IMHOTEP

AFRICAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Imhotep Mathematical Proceedings
 Volume 4, Numéro 1, (2017),
 pp. 44-50.

Optimal Weil pairing on Elliptic curves with Embedding Degree 15

A. Pecha

Department of Computer Science and Telecommunications, ENSPM, University of Maroua. P.O. Box 46

Maroua, Cameroon. aminap2001@yahoo.fr

Abstract

The aim of our talk is to check that, for the next security level 192-bits, the Aranha's result is still satisfied. In fact, we will construct an optimal Weil pairing over elliptic curves with embedding degree $k=15$ and compare his efficiency as opposed to the optimal Ate pairing.

Proceedings of the $6^{\text {th }}$ annual workshop on CRyptography, Algebra and Geometry (CRAG-6), 15-17 June 2016, University of Bamenda, Bamenda, Cameroon.

Optimal Weil pairing on Elliptic curves with Embedding Degree 15

A. Pecha

Abstract

The aim of our talk is to check that, for the next security level 192-bits, the Aranha's result is still satisfied. In fact, we will construct an optimal Weil pairing over elliptic curves with embedding degree $k=15$ and compare his efficiency as opposed to the optimal Ate pairing.

Keywords. Pairing, Elliptic curves.

I. Introduction

In 2005, Koblitz and Menezes [5] examine the efficiency of the Weil pairing as opposed to the Tate pairing and find that for very high security levels such as 192 or 256 bits, the Weil pairing computation is sometimes faster than the Tate pairing. A few times later, in 2006, Granger et al [2] re-examine how one should implement pairings over ordinary elliptic curves for various practical levels of security. They conclude, contrary to prior work, that the Tate pairing is more efficient than the Weil pairing for all such security levels. Optimal Ate and twisted Ate pariring are based on Tate pairing and which are looked at the most efficient pairing. However in 2011, Aranha et al [1] introduce a new optimal Weil pairing tailored for parallel execution. For the current security level 128-bits, their experimental results suggest that the new Weil pairing over Barreto-Naehrig (BN) curves is faster than the optimal Ate pairing.

[^0]
II. Background on pairing

Definition II.1. Let $\mathbb{G}_{1}, \mathbb{G}_{2}$ be the additive groups and \mathbb{G}_{T} a multiplicative group. A pairing is a non-degenerate bilinear map of the form $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}$, i.e. e is linear in each component and there exists $P \in \mathbb{G}_{1}$ and $Q \in \mathbb{G}_{2}$ such that $e(P, Q) \neq 1$.

Notation II.2. We denote by:

- \mathbb{F}_{q} a finite field of characteristic p where $p>3$ is prime.
- E an ordinary elliptic curve defined over \mathbb{F}_{q}.
r a large prime divisor of the order of $E\left(\mathbb{F}_{q}\right)$.
- k the embedding degree with respect to r and q, i.e. the smallest positive integer such that r divides $q^{k}-1$.
- t a trace of Frobenius.
- \mathcal{O} the point at infinity.
- μ_{r} the group of r-th roots of unity in $\mathbb{F}_{q^{k}}$.
- $E[r]$ is the set of $r-t o r s i o n ~ p o i n t s ~ o n ~ E . ~$

Definition II.3. Let $R \in E\left(\mathbb{F}_{q^{k}}\right)$ and $m \in \mathbb{Z}$. A Miller function $f_{m, R}$ of length m is a $\mathbb{F}_{q^{k} \text {-rational }}$ function with divisor $\left(f_{m, R}\right)=m(R)-([m] R)-(m-1) \mathcal{O}$.

Lemma II.4. Let a and b be non-negative integers, and let $R \in E\left(\mathbb{F}_{q^{k}}\right)$. Then

1. $f_{a+b, R}=f_{a, R} \cdot f_{b, R} \cdot l_{[a] R,[b] R} / v_{[a+b] R}$, where $l_{[a] R,[b] R}$ is the equation of the line through $[a] R$ and $[b] R$ and $v_{[a+b] R}$ is the corresponding vertical line passing through $[a+b] R$.
2. $f_{a b, R}=f_{b, R}^{a} \cdot f_{a,[b] R}$.

III. Why pairing-friendly elliptic curves?

For randomly generated elliptic curves, we have $k \approx r$, so impossible to compute pairing (because result is in $\mathbb{F}_{q^{k}}$). Thus for a constructive applications of pairings, we must find the special kind of elliptic curves such that k needs to be small enough, so that the pairing is easy to compute but large enough, so that the DL in $\mathbb{F}_{q^{k}}^{\times}$is computationally infeasible.

