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Abstract

Let (M; g) be a compact Riemannian manifold of hyperbolic type, i.e
M is a manifold admitting an another metric of strictly negative curva-
ture. In this paper we study the geodesic 
ow ~�t restricted to the set of
geodesics which are minimal on the universal covering. In particular for
surfaces we show that the topological entropy coincides with the volume
entropy generalizing work of Freire and Ma~n�e.

1 Introduction

Let (M; g) be a compact Riemannian manifold and X its universal Riemannian
covering. In [24], Manning introduced the volume entropy h(g) of M de�ned
by:

h(g) := lim
r!+1

1

r
log volBr(p);

where p 2 X and Br(p) denotes the ball with center p and radius r. He proved
that this limit exists and is independent of p. Let h(�t) denotes the topological
entropy of the geodesic 
ow �t on the unit tangent bundle SM . Manning proved
that the volume entropy is less or equal to the topological entropy. In the case
of nonpositive curvature he showed that equality holds. Subsequently this was
generalized by Freire and Ma~n�e to metric without conjugate points (see [13] or
[24]). Let ~SM be the set of v 2 SM such that the lift of the geodesic cv with
_cv(0) = v is a globally minimizing geodesic. We denote by ~�t the restriction on
~SM of the geodesic 
ow �t. In [19] Katok and Hasselblatt stated the following
theorem:

Theorem 1.1. Let (M; g) be a compact Riemannian manifold, X be its uni-
versal Riemannian covering. Let ~SX de�ned as follows:

~SX := fv 2 SX j cv is a minimizing geodesic g
and ~SM := dp( ~SX), where p : X ! M is the covering map. Let ~�t be the

restriction to ~SM of the geodesic 
ow �t. Then,

h(~�t) � h(g)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMHOTEP: African Journal of Pure and Applied Mathematics

https://core.ac.uk/display/237454792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Let now (M; g) be a compact manifold of hyperbolic type. Then, there exists
a metric of strictly negative curvature g0 on M . The universal Riemannian
covering X0 of (M; g0) is a Hadamard manifold satisfying KX0

� �k20 for some
constant k0 > 0. Hence X0 and X are Gromov hyperbolic spaces. Therefore,
the distance function on X is 4�-convex. This help us to justify the following
theorem.

Theorem 1.2. Let (M; g) be a compact Riemannian manifold of hyperbolic
type. There is some constant �0 depending only on (M; g) such that:

h(~�t; �0) � h(g):

We will use the notion of entropy expansiveness for the following proposition:

Proposition 1.3. Let (M; g) be a compact Riemannian manifold of hyperbolic
type. If ~�t is h-expansive for some constant � � �0, we have:

h(~�t) = h(~�t; �0) = hg:

As an application, we proof the following result:

Theorem 1.4. Let (M; g) be an orientable compact surface of genus � 2. Let
~�t be the restriction to ~SM of the geodesic 
ow �t. Then,

h(~�t) = h(g):

This paper is organized as follows. In the �rst section we give a complete
proof using the ideas provided by Katok and Hasselblatt that the topological
entropy of the minimal geodesics is bounded below by the volume growth. In the
second section we study topological entropy of minimal geodesics on manifolds
of hyperbolic type and show that for surfaces the entropy equals the volume
growth.

2 Topological entropy of minimal geodesics

Let (V; d) be a compact metric space and �t : V ! V be a continuous 
ow. For
each r > 0, we de�ne a new distance function

dr(v; w) := max
0�t�r

d(�t(v); �t(w)):

Let F be a subset of V . A set Y � F is called a (dr; �)-separated set of F
if for di�erent points y; y0 2 Y , dr(y; y

0) > �. Let sr(F; �) denotes the maximal
cardinality of a (dr; �)-separated set.

A set Z � V is called a (dr; �)-spanning set of F if for each y 2 F , there
exists z 2 Z such that dr(y; z) � �: Let tr(F; �) denotes the minimal cardinality
of (dr; �)-spanning set. It is easy to see that for all � > 0,

tr(F; �) � sr(F; �) � tr(F;
�

2
):

Furthermore

h(�t; F; �) := lim
r!1

1

r
log sr(F; �) = lim

r!1
1

r
log tr(F; �):

(see [27] or [28] for details).
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De�nition 2.1. The topological entropy h(�t) of the 
ow �t : V ! V is de�ned
by:

h(�t) := lim
�!0

h(�t; V; �):

In the sequel we will need the following lemma which is similar to Lemma
2.1 in [3]

Lemma 2.2. Let (V; d) be a compact metric space, �t : V ! V a continuous

ow and A be a subset of V . Then for all sequences 0 = t0 < t1 < � � � < tk = t
and � > 0

kY

i=1

sti�ti�1(�
ti�1A; �) � st(A; 2�);

where sr(B; �) is the maximal cardinality of a (dr; �)-separating set of B.

