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Abstract
Let (M, g) be a compact Riemannian manifold of hyperbolic type, i.e
M is a manifold admitting an another metric of strictly negative curva-
ture. In this paper we study the geodesic flow ®; restricted to the set of
geodesics which are minimal on the universal covering. In particular for
surfaces we show that the topological entropy coincides with the volume
entropy generalizing work of Freire and Mané.

1 Introduction

Let (M, g) be a compact Riemannian manifold and X its universal Riemannian
covering. In [24], Manning introduced the volume entropy h(g) of M defined
by: .
h(g) := TEIEOO . log vol B,.(p),

where p € X and B,(p) denotes the ball with center p and radius r. He proved
that this limit exists and is independent of p. Let h(®;) denotes the topological
entropy of the geodesic flow ®; on the unit tangent bundle SM. Manning proved
that the volume entropy is less or equal to the topological entropy. In the case
of nonpositive curvature he showed that equality holds. Subsequently this was
generalized by Freire and Maiié to metric without conjugate points (see [13] or
[24]). Let SM be the set of v € SM such that the lift of the geodesic ¢, with
¢,(0) = v is a globally minimizing geodesic. We denote by ¢ the restriction on
SM of the geodesic flow ¢;. In [19] Katok and Hasselblatt stated the following
theorem:

Theorem 1.1. Let (M,g) be a compact Riemannian manifold, X be its uni-
versal Riemannian covering. Let SX defined as follows:

SX :={v € SX | ¢, is a minimizing geodesic }

and SM := dp(S’X), where p : X — M is the covering map. Let ¢; be the
restriction to SM of the geodesic flow ¢;. Then,

h(¢¢) > h(g)
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Let now (M, g) be a compact manifold of hyperbolic type. Then, there exists
a metric of strictly negative curvature gy on M. The universal Riemannian
covering Xy of (M, go) is a Hadamard manifold satisfying Kx, < —kZ for some
constant kg > 0. Hence Xy and X are Gromov hyperbolic spaces. Therefore,
the distance function on X is 4d-convex. This help us to justify the following
theorem.

Theorem 1.2. Let (M,g) be a compact Riemannian manifold of hyperbolic
type. There is some constant ag depending only on (M, g) such that:

h(qst;aO) S h(g)
We will use the notion of entropy expansiveness for the following proposition:

Proposition 1.3. Let (M,g) be a compact Riemannian manifold of hyperbolic
type. If ®; is h-expansive for some constant € > ag, we have:

h(ﬁgt) = h(q’;taa()) = hy.
As an application, we proof the following result:

Theorem 1.4. Let (M, g) be an orientable compact surface of genus > 2. Let
¢: be the restriction to SM of the geodesic flow ¢¢+. Then,

h(¢r) = h(g)-

This paper is organized as follows. In the first section we give a complete
proof using the ideas provided by Katok and Hasselblatt that the topological
entropy of the minimal geodesics is bounded below by the volume growth. In the
second section we study topological entropy of minimal geodesics on manifolds
of hyperbolic type and show that for surfaces the entropy equals the volume
growth.

2 Topological entropy of minimal geodesics

Let (V,d) be a compact metric space and ¢; : V — V be a continuous flow. For
each r > 0, we define a new distance function

(v, 0) = max d(6(v), du(w)).

Let F be a subset of V. A set Y C F is called a (d,,¢)-separated set of F
if for different points y,y’ € Y, d,(y,y’) > €. Let s.(F, €) denotes the maximal
cardinality of a (d,, €)-separated set.

A set Z C V is called a (d,,€)-spanning set of F' if for each y € F, there
exists z € Z such that d,(y, z) <e. Let ¢,(F,€) denotes the minimal cardinality
of (d,,€)-spanning set. It is easy to see that for all € > 0,

tr(F,e) < s.(F,e) < t,.(F, %)
Furthermore

1 —1
h(¢, Fye) := lim —logs,(F,e) = lim —logt,(F¢).
r—oo T rT—0o00 T

(see [27] or [28] for details).



Definition 2.1. The topological entropy h(¢;) of the flow ¢ : V' — V is defined
by:
h’(¢t) := lim h(¢t7 Va 6)‘
e—0

In the sequel we will need the following lemma which is similar to Lemma
2.1 1in [3]

Lemma 2.2. Let (V,d) be a compact metric space, ¢* : V — V a continuous
flow and A be a subset of V. Then for all sequences 0 =tg < t; < - - <t =t
and § >0

k
H Sti—tia (¢ti71Aa 5) > St(A7 25)7

i=1
where s,(B,0) is the mazimal cardinality of a (d,.,d)-separating set of B.

