not 70 
feasible, so real-time adaptive sampling is often the most appropriate solution [11]. Adaptive sampling can redirect sampling effort 71 
in real time in response to prior observed topography values [13]. Adaptive sampling has been investigated for some time and many 72 
methods have been developed [11, 25, 26, 30-41]. Most of the developed methods of adaptive sampling follow a common pipeline, 73 
as shown in Figure 3, i.e. iteratively reconstruct previously-acquired data for uncertainty modelling and select next-best-points (NBPs) 74 
for adaptive sampling, until a pre-defined stopping criterion is met.  75 
 76 
In adaptive sampling, reconstruction of measured surfaces can be conducted in different spaces, e.g. the original object  space [25], 77 
parametric [40] or an error space [11, 42], which lead to different solutions with different capabilities. An original object space 78 
reconstruction allows to directly reconstruct the object surface and this is generally useful for simple 2.5-dimensional surface 79 
measurement. Parametric space reconstruction allows to measurement of any complex surfaces with 3-dimensional under-cut features. 80 
Error space reconstruction allows to continuously recover the error curve or surface of an object surface with respect to its nominal 81 
geometry. Error space reconstruction is especially effective if a normal geometry has been obtained in advance and can provides 82 
higher accuracy than general original space reconstruction [11, 42]. 83 
 84 

 85 
Adaptive sampling can be integrated with blind sample designs for enhanced performance. For example, Hammersley sampling or 86 
manufacturing signature pre-learned sampling, can be used as initial sampling strategies for adaptive sampling [43]. In some cases, 87 
adaptive sampling uses reconstruction error from a design model for NBP searching [11, 30, 37, 38]. These varied methods have 88 
been demonstrated to save sample sizes significantly, e.g. by factors of two to three times [13, 38], with relatively small reconstruction 89 
errors. 90 
 91 
1.2 Modelling	problem	of	intelligent	sampling	92 
 93 
An essential part of adaptive sampling is that a given method must be able to accurately learn real surface geometry with an accurate 94 
mathematical model in a specific space, e.g. the original object [25] space, parametric, or some error spaces [11]. Then, a real surface 95 
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Figure 3. A common adaptive sampling pipeline for surface measurement. 
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can be approximated by the surrogate model (the real model is usually unknown) without, or with limited, reconstruction error. 96 
Recently, a Gaussian process modelling (as a generalised kriging [37, 38])-based intelligent sampling has drawn wide attentions [35, 97 
36, 41] for their high-degree for modelling flexibility. However, these non-parametric modelling methods are designed for low-98 
dynamic-range (LDR) homogeneous surfaces or near-homogeneous surfaces, e.g. smooth freeform surfaces and low-dynamic-range 99 
structured surfaces. Besides, non-parametric modelling currently requires unbearable high computing time costs. 100 
 101 
B-spline or NURBS surrogate models defined with several describing parameters [25-27] are widely used to approximate the original 102 
design model, with both high accuracy and efficiency. These models can effectively represent simple and complex geometries, e.g. 103 
smooth freeform geometry. However, for surfaces with high-dynamic range (HDR) features  [44] or highly sparse surfaces with 104 
varying local complexities (e.g. local spectral width) at different locations, parametric modelling can easily introduce in large 105 
modelling errors due to inaccurate model selections. Figure 4 shows an example of LDR smooth and sharply edged HDR structured 106 
surface profiles, where the smooth surface shows homogeneous signal variation everywhere, while the structured surface shows 107 
heterogeneous and sparse local bandwidth distributions at different locations.  108 
 109 

 110 
Figure 4. An example of smooth and sharply edged profiles. 111 

 112 
To overcome the issue of modelling accuracy and simultaneously take advantage of the efficiency of parametric modelling, a novel 113 
adaptive sampling method is proposed in this research based on free-knot B-spline (FKBS) modelling [45-48]. FKBS modelling can 114 
automatically select an adequate fitting model and adapt the model hyper-parameters, e.g. knot vectors, to complex surface 115 
behaviours. Hence, high reconstruction accuracy from a smart sampling design can be expected. Our experiments show that FKBS-116 
modelling-based adaptive sampling has comparable or higher performance to some state-of-the-art sampling solutions with non-117 
parametric models, e.g. Gaussian process regression or kriging [36, 41], and with less computational cost.  118 
 119 
In the following, the proposed solution is described mathematically in part 2 with step-by-step illustrations. Five case studies and 120 
discussions are then given in part 3 by conducting the algorithm in different spaces. Part 4 presents conclusions and future work. In 121 
this work, only 2D surface profile measurement [49] is considered.  122 
 123 
2. FKBS-based intelligent sampling 124 
 125 
Following with the general pipeline as in Figure 3, the proposed adaptive sampling strategy is carried out in the following loops, 126 
including initial sampling, free-knot B-spline modelling, uncertainty estimation, NBP selection and subsequent iterations. For a 127 
summary view of the strategy, please forward to section 2.5. 128 
 129 
2.1	Initial	sampling	and	testing	position	initialisation	130 
 131 
Initial sampling with a blind strategy can be uniform, Hammersley, Halton pattern or other pre-learned fixed distribution patterns [9, 132 
13, 21]. In this study, a uniform sampling with a random phase shift was applied. 133 
 134 
Testing points or candidate points ሼ𝑥௠

