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THE GROWTH FUNCTION OF THE VOLUME OF GEODESIC BALLS
IN RIEMANNIAN MANIFOLDS OF HYPERBOLIC TYPE

JEAN-PIERRE EZIN AND OGOUYANDJOU CARLOS

Abstract. Let (M, g) be a compact Riemannian manifold of hyperbolic type and X
be its universal Riemannian covering. We study in this paper, the growth function
of the geodesic balls of X. We show that the critical exponent of the group of deck
transformations of X is equal to the volume entropy hg of M .

1. Introduction

A compact Riemannian manifold (M, g) is called of hyperbolic type if there exists an
another Riemannian metric g0 such that (M, g0) has a strictly negative curvature.

Note that, in dimension 2, an orientable manifold M is of hyperbolic type if and only
if its genus is ≥ 2.

We say that a function f : R+ → R+ is of purely exponential type if there exist
constants a > 1 and r0 > 0 such that

1

a
≤ f(r)

ehr
≤ a ∀r ≥ r0,

for some constant h > 0. The real number h is called the exponential factor of f .
In 1969, Margulis proved, for suitable constant h > 0, the existence of

a(p) := lim
r→∞

vol S(p, r)

ehr

at each point p in manifolds of strictly negative curvature and that the function a is
continuous (see [21]). Clearly, this result implies purely exponential growth of volume of
geodesic spheres.

If (M, g) is a compact Riemannian manifold, Manning has introduced an interesting
asymptotic invariant (volume entropy) hg given as follows : if vol Bg(p, r) denotes the
volume of the geodesic ball Bg(p, r) with centre p and radius r in the universal Riemannian
covering X of (M, g), then we have

hg := lim
r→∞

log vol Bg(p, r)

r
,

where the limit on the right hand side exists for all p ∈ X and, in fact, is independent
of p. Manning showed that, in the case of non positive curvature, hg coincides with the
topological entropy (see [20]).

In 1997, using the notions of Busemann density and Patterson Sullivan measure, G.
Knieper proved the following result (see [19]) :
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If (M, g0) is a compact rank-1 Riemannian manifold of non-positive curvature and X0

its universal Riemannian covering, there exist constants a0 ≥ 1 and r0 ≥ 0 such that

1

a0

≤ vol Sg0(p, r)

ehg0r
≤ a0 ∀r ≥ r0,

where hg0 is the volume entropy of (M, g0) and Sg0(p, r) is the geodesic sphere in X0 with
centre p and radius r.

The main result of this paper is :

Theorem 1.1. Let (M, g) be a compact Riemannian manifold of hyperbolic type and X
be its universal Riemannian covering. Then the growth function of the volume of geodesic
balls of X is of purely exponential type with the volume entropy hg as exponential factor.

Remark 1.1. Note that the manifolds considered in Theorem 1.1 may have curvature
of both signs (see ([8], p.152) or ([15], p.199)). This result yields a sufficient condition
for the non existence of Riemannian metric with strictly negative curvature on a compact
manifold.

The paper is organized as follows : In section 2 we study the ideal boundary and the
Gromov boundary of a manifold of hyperbolic type. In section 3 we introduce a notion of
quasi-convex cocompact group which we use to prove Theorem 1.1.

2. Gromov and ideal boundaries of manifolds of hyperbolic type

Let recall first some basic notions about a compactification of Hadamard manifolds.

Definition 2.1. A connected, simply-connected and complete Riemannian manifold is
called Hadamard manifold.

Let (X0, g0) be a Hadamard manifold. Two geodesics c1, c2 : R → X0 are said to be
asymptotic, if there exists aconstant D ≥ 0 such that

dg0(c1(t), c2(t)) < D ∀t ≥ 0.

This defines an equivalence relation on the set of geodesics of X0.
An equivalence class of this relation is called point at infinity of X0. If c : R → X0

is a geodesic, its equivalence class is denoted by c(+∞). Let c−1 : R → X0 define by
c−1(t) := c(−t) ∀t ∈ R. The equivalence class of c−1 is denoted by c(−∞).

The ideal boundary X0(∞) of X0 is the set of equivalence classes of the geodesics of
X0.

One define a natural topology on the set X0 := X0 ∪X0(∞) as follows:
Let consider the set B(x, 1) = {v ∈ TxX0 | ‖v‖ ≤ 1} and the bijection

Φx : B(x, 1) −→ X0 = X0 ∪X0(∞)

v 7−→
{

expx(
‖v‖

1−‖v‖)v, si ‖v‖ < 1

cv(+∞) si ‖v‖ = 1
,

where cv is the geodesic satisfying cv(0) = x and ċv(0) = v. We have the following Lemma.