Proof. Let L = Et(A; 2�) be a maximal (dt; 2�)-separating set of A and for each
i 2 f1; : : : ; kg let Li = Eti�ti�1(�

ti�1A; �) be a maximal (dti�ti�1 ; �)-separated

set of �ti�1(A).
For each (x1; : : : ; xk) 2 L1 � � � � � Lk consider the set

B(x1; : : : ; xk) = fz 2 L j d(�s+ti�1z; fsxi) � �; 0 � s � ti � ti�1g:
On the other hand, the set L is (dt; 2�)-separated and, therefore, the triangle

inequality implies that the cardinality of each B(x1; : : : ; xk) is at most 1.
Therefore,

St(A; 2�) = cardL �
kY

i=1

cardLi =

kY

i=1

cardSti�ti�1(�
ti�1A; �)

We need the following Theorem stated in the book of Katok and Hasselblatt
on the topological entropy of minimal geodesic on Riemannian manifolds. Even
though the main ideas of the proof they provide is correct, it contains some
inaccuracy and a mistake. Therefore and for the convenience of the reader we
will provide a complete proof of the result.

Theorem 2.3. Let (M; g) be a compact Riemannian manifold, X be its uni-
versal Riemannian covering. Let ~SX de�ned as follows:

~SX := fv 2 SX j cv is a minimizing geodesic g
and ~SM := dp( ~SX), where p : X !M is the covering map.

Let ~�t be the restriction to ~SM of the geodesic 
ow �t. Then,

h(~�t) � hg

Proof. Fix x 2 X, T; � > 0, and a maximal 3�-separated set N in the annulus
B(x; (1 + �)T ) B(x; T ). If KT := supy2M vol(B(y; 3�T )) then

#N � 1

KT

(vol(B(x; T ))� vol(B(x; (1� �)T ))) � e(hg)(1�3�)T
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for su�cient large T , where hg is the volume entropy of the manifold M .
Consider y 2 N and a minimizing geodesic cy joining x and y. If y1 and y2

are two distinct elements of N , and pi = cyi(T ), we have

d(p1; p2) � d(y1; y2)� d(y1; p1)� d(y2; p2) � �T:

Thus the set
S := f _cy(0) j y 2 Ng

is (dT ; �T )-separated in SX. Let us assume that �T is at least as big as the
injectivity radius inj (M) of M . and consider the projections 
y := � � cy. Then
the set

f _
y(0) j y 2 Ng
is (dT ;

1
2 inj(M))-separated in SM .

Consider the set

V (x;N; T ) := f _
y(t) j y 2 N; t 2 [
p
T ; T �

p
T ]g =

[
p
T�t�T�

p
T

�tS

This is a subset of

MT := fv 2 SM j 9s 2 [�T+
p
T ;�

p
T ]; such that cv is minimal on [s; s+T ]g;

since for each v = _
y(t) 2 V (x;N; T ) the geodesic cv is minimal on [�t; T � t]

and �t 2 [�T +
p
T ;�pT ]. Note, that for each v 2 MT the geodesic arc

cv : [�
p
T ;
p
T ]! SM is minimal. Therefore,

\

T>0

MT = ~SM:

Let st(A; �) be the maximal cardinality of a (dt; �)- separated set of A. Then
by lemma 3.2

sT�
p
T (�

p
TS; �) � spT (S; �) � sT (S; 2�) � eh(g)(1�3�)T

where � = 1=4inj (M)
Let h(�t) be the topological entropy of the unrestricted geodesic 
ow. Then

there exists T0 > 0 such that for all T > T0

spT (S; �) � spT (SM; �) � e2h(�
t)
p
T

Therefore, choosing T such that
p
T � 2h(�t)

h(g)� , we obtain

sT�
p
T (�

p
TS; �) � eh(g)T (1�4�)

Choose t0 2 (0; T � 2
p
T ] and let m 2 N and k 2 [0; t0) be such that

T � 2
p
T = mt0 + k. For j 2 f0; : : : ;m� 1g consider the sets

Lj := �jt0�
p
TS = f _
y(

p
T + jt0) j y 2 Ng

By the considerations above they are all subsets of MT . For 0 � j � m� 1 let
lj be the maximal cardinality of a (dt0 ; �=2)-separated subset of Lj . Applying
Lemma 3.2 again, we obtain

l0 � l1 � : : : � lm�1 � sT�
p
T (�

p
TS; �) � eh(g)T (1�4�):
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Then, for some j 2 f0; 1; : : : ;m� 1g we must have

lj �= e
h(g)(1�4�)T

m = eh(g)(1�4�)(t0+
k+2

p
T

m
) � e(hg)(1�4�)t0

Thus for all T large enough the setMT and hence ~SM contains a (dt0 ;
inj(M)

8 )-

separated set of cardinality at least e(h(g)(1�4�)t0 . This implies that for all � > 0
the estimate h(~�t) � hg � 4� holds.