Definition III.1. E is pairing-friendly [3] if the following two conditions hold:

1. $r \geq \sqrt{q}$;
2. k is less than $\log _{2}(r) / 8$.

Now we assume that $q=p$ is a prime and $k=15$, so we have $E[r] \subset E\left(\mathbb{F}_{p^{15}}\right)$. This family of elliptic curves has embedding degree 15 and a ρ-value 1.5 and is parameterized by :

$$
\begin{align*}
p & =\left(x^{12}-2 x^{11}+x^{10}+x^{7}-2 x^{6}+x^{5}+x^{2}+x+1\right) / 3 \\
r & =x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1 \tag{1}\\
t & =x+1
\end{align*}
$$

We found a specific value $x=2^{48}+2^{41}+2^{9}+2^{8}+1$ and we obtain $r(x)$ prime of 385 bits and $p(x)$ prime of 575 bits which correspond to parameters for 192-bits security level according to Table.

Table 1. Bit sizes of curves parameters and corresponding embedding degrees to obtain commonly desired levels of security.

| Security
 level | Bit length of
 r | Bit length of
 k | k | $k \approx 1$ |
| :---: | :---: | :---: | :---: | :---: | | $k \approx 2$ |
| :---: |
| 80 |

IV. Pairing computation

The most common choice is to take the groups:

- $\mathbb{G}_{1}=E[r] \cap \operatorname{ker}\left(\pi_{p}-[1]\right)=E\left(\mathbb{F}_{p}\right)[r]$;
- $\mathbb{G}_{2}=E[r] \cap \operatorname{ker}\left(\pi_{p}-[p]\right) \subset E\left(\mathbb{F}_{p^{15}}\right)[r]$.
where π_{p} is the p-power Frobenius endomorphism on E.

Definition IV.1. The reduced Tate pairing restricted to $\mathbb{G}_{1} \times \mathbb{G}_{2}$ is defined as:

$$
e_{r}: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mu_{r}, \quad(P, Q) \longmapsto f_{r, P}(Q)^{\frac{p^{15}-1}{r}} .
$$

Restricting the Tate pairing to $\mathbb{G}_{2} \times \mathbb{G}_{1}$ leads to the ate pairing.

Definition IV.2. The ate pairing is defined as

$$
a_{T}: \mathbb{G}_{2} \times \mathbb{G}_{1} \rightarrow \mu_{r}, \quad(Q, P) \mapsto f_{T, Q}(P)^{\frac{\left(p^{15}-1\right)}{r}},
$$

where $T=t-1$.

Imhotep Proc.

Definition IV.3. The classical Weil pairing is defined as

$$
e_{W}: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T} \quad(P, Q) \mapsto(-1)^{r} \frac{f_{r, P}(Q)}{f_{r, Q}(P)}
$$

Algorithm IV.4. Miller's algorithm

$$
\text { Inputs: } s \in \mathbb{N} \text { and } U, V \in E[r] \text { with } U \neq V
$$

outputs: $f_{s, U}(V)$
Write $s=\sum_{j=0}^{n} s_{j} 2^{j}$, with $s_{j} \in\{0,1\}$ and $s_{n}=1$
Set $f \leftarrow 1$ and $R \leftarrow U$
For $j=n-1$ down to 0 do
$f \leftarrow f^{2} \cdot l_{R, R}(V) / v_{2 R}(V)$,
$R \leftarrow 2 R$
if $s_{j}=1$ then
$f \leftarrow f \cdot l_{R, U}(V) / v_{R+U}(V)$
$R \leftarrow R+U$,
end if
end for
return f

V. optimal pairing

Definition V.1. Let e : $\mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}$ be a non degenerate, bilinear pairing with $\left|\mathbb{G}_{1}\right|=\left|\mathbb{G}_{2}\right|=$ $\left|\mathbb{G}_{T}\right|=r$, where the field of definition of \mathbb{G}_{T} is $\mathbb{F}_{q^{k}}$, then e is called an optimal pairing if it can be computed in $\log _{2} r / \varphi(k)+\epsilon(k)$ basic Miller iterations, with $\epsilon(k) \leq \log _{2} k$.

