IMHOTEP, VOL. 6, N 1 (2005), 9-17

THE GROWTH FUNCTION OF THE VOLUME OF GEODESIC BALLS IN RIEMANNIAN MANIFOLDS OF HYPERBOLIC TYPE

JEAN-PIERRE EZIN AND OGOUYANDJOU CARLOS

Abstract

Let (M, g) be a compact Riemannian manifold of hyperbolic type and X be its universal Riemannian covering. We study in this paper, the growth function of the geodesic balls of X. We show that the critical exponent of the group of deck transformations of X is equal to the volume entropy h_{g} of M.

1. Introduction

A compact Riemannian manifold (M, g) is called of hyperbolic type if there exists an another Riemannian metric g_{0} such that $\left(M, g_{0}\right)$ has a strictly negative curvature.

Note that, in dimension 2, an orientable manifold M is of hyperbolic type if and only if its genus is ≥ 2.

We say that a function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is of purely exponential type if there exist constants $a>1$ and $r_{0}>0$ such that

$$
\frac{1}{a} \leq \frac{f(r)}{e^{h r}} \leq a \quad \forall r \geq r_{0}
$$

for some constant $h>0$. The real number h is called the exponential factor of f.
In 1969, Margulis proved, for suitable constant $h>0$, the existence of

$$
a(p):=\lim _{r \rightarrow \infty} \frac{\text { vol } S(p, r)}{e^{h r}}
$$

at each point p in manifolds of strictly negative curvature and that the function a is continuous (see [21]). Clearly, this result implies purely exponential growth of volume of geodesic spheres.

If (M, g) is a compact Riemannian manifold, Manning has introduced an interesting asymptotic invariant (volume entropy) h_{g} given as follows : if vol $B_{g}(p, r)$ denotes the volume of the geodesic ball $B_{g}(p, r)$ with centre p and radius r in the universal Riemannian covering X of (M, g), then we have

$$
h_{g}:=\lim _{r \rightarrow \infty} \frac{\log \operatorname{vol} B_{g}(p, r)}{r},
$$

where the limit on the right hand side exists for all $p \in X$ and, in fact, is independent of p. Manning showed that, in the case of non positive curvature, h_{g} coincides with the topological entropy (see [20]).

In 1997, using the notions of Busemann density and Patterson Sullivan measure, G. Knieper proved the following result (see [19]) :

[^0]If (M, g_{0}) is a compact rank- 1 Riemannian manifold of non-positive curvature and X_{0} its universal Riemannian covering, there exist constants $a_{0} \geq 1$ and $r_{0} \geq 0$ such that

$$
\frac{1}{a_{0}} \leq \frac{\text { vol } S_{g_{0}}(p, r)}{e^{h_{g_{0}} r}} \leq a_{0} \quad \forall r \geq r_{0}
$$

where $h_{g_{0}}$ is the volume entropy of $\left(M, g_{0}\right)$ and $S_{g_{0}}(p, r)$ is the geodesic sphere in X_{0} with centre p and radius r.

The main result of this paper is :
Theorem 1.1. Let (M, g) be a compact Riemannian manifold of hyperbolic type and X be its universal Riemannian covering. Then the growth function of the volume of geodesic balls of X is of purely exponential type with the volume entropy h_{g} as exponential factor.

Remark 1.1. Note that the manifolds considered in Theorem 1.1 may have curvature of both signs (see ([8], p.152) or ([15], p.199)). This result yields a sufficient condition for the non existence of Riemannian metric with strictly negative curvature on a compact manifold.

The paper is organized as follows : In section 2 we study the ideal boundary and the Gromov boundary of a manifold of hyperbolic type. In section 3 we introduce a notion of quasi-convex cocompact group which we use to prove Theorem 1.1.

2. Gromov and ideal boundaries of manifolds of hyperbolic type

Let recall first some basic notions about a compactification of Hadamard manifolds.
Definition 2.1. A connected, simply-connected and complete Riemannian manifold is called Hadamard manifold.

Let $\left(X_{0}, g_{0}\right)$ be a Hadamard manifold. Two geodesics $c_{1}, c_{2}: \mathbb{R} \rightarrow X_{0}$ are said to be asymptotic, if there exists aconstant $D \geq 0$ such that

$$
d_{g_{0}}\left(c_{1}(t), c_{2}(t)\right)<D \quad \forall t \geq 0
$$

This defines an equivalence relation on the set of geodesics of X_{0}.
An equivalence class of this relation is called point at infinity of X_{0}. If $c: \mathbb{R} \rightarrow X_{0}$ is a geodesic, its equivalence class is denoted by $c(+\infty)$. Let $c^{-1}: \mathbb{R} \rightarrow X_{0}$ define by $c^{-1}(t):=c(-t) \quad \forall t \in \mathbb{R}$. The equivalence class of c^{-1} is denoted by $c(-\infty)$.