∗ ሽ௠∈ெ are the positions to be predicted in model reconstruction. In previous research work [11, 135 
36, 38], a dense and uniform position set with a fixed size is constructed for NBP selection. This solution is not optimal and for large 136 
datasets, it is time-consuming as well, especially in areal measurement. In our strategy, a uniform testing point set is initialised first, 137 
which is then dynamically refined in adaptive sampling iterations according to local surface complexities.  138 
 139 
2.2	Regularised	spline	modelling	with	free	knots	140 

2.2.1	Regularised	B‐spline	modelling	141 
 142 
B-spline or NURBS fitting has been widely used in surface reconstruction from discrete sample points [50, 51]. For example, given 143 
a set of sample positions in D-dimensional space 𝒙 ൌ ሼ𝑥௡ ∈ ℝ஽ሽ௡∈ே  and corresponding measurement values 𝒚 ൌ ሼ𝑦௡ ∈ ℝሽ௡∈ே , 144 
fitting with B-splines can be expressed with the following  145 
 146 
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𝒚 ൌ 𝑓𝒕ሺ𝑥ሻ ൌ 𝐻𝜶 ൅ 𝜺, (1) 
 147 
where 𝐻 is a Kth order (𝐾 ൌ 4 in this work) B-spline modelling matrix, which relies on a knot position vector t and the sample 148 
position vector x and can be easily obtained by using de Boor’s algorithm [50], and 𝜺 is the modelling error which follows the 149 
independent multivariate normal distribution 𝜺~ℕሺ0, 𝜎ଶ𝑰ሻ, with I being the identity matrix. The parameter vector 𝜶 is usually the 150 
only variable of estimation and it can be resolved in a least-squares sense, i.e.  151 
 152 

argmin𝜶‖𝒚 െ 𝐻𝜶‖ଶ: 𝜶 ∈ ℝ௄,  (2) 
 153 
in which K is usually smaller than N and accounts for the dimension of modelling parameters. Then 154 
 155 

𝜶ෝ ൌ ሺ𝐻்𝐻ሻିଵ𝐻்𝒚. (3) 
 156 
The least-squares spline fitting requires the Schoenberg-Whitney-condition on the knot positions [47, 52] to be met so that matrix 157 
singularity can be avoided, i.e. the banded matrix 𝐻்𝐻 is stably invertible. However, this is difficult in practice to satisfy, especially 158 
in adaptive sampling with sparse sample distributions, or if a knot vector size is larger than the sample sizes. A regularised 159 
minimisation solution with a second order derivative smoothing term is used in this work, which makes the solution 𝛼ො stable, i.e.  160 
 161 

argmin𝜶‖𝒚 െ 𝐻𝜶‖ଶ ൅ 𝜇‖𝑓௥ ‖௅మ
ଶ  (4) 

 162 
where 𝜇 controls trade-off between the modelling accuracy and smoothness, ‖𝑓௥‖௅మ

 is the continuous 2-norm of the rth order (𝑟 ൌ 2 163 
in this work) derivative function, i.e.  164 
 165 

‖𝑓௥‖௅మ
ଶ ൌ ׬ 𝑓௥ ሺ𝑥ሻଶ𝑑𝑥

௑
. (5) 

 166 
Because the derivatives of a B-spline are a summation of lower-order B-spline basis functions, the area of a B-spline is proportional 167 
to its bounded square box area [53]. Equation (5) can be expressed as  168 
 169 

‖𝑓௥‖௅మ
ଶ ൌ 𝜶௥்𝑆்𝑆𝜶௥ ൌ 𝜶்𝐷்𝑆்𝑆𝐷𝜶,  (6) 

 170 
where D is coefficient transfer matrix [50] which realises the following conversion 171 
 172 

𝛼௝
௥ ൌ ሺ𝐾 െ 𝑟ሻ

ఈೕ
ೝషభିఈೕషభ

ೝషభ

௧ೕశ಼షೝି௧ೕ
, with 𝛼଴ ൌ 𝛼,  

and 

(7) 

𝑆 ൌ diag ቆට
௧ೕశ಼షೝି௧ೕ

௄ି௥
ቇ. 