Definition V.2. For a point $R \in E[r]$ and polynomial $h=\sum_{i=0}^{n} h_{i} z^{i} \in \mathbb{Z}[z]$ such that $h(s) \equiv 0$ (mod r). The extended Miller function $f_{s, h, R}$ is a rational function defined as $\prod_{i=0}^{n} f_{h_{i}, s^{i} R} \cdot \prod_{i=0}^{n-1} \frac{l_{\left[s_{i}+1\right] R,\left[h_{i} s^{i}\right] R}}{v_{\left[s_{i} R\right]}}$ where $s_{i}=\sum_{j=i}^{n} h_{j} s^{j}$ with divisor $\sum_{i=0}^{n} h_{i}\left[\left(s^{i} R\right)-\mathcal{O}\right]$.

Remark V.3. Note that $f_{s, R}=f_{s, s-x, R}$, with x an integer.

Due to Vercauteren's optimal pairing framework [1], we have the following theorem.

Theorem V.4. There exists h such that $\left|h_{i}\right| \leq r^{1 / \varphi(k)}$ and $(P, Q) \mapsto f_{p, h, Q}(P)^{\left(p^{k}-1\right) / r}$ is a pairing.

Remark V.5. The coefficients h_{i} can be obtained by finding the shortest vector in the following $\varphi(k)$-dimensional lattice $\left(\begin{array}{ccccc}r & 0 & 0 & \ldots & 0 \\ -q & 1 & 0 & \ldots & 0 \\ -q^{2} & 0 & 1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ -q^{\varphi(k)-1} & 0 & 0 & \ldots & 1\end{array}\right)$.

Definition V.6. According to Aranha's beta Weil pairing framework on elliptic curves with even k, we define: $\theta_{s, h}(P, Q)=\left(\frac{f_{s, h, Q}(P)}{f_{s, h, P}(Q)}\right)^{p^{k / 3}-1}$ when $3 \mid k$.

Theorem V.7. There exists h such that $\left|h_{i}\right| \leq r^{1 / \varphi(k)}$ and $(P, Q) \longmapsto \prod_{i=0}^{e-1} \theta_{p, h}\left(\left[p^{i}\right] P, Q\right)^{p^{e-1-i}}$ is a pairing.

The Vercautern approach enabled us to obtain the following optimal function $h(z)=$ $\sum_{i=0}^{5} c_{i} z^{i}=x-z \in \mathbb{Z}[z]$ such that $h(p) \equiv 0(\bmod r)$ for the elliptic curves with $k=15$ and according to Theorem V. 4 and Theorem V.7, we can define now

Definition V.8. The optimal Ate pairing on elliptic curves with $k=15$ is defined as

$$
e_{o}: \mathbb{G}_{2} \times \mathbb{G}_{1} \rightarrow \mu_{r}, \quad(Q, P) \mapsto f_{x, Q}(P)^{\frac{\left(p^{15}-1\right)}{r}}
$$

Definition V.9. The optimal Weil pairing on elliptic curve with $k=15$ is defined as

$$
\begin{aligned}
\beta_{15}: G_{1} \times G_{2} & \longrightarrow \mu_{r} \\
(P, Q) & \longmapsto\left[\prod_{i=0}^{4}\left(\frac{f_{x,\left[x^{i}\right] P}(Q)}{f_{x, Q}\left(\left[x^{i}\right] P\right)}\right)^{p^{4-i}}\right]
\end{aligned}
$$

VI. Optimal pairing computation

We denote by M_{k}, S_{k}, I_{k} the cost of multiplication, squaring and Inversion in the field $\mathbb{F}_{p^{k}}$, for any integer k.

The Miller lite loop $f_{x, P}(Q)$ and full Miller loop $f_{x, Q}(P)$ requires 48 doublings step, 4 additions step, 47 squarings in $\mathbb{F}_{p^{15}}$ and 51 multiplications in $\mathbb{F}_{p^{15}}$.

Definition VI.1. The Optimal ate pairing computation.

Its computation has two steps: the full Miller loop $f_{x, Q}(P)$ and the final exponentiation which is computed as $\left(f^{p^{5}-1}\right)^{\left(p^{10}+p^{5}+1\right) / r}$. The overall cost of final exponentiation is $I_{1}+3093 M_{1}+24044 S_{1}$.

Imhotep Proc.

Table 2. Cost of the Miller lite and full Miller loop.