3 Manifolds of hyperbolic type

De�nition 3.1. A Riemannian manifold (M; g) is called of hyperbolic type if
there exists another Riemannian metric g0 of strictly negative curvature (back-
ground metric) which is Lipschitz equivalent to g.

Note that, in dimension 2, a manifold M is of hyperbolic type if and only if
its genus � 2.

De�nition 3.2. Let (X1; d1) and (X2; d2) be two metric spaces. A map � :
X1 �! X2 is called a quasi-isometric map, if there exist constants A > 1 and
� > 0 with:

1

A
d1(x; y)� � � d2(�(x);�(y)) � Ad1(x; y) + � 8x; y 2 X1:

In a metric space X, a quasi-geodesic (resp. quasi-geodesic ray) is a quasi-
isometric map � : R �! X (resp. � : R+ �! X).

De�nition 3.3. Let (X; d) be a metric space and A;B � X. The Hausdor�
distance of A and B is de�ned as follow:

dH(A;B) = inffr j A � Tr(B); B � Tr(A)g;
where

Tr(A) := fx 2 X j d(x;A) � rg:
Theorem 3.4. (Morse Lemma) Let (X0; g0) be a Hadamard manifold with
sectional curvature KX0

� �k0 < 0 for some constant k0 > 0. Then for each
quasi-geodesic (resp. quasi-geodesic ray) c : R �! X (resp. c : R+ �! X),
there exists a geodesic (resp. geodesic ray) 
 : R �! X (resp. 
 : R+ �! X)
such that d(c(t); 
(t)) � r0 (resp. d(c(R+); 
(R+)) � r0); r0 depends only on
A, � and k0.

Proof. (see [20])

De�nition 3.5. A function f : R ! R is called k-convex if for all x; y 2 R,
and t 2 [0; 1],

f(tx+ (1� t)y) � tf(x) + (1� t)f(y) + k:

Lemma 3.6. Let (X; g) be a Hadamard manifold of hyperbolic type and c1 :
[0; a] ! X and c2 : [0; b] ! X two minimizing geodesic arcs such that c1(0) =
c2(0) = 0. Then there exists a constant �0 depending only on (X; g) and the
background metric g0 such that

d(c1(ta); c2(tb)) � td(c1(a); c2(b)) + �0

for all t 2 [0; 1].
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Carlos: Could you give a proof of this. In the book of Coornaert

etc. they require that the geodesics are globally minimizing and not

only on an intervall.The proof should follow from the Morse lemma

and the fact that up to constants a triangle is a tripod.

Proof.

Using this Lemma one obtains:

Proposition 3.7. (See [7], [8] or [9]) Let (X; g) be a Hadamard manifold of
hyperbolic type and c1; c2 : [a; b] ! X be two minimizing geodesic arcs. Then
the function

f : R �! R

t 7�! d(c1(t); c2(t))

is �-convex.

Proof. Is an easy application of the lemma above using 2 triangles.

Proof it!

Now we like to proof that in the class of manifolds of hyperbolic type the
topological entropy of the minimal geodesic 
ow is equal to the volume growth.
Let (M; g) be a Riemannian manifold of hyperbolic type and let g0 be a second
metric of negative curvature (background metric). Denote by SM and SX the
unit tangent bundles ofM and its universal coverX with respect to the metric g.
Let F be a fundamental domain in X of diameter a, � a small positive number.
For some large r consider the set Fr := fz 2 X j r � a � dg(z;F) � rg which
for each x 2 F is contained in the ball B(x; r + a) . Let F �

r be some maximal
(d; �)-separated subset of Fr, where d is the metric induced by the Riemannian
metric g. Then

#F �
r � C�volB(x; r + a+

�

2
);

where C� =
1

inf
y2M

volB(y; �2 )

Let F� be some maximal �-separated set of F . For any y 2 F�, z 2 F �
r , let


yz be the geodesic with respect to the background metric g0 joining y to z.
Choose for each such y; z a vector v = vyz 2 SyX such that cv : [0;1)! R is a
minimizing g- geodesic with cv(+1) = 
yz(+1). Let Pr be the set of all such
vectors, i.e.