The ideal boundary $X_{0}(\infty)$ of X_{0} is the set of equivalence classes of the geodesics of X_{0}.

One define a natural topology on the set $\bar{X}_{0}:=X_{0} \cup X_{0}(\infty)$ as follows:
Let consider the set $B(x, 1)=\left\{v \in T_{x} X_{0} \mid\|v\| \leq 1\right\}$ and the bijection

$$
\begin{array}{r}
\Phi_{x}: B(x, 1) \longrightarrow \bar{X}_{0}=X_{0} \cup X_{0}(\infty) \\
v \longmapsto\left\{\begin{array}{rr}
\exp _{x}\left(\frac{\|v\|}{1-\|v\|}\right) v, & \text { si }\|v\|<1 \\
c_{v}(+\infty) & \text { si }\|v\|=1
\end{array},\right.
\end{array}
$$

where c_{v} is the geodesic satisfying $c_{v}(0)=x$ and $\dot{c}_{v}(0)=v$. We have the following Lemma.
Lemma 2.0.1. Let $\left(X_{0}, g_{0}\right)$ be a Hadamard manifold, $x \in X_{0}$ and $\xi \in X_{0}(\infty)$. Then there exists a unique geodesic $c: \mathbb{R} \rightarrow X_{0}$ satisfying $c(0)=x$ and $c(+\infty)=\xi$.

Proof. (see [2] or [8]).

For $p \in X_{0}, q_{1}$ and $q_{2} \in \bar{X}_{0}=X_{0} \cup X_{0}(\infty)$ with $p \neq q_{1}$ and $p \neq q_{2}$, we define

$$
\angle_{p}\left(q_{1}, q_{2}\right):=\angle\left(\dot{c}_{p q_{1}}(0), \dot{c}_{p q_{2}}(0)\right),
$$

where $c_{p q_{i}}: \mathbb{R} \rightarrow X_{0}$ is the geodesic joining the points p and q_{i} if $q_{i} \in X_{0}$ and $c_{p q_{i}}(0)=p$ and $c_{p q_{i}}(\infty)=q_{i}$ if $q_{i} \in X_{0}(\infty)$ and $\angle\left(\dot{c}_{p q_{1}}(0), \dot{c}_{p q_{2}}(0)\right)$ is the angle subtended by the vectors $\dot{c}_{p q_{1}}(0)$ and $\dot{c}_{p q_{2}}(0)$.

For $p \in X_{0}, \xi \in X_{0}(\infty), \epsilon>0$ and $R=0$, let

$$
\Gamma_{p}(\xi, \epsilon, R):=\left\{q \in \bar{X}_{0}=X_{0} \cup X_{0}(\infty) \mid q \neq p, \angle_{p}(q, \xi)<\epsilon \text { and } d_{g_{0}}(p, q)>R\right\}
$$

For a fixed point $p \in X_{0}$, the set of all $\Gamma_{p}(\xi, \epsilon, R)$ and the open sets of X_{0} generate a topology on $\bar{X}_{0}=X_{0} \cup X_{0}(\infty)$. This topology is called the cône topology. With respect to this topology, the set $\bar{X}_{0}:=X_{0} \cup X_{0}(\infty)$ is homeomorphic to a closed n-ball in \mathbb{R}^{n} (see [2] or [8]). The induced topology on $X_{0}(\infty)$ is called the sphere topology.
Definition 2.2. Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be two metric spaces. A map $\phi: X_{1} \longrightarrow X_{2}$ is called $a(A, \alpha)$-quasi-isometric map, for some constants $A>1$ and $\alpha>0$ if :

$$
\frac{1}{A} d_{1}(x, y)-\alpha \leq d_{2}(\phi(x), \phi(y)) \leq A d_{1}(x, y)+\alpha \quad \forall x, y \in X_{1}
$$