Proof. Let L = E;(A,20) be a maximal (dy, 26)-separating set of A and for each
i€{l,....k}let Ly = By, ,_, (¢~ A,0) be a maximal (d,_, _,d)-separated
set of ¢ti-1(A).

For each (x1,...,xg) € L1 X --+ X Ly, consider the set

B(mla"ka) = {Z €L | d(¢s+tiilzafsmi) < 570 <s<t _tifl}-

On the other hand, the set L is (d¢, 20)-separated and, therefore, the triangle

inequality implies that the cardinality of each B(zy,...,z) is at most 1.
Therefore,
k k
Si(A,260) = cardL < H cardL; = H cardS;, _4,_, (¢"-1 A, 6)
=1 =1

O

We need the following Theorem stated in the book of Katok and Hasselblatt
on the topological entropy of minimal geodesic on Riemannian manifolds. Even
though the main ideas of the proof they provide is correct, it contains some
inaccuracy and a mistake. Therefore and for the convenience of the reader we
will provide a complete proof of the result.

Theorem 2.3. Let (M,g) be a compact Riemannian manifold, X be its uni-
versal Riemannian covering. Let SX defined as follows:

SX :={v e SX | ¢, is a minimizing geodesic }

and SM := dp(SX), where p: X — M is the covering map.
Let ¢; be the restriction to SM of the geodesic flow ¢;. Then,

h(‘;t) Z hg

Proof. Fix x € X, T, > 0, and a maximal 3§-separated set N in the annulus
B(z,(1+6)T) B(z,T). If K7 := sup,e vol(B(y,36T)) then

N >~ (vol(B(z,T)) — vol(B(z, (1 — §)T))) > elh)1-30)7
Kr



for sufficient large 1", where h is the volume entropy of the manifold M.
Consider y € N and a minimizing geodesic ¢, joining z and y. If y; and y»
are two distinct elements of NV, and p; = ¢, (T'), we have

d(p1,p2) > d(y1,y2) — d(y1,p1) — d(y2,p2) > oT.
Thus the set
S :={¢(0) |y € N}
is (dr,dT)-separated in SX. Let us assume that 07 is at least as big as the
injectivity radius inj (M) of M. and consider the projections v, := moc,. Then
the set
{14(0) |y € N}
is (dr, +inj(M))-separated in SM.
Consider the set
V(z,N,T):={#,(t) |y € N,t € VT,T —VT]} = U ¢'s
VT<t<T-T

This is a subset of
Mrp:={veSM|3se [—T—}—\/T, —\/T], such that ¢, is minimal on [s,s+T7},

since for each v = 4,(t) € V(z,N,T) the geodesic ¢, is minimal on [—¢,T — t]
and —t € [-T + V/T,—VT]. Note, that for each v € My the geodesic arc
Cy [—\/T, \/T] — SM is minimal. Therefore,

() Mr=5M.
T>0

Let s;(A,€) be the maximal cardinality of a (d;, €)- separated set of A. Then
by lemma 3.2

ST*\/T((ZS\/TS) p) ' S\/T(S; ,0) Z ST(S, 2p) Z eh(g)(l—Sa)T

where p = 1/4inj (M)
Let h(¢?) be the topological entropy of the unrestricted geodesic flow. Then
there exists Ty > 0 such that for all 7' > Ty

s7(S,p) < 5y7(SM, p) < e2MOVT

Therefore, choosing T' such that VT > 2&(;;;), we obtain

ST—\/T(Gb\/TS, p) < eh(9)T(1-45)

Choose tg € (0,7 — 2v/T] and let m € N and k € [0,t5) be such that
T — 2T = mto + k. For j € {0,...,m — 1} consider the sets
L;:=¢"¢¥"S = {(3,(VT + jto) | y € N}

By the considerations above they are all subsets of M. For 0 < j <m —1 let
l; be the maximal cardinality of a (dy,, p/2)-separated subset of L; . Applying
Lemma 3.2 again, we obtain

lo-ly-oin ey > ST,\/T((Zﬁ\/TS, p) > N(@T(1-45)



Then, for some j € {0,1,...,m — 1} we must have

lj >= ew — eh(g)(1—46)(to+k+iﬁ) > o(ha)(1—48)t0

Thus for all T' large enough the set M7 and hence SM contains a (dy,, i”jéM) )-
separated set of cardinality at least e(*(9)(1=49)t0  This implies that for all § > 0

the estimate h(¢;) > h, — 44 holds. O

3 Manifolds of hyperbolic type

Definition 3.1. A Riemannian manifold (M, g) is called of hyperbolic type if
there ezists another Riemannian metric gy of strictly negative curvature (back-
ground metric) which is Lipschitz equivalent to g.

