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Abstract

The development of a large number of domain-independent
planners is leading to the use of planning engines in a wide
range of applications. This is despite the complexity issues in-
herent in plan generation, which are exacerbated by the sep-
aration of planner logic from domain knowledge. However,
this separation supports the use of reformulation and configu-
ration techniques, which transform the model representation
in order to improve the planner’s performance.
In this paper, we investigate how the performance of domain-
independent planners can be improved by problem model
configuration. We introduce a fully automated method for this
configuration task, that considers problem-specific aspects
extracted by exploiting a problem- and domain-independent
representation of the instance. Our extensive experimental
analysis shows that this reformulation technique can have a
significant impact on planners’ performance.

Introduction
Domain-independent planning engines can now be exploited
as embedded components within a larger framework. Since
they accept the domain and problem description in a stan-
dardized interface language (often PDDL) and return plans
using the same syntax, they can be interchanged without
modifying the rest of the system.

This modular approach also supports the use of refor-
mulation and configuration techniques which can automati-
cally re-formulate or re-represent the domain model and/or
problem description in order to increase the efficiency of a
planner and increase the number of solved problems. Types
of reformulation include macro-learning (Botea et al. 2005;
Newton et al. 2007), action schema splitting (Areces et al.
2014) and entanglements (Chrpa and McCluskey 2012):
here the model is transformed to a more efficient form that
is fed into the planner.

Among the other reformulation approaches, ordering in
planning models has also shown to have considerable im-
pact on the planning process (Howe and Dahlman 2002).
Recently, Vallati et al. (2015) developed an approach that au-
tomatically configures domain models by re-ordering their
elements. The underlying idea is that the way in which op-
erators are encoded in PDDL carries some knowledge about
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the expected use of the corresponding actions. Such knowl-
edge can therefore be exploited for providing a more suitable
ordering of operators, for improving the performance of the
planner that will be used for solving the given problem.

In this context, we propose an approach for performing
the automatic configuration of PDDL problem models, in
terms of ordering of propositional facts in the initial and
goal states. Notably, this reformulation task is very differ-
ent from domain model configuration (Vallati et al. 2015),
as it requires to reason with both domain- and problem-
related knowledge in order to be efficient and effective. In-
tuitively, it is not worth to design a problem-specific config-
uration technique, as performance improvement will be out-
weighed by the configuration overhead. Instead, a domain-
specific configuration must be identified, and applied on
problem models on the basis of the objects and predicates
involved. In order to deal with the mentioned configuration
challenges, we rely on the Planning Encoding Graph repre-
sentation (Serina 2010) of problems, that provides a domain-
and problem-independent ground for performing the con-
figuration. Through comprehensive experiments using five
planners on seven planning domains, we demonstrate that
problem model configuration has a remarkable impact on
performance, and we show how it relates with the existing
domain model configuration. Next to making a significant
contribution to planning speed-up, this work provides some
guidelines to encode problem models in order to maximise
expected planners’ performance.

Problem Model Configuration
In this section, we first describe the degrees of freedom in
problem models. After that, we briefly introduce the Plan-
ning Encoding Graph, and we show how it has been ex-
ploited for the automated configuration of problem models.

Degrees of Freedom in Problem Models
The problem model describes, according to a corresponding
domain model, an actual instance to solve. The main compo-
nents of a problem models are the descriptions of the initial
and goal states, that come under the form of lists of proposi-
tional facts. Currently, those lists are not ordered following
a principled approach. Orders may derive from the way in
which generators have been engineered, alphabetical order,
or following the intuitions of knowledge engineers.
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Here we focus on the following question: given the facts
of the initial and goal states of a problem model, in which or-
der should they be listed so as to maximise the performance
of a given domain-independent planner?

As it is apparent, differently from the configuration of a
domain model, the configuration of a problem model should
be problem-specific, but should work for all the problems
sharing the same domain model. In other words, the con-
figuration process should be able to identify a domain-wise
general configuration, that is then exploited to configure a
problem model according to the specific problem facts and
structure. This is because it would be extremely costly, and
pointless, to design a configuration approach that needs to be
tailored for every single problem model, as the time spent in
learning the configuration would significantly overcome any
performance boost.