In a metric space $X, a(A, \alpha)$-quasi-geodesic (resp. (A, α)-quasi-geodesic ray) is a (A, α)-quasi-isometric map $\phi: \mathbb{R} \longrightarrow X$ (resp. $\left.\phi: \mathbb{R}^{+} \longrightarrow X\right)$.
Definition 2.3. Let (X, d) be a metric space, E and F subsets of X. The Hausdorff distance d_{H} is defined by :

$$
d_{H}(E, F):=\inf \left\{r>0 / E \subset T_{r}(F) \text { and } F \subset T_{r}(E)\right\}
$$

where

$$
T_{r}(G):=\{x \in X / d(x, G) \leq r\} . \quad \forall G \subset X
$$

Theorem 2.1. (Morse Lemma)
Let $\left(X_{0}, g_{0}\right)$ be a Hadamard manifold with sectional curvature $K_{X_{0}} \leq-k_{0}^{2}<0$ for some constant $k_{0}>0$. Then for each (A, α)-quasi-geodesic (resp. (A, α)-quasi-geodesic ray) $\phi: \mathbb{R} \longrightarrow X_{0}$ (resp. $\phi: \mathbb{R}^{+} \longrightarrow X_{0}$), there exists a geodesic (resp. geodesic ray) c: $\mathbb{R} \longrightarrow$ $X_{0}\left(\right.$ resp. $\left.c: \mathbb{R}^{+} \longrightarrow X_{0}\right)$ such that $d_{H}(c(\mathbb{R}), \phi(\mathbb{R})) \leq r_{0}\left(\right.$ resp. $\left.d_{H}\left(c\left(\mathbb{R}^{+}\right), \phi\left(\mathbb{R}^{+}\right)\right) \leq r_{0}\right)$; r_{0} depends only on A, α and k_{0}.

Proof. (see [16])
Definition 2.4. Let (X, d) be a metric space with a reference point x_{0}. The Gromov product of the points x and y of X with respect to x_{0} is the nonnegative real number $(x \cdot y)_{x_{0}}$ defined by :

$$
(x \cdot y)_{x_{0}}=\frac{1}{2}\left\{d\left(x, x_{0}\right)+d\left(y, x_{0}\right)-d(x, y)\right\} .
$$

A metric space (X, d) is said to be a δ-hyperbolic space for some constant $\delta \geq 0$, if

$$
(x \cdot y)_{x_{0}} \geq \min \left\{(x \cdot z)_{x_{0}} ;(y \cdot z)_{x_{0}}\right\}-\delta
$$

for all x, y, z and every choice of reference point x_{0}. We call X a Gromov hyperbolic space if it is a δ-hyperbolic space for some $\delta \geq 0$. The usual hyperbolic space \mathbb{H}^{n} is a δ-hyperbolic space, where $\delta=\log 3$. More generally, every Hadamard manifold with sectional curvature $\leq-k^{2}$ for some constant $k>0$ is a δ-hyperbolic space, where $\delta=k^{-1} \log 3$ (see [1], [5], [12] or [13]).

Lemma 2.1.1. Let (X, d) be a complete geodesic δ-hyperbolic space, x_{0} a reference point in X, x and y two points of X. Then

$$
d\left(x, \gamma_{x y}\right)-4 \delta \leq(x \cdot y)_{x_{0}} \leq d\left(x, \gamma_{x y}\right)
$$

for every geodesic segment $\gamma_{x y}$ joining x and y.
Proof. (see [5] or [6]).
Now let X be a Gromov hyperbolic manifold, x_{0} a reference point in X. We say that the sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$ of points in X converges at infinity if

$$
\lim _{i, j \rightarrow \infty}\left(x_{i} \cdot x_{j}\right)_{x_{0}}=\infty
$$

If x_{1} is another reference point in X,

$$
(x \cdot y)_{x_{0}}-d\left(x_{0}, x_{1}\right) \leq(x \cdot y)_{x_{1}} \leq(x \cdot y)_{x_{0}}+d\left(x_{0}, x_{1}\right) .
$$

Then the definition of the sequence that converges at infinity depends not on the choice of the reference point. Let recall the following equivalence relation \mathcal{R} on the set of sequences of points in X that converge at infinity :

$$
\left(x_{i}\right) \mathcal{R}\left(y_{j}\right) \Longleftrightarrow \lim _{i, j \rightarrow \infty}\left(x_{i} \cdot y_{j}\right)_{x_{0}}=\infty .
$$

The Gromov boundary $X^{G}(\infty)$ of X is the set of the equivalence classes of sequences that converge at infinity.