Lemma 2.0.1. Let (X0, g0) be a Hadamard manifold, x ∈ X0 and ξ ∈ X0(∞). Then
there exists a unique geodesic c : R → X0 satisfying c(0) = x and c(+∞) = ξ.

Proof. (see [2] or [8]). �
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For p ∈ X0, q1 and q2 ∈ X0 = X0 ∪X0(∞) with p 6= q1 and p 6= q2, we define

∠p(q1, q2) := ∠(ċpq1(0), ċpq2(0)),

where cpqi
: R → X0 is the geodesic joining the points p and qi if qi ∈ X0 and cpqi

(0) = p
and cpqi

(∞) = qi if qi ∈ X0(∞) and ∠(ċpq1(0), ċpq2(0)) is the angle subtended by the
vectors ċpq1(0) and ċpq2(0).

For p ∈ X0, ξ ∈ X0(∞), ε > 0 and R = 0, let

Γp(ξ, ε, R) := {q ∈ X0 = X0 ∪X0(∞) | q 6= p, ∠p(q, ξ) < ε and dg0(p, q) > R}
For a fixed point p ∈ X0, the set of all Γp(ξ, ε, R) and the open sets of X0 generate a
topology on X0 = X0 ∪X0(∞). This topology is called the cône topology. With respect
to this topology, the set X0 := X0∪X0(∞) is homeomorphic to a closed n-ball in Rn (see
[2] or [8]). The induced topology on X0(∞) is called the sphere topology.

Definition 2.2. Let (X1, d1) and (X2, d2) be two metric spaces. A map φ : X1 −→ X2 is
called a (A, α)−quasi-isometric map, for some constants A > 1 and α > 0 if :

1

A
d1(x, y)− α ≤ d2(φ(x), φ(y)) ≤ Ad1(x, y) + α ∀x, y ∈ X1.

In a metric space X, a (A, α)−quasi-geodesic (resp. (A, α)−quasi-geodesic ray) is a
(A, α)−quasi-isometric map φ : R −→ X (resp. φ : R+ −→ X).

Definition 2.3. Let (X, d) be a metric space, E and F subsets of X. The Hausdorff
distance dH is defined by :

dH(E, F ) := inf
{
r > 0 / E ⊂ Tr(F ) and F ⊂ Tr(E)

}
where

Tr(G) := {x ∈ X / d(x, G) ≤ r}. ∀G ⊂ X

Theorem 2.1. (Morse Lemma)
Let (X0, g0) be a Hadamard manifold with sectional curvature KX0 ≤ −k2

0 < 0 for some
constant k0 > 0. Then for each (A, α)−quasi-geodesic (resp. (A, α)−quasi-geodesic ray)
φ : R −→ X0 (resp. φ : R+ −→ X0), there exists a geodesic (resp. geodesic ray) c : R −→
X0 (resp. c : R+ −→ X0) such that dH(c(R), φ(R)) ≤ r0 (resp. dH(c(R+), φ(R+)) ≤ r0);
r0 depends only on A, α and k0.

Proof. (see [16]) �

Definition 2.4. Let (X, d) be a metric space with a reference point x0. The Gromov
product of the points x and y of X with respect to x0 is the nonnegative real number
(x · y)x0 defined by :

(x · y)x0 =
1

2
{d(x, x0) + d(y, x0)− d(x, y)}.

A metric space (X, d) is said to be a δ-hyperbolic space for some constant δ ≥ 0, if

(x · y)x0 ≥ min{(x · z)x0 ; (y · z)x0} − δ

for all x, y, z and every choice of reference point x0. We call X a Gromov hyperbolic space
if it is a δ-hyperbolic space for some δ ≥ 0. The usual hyperbolic space Hn is a δ−hyperbolic
space, where δ = log 3. More generally, every Hadamard manifold with sectional curvature
≤ −k2 for some constant k > 0 is a δ-hyperbolic space, where δ = k−1 log 3 (see [1], [5],
[12] or [13]).
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Lemma 2.1.1. Let (X, d) be a complete geodesic δ-hyperbolic space, x0 a reference point
in X, x and y two points of X. Then

d(x, γxy)− 4δ ≤ (x · y)x0 ≤ d(x, γxy)

for every geodesic segment γxy joining x and y.