(8) 

 173 
Thus, the curvature minimisation regularised modelling problem above can be solved in following least-squares manner 174 
 175 

𝜶ෝ ൌ 𝑅்𝐻்𝑦, with 𝑅 ൌ 𝑅் ൌ ሺ𝐻்𝐻 ൅ 𝜇𝐷்𝑆்𝑆𝐷ሻିଵ. (9) 
 176 
2.2.2	Free‐knot	B‐spline	modelling	177 
 178 
The modelling process above is only applicable to the situation when knot vector 𝒕 has been defined in advance. In adaptive sampling, 179 
with no prior information provided about the surface model, 𝒕 and 𝜶 are two variables to be estimated, i.e. 180 
 181 

argmin𝒕,𝜶‖𝒚 െ 𝐻𝒕𝜶‖ଶ ൅ 𝜇‖𝑓௥ ‖௅మ
ଶ . (10) 

 182 
Because 𝒕 and 𝜶 are linearly separable [53], this free-knot spline modelling problem can be reduced to the optimisation problem of 183 
𝒕 only by substituting 𝜶 with equation (9) 184 
 185 

argmin𝒕ฮ𝒚 െ 𝐻𝒕𝑅் 𝐻𝒕
்𝒚ฮ

ଶ
. (11) 

 186 
However, equation (11) is a complex non-linear optimisation problem with multiple local minima. Solutions of equation (11) include 187 
local Gauss-Newton [47], Gaussian-mixture model optimisation [54], and some global genetic algorithms [55] and simulated 188 
annealing algorithms [27]. Global algorithms have been shown to be more accurate than local ones but they cost more computing 189 
time. So a compromise solution is used in this work by estimating knots in an approximate but global manner through discrete 190 
curvature analysis [45]. This simple knot estimation is found to have high computational efficiency and provide acceptable modelling 191 
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accuracy.  192 
 193 
2.3	Reconstruction	uncertainty	analysis		194 
 195 
In adaptive sampling, reconstruction uncertainty is usually the only clue for NBP selections. Because B-spline basis functions have 196 
a compact support over sub-sampling domains, reconstruction uncertainty usually forms peaks in under-defined areas, i.e. the area 197 
far away from existing sample points and with high-density knots placed. Therefore, a well-defined surface reconstruction can be 198 
achieved by iteratively sampling at the positions with the maximum uncertainty distributions.  199 
 200 
Based on the fitting model in equation (1), prediction of the expected value and uncertainty (square root of variance) at a testing 201 
position x* has the following form: 202 
 203 

𝑦ො∗ ൌ 𝒉்𝜶ෝ ൌ 𝒉்𝑅்𝐻்𝒚,  
and 

(12) 

𝑈௬∗ ൌ ඥ𝒉்𝑅்𝐻்𝛴𝐻𝑅𝒉 ൌ 𝜎ඥ𝒉்𝑅்𝐻்𝐻𝑅𝒉 (13) 

 204 
where 𝒉 is the B-spline modelling vector at the new testing position x*, and the constant 𝜎 can normally be pre-set as the measurement 205 
uncertainty or estimated with cross-validation [52]. In this research, 𝜎 is set as 0.1 % of the signal range because an absolute 206 
uncertainty magnitude is not our concern (see section 2.4 for more details). 207 
 208 
Figure 5a shows the reconstruction uncertainty distribution from twelve uniform sample points for a geometrically heterogeneous 209 
surface profile. This heterogeneous surface has higher local complexity in the left area than in the right. Thus, the uniform initial 210 
sampling results in the right-half area are well-defined with smaller uncertainties. The left-half area has an uncertainty with several 211 
peaks formed at the positions between some neighbouring sample points. By further adaptively allocating thirty-six dense sample 212 
points (mainly in the left area), these local uncertainty peaks were reduced in the full sampling domain, as shown in Figure 5b.  213 
 214 
It can be observed from equation (13) that the reconstruction uncertainty is independent of sampling values y but dependent on the 215 
sampling positions x. This does not seem intuitive because any surface will have the same sample design if the B-spline model knots 216 
are pre-defined. In fact, equation (13) is provided under the assumption that the model knots are provided with no uncertainty. 217 
Therefore, this theoretical uncertainty prediction may underestimate the true uncertainty value [56]. To overcome this problem, an 218 
empirical uncertainty estimation, e.g. Jack-knife uncertainty [57] is normally applied 219 
 220 

𝑈௬∗ ൌ √𝑁 െ 1𝜎ሺ𝑦ො௡ି
∗ ሻ௡∈ே, (14) 

 221 
where 𝜎 represents the uncorrected standard deviation and 𝑦ො௡ି

∗  denotes the reconstruction mean value from 𝑁 െ 1 existing sample 222 
points, with the nth point eliminated. In this work, the Jack-knife uncertainty was used when the design model was unknown. For 223 
more information about empirical uncertainty estimation, please refer elsewhere [37, 56].  224 
 225 

 
(a) With an initial uniform sampling. 

