
EUROGRAPHICS 2018/ F. Post and J. Žára Education Paper

On the Pedagogy of Teaching Introductory Computer Graphics
without Rendering APIs

Minsi Chen 1, Zhijie Xu 1 and Wayne Rippin2

1Department of Computer Science, University of Huddersfield, UK
2 Department of Electronics, Computing and Mathematics, University of Derby, UK

Abstract
Teaching modern computer graphics programming has become increasingly challenging due to the advancement in the gran-
ularity of application programming interfaces (APIs). In this paper, we put forward a discussion on the pedagogical value of
implementing a software rasteriser prior to tackling the issues of learning modern graphics APIs and shader programming.
An API-free approach to teaching introductory computer graphics along with its assessment strategy are presented. Our obser-
vation found that students were more effective and confident in learning and using modern rendering APIs when subsequently
studying advanced real-time graphics.

CCS Concepts
•Social and professional topics → Model curricula; Student assessment; •Computing methodologies → Rasterization; Ray
tracing;

1. Introduction

Computer graphics (CG) from its introductory form to more ad-
vanced topics are embedded in many computer science curricula
either as an elective or as a core component. This field consists
of both theoretical elements stemmed from mathematics and com-
puter science, as well as practical applications that are appropriate
for a much wider spectrum of audiences [McC06].

The theoretical treatment of CG has been comprehensively writ-
ten in well-known textbooks such as Foley et. al. [FvDFH90] and
Shirley et. al. [SM09]. In addition to this, there are also numerous
widely adopted textbooks that are closely coupled with common
rendering APIs such as OpenGL, see examples [AS11a, SWH15,
HBC10].

Introductory CG topics commonly consist of raster-level con-
cepts and algorithms that underpin the fundamental working of
modern real-time rendering pipeline and the design of rendering
APIs. From a pedagogical perspective, the necessity of assimilat-
ing these low-level processes as a requisite to further progress onto
more advanced topics in this area has been actively debated.

As other scientific subjects, we do hold the belief that these fun-
damental concepts are necessary to form a structured approach to
progressively studying CG. However, such low-level details are of-
ten hidden when graphics processing units (GPUs) and rendering
APIs are adopted for practical exercises and assignments. Thus,
students often found it less relevant to work through the nuances
of the raster graphics pipeline and the core mathematics.

As modern rendering APIs become increasingly shader centric
and hardware resource management oriented, we perhaps put an
unbalanced focus on elucidating the working of an API instead of
the enabling theories and techniques. In an introductory CG mod-
ule, API-led teaching and assessment may not facilitate an effective
platform for students to combine theories with practice.

In this paper, we present a portfolio of assignment design that
tasked students to implement raster-level algorithms and shading
techniques. The method proposed were primarily developed for sci-
ence and engineering students who require a balance of theoretical
and applied treatment of the introductory elements of CG.

2. Related Work

The importance of raster-level algorithms in teaching introductory
CG was debated by Angel et. al. [ACSS06]. Peter Shirley, one of
the author, argued that implementing your own raster-level algo-
rithms could lead to more commanding understanding of the work-
ing principle of rendering pipeline. This in turn also enabled stu-
dents more learn and use rendering APIs more effectively.

More recently, the prevalence of programmable shaders has in-
stigated a re-examination of the level of details required for an in-
troductory CG course. As discussed in [AS11b, RME14], a shader
centric approach to teaching CG could indeed afford opportuni-
ties for students to practice relevant mathematical concepts. Since
transformation and lighting are no longer performed as an opaque
process, students are required to apply those key computation in
forms of shader programming statements.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Huddersfield Research Portal

https://core.ac.uk/display/237460648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M. Chen, Z. Xu & W. Rippin / Introductory CG without APIs

The design of bottom-up methods for teaching low-level algo-
rithms and pipeline processes were discussed in [SBG10,FWW13].
Both papers presented a software based renderer as a sandbox
in which students could interact with and experiment with fun-
damental rasterisation algorithms. Kolingerova proposed a ratio-
nale for integrating applied computational geometry to CG educa-
tion [Kol08]. Through an analysis of several core topics in compu-
tational geometry, the author viewed the integration as a means of
developing students’ abstract as well as algorithmic thinking.

Educational practitioners often advocate the importance of link-
ing students’ prior experiences to the teaching new concepts and
theories. Taxén discussed a constructivist’s approach to teaching
introductory CG in [Tax04]. This was, in effect, a top-down ap-
proach whereby students were first exposed to the results before
further exploring the constitutive solutions.

In the remainder of this paper, we will detail an API-free ap-
proach to teaching introductory CG and demonstrate its results us-
ing works produced by our students.