Proof. (see [5] or [6]). �

Now let X be a Gromov hyperbolic manifold, x0 a reference point in X. We say that
the sequence (xi)i∈N of points in X converges at infinity if

lim
i,j→∞

(xi · xj)x0 = ∞.

If x1 is another reference point in X,

(x · y)x0 − d(x0, x1) ≤ (x · y)x1 ≤ (x · y)x0 + d(x0, x1).

Then the definition of the sequence that converges at infinity depends not on the choice of
the reference point. Let recall the following equivalence relation R on the set of sequences
of points in X that converge at infinity :

(xi)R(yj) ⇐⇒ lim
i,j→∞

(xi · yj)x0 = ∞.

The Gromov boundary XG(∞) of X is the set of the equivalence classes of sequences that
converge at infinity.

Let X be a simply connected Riemannian manifold which is a Gromov hyperbolic space.
One defines on the set X∪ XG(∞) a topology as follows (see [5] page 22 or [12] page 122)
:

(1) if x ∈ X, a sequence (xi)i∈N converges to x with respect to the topology of X.
(2) if (xi)i∈N defines a point ξ ∈ XG(∞),(xi)i∈N converges to ξ.
(3) For η ∈ XG(∞) and k > 0, let

Vk(η) :=
{
y ∈ X ∪XG(∞) / (y · η)x0 > k

}
,

where

(x · y)x0 = inf
{

lim inf
i→∞

(xi · yi)x0 / xi → x, yi → y
}

for x and y elements of X∪ XG(∞).

The set of all Vk(η) and the open metric balls of X generate a topology on X∪ XG(∞).
With respect to this topology, X is dense in X∪ XG(∞) and X∪ XG(∞) is compact.

Lemma 2.1.2. (see [6]) Let X be a δ-hyperbolic space. Then

(1) Each geodesic γ : R −→X defines two distinct points γ(+∞) and γ(−∞).
(2) For each (η, x) ∈ XG(∞)× X, there exists a geodesic ray γ such that γ(0) = x and

γ(+∞) = η. For any other geodesic ray γ, with γ,(0) = γ(0) = x and γ(+∞) =
γ,(+∞) = η we have d(γ,(t), γ(t)) ≤ 4δ for all t ≥ 0.

Definition 2.5. Let ξ ∈ XG(∞) and c : R+ −→ X be a minimal geodesic ray satisfying
c(+∞) = ξ. The function

bc(x) := lim
t→∞

(d(x, c(t))− t)

is well defined on X and is called the Busemann function for the geodesic c.
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Lemma 2.1.3. (see [6]) Let X be a δ−hyperbolic space, ξ ∈ XG(∞), x, y ∈ X and c a
geodesic ray with c(0) = x and c(+∞) = ξ. Then there exists a neighbourhood V of ξin
X ∪XG(∞) such that

|bc(y)− (d(z, y)− d(z, x))| ≤ K for all z ∈ V ∩X,

where bc is the busemann function for the geodesic c and K is a constant depending only
on δ.

Lemma 2.1.4. Let X1 be a metric space and (X2, d2) be a geodesic Gromov hyperbolic
space. If there exists a quasi-isometric map φ : X1 −→ X2, then X1 is also a Gromov
hyperbolic space. Moreover, if the map

x 7−→ d2(x, φ(X1))

is bounded above, XG
1 (∞) ' XG

2 (∞).

Proof. (see [5]) . �

Now let (M, g) be a compact Riemannian manifold of hyperbolic type and X be its
universal Riemannian covering. Let g0 denotes an associated metric of strictly negative
curvature on M. The universal Riemannian covering X0 of (M, g0) is a Hadamard manifold
satisfying KX0 ≤ −k2

0 < 0 for some constant k0 > 0. Then X0 and X are Gromov
hyperbolic spaces. Moreover, XG(∞) ' XG

0 (∞).
Two geodesic rays c and c, are said to be asymptotic if there exists a constant D ≥ 0

such that dH(c(R+), c,(R+)) ≤ D. This defines an equivalence relation on the set of
minimizing g−geodesic rays of X. Let X(∞) be the set of equivalence classes of asymptotic
minimizing g−geodesic rays. For each minimizing g−geodesic ray c of X, it follows from
Morse Lemma that there exists a g0−geodesic ray c0 such that dH(c(R+), c0(R+)) ≤ r0,
where r0 is the constant in Morse Lemma. Let [c] be the equivalence classe of minimizing
g−geodesic ray c and [c0] be the equivalence classe of the g0−geodesic c0. The map f
defines by :

f : X(∞) −→ X0(∞)
[c] 7−→ [c0]

is bijective. Then f defines on X(∞) a natural topology with respect to which X(∞)
and X0(∞) are homeomorphic i.e. X(∞) ' X0(∞) (see [9]).