A structure that is able to support the depicted configu-
ration process, i.e. to combine together domain-specific as-
pects and problem-specific features is the Planning Encod-
ing Graph (PEG) (Serina 2010). We used the PEG for ex-
tracting information to be used in the configuration process.

The Planning Encoding Graph
The underlying idea of the PEG is to provide a description
of the “topology” of a planning problem without making as-
sumptions on the domain structure or regarding the impor-
tance of specific problem features for the encoding.

The PEG of a planning problem Π is the union of the di-
rected labelled graphs encoding the initial and goal facts.
The Initial Fact Encoding Graph of a propositional initial
fact p = (ρ o1 . . . on) – where ρ is the predicate symbol
of p and o1, . . . , on are the corresponding problem objects –
is a directed graph where the first node is a predicate node
Iρ, which is connected with o1 by an arc with label {I0,1ρ }.
The object node oi is labelled with the type of the object oi
and it is connected with all the remaining nodes oj by an arc
with label {Ii,jρ }. For example, considering the initial fact
(on C A) of our running example of Figure 1, it determines
an Initial Fact Encoding Graph that connects the Ion predi-
cate node to the C node (the label of this arc is {I0,1on }), which
is connected with the node A by an arc with label {I1,2on }. The
object nodes A and C are labelled by the corresponding ob-
ject type (block). Similarly, it is possible to define the Goal
Fact Encoding Graph of a propositional goal p using the to-
ken Gρ instead of token Iρ.

Using this representation and the instantiable actions as-
sociated to a specific planning problem, we can extract a
large amount of information that allows to define a set of
features that characterize it. In particular, we can derive for
each propositional fact p of our planning problem: the num-
ber of actions of which it is (i) precondition, (ii) additive
effect, (iii) delete effect, the sum of the (iv) input and (v)
output degree sequences of the object nodes of p consider-
ing only arcs derived by initial facts, the sum of the (vi) input
and (vii) output degree sequences of the object nodes of p
considering only arcs derived by goal facts, the (viii) degree
sequence of the predicate node related to p derived by initial
facts, the (ix) degree sequence of the predicate node related
to p derived by goal facts, the total (x) number of arcs that
connect two object nodes of p, the total (xi) number of arcs
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Figure 1: Planning Encoding Graph for a planning problem
in the BlocksWorld domain.

that connect a predicate node related to p to an object node
of p, the (xii) total number of arcs of the PEG associated to
p and finally (xiii) if p is/not an inertial fact1.

Configuration of Problem Models
In this work we use the state-of-the-art SMAC (Hutter,
Hoos, and Leyton-Brown 2011) configuration approach for
identifying a domain-wise configuration of problem models
that improves the runtime performance of a given domain-
independent planner. SMAC uses predictive models of per-
formance (Hutter et al. 2014) to guide its search for good
configurations. More precisely, it uses previously observed
〈configuration, performance〉 pairs 〈c, f(c)〉 and supervised
machine learning (random forests (Breiman 2001)) to learn
a function f̂ : C → R that predicts the performance of arbi-
trary parameter configurations.

There are different ways for encoding the degrees of free-
dom in problem models as parameters, mainly because or-
ders are not natively supported by general configuration
techniques. Here we generate 12 continuous parameters,
which corresponds to the aforementioned features extracted
from the PEG and from the instantiable actions of the given
problem. These 12 parameters can be used for ordering ei-
ther the initial state or the goal state, which leads to 24 pa-
rameters in total. Two additional categorical selectors are
included: one which allows to decide if the order used for
listing initial state facts must be the same used for ordering
the goal state or not, and the other allows to decide if inertial
facts have to be listed on top (bottom) of the list or not.