(b) With additional thirty-six adaptive sampling 
Figure 5. Update of sample points, testing positions (magenta dashed lines), reconstructed surfaces and uncertainties  (note the scale difference) of the adaptive 226 

sampling for a fourth order B-spline heterogeneous surface profile with non-uniform interior knots at [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4]. 227 
 228 
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2.4	Next‐best‐point	(NBP)	selection	229 
 230 
Under the framework of greedy algorithms [58], by placing the NBP at the position with the highest uncertainty amplitude, the 231 
uncertainty profile or map will be reduced in the next reconstruction iteration. Figure 6a-b show that by placing the NBP at 𝑥 ൌ 0.31, 232 
the local reconstruction uncertainty near to the NBP shrinks to the measuring uncertainty of 0.001 μm. By further iteratively placing 233 
the second and third NBPs, the local reconstruction uncertainties shrink as presented in Figure 6c and 6d. Until a total of nine adaptive 234 
NBPs are sampled, the reconstruction uncertainties shrink to below the level of measurement uncertainty, as shown in Figure 6e.  235 
 236 
NBP selections with the maximum uncertainty or maximum weighted uncertainty have been investigated in earlier research [37, 38], 237 
where they were respectively abbreviated as the MaxVar and MaxWVar rules:  238 
 239 

MaxVar:  𝑥ே஻௉
∗ ൌ argmax௫∗ 𝑈௬ො∗

ଶ . (15) 

MaxWVar:  𝑥ே஻௉
∗ ൌ argmax௫∗ 𝑤௫∗𝑈௬ො∗

ଶ . (16) 
 240 
For the latter rule, a commonly used weight design is the Euclidean distance to the nearest sample, i.e. 𝑤௫∗ ൌ min௡∈ே 𝑑ሺ𝑥∗, 𝑥௡ሻ. 241 
 242 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure 6. Reconstruction uncertainty (green, note the scale difference) for initial ten uniform sample points (a) and additional 1(b), 2(c), 3(d) and 9(e) adaptive 243 
sample points. (Red squares denote the added sample points in each iteration; Blue dashed lines denote the model knot positions) 244 

 245 
If a design model can be provided either by localisation or ordinary fitting, the NBP can be specifically designed at the positions 246 
which maximise the peak-to-valley form error, e.g. least-squares or minimum-zone flatness errors. This NBP selection rule was 247 
abbreviated as MaxtInc [30, 34, 37, 38], i.e. 248 
 249 

MaxtInc:  𝑥ே஻௉
∗ ൌ argmax௫∗ሾ𝑒ሺ𝑥, 𝑦, 𝑥∗, 𝑦∗ሻ െ 𝑒ሺ𝑥, 𝑦ሻሿ. (17) 

 250 
If equation (17) leads to no NBP selection during a sampling iteration, a switch rule can then be applied by switching the MaxtInc 251 
rule to MaxVar or MaxWVar rule.  252 
 253 
Previous research have demonstrated that the MaxtInc to MaxWVar switch rule is especially effective for peak-to-valley form error 254 
measurement, e.g. for least-squares or minimum-zone straightness error measurement. For general geometry measurement, e.g. to 255 
minimise a root-mean-squared measurement error, MaxVar and MaxWVar rules are preferred [37, 38]. In this research, MaxWVar 256 
is used as the default NBP selection rule in this research if not specially specified. 257 
 258 
2.5	Adaptive	iterations	and	strategy	summary	259 
 260 
With the the above processing loops ready, the existing adaptive sample set ሼ𝑥௡, 𝑦௡ሽ௡∈ே can be updated with 𝑁 ൌ 𝑁 ൅ 1. Then the 261 
testing position set ሼ𝑥௠

∗ ሽ௠∈ெ is also refined by inserting a new testing point in the centre of previously divided spaces, which indicates 262 
the total number of testing points 𝑀 is augmented by one over each iteration. With such adaptive binary-tree (or quad-tree for 2D 263 
sampling [59]) space partitioning, a sampling space can be hierarchically organised and adaptively refined.  264 
 265 
For example, a whole sampling space is set as the root node and has two children nodes, one is the left half space and the other one 266 
is the right half space. Also, each node space can recursively have its own refined subspace children. Figure 5a shows a uniform 267 
space partitioning with eight leaf nodes. When adaptive sampling starts, one of the leaf subspaces to which a NBP belongs is refined 268 
by two children leaf subspaces. Then, the total number of testing points increases by one after each iteration. Figure 5b shows an 269 
adaptive space partitioning result after thirty-six adaptive iterations, in which the sample points are selected as the centres of the 270 
adaptively refined subspaces. 271 
 272 
Here, the proposed FKBS modelling-based adaptive sampling is summarised as follows:  273 
1) Initial sampling with a blind strategy and initialising testing positions with a spatial partitioning tree; 274 
2) FKBS modelling with the existing sample points ሼ𝑥௡, 𝑦௡ሽ௡∈ே by estimating model parameters 𝜃෠ே ൌ ሼ𝛼ො, 𝑡̂ሽ; 275 
3) Predicting uncertainty at the existing testing positions ሼ𝑥௠

∗ ሽ௠∈ெ; 276 
4) Selecting the NBP 𝑥∗  selection and acquiring the sample value 𝑦∗ ; 277 
5) Updating the sample points ሼ𝑥௡, 𝑦௡ሽ௡∈ே and refining the testing position ሼ𝑥௠