3. Methods

At the University of Derby, the subject of CG is taken as a core
component by students from two degree programmes - BSc Com-
puter Science and BSc Computer Games Programming. Since its
redesign in 2012, the topic has been covered in the following two
progressively structured modules:

• Graphics I: Introduction to the fundamentals of raster pipeline
• Graphics II: Real-time CG based on modern APIs

Quantitatively, circa. 50% of the Graphics I cohort (average 95-110
students) study further topics in CG focusing on real-time graphical
effects.

3.1. Module Contents

In our introductory CG Graphics I module, students were presented
with the top-level view of the raster graphics pipeline (as depicted
in Figure 1) in the first lecture. This created the pillar upon which
the core concepts and algorithms of raster graphics were built and
structured.

Figure 1: A simplified top-level view of the raster graphics pipeline.

The core contents listed below were delivered over 11 weeks in
a 12 week semester.

• Introductory CG (Duration: 8 Weeks)

– Primitive representations
– Line rasterisation
– Scanline conversion and clipping
– Geometrical transformation and viewing in 3D

– Pixel operations including z-buffering, alpha blending and
stenciling

– Whitted’s Ray-tracing method
– Basic shading up to Phong and Blinn-Phong model

• Mathematics (Duration: 2 Weeks)

– Vectors and related operations in R2 and R3

– Matrices for describing transformations in R2 and R3

– Implicit and explicit functions for geometry

• Refresher C++ Programming (Duration: 1 Weeks)

– Representing core raster graphics components using OO
– Use of fundamental data structures

As a prerequisite, students had already encountered the basic el-
ements of OO programming in C++. The mathematical elements
required for representing geometrical primitives and raster opera-
tions were introduced in-situ. Students spent on average four hours
a week in lectures and labs with tutor supervision.

3.2. The Design of an API-free Assignment

The core design principle of our assignment was to facilitate the
application of fundamental raster-level concepts and algorithms in
practice. We tasked the students to build a software rasteriser with-
out using any functionality from a rendering API.

In the assignment brief, exam style tasks were posed to the stu-
dents. We further structured them into basic and advanced cate-
gories to help students identify the intended progression of these
tasks as shown in Table 1. The basic tasks embedded the threshold

Tasks

Basic
Drawing 2D line segments of an arbitrary slope
Filling arbitrary 2D polygons in scanline order
Ray-primitive intersection tests
Model-view-projection transformation

Advanced
Interpolated shading of lines and polygons
Visibility testing and clipping
Drawing overlapping transparent polygons
Applying basic illumination model

Table 1: The grade distribution of API-free and API-led assess-
ments.

knowledge where all students should command as part of the learn-
ing objectives. Advanced tasks primarily concerned with differen-
tiating students’ ability to assimilate the deeper aspect of raster
graphics.

3.3. API-free Starting Framework

The process of building a software rasteriser from scratch can be
overwhelming to many undergraduate students. In order to alle-
viate this, we adopted the Test Driven Development methodology
(TDD) by providing the skeleton of a basic rasteriser framework
along with a number of unit test cases to the students.

The starting framework, appropriately named TinyRaster,
was written in C++ as a Windows GUI application. The core

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

M. Chen, Z. Xu & W. Rippin / Introductory CG without APIs

components of a raster pipeline were encapsulated in a collection
classes as depicted in Figure 2. The Rasterizer class encapsulated
the key attributes and operations of a 2D raster pipeline. Addition-
ally, vector maths utilities were provided to the students.

Each task listed in Table 1 has a corresponding unimplemented
method in the framework as shown in Listing 1.

void R a s t e r i z e r : : S c a n l i n e F i l l P o l y g o n 2 D (c o n s t Ver tex2d ∗ v e r t i c e s ,
i n t c o u n t)

{
/ / TODO:
/ / Q 2 . 2 Implemen t t h e R a s t e r i z e r : : S c a n l i n e F i l l P o l y g o n 2 D method

so t h a t i t i s c a p a b l e o f drawing a s o l i d l y f i l l e d po lygon .
/ / Use T e s t 4 (P r e s s F4) t o t e s t your s o l u t i o n , t h i s i s a s i m p l e

t e s t case as a l l p o l y g o n s are convex .
/ / Use T e s t 5 (P r e s s F5) t o t e s t your s o l u t i o n , t h i s i s a complex

t e s t case w i t h one non−convex po lygon .
}

void R a s t e r i z e r : : S c a n l i n e I n t e r p o l a t e d F i l l P o l y g o n 2 D (c o n s t Ver tex2d
∗ v e r t i c e s , i n t c o u n t)

{
/ / TODO:
/ / Q. 2 . 4 Implemen t R a s t e r i z e r : : S c a n l i n e I n t e r p o l a t e d F i l l P o l y g o n 2 D

method so t h a t i t i s c a p a b l e o f p e r f o r m i n g i n t e r p o l a t e d
f i l l i n g .

