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Abstract. The aim of our talk is to check that, for the next security level 192-bits, the

Aranha’s result is still satisfied. In fact, we will construct an optimal Weil pairing over

elliptic curves with embedding degree k = 15 and compare his efficiency as opposed to the

optimal Ate pairing.
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I. Introduction

In 2005, Koblitz and Menezes [5] examine the efficiency of the Weil pairing as opposed to the

Tate pairing and find that for very high security levels such as 192 or 256 bits, the Weil pairing

computation is sometimes faster than the Tate pairing. A few times later, in 2006, Granger et

al [2] re-examine how one should implement pairings over ordinary elliptic curves for various

practical levels of security. They conclude, contrary to prior work, that the Tate pairing is more

efficient than the Weil pairing for all such security levels. Optimal Ate and twisted Ate pariring

are based on Tate pairing and which are looked at the most efficient pairing. However in 2011,

Aranha et al [1] introduce a new optimal Weil pairing tailored for parallel execution. For the

current security level 128-bits, their experimental results suggest that the new Weil pairing over

Barreto-Naehrig (BN) curves is faster than the optimal Ate pairing.
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II. Background on pairing

Definition II.1. Let G1, G2 be the additive groups and GT a multiplicative group. A pairing is a

non-degenerate bilinear map of the form e : G1×G2 −→ GT , i.e. e is linear in each component

and there exists P ∈ G1 and Q ∈ G2 such that e(P,Q) 6= 1.

Notation II.2. We denote by:

• Fq a finite field of characteristic p where p > 3 is prime.

• E an ordinary elliptic curve defined over Fq.

r a large prime divisor of the order of E(Fq).

• k the embedding degree with respect to r and q, i.e. the smallest positive integer such that

r divides qk − 1.

• t a trace of Frobenius.

• O the point at infinity.

• µr the group of r-th roots of unity in F×
qk

.

• E[r] is the set of r−torsion points on E.

Definition II.3. Let R ∈ E(Fqk) and m ∈ Z. A Miller function fm,R of length m is a Fqk -rational

function with divisor (fm,R) = m(R)− ([m]R)− (m− 1)O.

Lemma II.4. Let a and b be non-negative integers, and let R ∈ E(Fqk). Then

1. fa+b,R = fa,R.fb,R.l[a]R,[b]R/v[a+b]R, where l[a]R,[b]R is the equation of the line through [a]R

and [b]R and v[a+b]R is the corresponding vertical line passing through [a+ b]R.

2. fab,R = fab,R.fa,[b]R.

III. Why pairing-friendly elliptic curves?

For randomly generated elliptic curves, we have k ≈ r, so impossible to compute pairing (be-

cause result is in Fqk). Thus for a constructive applications of pairings, we must find the special

kind of elliptic curves such that k needs to be small enough, so that the pairing is easy to

compute but large enough, so that the DL in F×
qk

is computationally infeasible.

Definition III.1. E is pairing-friendly [3] if the following two conditions hold:

1. r ≥ √q;

2. k is less than log2(r)/8.
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Now we assume that q = p is a prime and k = 15, so we have E[r] ⊂ E(Fp15). This

family of elliptic curves has embedding degree 15 and a ρ-value 1.5 and is parameterized by :

p = (x12 − 2x11 + x10 + x7 − 2x6 + x5 + x2 + x+ 1)/3

r = x8 − x7 + x5 − x4 + x3 − x+ 1

t = x+ 1

(1)

We found a specific value x = 248 + 241 + 29 + 28 + 1 and we obtain r(x) prime of 385 bits and

p(x) prime of 575 bits which correspond to parameters for 192-bits security level according to

Table.

Table 1. Bit sizes of curves parameters and corresponding embedding degrees

to obtain commonly desired levels of security.

Security Bit length of Bit length of k k

level r qk ρ ≈ 1 ρ ≈ 2

80 160 960− 1280 6− 8 3− 4

128 256 3000− 5000 12− 20 6− 10

192 384 8000− 10000 20− 26 10− 13

256 512 14000− 18000 28− 36 14− 18

IV. Pairing computation

The most common choice is to take the groups:

• G1 = E[r] ∩ ker(πp − [1]) = E(Fp)[r];

• G2 = E[r] ∩ ker(πp − [p]) ⊂ E(Fp15)[r].

where πp is the p-power Frobenius endomorphism on E.

Definition IV.1. The reduced Tate pairing restricted to G1 ×G2 is defined as:

er : G1 ×G2 −→ µr, (P,Q) 7−→ fr,P (Q)
p15−1

r .

Restricting the Tate pairing to G2 ×G1 leads to the ate pairing.

Definition IV.2. The ate pairing is defined as

aT : G2 ×G1 → µr, (Q,P ) 7→ fT,Q(P )
(p15−1)

r ,

where T = t− 1.

Imhotep Proc.



Vol. 4 (2017) Optimal Weil pairing on Elliptic curves 47

Definition IV.3. The classical Weil pairing is defined as

eW : G1 ×G2 −→ GT (P,Q) 7→ (−1)r
fr,P (Q)

fr,Q(P )
.

Algorithm IV.4. Miller’s algorithm

Inputs: s ∈ N and U, V ∈ E[r] with U 6= V

outputs: fs,U (V )

Write s =
∑n

j=0 sj2
j, with sj ∈ {0, 1} and sn = 1

Set f ← 1 and R← U

For j = n− 1 down to 0 do

f ← f2 · lR,R(V )/v2R(V ),

R← 2R

if sj = 1 then

f ← f · lR,U (V )/vR+U (V )

R← R+ U ,

end if

end for

return f

V. optimal pairing

Definition V.1. Let e : G1×G2 −→ GT be a non degenerate, bilinear pairing with |G1| = |G2| =

|GT | = r, where the field of definition of GT is Fqk , then e is called an optimal pairing if it can

be computed in log2r/ϕ(k) + ε(k) basic Miller iterations, with ε(k) ≤ log2k.