∗ ሽ௠∈ெ with 𝑁 ൌ 𝑁 ൅ 1, 𝑀 ൌ 𝑀 ൅ 1; 278 
6) Repeat steps 2-5 until a stopping criterion is achieved. 279 
 280 
Within the iterative strategy above, stopping criteria are a critical factor to the performance of adaptive sampling. Some commonly 281 
applicable criteria have been used in previous research, such as the predefined sample size [37, 38], predefined maximum 282 
reconstruction error [11, 30, 37, 60] and uncertainty [35-38]. With combined use of these stopping criteria, adaptive sampling can be 283 
effectively applied. In this work, sample size was used as the only stopping criterion to validate the performance of the proposed 284 
sampling strategy, by comparing with control group methods. 285 
 286 
3. Experiments and discussions 287 
3.1	Preparation	of	specimen	and	sampling	conditions	288 
 289 
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A study of the proposed adaptive sampling strategy step by step on a heterogeneous surface profile has been given in section 2, in 290 
which case the surface model parameter 𝒕 was pre-defined and only the theoretical uncertainty was used. In this section, the proposed 291 
sampling strategy is tested using an empirical uncertainty analysis by not providing any prior information. 292 
 293 
Engineered surfaces can be generally classified into random and deterministic surfaces [1]. The former can be widely found in the 294 
natural surface texture of general machining processes, which usually have homogeneous behaviour. Uniform or blind sampling 295 
strategies [8, 9] work effectively for this type of surface. Deterministic surfaces have designed shapes such as MEMS and diverse 296 
structured or freeform surfaces. These advanced surfaces normally have sharply edged features or HDR properties [1, 44].  297 
 298 

 
(a) 

(b) 
 

(c) 
Figure 7. Five typical surface profiles to be tested. 299 

 300 
In this experiment, a range of surface examples, including three simulated profiles with respectively smooth, heterogeneously smooth 301 
and sharply edged geometries, a measured roundness profile and a measured sharp-edge enclosed freeform profile (see Figure 7) are 302 
chosen for verification. The simulated smooth profile is a randomly generated uniform knot spline space curve. The simulated 303 
heterogeneously smooth profile is the one analysed in section 2. The simulated sharply edged profile is a composition of a step signal 304 
and parabolic base form. The roundness profile data in Figure 7b comes from reference [11], which has also been investigated by 305 
other researchers for peak-to-valley form error evaluation [37, 38]. The sharp-edge enclosed freeform profile, shown in Figure 7c, 306 
comes from an aero-engine turbine blade and was measured with laser triangulation [51, 61]. 307 
 308 
Sampling experiments with different strategies and sample sizes were then applied in which uniform, jittered uniform (JU) [13] and 309 
the recently highlighted kriging modelling-based adaptive sampling [36-38] were used as the references. Sample sizes varied from 310 
14, 27, 54, 100 until 200 among which, the size 27 was specially tested to compare with the method in reference [11], while other 311 
sample points were compared with the other studies as in references [37, 60]. The default NBP selection rule used in this experiments 312 
is MaxWVar. 313 
 314 
For sampling performance verification, root-mean-squared (RMS) and peak-to-valley (PV) reconstruction errors (RMSE and PVE) 315 
[13] are used as the performance metrics, i.e. 316 
 317 

εୖ୑ୗ ൌ ∑ሺ𝑦ො௡ െ 𝑦ത௡ሻଶ 𝑁⁄ , with 𝑛 ∈ 𝑁, (18) 
ε୮୴ ൌ 𝑃௭ሺ𝑦ො௡ሻ, (19) 

 318 
where 𝑦ො and 𝑦ത are respectively the reconstruction model and the design model in a specific space and 𝑃௭ represents the extreme 319 
height difference between the highest peak and the lowest valley [4]. The RMS error is analysed for the first three cases and the last 320 
freeform case, while the PV error is analysed for the fourth roundness case to compare with the results in reference [11]. Normalised 321 
RMSE and PV errors are also used in the statistical analysis for a unified performance comparison between different cases, i.e. 322 
 323 

εୖ୑ୗ% ൌ க౎౉౏

௉೥ሺ௬ത೙ሻ
ൈ 100%, with 𝑛 ∈ 𝑁, (20) 

ε୮୴% ൌ
|௉೥ሺ௬ො೙ሻି௉೥ሺ௬ത೙ሻ|

௉೥ሺ௬ത೙ሻ
ൈ 100%, with 𝑛 ∈ 𝑁. (21) 
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 324 
3.2	Typical	sampling	results	325 

3.2.1	Smooth	surface	profile	326 
 327 
Some typical sampling results are presented here. For the smooth profile from a uniform knot spline space, the developed FKBS 328 
adaptive sampling presented unstable results when 27 sample points (SPs) were applied, but quickly converged to a stable 329 
reconstruction curve when 54 or more SPs were used. In Figure 8, a 27 SP-based sampling-reconstruction curve has an RMS error 330 
of 0.128 μm. When the sample size was doubled to 54, the sampling reconstruction RMSE quickly degenerated to only 5% of the 331 
previous value, i.e. 0.002 μm. 332 
 333 