Let X be a simply connected Riemannian manifold which is a Gromov hyperbolic space. One defines on the set $X \cup X^{G}(\infty)$ a topology as follows (see [5] page 22 or [12] page 122) :
(1) if $x \in X$, a sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$ converges to x with respect to the topology of X.
(2) if $\left(x_{i}\right)_{i \in \mathbb{N}}$ defines a point $\xi \in X^{G}(\infty),\left(x_{i}\right)_{i \in \mathbb{N}}$ converges to ξ.
(3) For $\eta \in X^{G}(\infty)$ and $k>0$, let

$$
V_{k}(\eta):=\left\{y \in X \cup X^{G}(\infty) /(y \cdot \eta)_{x_{0}}>k\right\},
$$

where

$$
(x \cdot y)_{x_{0}}=\inf \left\{\liminf _{i \rightarrow \infty}\left(x_{i} \cdot y_{i}\right)_{x_{0}} / x_{i} \rightarrow x, y_{i} \rightarrow y\right\}
$$

for x and y elements of $X \cup X^{G}(\infty)$.
The set of all $V_{k}(\eta)$ and the open metric balls of X generate a topology on $X \cup X^{G}(\infty)$. With respect to this topology, X is dense in $X \cup X^{G}(\infty)$ and $X \cup X^{G}(\infty)$ is compact.

Lemma 2.1.2. (see [6]) Let X be a δ-hyperbolic space. Then
(1) Each geodesic $\gamma: \mathbb{R} \longrightarrow X$ defines two distinct points $\gamma(+\infty)$ and $\gamma(-\infty)$.
(2) For each $(\eta, x) \in X^{G}(\infty) \times X$, there exists a geodesic ray γ such that $\gamma(0)=x$ and $\gamma(+\infty)=\eta$. For any other geodesic ray γ, with $\gamma^{\prime}(0)=\gamma(0)=x$ and $\gamma(+\infty)=$ $\gamma^{\prime}(+\infty)=\eta$ we have $d\left(\gamma^{\prime}(t), \gamma(t)\right) \leq 4 \delta$ for all $t \geq 0$.

Definition 2.5. Let $\xi \in X^{G}(\infty)$ and $c: \mathbb{R}_{+} \longrightarrow X$ be a minimal geodesic ray satisfying $c(+\infty)=\xi$. The function

$$
b_{c}(x):=\lim _{t \rightarrow \infty}(d(x, c(t))-t)
$$

is well defined on X and is called the Busemann function for the geodesic c.

Lemma 2.1.3. (see [6]) Let X be a δ-hyperbolic space, $\xi \in X^{G}(\infty), x, y \in X$ and c a geodesic ray with $c(0)=x$ and $c(+\infty)=\xi$. Then there exists a neighbourhood \mathcal{V} of ξ in $X \cup X^{G}(\infty)$ such that

$$
\left|b_{c}(y)-(d(z, y)-d(z, x))\right| \leq K \text { for all } z \in \mathcal{V} \cap X
$$

where b_{c} is the busemann function for the geodesic c and K is a constant depending only on δ.

Lemma 2.1.4. Let X_{1} be a metric space and $\left(X_{2}, d_{2}\right)$ be a geodesic Gromov hyperbolic space. If there exists a quasi-isometric map $\phi: X_{1} \longrightarrow X_{2}$, then X_{1} is also a Gromov hyperbolic space. Moreover, if the map

$$
x \longmapsto d_{2}\left(x, \phi\left(X_{1}\right)\right)
$$

is bounded above, $X_{1}^{G}(\infty) \simeq X_{2}^{G}(\infty)$.

Proof. (see [5]) .
Now let (M, g) be a compact Riemannian manifold of hyperbolic type and X be its universal Riemannian covering. Let g_{0} denotes an associated metric of strictly negative curvature on M. The universal Riemannian covering X_{0} of $\left(M, g_{0}\right)$ is a Hadamard manifold satisfying $K_{X_{0}} \leq-k_{0}^{2}<0$ for some constant $k_{0}>0$. Then X_{0} and X are Gromov hyperbolic spaces. Moreover, $X^{G}(\infty) \simeq X_{0}^{G}(\infty)$.