/ / Use T e s t 7 t o t e s t your s o l u t i o n
}

Listing 1: A snippet of the Rasterizer class containing
unimplemented methods for filling 2D polygons.

Furthermore, we constructed unit test cases related to the tasks
posed in the assignment brief to evaluate the correctness and com-
pleteness of the solution given by a student. Listing 2 shows an ex-
ample test harness for evaluating the implementation of the scanline
conversion of 2D polygons using interpolated filling.

void Ass ignmen tTes t07 (R a s t e r i z e r ∗ r a s t e r i z e r)
{

r a s t e r i z e r −>SetGeometryMode (R a s t e r i z e r : : POLYGON) ;
r a s t e r i z e r −>S e t F i l l M o d e (R a s t e r i z e r : : INTERPOLATED_FILLED) ;

r a s t e r i z e r −>S c a n l i n e I n t e r p o l a t e d F i l l P o l y g o n 2 D (g r a d _ r e c t a n g l e , 4)
;

r a s t e r i z e r −>S c a n l i n e I n t e r p o l a t e d F i l l P o l y g o n 2 D (g r a d _ t r i a n g l e , 3) ;
r a s t e r i z e r −>S c a n l i n e I n t e r p o l a t e d F i l l P o l y g o n 2 D (g r a d _ s q u a r e , 4) ;
r a s t e r i z e r −>S c a n l i n e I n t e r p o l a t e d F i l l P o l y g o n 2 D (g rad_pen t agon , 5) ;

}

Listing 2: An example test case for testing the interpolated 2D
polygon shading method.

3.4. Assignment Distribution and Assessment

The starting framework and assignment instruction were distributed
through our Blackboard-based web portal. Students were given the
complete set of assignment tasks after four weeks of teaching, thus
giving them an average one week to work on each task.

Similar to traditional exams, our intention was to objectively
evaluate the students’ understanding of the theoretical aspect of the
subjects. Each test case was assigned a maximally attainable grade
that was directly correlated to the difficulty level of a task. Solutions
given by the students were graded based on correctness and com-
pleteness, robustness and efficiency, and coding style. For exam-
ples, interpolated filling was considered more challenging than fill-
ing polygons with a solid colour; scanline conversion was deemed
more robust and efficient solution compared to flood fill.

4. Results

The API-free assignment was used as a summative assessment
component in 2012-2013 and 2016-2017 academic years. The class
size was 95 and 110 respectively. A pass grade D was awarded to a
student if correct and complete solutions were provided to all basic
tasks. This indicated that the student had met the threshold learn-
ing objectives. Higher grades were awarded based on the solutions
provided to the advanced tasks. Based on this criteria, the success
rate was respectively 84% (2012-2013) and 88% (2016-2017), see
Table 2.

API-free API-ledYr.12-13 Yr.16-17
Pass Rate 84% 88% 83%
Grade A 10% 12% 6%
Grade B 41% 55% 20%
Grade C 25% 12% 41%
Grade D 8% 9% 16%

Table 2: The grade distribution of API-free and API-led assess-
ments.

Around 90% the students who passed the API-free assessment
also attempted a varying combinations of advanced tasks. In par-
ticular, interpolated filling, application of basic illumination model
and blending of transparent polygons were most received solutions.
A grade C was awarded to submitted works included flawed and
partial attempts on the advanced tasks. Students given grade B and
above demonstrated working solutions to all tasks specified in the
assignment.

The last column shows the average pass rate and grade distri-
bution between 2013-2016 when the assignment was application
focused and based on the use of OpenGL 4.3 API. The size of the
cohort in these academic years was similar to those in the API-
free periods. Whilst the averaged pass rate was statistically similar
between API-free and API-led, the performance on the latter was
skewed towards the low end of the grade scale.

5. Discussion

In the API-free assignment, the majority of students found 2D
raster operations intuitive to understand and largely straightforward
to implement given the starting framework. The noticeable obsta-
cles were the application of linear interpolation and the handling of
vertices when filling non-convex polygons.

The transition into 3D rendering was noticeably more challeng-
ing as students first encountered the mathematical concepts related
to spatial and projective transformations. From our experience, in-
troducing 3D rendering through ray tracing appeared more easily
applicable to most students compared to the model-world-view-
projection transformation pipeline. The notion of ray tracing was
more easily associated to the physical analogy they experienced
and observed in the past.