(a) with 27 SPs 

(b) with 54 SPs 
Figure 8. Typical FKBS adaptive sampling designs for the smooth profile. 334 

 335 
Because the selected smooth profile has homogeneous surface complexities over the abscissa, the resulting adaptive sample points 336 
exhibited a near-uniform distribution. The reconstruction errors of the control groups are listed in Table 1, from which it can be found 337 
that the performance of the FKBS adaptive sampling is similar to that of the uniform methods with sample size 27 but outperforms 338 
the conventional methods with sample size 54. However, the FKBS sampling performed no better than the kriging-based adaptive 339 
method for this smooth surface. 340 
 341 

Sample sizes Uniform Jittered uniform Kriging Adaptive FKBS Adaptive 
27 0.080 0.129 0.034 0.127 
54 0.021 0.029 0.001 0.002 

Table 1. RMSEs of different sampling methods on the smooth profile in micrometres. 342 
 343 

3.2.2	Heterogeneously	smooth	surface	profile	344 
 345 
A typical sampling design of the proposed FKBS adaptive sampling for the heterogeneous profile is plotted in Figure 9. Because this 346 
heterogeneous profile has higher local complexity in the left area, the FKBS sampling method intelligently found this under-defined 347 
area and allocated denser sample points there. With the sample size changing from 27 to 54, the FKBS sampling provided a significant 348 
accuracy improvement by reducing the reconstruction RMSE to 10% of the previous value. Simultaneously, the blind uniform 349 
methods reduced the reconstruction errors to about one-fourth of the previous values (see Table 2). From Table 2, it can be seen that 350 
the proposed FKBS sampling method outperformed all other tested methods in sample size 27 and 54, including the state-of-the-art 351 
kriging-based adaptive sampling [35-38]. 352 
 353 
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(a) with 27 SPs 

(b) with 54 SPs 
Figure 9. Typical FKBS adaptive sampling designs for the heterogeneous profile. 354 

 355 
Sample 

sizes 
Uniform Jittered 

uniform 
Kriging 

Adaptive 
FKBS 

Adaptive 
27 0.054 0.088 0.010 0.002 
54 0.015 0.018 0.001 0.0002 

Table 2. RMSEs of different sampling methods for the heterogeneous profile in micrometres. 356 
 357 

3.2.3	Structured	surface	profile	with	sharp	edges	358 
 359 
The most difficult case for intelligent sampling design is a structured surface with sharp edges. The simulated structured surface 360 
profile in this study has smooth and stationary behaviour over the sampling domain but with four break points at [0.125, 0.375, 0.625, 361 
0.875]. These break points have high local slope and curvatures. Most current sampling strategies failed to deal with these step-like 362 
surfaces, though some artificial neural network models [62] are in development for this highly nonlinear problem. 363 
 364 
Typical sampling designs and reconstruction curves are presented in Figure 10, with the FKBS adaptive sampling strategy. The 365 
FKBS method presented favourable adapting behaviour across the high local spatial frequency areas by allocating dense sample 366 
points around the break point positions and reconstructing with limited oscillation. With other intelligent strategies, such as the 367 
kriging method, a 54 SPs design is presented in Figure 11a. Although the kriging adaptive method [35-38] also allocated dense SPs 368 
around the break points, the reconstruction showed prediction bias to a zero-mean line at  positions with sparse SPs. Adaptive 369 
sampling in [11] is another spline modelling-based method with spline knots equal to sample positions, hence sample points were 370 
exactly interpolated. Unfortunately, this method [8] produced obvious oscillations around the break points (see Figure 11b). 371 
 372 
Table 3 summarises the performance of the proposed method with the control groups. It can be observed that the conventional 373 
uniform methods presented little accuracy improvement by increasing SPs from 27 to 54. Simultaneously, the kriging-based method 374 
presented a small improvement. The FKBS method demonstrated an evident accuracy improvement by reducing the reconstruction 375 
error to one-fourth of the previous value. 376 
 377 

(a) with 27 SPs 
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(b) with 54 SPs 
Figure 10. Typical FKBS adaptive sampling designs for the shapely edged profile. 378 

 379 

(a) with kriging-based adaptive sampling 

(b) with adaptive sampling from [8] 
Figure 11. Sampling and reconstruction results with 54 SPs kriging-based adaptive method (a) and adaptive method [8] (b). 380 

 381 
Sample 

sizes 
Uniform Jittered 

uniform 
Kriging 

Adaptive 
FKBS 

Adaptive 
27 0.294 0.356 0.355 0.292 
54 0.300 0.212 0.244 0.070 

Table 3. RMSEs of different sampling methods for the sharply edged profile in micrometres. 382 
 383 