Two geodesic rays c and c, are said to be asymptotic if there exists a constant $D \geq 0$ such that $d_{H}\left(c\left(\mathbb{R}_{+}\right), c^{\prime}\left(\mathbb{R}_{+}\right)\right) \leq D$. This defines an equivalence relation on the set of minimizing g-geodesic rays of X. Let $X(\infty)$ be the set of equivalence classes of asymptotic minimizing g-geodesic rays. For each minimizing g-geodesic ray c of X, it follows from Morse Lemma that there exists a g_{0}-geodesic ray c_{0} such that $d_{H}\left(c\left(\mathbb{R}_{+}\right), c_{0}\left(\mathbb{R}_{+}\right)\right) \leq r_{0}$, where r_{0} is the constant in Morse Lemma. Let [c] be the equivalence classe of minimizing g-geodesic ray c and $\left[c_{0}\right]$ be the equivalence classe of the g_{0}-geodesic c_{0}. The map f defines by :

$$
\begin{array}{llll}
f: \begin{array}{lll}
X(\infty) & \longrightarrow & X_{0}(\infty) \\
{[c\rceil} & \longmapsto & \left.\longmapsto c_{0}\right\rceil
\end{array}
\end{array}
$$

is bijective. Then f defines on $X(\infty)$ a natural topology with respect to which $X(\infty)$ and $X_{0}(\infty)$ are homeomorphic i.e. $X(\infty) \simeq X_{0}(\infty)$ (see [9]).
Lemma 2.1.5. Let X_{0} be a Hadamard manifold with sectional curvature $K_{X_{0}} \leq-k_{0}^{2}<$ 0 for some constant $k_{0}>0$. There exists a natural homeomorphism

$$
\phi: X_{0} \cup X_{0}^{G}(\infty) \longrightarrow X_{0} \cup X_{0}(\infty)
$$

In particular, $X_{0}^{G}(\infty) \simeq X_{0}(\infty)$.
Proof. (see [4]).
Using Morse lemma, Theorem 2.1. and the properties of the ideal boundaries, we obtain the following lemma:

Lemma 2.1.6. Let (M, g) be a compact Riemannian manifold of hyperbolic type and X be its universal Riemannian covering. Let g_{0} be an associated metric of strictly negative curvature on M and X_{0} be the universal Riemannian covering of $\left(M, g_{0}\right)$. We have

$$
X(\infty) \simeq X_{0}(\infty) \simeq X_{0}^{G}(\infty) \simeq X^{G}(\infty)
$$

3. The growth rate of volume of balls in manifolds of hyperbolic type

Definition 3.1. Let (X, d) be a gromov hyperbolic manifold with reference point x_{0} and Γ be a discrete and infinite subgroup of the isometry group Iso (X) of X. For a given point $x \in X$, the limit set $\Lambda^{g}(\Gamma, x)$ is the set of the accumulation points of the orbit Γx in $X^{G}(\infty)$.

Let (X, d) be a metric space and Γ be a discrete and infinite subgroup of the isometry group $\operatorname{Iso}(X)$ of X. For $x_{0}, x \in X$ and $s \in \mathbb{R}$,

$$
P_{s}\left(x, x_{0}\right):=\sum_{\gamma \in \Gamma} e^{-s d\left(x, \gamma x_{0}\right)}
$$

denotes the Poincaré series associated to Γ. The number

$$
\alpha:=\inf \left\{s \in \mathbb{R} / P_{s}\left(x, x_{0}\right)<\infty\right\}
$$

is called the critical exponent of Γ and is independent of x and x_{0}. The group Γ is called of divergence type if the Poincaré series diverges for $s=\alpha$. The following lemma introduces a usefull modification (due to Patterson) of the Poincaré series if Γ is not of divergence type.

Lemma 3.0.7. Let Γ be a discrete group with critical exponent α. There exists a function $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$which is continuous, nondecreasing and such that

$$
\text { for all } a>0, \quad \lim _{r \rightarrow+\infty} \frac{f(r+a)}{f(r)}=1
$$

and the modified series

$$
\tilde{P}_{s}\left(x, x_{0}\right):=\sum_{\gamma \in \Gamma} f\left(d\left(x, \gamma x_{0}\right)\right) e^{-s d\left(x, \gamma x_{0}\right)}
$$

converges for $s>\alpha$ and diverges for $s \leq \alpha$.
Proof. (see [23]).
Now let (M, g) be a compact Riemannian manifold of hyperbolic type and X be its universal Riemannian covering. Let g_{0} denote a metric of strictly negative curvature on M. The universal Riemannian covering X_{0} of $\left(M, g_{0}\right)$ is a Hadamard manifold satisfying $K_{X_{0}} \leq-k_{0}^{2}<0$ for some constant $k_{0}>0$. Let Γ be the group of deck transformations of X and $\alpha^{g_{0}}$ be its critical exponent with respect to the metric g_{0}. It follows from theorem 5.1 in [19] that:

$$
\alpha^{g_{0}}=h_{g_{0}}:=\lim _{r \rightarrow \infty} \frac{\log \operatorname{vol} B_{g_{0}}(p, r)}{r} .
$$

The fact that M is compact implies the existence of a constant $\lambda \geq 1$ such that the critical exponent α^{g} of Γ with respect to the metric g belongs to $\left[\lambda^{-1} h_{g_{0}}, \lambda h_{g_{0}}\right] \subset \mathbb{R}_{+}^{*}$ (see [18]).