Lemma 2.1.5. Let X0 be a Hadamard manifold with sectional curvature KX0 ≤ −k2
0 <

0 for some constant k0 > 0. There exists a natural homeomorphism

φ : X0 ∪XG
0 (∞) −→ X0 ∪X0(∞).

In particular, XG
0 (∞) ' X0(∞).

Proof. (see [4]). �

Using Morse lemma, Theorem 2.1. and the properties of the ideal boundaries, we obtain
the following lemma :

Lemma 2.1.6. Let (M, g) be a compact Riemannian manifold of hyperbolic type and X
be its universal Riemannian covering. Let g0 be an associated metric of strictly negative
curvature on M and X0 be the universal Riemannian covering of (M, g0). We have

X(∞) ' X0(∞) ' XG
0 (∞) ' XG(∞).
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3. The growth rate of volume of balls in manifolds of hyperbolic type

Definition 3.1. Let (X, d) be a gromov hyperbolic manifold with reference point x0 and
Γ be a discrete and infinite subgroup of the isometry group Iso(X)of X. For a given point
x ∈ X, the limit set Λg(Γ, x) is the set of the accumulation points of the orbit Γx in
XG(∞).

Let (X, d) be a metric space and Γ be a discrete and infinite subgroup of the isometry
group Iso(X) of X. For x0, x ∈ X and s ∈ R,

Ps(x, x0) :=
∑
γ∈Γ

e−sd(x,γx0)

denotes the Poincaré series associated to Γ. The number

α := inf {s ∈ R/Ps(x, x0) < ∞}

is called the critical exponent of Γ and is independent of x and x0. The group Γ is called of
divergence type if the Poincaré series diverges for s = α. The following lemma introduces
a usefull modification (due to Patterson) of the Poincaré series if Γ is not of divergence
type.

Lemma 3.0.7. Let Γ be a discrete group with critical exponent α. There exists a function
f : R+ −→ R+which is continuous, nondecreasing and such that

for all a > 0, lim
r→+∞

f(r + a)

f(r)
= 1

and the modified series

P̃s(x, x0) :=
∑
γ∈Γ

f(d(x, γx0))e
−sd(x,γx0)

converges for s > α and diverges for s ≤ α.

Proof. (see [23]). �

Now let (M, g) be a compact Riemannian manifold of hyperbolic type and X be its
universal Riemannian covering. Let g0 denote a metric of strictly negative curvature on
M. The universal Riemannian covering X0 of (M, g0) is a Hadamard manifold satisfying
KX0 ≤ −k2

0 < 0 for some constant k0 > 0. Let Γ be the group of deck transformations of
X and αg0 be its critical exponent with respect to the metric g0. It follows from theorem
5.1 in [19] that :

αg0 = hg0 := lim
r→∞

log vol Bg0(p, r)

r
.

The fact that M is compact implies the existence of a constant λ ≥ 1 such that the critical
exponent αg of Γ with respect to the metric g belongs to [λ−1hg0 , λhg0 ] ⊂ R∗+ (see [18]).

Lemma 3.0.8. Let (M, g) be a compact Riemannian manifold of hyperbolic type, X be
its universal Riemannian covering and Γ be the group of deck transformations of X. Then
:

(1) Λg(Γ, x) = Γx ∩XG(∞).
(2) γ(Λg(Γ, x)) = Λg(Γ, x) for all γ ∈ Γ and x ∈ X.
(3) Λg(Γ, x) is independent of x.
(4) Λg(Γ, x) = XG(∞)
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Proof. Using the definition of Λg(Γ, x), we can easily check the properties (1) and (2).
3. For all ξ ∈ Λg(Γ, x), by defnition there is a sequence (γn)n of points of Γ such that

limn→∞ γnx = ξ. Then :

lim
m,n→∞

(γnx · γmx)x0 = lim
m,n→∞

[d(γnx, x0) + d(γmx, x0)− d(γnx, γmx)] = +∞.