Pr := fvyz j y 2 F�; z 2 F �
r g

Lemma 3.8. There exists a constant � > 0 such that for each minimizing
geodesic c : [0;1)! R with c(0) 2 F there exists v 2 Pr such that

d(cv(t); c(t)) � �

for all t 2 [0; r]. In particular, if ~SF is the set of the unit tangent vectors in F
corresponding to minimal geodesics

[

v2Pr
Bdr (v; �) � ~SF
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Proof. Let c : [0;1) ! R be a minimal geodesic with c(0) 2 F . This implies
that c(r) is contained in Fr. Since F� and F �

r are maximal (d; �)-separated
sets, there exists x 2 F� and z 2 F �

r such that d(c(0); y) and d(c(r); z) are
at not bigger than �. Consider the vector v = vyz 2 Pr. Since the function
f : [0; r] ! R with f(t) = d(c(t); cv(t)) is �- convex and f(0) � � as well as
f(r) � � the proof follows for � = 2�+ �.

Now we study the cardinality of separated sets of minimal geodesics on an
in�nitesimal scale. For that we have to restrict ourself to surfaces.

Lemma 3.9. Let M be a surface and F as above. Then for all � > 0 there exists
�0 such that for all (dr; �)- separated sets E of ~Bdr (v; �) :=

~SF \Bdr (v; �) we
have that

#E � r�0

Proof. The following proof does not work without modi�cation. The

reason is that minimal geodesics might intersect once and therefore

the balls in the construction below might intersect. Can you give a

modi�cation? For a given small � > 0 and some n 2 N, let E � Z�(v)
be a (n; �)-separated set (with respect to ~�t), where v 2 ~SM . Let wk and
wk+1 be two distinct elements of E. Then, there is tk 2 [0; n + 1] such that
lk := d(cwk(tk); cwk+1(tk)) � �. Let 
 be the minimizing geodesic satisfying


(0) = cwk(tk) and 
(lk) = cwk+1(tk). Let us put Pk := 
( �5 ). Since wk and

wk+1 are elements of Z�(v), d(cwk(t); cwk+1(t)) � 2� 8t 2 R. Let B(Pk;
�
5 )

denote the geodesic ball of radius �
5 about Pk.

1.case B(Pk;
�
5 )
T
cwk+1(]tk; +1[) 6= ;

Let s > 0 such that cwk+1(tk + s) 2 B(Pk;
�
5 ). Then:

d(cwk+1(0)); cwk+1(tk + s) � d(cwk+1(0); cwk(0)) +

+d(cwk(0); cwk(tk)) +
�

5
; hence,

tk + s � d(cwk+1(0); cwk(0)) + tk +
�

5
: Therefore,

d(cwk+1(0); cwk(0)) � s� �

5
:

Otherwise,

d(cwk+1(tk)); cwk+1(tk + s) � d(cwk+1(tk); cwk(tk))� d(cwk(tk); cwk+1(tk + s)):

Then, s � � � �

5
:

Therefore, d(cwk+1(0); cwk(0)) � �

5
:

2.case B(Pk;
�
5 )
T
cwk+1([0; tk]) 6= ;

Let s > 0 such that cwk+1(tk � s) 2 B(Pk;
�
5 ). In the same way as above, we

obtain:

d(cwk+1(0); cwk(0)) �
�

5
:

Rest of the proof of lemma 4.4 Since tk > 0, the ball B(pk;
�
5 ) lies in

the �-tubular neighborhood T�;v;n of the geodesic segment

fcv(t) such that t 2 [�1;n+ 1]g:
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Let know Pn;� denote the number of disjoint geodesic balls of radius �
5 lying in

T�;v;n. Since dim(M) = 2, there is a constant C > 0 such that the volume of
T�;v;n is smaller than C�(n+ 2). Then,

inf
p2Z�(v)

vol(B(pk;
�

5
))Pn;� � C�(n+ 2): Hence,

Pn;� � C 0��(n+ 2);

where C 0� is a constant depending on �. Moreover, if P 0n;� is the number of

wk 2 Z�(v) such that d(cwk+1(0); cwk(0)) � �
5 , we have #P 0n;� � 10�

�
. Then,

#E � Pn;� +P 0n;� � C 0� � �� (n+ 2) + 10�
�
. Hence, if s(n; �; Z�(v)) denotes the

maximal cardinality of a (n; �)-separated subset of Z�(v), we obtain,

s(n; �; Z�(v)) � C 0��(n+ 2) +
10�

�
:

Therefore,

lim
n!+1

(n)�1 log s(n; �; Z�(v)) = 0

This implies that h(~�t; �) = 0.

Corollary 3.10. For each � � 0 there exists a �-separated set L of ~SF such
that

#L � #Prr�0

From Proposition 4.3 and the previous Corollary, we obtain the following
result:

Theorem 3.11. Let (M; g) be an compact surface of genus � 2, X be its
universal Riemannian covering. Let ~SX de�ned as follows:

~SX := fv 2 SX j cv is a minimizing geodesic g
and ~SM := dp( ~SX), where p : X !M is the covering map.

Let ~�t be the restriction to ~SM of the geodesic 
ow �t. Then,

h(~�t) = h(g):
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