Lemma 3.0.8. Let (M, g) be a compact Riemannian manifold of hyperbolic type, X be its universal Riemannian covering and Γ be the group of deck transformations of X. Then :
(1) $\Lambda^{g}(\Gamma, x)=\overline{\Gamma x} \cap X^{G}(\infty)$.
(2) $\gamma\left(\Lambda^{g}(\Gamma, x)\right)=\Lambda^{g}(\Gamma, x)$ for all $\gamma \in \Gamma$ and $x \in X$.
(3) $\Lambda^{g}(\Gamma, x)$ is independent of x.
(4) $\Lambda^{g}(\Gamma, x)=X^{G}(\infty)$

Proof. Using the definition of $\Lambda^{g}(\Gamma, x)$, we can easily check the properties (1) and (2).
3. For all $\xi \in \Lambda^{g}(\Gamma, x)$, by defnition there is a sequence $\left(\gamma_{n}\right)_{n}$ of points of Γ such that $\lim _{n \rightarrow \infty} \gamma_{n} x=\xi$. Then :

$$
\lim _{m, n \rightarrow \infty}\left(\gamma_{n} x \cdot \gamma_{m} x\right)_{x_{0}}=\lim _{m, n \rightarrow \infty}\left[d\left(\gamma_{n} x, x_{0}\right)+d\left(\gamma_{m} x, x_{0}\right)-d\left(\gamma_{n} x, \gamma_{m} x\right)\right]=+\infty
$$

For all $y \in X$, we have :

$$
\begin{aligned}
2\left(\gamma_{n} x \cdot \gamma_{n} y\right)_{x_{0}} & =d\left(\gamma_{n} x, x_{0}\right)+d\left(\gamma_{n} y, x_{0}\right)-d\left(\gamma_{n} x, \gamma_{n} y\right) \\
& \geq d\left(\gamma_{n} x, x_{0}\right)+d\left(\gamma_{n} y, x_{0}\right)-d(x, y) \\
& \geq d\left(\gamma_{n} x, x_{0}\right)-d(x, y) .
\end{aligned}
$$

and

$$
\begin{array}{rlr}
d\left(\gamma_{n} x, x_{0}\right) & \leq & d\left(\gamma_{n} x, x\right)+d\left(\gamma_{n} y, y\right)+d\left(\gamma_{n} y, x_{0}\right) \\
& \leq d\left(\gamma_{n} x, x_{0}\right)-d(x, y) .
\end{array}
$$

Hence,

$$
\lim _{n \rightarrow \infty}\left(\gamma_{n} x \cdot \gamma_{n} y\right)_{x_{0}}=+\infty \text { and } \lim _{n \rightarrow \infty} \gamma_{n} y=\xi .
$$

4. Let g_{0} denote a metric of strictly negative curvature on M. The universal Riemannian covering X_{0} of $\left(M, g_{0}\right)$ is a Hadamard manifold satisfying $K_{X_{0}} \leq-k_{0}^{2}<0$ for some constant $k_{0}>0$. Then $\Lambda^{g_{0}}(\Gamma, x)=X_{0}(\infty)$ (see [18]). Finally, using lemma 2.1.6 we obtain that $\Lambda^{g}(\Gamma, x)=X^{G}(\infty)$.

Let (X, g) be a Gromov hyperbolic manifold, Γ a non trivial subgroup of $I s o(X)$ and the limit set $\Lambda^{g}(\Gamma, x)$ of the orbit Γx in $X^{G}(\infty)$.

The Gromov hull $E\left(\Lambda^{g}(\Gamma, x)\right)$ of $\Lambda^{g}(\Gamma, x)$ is the subset of X defined by the collection of the images of the goedesics $c: \mathbb{R} \longrightarrow X$ satisfying $c(-\infty) \in \Lambda^{g}(\Gamma, x)$ and $c(+\infty) \in$ $\Lambda^{g}(\Gamma, x)$.

Definition 3.2. A non trivial subgroup Γ of the isometry group $\operatorname{Iso}(X)$ is quasi-convex cocompact if $E\left(\Lambda^{g}(\Gamma, x)\right) / \Gamma$ is compact.