Definition V.2. For a point R ∈ E[r] and polynomial h =
n∑

i=0

hiz
i ∈ Z[z] such that h(s) ≡ 0 (mod

r). The extended Miller function fs,h,R is a rational function defined as
n∏

i=0

fhi,siR.
n−1∏
i=0

l[si+1]R,[his
i]R

v[siR]

where si =
n∑

j=i

hjs
j with divisor

n∑
i=0

hi[(s
iR)−O].

Remark V.3. Note that fs,R = fs,s−x,R, with x an integer.

Due to Vercauteren’s optimal pairing framework [1], we have the following theorem.

Theorem V.4. There exists h such that |hi| ≤ r1/ϕ(k) and (P,Q) 7→ fp,h,Q(P )(p
k−1)/r is a

pairing.
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Remark V.5. The coefficients hi can be obtained by finding the shortest vector in the following

ϕ(k)-dimensional lattice



r 0 0 ... 0

−q 1 0 ... 0

−q2 0 1 ... 0

... ... ... ... ...

−qϕ(k)−1 0 0 ... 1


.

Definition V.6. According to Aranha’s beta Weil pairing framework on elliptic curves with even

k, we define: θs,h(P,Q) =

(
fs,h,Q(P )

fs,h,P (Q)

)pk/3−1

when 3|k.

Theorem V.7. There exists h such that |hi| ≤ r1/ϕ(k) and (P,Q) 7−→
e−1∏
i=0

θp,h([pi]P,Q)p
e−1−i

is

a pairing.

The Vercautern approach enabled us to obtain the following optimal function h(z) =
5∑

i=0

ciz
i = x − z ∈ Z[z] such that h(p) ≡ 0 (mod r) for the elliptic curves with k = 15 and

according to Theorem V.4 and Theorem V.7, we can define now

Definition V.8. The optimal Ate pairing on elliptic curves with k = 15 is defined as

eo : G2 ×G1 → µr, (Q,P ) 7→ fx,Q(P )
(p15−1)

r

.

Definition V.9. The optimal Weil pairing on elliptic curve with k = 15 is defined as

β15 : G1 ×G2 −→ µr

(P,Q) 7−→

[
4∏

i=0

(
fx,[xi]P (Q)

fx,Q([xi]P )

)p4−i](p5−1)(p3−1)

VI. Optimal pairing computation

We denote by Mk, Sk, Ik the cost of multiplication, squaring and Inversion in the field Fpk , for

any integer k.

The Miller lite loop fx,P (Q) and full Miller loop fx,Q(P ) requires 48 doublings step, 4

additions step, 47 squarings in Fp15 and 51 multiplications in Fp15 .

Definition VI.1. The Optimal ate pairing computation.

Its computation has two steps: the full Miller loop fx,Q(P ) and the final exponen-

tiation which is computed as
(
fp

5−1
)(p10+p5+1)/r

.The overall cost of final exponentiation is

I1 + 3093M1 + 24044S1.

Imhotep Proc.



Vol. 4 (2017) Optimal Weil pairing on Elliptic curves 49

Table 2. Cost of the Miller lite and full Miller loop.

Miller lite loop full Miller loop

Aff 52I1 + 3491M1 + 2219S1. 52I1 + 6299M1 + 3311S1

Proj 4283M1 + 2567S1 4911M1 + 6183S1

Proj 4271M1 + 2567S1 4803M1 + 6183S1

(mixed add)

Jac 4619M1 + 2471S1 5319S1 + 5739M1

Jac 2471S1 + 4607M1 5319S1 + 5631M1

(mixed add)

Definition VI.2. The Optimal Weil pairing computation.

We assume that the points [x]P , [x2]P , [x3]P and [x4]P are precomputed. The cost of the

doubling and the addition steps in the Miller’s algorithm for fx,[xi+1]P (Q) with i ∈ {1, 2, 3, 4}

is the same with fx,P (Q). The ten Miller functions of β Weil pairing defined above can be

computed in parallel using 10 processors. Each processor computes either one Miller lite loop

or one full Miller loop and one pi-frobenius maps (i ∈ {0, 1, 2, 3, 4}). The computation of the

final step requires 1 inversion and 9 multiplications in Fp15 . The final exponentiation cost :

1I1 + 1467M1 + 86S1.

VII. Comparisons

Our comparison focuses only on the cost of the operations of optimal ate pairing with the cost

of the operations executed by each processor to which is added the final step and the final

exponentiation by (p5 − 1)(p3 − 1). If we assume that 1S1 = 1M1 and 1I1 = 10M1. We denote

by:

: MLite = the cost of the Miller lite loop

: FullM = the cost of full Miller loop

: FS = the cost of the final step

: FE = the cost of the final exponentiation

: Frob = the cost of p-power Frobenius

Conclusion

The optimal weil pairing has the potential speed advantage over the optimal ate pairing due to

the absence of an expensive final exponentiation and suitable for parallel execution.
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Table 3. Cost comparision of the optimal Ate and β Weil pairing

MLite+FS+FE+Frob FullM+FS+FE+Frob optimal Ate

Aff 7299M1 11199M1 33966M1

Proj 7919M1 12163M1 38241M1

Proj 7907M1 12055M1 38133M1

(mixed add)

Jac 8159M1 12127M1 38205M1

Jac 8147M1 12019M1 38097M1

(mixed add)
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