Note that, in dimension 2, a manifold M is of hyperbolic type if and only if
its genus > 2.

Definition 3.2. Let (X;,d;) and (X2, ds) be two metric spaces. A map ® :
X1 — X is called a quasi-isometric map, if there exist constants A > 1 and
a > 0 with:

1

S (,9) — @ < dy(8(2), B(y)) < Adi(z,y) +a Va,y € Xy,
In a metric space X, a quasi-geodesic (resp. quasi-geodesic Tay) is a quasi-
isometric map ® : R — X (resp. ® : RT — X ).

Definition 3.3. Let (X,d) be a metric space and A,B C X. The Hausdorff
distance of A and B is defined as follow:

dp(A,B) =inf{r | ACT,(B),B CT.(A)},

where
T.(A) :={z € X | d(z,A) < r}.

Theorem 3.4. (Morse Lemma) Let (Xg,90) be a Hadamard manifold with
sectional curvature Kx, < —ko < 0 for some constant ko > 0. Then for each
quasi-geodesic (resp. quasi-geodesic ray) ¢ : R — X (resp. ¢ : RT — X)),
there exists a geodesic (resp. geodesic ray) v: R — X (resp. v: Rt — X))
such that d(c(t),v(t)) < ro (resp. d(c(RT),v(RT)) < ro); ro depends only on
A, a and ky.

Proof. (see [20]) O
Definition 3.5. A function f : R — R is called k-convex if for all x,y € R,

and t € [0, 1],
Flta+ (L= 1)) < tF(@) + (L)1) + .

Lemma 3.6. Let (X,g) be a Hadamard manifold of hyperbolic type and c; :
[0,a] = X and ¢y : [0,b] = X two minimizing geodesic arcs such that ¢;(0) =
c2(0) = 0. Then there ezists a constant ag depending only on (X,g) and the
background metric gy such that

d(cy(ta),ca(th)) < td(cy(a), c2(b)) + g
for all t € 0,1].



Carlos: Could you give a proof of this. In the book of Coornaert
etc. they require that the geodesics are globally minimizing and not
only on an intervall.The proof should follow from the Morse lemma
and the fact that up to constants a triangle is a tripod.

Proof. O
Using this Lemma one obtains:

Proposition 3.7. (See [7], [8] or [9]) Let (X,g) be a Hadamard manifold of
hyperbolic type and c1,co : [a,b] = X be two minimizing geodesic arcs. Then
the function

fR —
t — d(ei(t),ca(t))

1S (i-CcONvex.

Proof. Is an easy application of the lemma above using 2 triangles.
Proof it! O

Now we like to proof that in the class of manifolds of hyperbolic type the
topological entropy of the minimal geodesic flow is equal to the volume growth.
Let (M, g) be a Riemannian manifold of hyperbolic type and let go be a second
metric of negative curvature (background metric). Denote by SM and SX the
unit tangent bundles of M and its universal cover X with respect to the metric g.
Let F be a fundamental domain in X of diameter a, € a small positive number.
For some large r consider the set F, := {z € X | r —a < d4(2,F) < r} which
for each « € F is contained in the ball B(z,r + a) . Let Ff be some maximal
(d, €)-separated subset of F,., where d is the metric induced by the Riemannian
metric g. Then

#F- < CcvolB(z,r +a+ %),

where C, = W

Let F¢ be some maximal e-separated set of 7. For any y € F¢, z € Ff, let
vy: be the geodesic with respect to the background metric gy joining y to z.
Choose for each such y, z a vector v = v,,; € S, X such that ¢, : [0,00) > Risa
minimizing g- geodesic with ¢, (+00) = vy.(+00). Let P, be the set of all such
vectors, i.e.