The following lemma is due to Coornaert (see [6]).
Lemma 3.0.9. Let (X, g) be a Gromov hyperbolic manifold with reference point x_{0}, Γ be a quasi-convex cocompact subgroup of the isometry group $\operatorname{Iso}(X)$ with finite critical exponent α^{g}. Then, for all $x \in X$, there exists a constant $C_{x} \geq 1$ such that :

$$
\frac{1}{C_{x}} e^{\alpha^{g} r} \leq n_{\Gamma x}(r) \leq C_{x} e^{\alpha^{g} r}
$$

for all $r \geq 0$, where

$$
n_{\Gamma x}(r):=\#\left\{\gamma x \in \Gamma x \mid d\left(\gamma x, x_{0}\right) \leq r\right\} .
$$

Theorem 3.1. Let (M, g) be compact Riemannian manifold of hyperbolic type, X be its universal Riemannian covering and Γ be the group of deck transformations of X with critical exponent α^{g}. Then, the growth function of the volume of the geodesic balls of X is of purely exponential type with α^{g} as exponential factor.

Futhermore, we have :

$$
\alpha^{g}=h_{g}:=\lim _{r \rightarrow \infty} \frac{\log \operatorname{vol}_{n}\left(B_{g}\left(x_{0}, r\right)\right)}{r} .
$$

Proof. By lemma 3.0.8, we have $\Lambda^{g}(\Gamma, x)=X^{G}(\infty)$. Then, the Gromov hull $E\left(\Lambda^{g}(\Gamma, x)\right)$ of $\Lambda^{g}(\Gamma, x)$ is equal to X. This implies that Γ is a quasi-convex cocompact subgroup of $I s o(X)$. Let Γx be an orbit of Γ in X.

For all $r \geq 0$, let $n_{\Gamma x}$ defined by :

$$
n_{\Gamma x}=\#\left\{\gamma x \mid d\left(\gamma x, x_{0}\right) \leq r\right\} .
$$

Let consider the map K_{r} definied by:

$$
\begin{aligned}
K_{r}: \mathbb{R}_{+} & \longrightarrow \mathbb{R}_{+} \\
x & \longmapsto \begin{cases}1 & \text { if } 0 \leq x \leq r \\
0 & \text { if } x>r .\end{cases}
\end{aligned}
$$

Let \mathcal{F} be a fundamental domain of Γ in X. We have :

$$
\begin{aligned}
\operatorname{vol}_{n}\left(B_{g}\left(x_{0}, r\right)\right) & =\int_{X} K_{r}\left(d\left(x_{0}, x\right)\right) d \operatorname{vol}_{n}(x) \\
& =\sum_{\gamma \in \Gamma} \int_{\gamma \mathcal{F}} K_{r}\left(d\left(x_{0}, x\right)\right) d \operatorname{vol}_{n}(x) \\
& =\sum_{\gamma \in \Gamma} \int_{\mathcal{F}} K_{r}\left(d\left(x_{0}, \gamma x\right)\right) d \operatorname{vol}_{n}(x) \\
& =\int_{\mathcal{F}} \sum_{\gamma \in \Gamma} K_{r}\left(d\left(x_{0}, \gamma x\right)\right) d \operatorname{vol}_{n}(x) \\
& =\int_{\mathcal{F}} n_{\Gamma x}(r) d \operatorname{vol}_{n}(x) .
\end{aligned}
$$

Let x_{1} be a fixed point in \mathcal{F} and $D=\operatorname{diam} \mathcal{F}$. For all $\gamma \in \Gamma$ and $x \in \mathcal{F}$, we have :

$$
d\left(\gamma x, x_{0}\right) \leq r \Longrightarrow d\left(\gamma x_{1}, x_{0}\right) \leq r+D
$$

and for $r \geq D$,

$$
d\left(\gamma x_{1}, x_{0}\right) \leq r-D \Longrightarrow d\left(\gamma x, x_{0}\right) \leq r
$$

Then,

$$
n_{\Gamma x_{1}}(r-D) \leq n_{\Gamma x}(r) \leq n_{\Gamma x_{1}}(r+D) \quad \text { for all } \quad x \in \mathcal{F} \text { and } r \geq D
$$

By lemma 3.0.9, there is a constant $C_{x_{1}} \geq 1$ such that:

$$
\frac{1}{C_{x_{1}}} e^{\alpha^{g}(r-D)} \leq n_{\Gamma x}(r) \leq C_{x_{1}} e^{\alpha^{g}(r+D)}
$$

for all $r \geq D$ and $x \in \mathcal{F}$. Then, there exist constants $a_{1}>1$ and $r_{1}:=D$ such that :

$$
\frac{1}{a_{1}} \leq \frac{\operatorname{vol}_{n}\left(B_{g}\left(x_{0}, r\right)\right)}{e^{\alpha^{g}}} \leq a_{1} \quad \text { for all } \quad r \geq r_{1}
$$

Corollary 3.1.1. Let (M, g) be a compact orientable surface of genus ≥ 2 and X be its universal Riemannian covering. Then the growth function of the volume of geodesic balls of X is of pure exponential type.