3.2.4	Real	roundness	surface	profile	384 
 385 
The roundness surface profile comes from a machined cylindrical shaft which involves a composition of large-scale form error and 386 
small-scale texture. The texture amplitude is about one-tenth of the form error and presents a homogeneous distribution over the 387 
sampling domain. However, the large-scale form has some sharp changes at four rotational positions (see Figure 7b). Previous 388 
research  [37, 38] focused on the inspection of the PV form error in which kriging adaptive methods were demonstrated to 389 
significantly save the sample size by up to 50% with the MaxtInc-MaxWVar NBP selection rule, compared to the method in reference 390 
[8].  391 
 392 

Sample 
sizes 

Uniform Jittered 
uniform

Kriging adaptive FKBS Adaptive
MaxWVar Switch MaxWVar Switch

27 53.4% 41.6% 44.3% 30.7% 42.2% 15.0%
54 38.7% 46.3% 21.6% 27.1% 19.8% 11.9%

Table 4. Normalised PVEs of different sampling methods on the roundness case. 393 
 394 

Sample sizes Uniform Jittered uniform Kriging Adaptive FKBS Adaptive 
MaxWVar Switch MaxWVar Switch 

27 2.285 2.042 2.79 2.877 2.51 2.137 
54 2.003 1.715 1.89 2.193 1.51 1.462 

Table 5. RMSEs of different sampling methods on the roundness case in micrometres. 395 
 396 
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(a) with 27 SPs 

(b) with 54 SPs 
Figure 12.Typical FKBS adaptive sampling designs for the roundness profile. 397 

 398 
With the MaxtInc-MaxWVar switch NBP selection rule for both kriging and FKBS adaptive sampling, a PVE evaluation test was 399 
carried out and the results are shown in Table 4. The corresponding RMSEs of each test are listed in Table 5. A typical sampling 400 
reconstruction result of the FKBS adaptive method under the switch rule is also presented in Figure 12, in which it can be found that 401 
the proposed method can stably find the highest surface peak.  402 
 403 
In this presented case, the FKBS sampling showed higher PVE evaluation accuracy than the kriging and conventional uniform 404 
methods, but exhibited no significantly higher performance for RMSE evaluation. One reason behind this could be the high amplitude 405 
texture, which results to over-fitting with the proposed FKBS reconstruction method. It was also found that the adaptive sampling 406 
strategies are sensitive to the initial sampling conditions. Therefore, a statistical analysis needs to be carried out which is presented 407 
in section 3.3. 408 
 409 

3.2.5	Real	freeform	surface	profile	410 
 411 
The freeform surface profile has re-entrant 2D geometry. Its coordinate point cloud needs to be mapped to a parametric space [63], 412 
hence the profile can be described as a parametric spline part plus a single-value error function part, i.e. 413 
 414 

𝒑 → 𝑟: 𝒑 ൌ 𝒑ሺ𝑢ሻ ൅ 𝑟ሺ𝑢ሻ𝒏ሺ𝑢ሻ, (1) 
 415 
where 𝒑ሺ𝑢ሻ  is an approximated spline model by extending equation (1) to a 2D space, i.e. 𝒑ሺ𝑢ሻ ൌ ሾ𝑥ሺ𝑢ሻ, 𝑦ሺ𝑢ሻሿ் ൌ416 

ൣ𝒉௫ሺ𝑢ሻ, 𝒉௬ሺ𝑢ሻ൧
்

𝜶, 𝒏ሺ𝑢ሻ is the normalised normal vector, and 𝑟ሺ𝑢ሻ is the separated residual error curve for adaptive sampling. In 417 
other words, the sampling experiment was carried out in a parametric space. 418 
 419 
In this study, the approximated parametric model was manually constructed with a NURBS CAD toolbox. Then the residuals 𝑟ሺ𝑢ሻ 420 
of the measured profile were extracted as the black curve in Figure 13, in which the abscissa has been normalised. This real freeform 421 
profile has smooth form geometry over the majority of the sampling space but a local peak around the leading edge. With the proposed 422 
adaptive sampling, the freeform profile was reconstructed with limited reconstruction error (see Table 6). In particular, the proposed 423 
method could stably find the small peak as shown in Figure 13b near the leading edge with 54 sample points, by using the MaxtInc-424 
MaxWVar switch NBP selection rule.  425 
 426 
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 427 
(a) with 27 SPs (MaxWVar) 428 

 429 
(b) with 54 SPs (MaxtInc-MaxWVar switch) 430 

Figure 13. Typical FKBS adaptive sampling designs for the parameterised freeform profile. 431 
 432 

Sample sizes Uniform Jittered uniform Kriging Adaptive FKBS Adaptive 
27 0.033 0.037 0.044 0.033 
54 0.021 0.018 0.024 0.013 

Table 6. RMSEs of different sampling methods on the freeform case in micrometres. 433 
 434 
In Figure 14, we plot a reconstruction of the sampling results back to the original object space in which, the proposed adaptive 435 
sampling showed more exact reconstruction performance at the edge position of the turbine blade.  436 
 437 