Each continuous parameter has associated a real value
in the interval [−1.0,+1.0] which represents (in absolute
value) the weight given to the ordering criterion. Thus, the
configuration space is Σ = [−1.0,+1.0]24 × 3 × 2, where
3 are the possible values of the parameter on the importance
of inertial facts, and 2 are the possible values of the categor-
ical parameter describing whether the goal facts should be
listed according to the order used for the initial state ones or
not. A configuration σ instantiates each of the 26 parameters,
and can be used on any problem model of the considered

1Inertial facts correspond to facts that are neither in the delete
nor in the additive effects of any action of the planning problem;
obviously their true value can influence heavily the planning pro-
cess since they can be in the preconditions of the applicable actions.



domain. Given a problem model and a configuration σ, the
corresponding problem configuration is obtained as follows.
For each propositional fact in the initial state, an ordering
score o(p) is defined as:

o(p) =
∑
c∈C

(value(p, c)× weight(c)) + inertial(p) (1)

where c is a continuous ordering criterion in the set C of
the 24 available continuous parameters, value(p, c) is the
numerical value of the corresponding aspect for the proposi-
tional fact p, andweight(c) is the weight assigned to the cor-
responding continuous parameter by the configuration tech-
nique. inertial(p) is an offset that, according to the value
of the corresponding parameter, can prioritise (deprioritise)
inertial facts. It should be noted that value(p, c) takes into
account all the components of p in the PEG, i.e. the predi-
cate and object(s) nodes. If the 26th parameter is set to force
the order of goal facts to be the same of the order of initial
state facts, then propositional facts in the goal state are or-
dered using the same weight(c) values used for the initial
facts. Otherwise, the weight(c) values provided via the 12
goal-specific parameters are considered instead.

Propositional facts are then listed according to their o(p),
following a descending order. Ties are broken following the
order in the “original” problem model. Notably, the weight
assigned to an ordering criterion can be negative: this allows
the configurator to “push” propositional facts with an high
value of the corresponding aspect later in the list.

For instance, let us consider the initial state of the prob-
lem presented in Figure 1. Suppose that we are interested in
listing propositional facts according to the total number of
arcs they are involved in the PEG (feature xii in the previ-
ous section). This can be done by leaving all the parameters
to the default value 0.0, but the one controlling feature xii
to 1.0. Propositional facts in the initial state would then be
listed as follows:
Original: (on-table A), (on-table B), (on C
A), (clear C), (clear B), (handempty)

Configured: (on C A), (on-table B), (on-table
A), (clear B), (clear C), (handempty)

Considering only feature xii, the fact (on C A) has a
o(p) score of (3 + 4 + 4) × 1.0 = 11: on is involved in 3
arcs (two from the goal state, and one from the initial state)
and C and A are involved in 4 arcs each; while considering
the fact (on-table A), it has a score of (2 + 4)× 1.0 = 6.

Experimental Analysis
We selected 5 planners, based on their performance in the
Agile track of IPC 2014 and/or the use of different plan-
ning approaches: Lama (Richter and Westphal 2010), Lpg
(Gerevini, Saetti, and Serina 2003), Madagascar (Mp) (Rin-
tanen 2014), Probe (Lipovetzky et al. 2014), and Yahsp3
(Vidal 2014). No portfolio-based planners were included,
but by improving the best basic planners the performance of
portfolios based on them can also be expected to improve.

We focused our study on domains that have been used
in IPCs and for which a randomised problem generator is
available. The models we chose had some variety in terms

PAR10 Solved IPC score
Planner C O C O C O

BlocksWorld
Lama 7.3 7.6 100.0 100.0 53.0 51.3
Lpg 6.5 8.7 100.0 100.0 51.8 46.2
Mp 555.3 556.3 82.0 82.0 40.7 39.6
Probe 12.2 15.8 100.0 100.0 54.8 49.7
Yahsp3 6.6 7.9 100.0 100.0 50.0 42.1

Depots
Lama 2241.2 2303.3 26.0 24.0 12.7 11.1
Lpg 1.4 13.7 100.0 100.0 48.4 35.6
Mp 1.6 62.8 100.0 98.0 50.0 40.9
Probe 5.4 7.9 100.0 100.0 50.0 43.8
Yahsp3 427.4 481.5 86.0 84.0 37.9 37.9