References

[1] Ancona A., Théorie du potentiel sur les graphes et les variétés, in : A. Ancona et al. (Eds.), Potential Theory, Surveys and Problems, Lect. notes in Math. 1344, Springer-Verlag, (1988).
[2] Ballmann W., Manifolds of nonpositive curvature, Birkhauser Boston Inc., (1995)
[3] Cannon J. W., Theory of negatively curved spaces and groups, in T. Bedford, M. Keane, C. Series, Ergodic Theory, Symbolic Dynamics and Hyperbolic spaces, Oxford University Press, (1991) 315369.
[4] Cao J., Cheeger isoperimetric constants of Gromov hyperbolic spaces and applications, Preprint.
[5] Coornaert M., Delzant T., Papadoupoulos A., Géométrie et théorie des groupes, Lect. Notes in Math. 1441, Springer-Verlag, Berlin, (1990).
[6] Coornaert M., Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov. Pacific J. Math. 1159 (2), (1993) 241-270.
[7] Eberlein P., Geodesic flow in certain manifolds without conjugate points, Transac. Amer. Math. Soc. 167, (1972) 151-170.
[8] Eberlein P., O'Neill B., Visibility manifolds, Pacific. J. Math. 46, (1973) 45-109.
[9] Eschenburg J. H., Stabilitätsverhalten des Geodätischen Flusses Riemannsher Mannigfaltigkeiten, Bonner Math. Schriften 87, (1976.)
[10] Freire A., Mañé R., On the Entropy of Geodesic Flow in Manifolds Without Conjugate Points, Invent. Math. 69, (1982) 375-392.
[11] Gallot S., Hulin D., Lafontaine J., Riemannian Geometry, Springer-Verlag (1987).
[12] Ghys É., de la Harpe P., Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhauser Boston, (1990).
[13] Gromov M., Hyperbolic groups, in : Essays in group theory, S. Gersten (Ed.), Springer-Verlag, 1987.
[14] Grove K., Metric differential geometry, in Differential geometry, V. L. Hansen (Ed.), Proceedings, Lyngby (1985), Lect. Nptes in Math. 1263, Springer-Verlag, (1987).
[15] Gulliver R., On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc., vol 210, (1975) 185-201.
[16] Klingenberg W., Geodätischer Fluss auf Mannigfaltigkeit vom hyperbolishen Typ, Inventiones Math. 14, (1971) 63-82.
[17] Klingenberg W., Riemannian geometry, Walter Gruyter, Berlin-New-York, (1982).
[18] Knieper G., Volume growth, entropy and geodesic stretch, Mathematical Research Letters, 2, (1995), 35-58.
[19] Knieper G., On the asymptotic geometry of nonpositively curved manifolds, GAFA, vol 7, (1997) 755-782.
[20] Manning A., Topological entropy for geodesic flows, Annals of math., 110, (1979) 567-573.
[21] Margulis M. A., Applications of ergodic theory to the investigation of manifolds of negative curvature, Funct. Anal. Appl. 3, (1969) 335-336.
[22] Ogouyandjou C., Volume of geodesic spheres in manifolds of hyperbolic type, C. R. Acad. Sci., Paris, t. 329, Série I, (1999), 419-424.
[23] Patterson S., The limit set of Fuchsian group. Acta Math. 136, (1976) 241-273.
(J-P. Ezin and C. Ogouyandjou) Institut de Mathématiques et de Sciences Physiques (IMSP) BP 613 Porto-Novo, RÉpublique du Bénin.

E-mail address, J-P. Ezin: jp.ezin@imsp-uac.org
E-mail address, C.Ogouyandjou: ogouyandjou@imsp-uac.org

[^0]: ${ }^{1}$ Received by the editors: August 18, 2004, Revised version: July 20, 2005. Mathematics subject Classification 2000: Primary 53C22, 53C23; Secondary 30F25, 32J05.
 Key words and phrases: Gromov hyperbolic manifold, volume entropy, quasi-convex cocompact group, critical exponent.