P, :={vy. |y € F,z € Fy}

Lemma 3.8. There exists a constant B > 0 such that for each minimizing
geodesic ¢ : [0,00) = R with ¢(0) € F there exists v € P, such that

d(cy(t),c(t) < B

for allt € [0,7]. In particular, if SF is the set of the unit tangent vectors in F
corresponding to minimal geodesics

U Bdr(,U’/B) D S]:

veEP,



Proof. Let ¢ : [0,00) — R be a minimal geodesic with ¢(0) € F. This implies
that ¢(r) is contained in F,.. Since F¢ and Ff are maximal (d,€)-separated
sets, there exists x € F¢ and z € Ff such that d(¢(0),y) and d(c(r),z) are
at not bigger than e. Consider the vector v = v,, € P,. Since the function
f:]0,7] = R with f(t) = d(c(t),cy(t)) is a- convex and f(0) < € as well as
f(r) < € the proof follows for § = 2¢ + a. O

Now we study the cardinality of separated sets of minimal geodesics on an
infinitesimal scale. For that we have to restrict ourself to surfaces.

Lemma 3.9. Let M be a surface and F as above. Then for all 6 > 0 there exists
ag such that for all (d,,d)- separated sets E of By (v, ) := SF N By, (v, ) we
have that

#E < rag

Proof. The following proof does not work without modification. The
reason is that minimal geodesics might intersect once and therefore
the balls in the construction below might intersect. Can you give a
modification?  For a given small 6 > 0 and some n € N, let E C Z.(v)
be a (n,d)-separated set (with respect to (Z)t), where v € SM. Let wy and
wi41 be two distinct elements of E. Then, there is t; € [0,n + 1] such that
Iy := d(cw,(tr), Cuw,ps (tr)) > 6. Let vy be the minimizing geodesic satisfying
Y(0) = Cuwy(ty) and Y(Ix) = cuyy, (t). Let us put Py := 7(%). Since wy and
wy41 are elements of Z.(v), d(cy, (1), Cu,y, (t) < 2¢ Vt € R. Let B(Py, 2)
denote the geodesic ball of radius g about P.

1.case B(Pk7 %) ﬂ Cwpt1 (]tk; +OOD 7é 0

Let s > 0 such that cy,,, (t; + s) € B(Ps, ). Then:

d(cwk+1 (0))7 Cwpg1 (tk + S) < d(cwarl (0)7 Cuwp, (0)) +

)
+d(cy,, (0), cu, (tr)) + =,  hence,

5
1)
th+5 < d(Cuwpyr(0),Cu, (0) +tr + 5 Therefore,
1)
d(cwk+1 (0)7 Cuy, (0)) 2 5= g
Otherwise,
d(cwk+1 (tk))a Cuw 1 (tk + S) > d(cwk+1 (tk)a Cuy, (tk)) - d(cwk (tk)7 Cuwpt1 (tk + 8))
Then, s > §-— g
Therefore,  d(cy,,,(0),cy,(0)) > g

2.case B(Py, §) M cuw,y, (0, ]) # 0
Let s > 0 such that ¢y, (tx —s) € B(FPg, g) In the same way as above, we
obtain: 5

d(cwk+1 (0)7 Cuwy, (O)) Z g

Rest of the proof of lemma 4.4 Since t; > 0, the ball B(pg, g) lies in
the e-tubular neighborhood T , ,, of the geodesic segment

{cy(t) such that t € [-1;n + 1]}.



Let know P, s denote the number of disjoint geodesic balls of radius g lying in
T, vn- Since dim(M) = 2, there is a constant C' > 0 such that the volume of
T, v,n is smaller than Ce(n + 2). Then,

)
inf vol(B(pg, =))Pns < Ce(n+2). Hence,
PEZc(v) )

Pn,&

A

Cse(n +2),

where Cj is a constant depending on §. Moreover, if 7%75 is the number of

wy € Z(v) such that d(cy,,,(0),cw,(0)) > £, we have #P, s < 19¢ Then,
#E < Pps+Pp 5 < Csxex (n+2)+ 185 Hence, if s(n,d, Z.(v)) denotes the

maximal cardinality of a (n,d)-separated subset of Z,(v), we obtain,

10
5(,0,2.(v)) < Cieln+2)+ ==
Therefore,
- B
ngrfoo(n) lOg S(na 67 Zs (U)) - 0
This implies that h(¢;,€) = 0. O

Corollary 3.10. For each § > 0 there exists a 6-separated set L of SF such
that
#L < #Prag

From Proposition 4.3 and the previous Corollary, we obtain the following
result:

Theorem 3.11. Let (M,g) be an compact surface of genus > 2, X be its
universal Riemannian covering. Let SX defined as follows:

SX :={v € SX | ¢, is a minimizing geodesic }

and SM = dp(S'X), where p: X — M is the covering map.
Let ¢ be the restriction to SM of the geodesic flow ¢;. Then,

h(ée) = h(g)-
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