Matching-Bw
Lama 362.6 422.3 88.0 86.0 41.9 41.4
Lpg 1446.3 1685.0 52.0 44.0 22.2 20.6
Mp 3000.0 3000.0 0.0 0.0 0.0 0.0
Probe 1397.9 1456.7 54.0 52.0 26.3 23.0
Yahsp3 184.1 307.9 94.0 90.0 43.4 33.9

Parking
Lama 783.5 895.2 75.0 71.4 39.6 37.0
Lpg 2683.8 2845.4 10.7 5.4 5.8 2.3
Mp 1241.7 1670.1 58.9 44.6 32.9 20.2
Probe 1156.3 1263.9 62.5 58.9 32.1 29.0
Yahsp3 1840.2 1844.5 39.3 39.3 21.4 20.5

Rovers
Lama 69.0 67.8 100.0 100.0 59.3 59.7
Lpg 19.8 19.4 100.0 100.0 57.0 57.6
Mp 3000.0 3000.0 0.0 0.0 0.0 0.0
Probe 3000.0 3000.0 0.0 0.0 0.0 0.0
Yahsp3 5.4 5.3 100.0 100.0 59.3 59.3

Tetris
Lama 1249.3 1304.3 59.3 57.4 31.2 29.0
Lpg 2562.0 2670.1 14.8 11.1 7.9 4.9
Mp 2234.9 2234.9 25.9 25.9 14.0 13.7
Probe 810.0 866.7 74.1 72.2 38.7 35.6
Yahsp3 2670.8 2668.7 11.1 11.1 5.2 5.3

ZenoTravel
Lama 54.3 59.2 100.0 100.0 47.7 46.4
Lpg 36.2 35.7 100.0 100.0 46.4 47.4
Mp 8.7 8.8 100.0 100.0 48.6 48.5
Probe 61.9 121.4 100.0 98.0 48.6 47.4
Yahsp3 1.8 1.8 100.0 100.0 47.3 47.1

Table 1: Results in terms of PAR10, percentage of solved
problems and IPC score, of planners running on original
problem models (O) and configured models (C). Bold in-
dicates statistically different PAR10 performance. IPC score
was calculated separately for each planner, considering only
the performance of its two domain model configurations.
Therefore, IPC scores cannot be compared across planners.

of the number of objects involved in the problems and of
predicates: Blocksworld (4 ops version), Depots, Matching-
Bw, Parking, Rovers, Tetris, and ZenoTravel. For our exper-
iments we created approximately 550 random instances per
domain, and split them randomly into roughly 500 training
and 50 test instances.

Configuration of domain models was done using SMAC
2.08, and OAKplan 2.12 has been used for extracting PEGs.

2http://eracle.ing.unibs.it/OAKplan/



In order to automatically re-order a PDDL problem model
according to the specified configuration, we developed a
wrapper in Python. On the benchmarks considered in our ex-
perimental analysis, the re-ordering takes less than 0.5 CPU-
time second.

Experiments were performed on a Intel Xeon E5-2620
2.00GHz. Each of our configuration runs was limited to a
single core, and was given an overall runtime and memory
limits of 5 days and 8GB, respectively. As in the Agile track
of the IPC 2014, the cutoff time for each instance, both for
training and testing purposes, was 300 seconds.

Results in Table 1 indicate that the configuration of the
problem model has a significant impact on the planners’
performance. Many of the differences (highlighted in bold
in the table) are statistically significant, according to the
Wilcoxon signed rank test (p = 0.05). Even in cases where
differences are not statistically significant, improvements in
terms of coverage can usually be observed. Remarkably, it
can be noted that in two domains (BlocksWorld and Depots)
the configuration of the problem model changes the best per-
forming planner (according to PAR10 score).