For all y ∈ X, we have :

2(γnx · γny)x0 = d(γnx, x0) + d(γny, x0)− d(γnx, γny)
≥ d(γnx, x0) + d(γny, x0)− d(x, y)
≥ d(γnx, x0)− d(x, y).

and
d(γnx, x0) ≤ d(γnx, x) + d(γny, y) + d(γny, x0)

≤ d(γnx, x0)− d(x, y).

Hence,

lim
n→∞

(γnx · γny)x0 = +∞ and lim
n→∞

γny = ξ.

4. Let g0 denote a metric of strictly negative curvature on M. The universal Riemannian
covering X0 of (M, g0) is a Hadamard manifold satisfying KX0 ≤ −k2

0 < 0 for some
constant k0 > 0. Then Λg0(Γ, x) = X0(∞) (see [18]). Finally, using lemma 2.1.6 we
obtain that Λg(Γ, x) = XG(∞). �

Let (X, g) be a Gromov hyperbolic manifold, Γ a non trivial subgroup of Iso(X) and
the limit set Λg(Γ, x) of the orbit Γx in XG(∞).

The Gromov hull E(Λg(Γ, x)) of Λg(Γ, x) is the subset of X defined by the collection
of the images of the goedesics c : R −→ X satisfying c(−∞) ∈ Λg(Γ, x) and c(+∞) ∈
Λg(Γ, x).

Definition 3.2. A non trivial subgroup Γ of the isometry group Iso(X) is quasi-convex
cocompact if E(Λg(Γ, x))/Γ is compact.

The following lemma is due to Coornaert (see [6]).

Lemma 3.0.9. Let (X, g) be a Gromov hyperbolic manifold with reference point x0, Γ
be a quasi-convex cocompact subgroup of the isometry group Iso(X) with finite critical
exponent αg. Then, for all x ∈ X, there exists a constant Cx ≥ 1 such that :

1

Cx

eαgr ≤ nΓx(r) ≤ Cxe
αgr

for all r ≥ 0, where

nΓx(r) := #{γx ∈ Γx | d(γx, x0) ≤ r}.

Theorem 3.1. Let (M, g) be compact Riemannian manifold of hyperbolic type, X be its
universal Riemannian covering and Γ be the group of deck transformations of X with
critical exponent αg. Then, the growth function of the volume of the geodesic balls of X
is of purely exponential type with αg as exponential factor.

Futhermore, we have :

αg = hg := lim
r→∞

log voln(Bg(x0, r))

r
.
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Proof. By lemma 3.0.8, we have Λg(Γ, x) = XG(∞). Then, the Gromov hull E(Λg(Γ, x)) of
Λg(Γ, x) is equal to X. This implies that Γ is a quasi-convex cocompact subgroup of
Iso(X). Let Γx be an orbit of Γ in X.

For all r ≥ 0, let nΓx defined by :

nΓx = #{γx | d(γx, x0) ≤ r}.

Let consider the map Kr definied by:

Kr : R+ −→ R+

x 7−→
{

1 if 0 ≤ x ≤ r
0 if x > r.

Let F be a fundamental domain of Γ in X. We have :

voln(Bg(x0, r)) =

∫
X

Kr(d(x0, x))dvoln(x)

=
∑
γ∈Γ

∫
γF

Kr(d(x0, x))dvoln(x)

=
∑
γ∈Γ

∫
F

Kr(d(x0, γx))dvoln(x)

=

∫
F

∑
γ∈Γ

Kr(d(x0, γx))dvoln(x)

=

∫
F

nΓx(r)dvoln(x).

Let x1 be a fixed point in F and D = diamF . For all γ ∈ Γ and x ∈ F , we have :

d(γx, x0) ≤ r =⇒ d(γx1, x0) ≤ r + D

and for r ≥ D,

d(γx1, x0) ≤ r −D =⇒ d(γx, x0) ≤ r.

Then,

nΓx1(r −D) ≤ nΓx(r) ≤ nΓx1(r + D) for all x ∈ F and r ≥ D.

By lemma 3.0.9, there is a constant Cx1 ≥ 1 such that :

1

Cx1

eαg(r−D) ≤ nΓx(r) ≤ Cx1e
αg(r+D)

for all r ≥ D and x ∈ F . Then, there exist constants a1 > 1 and r1 := D such that :

1

a1

≤ voln(Bg(x0, r))

eαgr
≤ a1 for all r ≥ r1.

�

Corollary 3.1.1. Let (M, g) be a compact orientable surface of genus ≥ 2 and X be its
universal Riemannian covering. Then the growth function of the volume of geodesic balls
of X is of pure exponential type.
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