 438 
Figure 14. Reconstruction of the source freeform profile from the parametric space back to the original object space. 439 

 440 
3.3	Statistical	verification	441 

3.3.1	Sampling	accuracy	442 
 443 
Adaptive sampling is widely known to be sensitive to initial conditions, e.g. the initial sample size and positions. A statistical 444 
verification of sampling performance is normally necessary. In this study, an initial sampling was conducted by randomly collecting 445 
five jittered uniform sample points from each dense data. Then, twenty repetitive experiments were run for each method and each 446 
sample size. To achieve the comparability among different cases, normalised RMS errors in equation (20), or PV errors for the 447 
roundness case in equation (21), were analysed. 448 
 449 
In Figure 15, the statistical test results on the five typical surface examples are presented. It can be observed that the proposed FKBS-450 
based adaptive sampling has higher flexibility and reconstruction accuracy for different types of ideal surfaces for the first three 451 
cases. For the last two real surface cases, the proposed sampling also exhibits similar or better performance in the PV or RMS form 452 
error comparison.  453 



14 
 

 454 

(a) For the smooth profile 

 
(b) For the heterogeneously smooth profile 

(c) For the sharp-edge structured profile 

(d) For the real roundness profile 

(e) For the real freeform profile 
Figure 15. Statistics of the reconstruction errors for the measurement of different specimen with different sampling strategies and sizes (y-axis in log-scale). 455 

 456 
It should be noted that when noise is present in the real cases, the proposed sampling and corresponding reconstruction method may 457 
over-fit the noise when the sample size increased to two -hundred (see Figure 15e). In this situation, conventional uniform sampling 458 
methods performed better than the proposed method and the kriging-based adaptive sampling methods. Figure 16a presents such an 459 
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unexpected example of over-fitting, in which the reconstruction curve passes through the sample points but oscillations are also 460 
produced. To avoid over-fitting, a simple solution is to either use a small number of sample points or provide a larger number of knot 461 
points in the modelling process.  Figure 16b presents a good example with no over-fitting and oscillation by pre-setting the number 462 
of knots to two hundred. 463 
 464 

 465 
(a) with 100 knot points 466 

 467 
(b) with 200 knot points 468 

Figure 16. An example of over-fitting with the proposed sampling and reconstruction methods with one-hundred sample points. 469 
 470 

3.3.2	Computing	time	471 
 472 
The recently highlighted kriging-based adaptive sampling has shown good performance in terms of reducing the number of sample 473 
points. However, a barrier exists in practical application of this method as it is computationally expensive [38]. In contrast, during 474 
the five typical sampling test cases above, the proposed spline regression-based sampling method showed significant computing time 475 
reduction of at least one order of magnitude compared to that from the kriging-based methods. A statistic of the computing time is 476 
listed in Figure 17. These experimental data are obtained using MATLAB in a normal computer with 2.4GHz Intel I5 CPU.  477 
 478 
When the sample size was pre-set to two hundred, the kriging-based method takes about 100 s for a full test. In contrast, the proposed 479 
method takes about 200 ms. This indicates that the proposed method can be efficiently applied in practical measurement with limited 480 
delay between two successive sampling actions.  481 
 482 

 483 
Figure 17. The computation time spent under different sampling conditions (ordinates in log-scale). 484 

 485 
4. Conclusions and future work 486 
 487 
In this research, an uncertainty analysis-guided adaptive sampling method based on free-knot B-spline modelling is proposed. This 488 
proposed method has been tested on three simulated surfaces and two measured surface profiles. By comparing with recently kriging-489 
based adaptive sampling and conventional uniform methods, FKBS modelling-based adaptive sampling show similar or better 490 
performance for general low-dynamic-range smooth surface profile measurement (see case studies 1,2 and 4). For high-dynamic-491 
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range surface profiles with sharp edges (see case studies 3 and 5), FKBS strategies can significantly outperform conventional uniform 492 
methods and the recently popularised kriging-based methods. 493 
 494 
Regarding to computational cost, the proposed adaptive sampling shows significant computing time reduction from that of kriging-495 
based methods. Our typical computing time in 200 ms with MATLAB can be well expected in practical measurement applications.  496 
 497 
Intelligent sampling research with parametric models for high-dynamic-range or sparse surfaces is still in its early stage of 498 
development. A very important future work is to extend the 2D sampling method to 3D cases for areal surface measurement. In this 499 
case, the computational complexity may increase in a squared sense with tensor-product methods and unpredictable behaviour may 500 
be caused by inconsistent 2D border regions. Therefore, we need advanced 2D spline models with sparse structure support for flexible 501 
surface modelling. Some typical sparse 2D B-spline models include multi-level B-splines, T-splines and a recently-developed locally-502 
refined B-splines [59]. With these advanced mathematical models, we can expect the advent of 3D surface measurement-oriented 503 
adaptive sampling algorithms in soon, with both small computing cost and high modelling flexibility for high-dynamic-range and 504 
sparse surfaces. 505 
 506 
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