Our intuition about the observed substantial performance
variations is that different ordering of the propositional facts
in the initial state can influence the internal representation
of search states. Propositional facts to be satisfied in order to
achieve the goal, as well as landmarks, may then be consid-
ered in a different order, resulting in a different exploration
of the search space. Intuitively, the way in which goal facts
are ordered can affect the order in which goals are tackled.

Table 1 also seems to indicate that, for some of the
considered planners, the configuration of problem models
does not lead to conspicuous performance improvements
in Rovers and ZenoTravel. According to our observations,
this is due to the fact that in both domains, very few dif-
ferent predicates are considered in the PDDL model, and
initial states are described as long sequences of instances
of the same predicate(s). This is the case of the visible,
and can traverse predicates in Rovers, and at predi-
cate in ZenoTravel. Under these circumstances, also all the
objects of the problem are very similar to each other, thus
few knowledge can be extracted by analysing the structure
of the problem.

In the light of the work done by Vallati et al. (2015), it
is important to assess how the automated configurations of
domain and problem models relate. We selected two plan-
ners due to their performance in the previous experiments,
Lpg and Probe, and run them on all of our benchmarks with
three different combinations of models: original domain and
configured problem models, configured domain and original
problem models, and on both configured models. As config-
ured domain models, we used those generated by Vallati et
al. in their work. Results of this comparison are presented in
Table 2. Lpg seems to be able to exploit synergies in the con-
figured models, and achieves best performance when both
the models are configured. On the contrary, Probe deliv-
ers best performance when only the problem model is con-
figured. Considered domains are usually similarly affected,
we did not notice significant outliers. While observed be-
haviours may be due to the fact that the models (domain and
problem) are separately configured, i.e. domain (problem) is

Lpg
PAR10 Solved IPC score

oD+cP 974.2 67.7 221.2
cD+oP 1008.5 66.6 212.9
cD+cP 950.6 68.5 239.0

Probe
oD+cP 966.8 68.5 245.8
cD+oP 973.8 68.2 238.1
cD+cP 976.1 68.2 237.2

Table 2: Results in terms of PAR10, percentage of solved
problems and IPC score, of planners running on original
domain model and configured problem models (oD+cP),
configured domain model and original problem models
(cD+oP), and configured models only (cD+cP). Bold indi-
cates best performance.

configured while keeping the other model fixed, results seem
to suggest that planners react differently to the configuration
process; therefore, it is important to select the “right” con-
figuration to maximise planner’s performance.

In order to understand the influence of the considered
configurable aspects of problem models, thus providing
some guidelines for the effective formulation of models,
we used the fAnova tool (Hutter, Hoos, and Leyton-Brown
2014) to assess parameters’ importance in two domains,
BlocksWorld and Depots. In these domains, general perfor-
mance improvements, when using the configured problem
models, can be observed among all the considered planners.
First, we noticed that in order to maximise performance,
initial and goal states’ ordering should be aligned. Second,
propositional facts that are frequently in actions’ precondi-
tions should be listed earlier, followed by propositional facts
that are often positive effects of grounded actions. This is
possibly because their ordering can direct the search into
promising areas of the search space. Finally, the order of
propositional facts should follow their degree of connectiv-
ity in the PEG, i.e. propositional facts whose elements are
highly connected are likely to be important, and should be
listed earlier.

Conclusion
In this paper we proposed a general –i.e. domain- and
problem-independent– approach for automatically configur-
ing PDDL problem models by exploiting information ex-
tracted by the PEG. We considered as configurable the order
in which propositional facts are listed in the initial and goal
states.

The performed analysis, aimed at investigating how the
configuration of problem models affects the performance of
domain-independent planners: (i) demonstrates that configu-
ration has a statistically significant impact on planners’ per-
formance; (ii) provides useful information to engineer more
efficient models; and (iii) gives insights into possible syner-
gies between domain and problem models configuration.

Future work includes the analysis of the impact of con-
figuration on plans’ quality, and the configuration of mod-
els encoded using different languages. Also, we would like



to investigate the concurrent configuration of PDDL knowl-
edge models and planning engines.
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