In the case of API-led assignment, only around 25% of the stu-
dents were able to attain Grade B and above by completing ad-
vanced tasks such as applying basic illumination models. This was

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

M. Chen, Z. Xu & W. Rippin / Introductory CG without APIs

Figure 2: The core components of TinyRaster consist of geometry primitives, vector maths utilities, framebuffer and the rasteriser.

reflected in the finding of our module surveys where 82% students
considered the API-led assessments disconnected from the teaching
of core raster graphics concepts. From our perspective thought, the
parallel introduction of the fundamentals and API may have also
distracted the students’ focus on the intended learning objectives.

Over the course of 5 years, we found, albeit empirically, that
students with experiences in implementing raster-level algorithms
were more proficient at self-studying modern rendering APIs. In
our 2016 qualitative module survey, 91% of the students found the
API-free assessment challenging but rewarding given the opportu-
nities to work on the low-level aspects of rendering pipeline.

Despite the combination of qualitative module surveys and grade
attainment distribution, our current evaluation lacked an objective
measurement of the transferability of raster level knowledge to fu-
ture API learning. It is possible, however, to acquire the relevant
data by using a standardised written test in which students are asked
to discuss the design of rendering API in relation to the fundamen-
tal raster pipeline.

6. Conclusion and Future Work

The merit and benefit of an API-free approach to teaching intro-
ductory graphics may not be immediately evident solely on the
outcome of assessment. However, the hands-on experience in im-
plementing raster-level algorithms can enable students to more
deeply assimilate the abstract concepts underpinning the rendering
pipeline. We believe this will markedly benefit them when they take
on a proactive and autonomous approach to learning and applying
modern graphics APIs.

In the current academic year 2017-2018, we are using the 2D
rasteriser assignment in the first year undergraduate programming
module to a group of Computer Games Programming students. We
hope to examine the feasibility of introducing certain elementary
CG concepts early in an undergraduate computer science curricu-
lum.

References
[ACSS06] ANGEL E., CUNNINGHAM S., SHIRLEY P., SUNG K.: Teach-

ing computer graphics without raster-level algorithms. In Proceedings of
the 37th SIGCSE technical symposium on Computer science education -
SIGCSE ’06 (2006), p. 266. 1

[AS11a] ANGEL E., SHREINER D.: Interactive Computer Graphics:
A Top-Down Approach with Shader-Based OpenGL, 6th ed. Addison-
Wesley Publishing Company, USA, 2011. 1

[AS11b] ANGEL E., SHREINER D.: Teaching a shader-based introduc-
tion to computer graphics. IEEE Computer Graphics and Applications
31, 2 (2011), 9–13. 1

[FvDFH90] FOLEY J. D., VAN DAM A., FEINER S. K., HUGHES J. F.:
Computer Graphics: Principles and Practice (2Nd Ed.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990. 1

[FWW13] FINK H., WEBER T., WIMMER M.: Teaching a modern
graphics pipeline using a shader-based software renderer. Computers
& Graphics 37, 1–2 (Feb. 2013), 12–20. 2

[HBC10] HEARN D. D., BAKER M. P., CARITHERS W.: Computer
Graphics with Open GL, 4th ed. Prentice Hall Press, Upper Saddle River,
NJ, USA, 2010. 1

[Kol08] KOLINGEROVÀ I.: Computational geometry education for com-
puter graphics students. Computer Graphics Forum 27, 6 (2008), 1531–
1538. 2

[McC06] MCCRACKEN C. R.: Issues in computer graphics education. In
ACM SIGGRAPH 2006 Educators program on - SIGGRAPH ’06 (2006),
p. 29. 1

[RME14] REINA G., MÃIJLLER T., ERTL T.: Incorporating modern
opengl into computer graphics education. IEEE Computer Graphics and
Applications 34, 4 (July 2014), 16–21. 1

[SBG10] SCHWEITZER D., BOLENG J., GRAHAM P.: Teaching intro-
ductory computer graphics with the processing language. J. Comput.
Sci. Coll. 26, 2 (Dec. 2010), 73–79. 2

[SM09] SHIRLEY P., MARSCHNER S.: Fundamentals of Computer
Graphics, 3rd ed. A. K. Peters, Ltd., Natick, MA, USA, 2009. 1

[SWH15] SELLERS G., WRIGHT R. S., HAEMEL N.: OpenGL Super-
bible: Comprehensive Tutorial and Reference, 7th ed. Addison-Wesley
Professional, 2015. 1

[Tax04] TAXÉN G.: Teaching computer graphics constructively. In Com-
puters and Graphics (Pergamon) (2004), vol. 28, pp. 393–399. 2

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