	Miller lite loop	full Miller loop
Aff	$52 I_{1}+3491 M_{1}+2219 S_{1}$.	$52 I_{1}+6299 M_{1}+3311 S_{1}$
Proj	$4283 M_{1}+2567 S_{1}$	$4911 M_{1}+6183 S_{1}$
Proj (mixed add)	$4271 M_{1}+2567 S_{1}$	$4803 M_{1}+6183 S_{1}$
Jac	$4619 M_{1}+2471 S_{1}$	$5319 S_{1}+5739 M_{1}$
Jac (mixed add)	$2471 S_{1}+4607 M_{1}$	$5319 S_{1}+5631 M_{1}$

Definition VI.2. The Optimal Weil pairing computation.

We assume that the points $[x] P,\left[x^{2}\right] P,\left[x^{3}\right] P$ and $\left[x^{4}\right] P$ are precomputed. The cost of the doubling and the addition steps in the Miller's algorithm for $f_{x,\left[x^{i+1}\right] P}(Q)$ with $i \in\{1,2,3,4\}$ is the same with $f_{x, P}(Q)$. The ten Miller functions of β Weil pairing defined above can be computed in parallel using 10 processors. Each processor computes either one Miller lite loop or one full Miller loop and one p^{i}-frobenius maps ($i \in\{0,1,2,3,4\}$). The computation of the final step requires 1 inversion and 9 multiplications in $\mathbb{F}_{p^{15}}$. The final exponentiation cost : $1 I_{1}+1467 M_{1}+86 S_{1}$.

VII. Comparisons

Our comparison focuses only on the cost of the operations of optimal ate pairing with the cost of the operations executed by each processor to which is added the final step and the final exponentiation by $\left(p^{5}-1\right)\left(p^{3}-1\right)$. If we assume that $1 S_{1}=1 M_{1}$ and $1 I_{1}=10 M_{1}$. We denote by:
$:$ MLite $=$ the cost of the Miller lite loop
: FullM = the cost of full Miller loop
$: \mathrm{FS}=$ the cost of the final step
: $\mathrm{FE}=$ the cost of the final exponentiation
: Frob $=$ the cost of p-power Frobenius

Conclusion

The optimal weil pairing has the potential speed advantage over the optimal ate pairing due to the absence of an expensive final exponentiation and suitable for parallel execution.

Table 3. Cost comparision of the optimal Ate and β Weil pairing

	MLite+FS+FE+Frob	FullM+FS+FE+Frob	optimal Ate
Aff	$7299 M_{1}$	$11199 M_{1}$	$33966 M_{1}$
Proj	$7919 M_{1}$	$12163 M_{1}$	$38241 M_{1}$
Proj (mixed add)	$7907 M_{1}$	$12055 M_{1}$	$38133 M_{1}$
Jac	$8159 M_{1}$	$12127 M_{1}$	$38205 M_{1}$
Jac (mixed add)	$8147 M_{1}$	$12019 M_{1}$	$38097 M_{1}$

References

[1] Vercauteren F. : Optimal pairing, IEEE Transactions on Information Theory, 56, (2010), 455 - 461.
[2] Aranha D.F., Knapp E., Menezes A. and Rodríguez-Henríquez F.: Parallelizing the Weil and Tate Pairings. L. Chen (Ed.): Cryptography and Coding 2011, LNCS 7089, 275-295, (2011). SpringerVerlag Berlin Heidelberg, 2011.
[3] Freeman D., Scott M., and Teske E., A Taxonomy of Pairing-Friendly Elliptic Curves, Cryptology ePrint Archive, Report 2006/372, 2006.
[4] Granger R., Page D. and Smart N.P.: High Security Pairing-Based Cryptography Revisited. In: Algorithmic Number Theory 7th International Symposium, ANTS-VII, Berlin, Germany, July 2328, (2006). Proceedings, 480-494.
[5] Koblitz N. and Menezes A.: Pairing-Based Cryptography at High Security Levels. In: Cryptography and Coding, Springer-Verlag LNCS 3796, (2005) 13-36.
A. Pecha
e-mail: aminap2001@yahoo.fr
Department of Computer Science and Telecommunications, ENSPM, University of Maroua. P.O. Box 46 Maroua. Cameroon

Imhotep Proc.

[^0]: Communication presentée au $6^{\text {ème }}$ atelier annuel sur la CRyptographie, Algèbre et Géométrie (CRAG-6), 15-17 Juin 2016, Université de Bamenda, Bamenda, Cameroun / Paper presented at the $6^{t h}$ annual workshop on CRyptography, Algebra and Geometry (CRAG-6), 15-17 June 2016, University of Bamenda, Bamenda, Cameroon.

