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Error Estimates for a Regularization of a
Class of Porous Medium Equations 1

Koffi B. Fadimba

Abstract

In solving numerically the class of Porous Medium Equations
(PME)

∂S

∂t
+∇ · f(S)u−∇ · k(S)∇S = Q(S)

with appropriate boundary and initial conditions, one often regu-
larizes the problem, because of possible roughness in the numerical
solution, due to the smallness or the vanishing, at some points, of
the diffusion coefficient k.

We consider a regularization of the PME and establish conver-
gence estimates for the first derivative, in time, of the regularized
solutions, first for the case where the diffusion coefficient k van-
ishes at S = 1 and at S = 0. Next we give error estimates for
the case where k does not vanish but is assumed small enough to
perturb some numerical methods, though the theoretical solution
of the PME might be sufficiently regular in this case.
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1 Introduction

We consider the equation

∂

∂t
S +∇ · (f(S)u)−∇ · (k(S)∇S) = Q(S) on Ω× (0, T ]. (1.1)

with the boundary conditions:

(f(S)u− k(S)∇S) · n = q on ∂Ω× [0, T0] (1.2)

and the initial condition

S(x, 0) = S0(x) on Ω (1.3)

with Ω a bounded domain of Rn, n = 1, 2, 3, and where 0 ≤ S0(x) ≤ 1,
for all x ∈ Ω, S0 ∈ H1(Ω). For simplicity let |Ω| = 1.

Equation (1.1) is called the saturation equation when k vanishes for
S = 0 and for S = 1. This problem is obtained by modeling, for instance,
flow through a porous medium (see e.g [1],[9],[5]). Here S is the saturation
of the invading fluid, u is the Darcy velocity, k the conductivity of the
medium. The flux, or fractional flow, function f defines the transport
term, and Q defines the source and sink terms.

One difficulty in approximating numerically the solution to problem
(1.1)–(1.3), lies in the fact that the diffusion coefficient k vanishes when
the saturation is zero, or 1. In a past paper [7], analysis was done for
the case where k vanishes, but this analysis concerned the solution itself.
Here, we are interested in the first derivatives of the solution.

We make the following assumptions on the data of this problem.

k(s) ≥


c1|s|µ 0 ≤ s ≤ α1

c2 α1 ≤ s ≤ α2

c3|1− s|µ α2 ≤ s ≤ 1
(1.4)

where 0 < α1 <
1
2
< α2 < 1 are given. We assume 0 < µ ≤ 2, and we set

K(ξ) =
∫ ξ

0
k(τ)dτ.
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To get around some difficulties from direct numerical approximation,
one often regularizes the problem in some way. Here we simply replace
the degenerate problem by a nondegenerate one, and hope (in fact this
is proved : see [7] for instance) that the solution to the new problem will
approximate, in some space, the solution to the initial problem, as the
perturbation parameter β tends to 0. We regularize by perturbing k as
follows (as an example of regularization): we let 0 < β < 1

2
and

δ0 = min(k(β), k(1− β)), (1.5)

δ = min(k(β)− k(0), k(1− β)− k(1)) (1.6)

with kβ defined by

kβ(ξ)

{
= k(ξ) k(ξ) > δ
1
2
δ ≤ kβ(ξ) ≤ δ otherwise.

(1.7)

More generally, define kβ in such a way that kβ converges strongly to k
as the perturbation parameter β tends to 0. In any case define Kβ by
Kβ(ξ) =

∫ ξ
0 kβ(τ)dτ . Then the approximate problem for (1.1) is:

∂

∂t
Sβ +∇ · (f(Sβ)u)−∇ · (kβ(Sβ)∇Sβ) = Q(Sβ) on Ω× (0, T0] (1.8)

f(Sβ)u · n− ∂

∂n
Kβ(Sβ) = q on ∂Ω× [0, T0] (1.9)

Sβ(x, 0) = S0(x) on Ω. (1.10)

Now the question is how well we approximate the initial problem by
so doing. Many papers have dealt with this problem, in the degenerate
case. José Carillo in [4], and Emile Rouvre and Gerard Gagneux in [13],
study the same problem in general settings, with one degeneracy at 0,
but do not regularize the problem. They are concerned directly with
the existence of entropy solutions. M.E. Rose in [10] considers problem
(1.1)–(1.3) with one degeneracy, without the transport term and in one
dimension, and in [11, 12] the full advection-diffusion equation in one di-
mension. D.L. Smylie in his doctoral thesis [14] treats the pure parabolic
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case in several dimensions, and with two degeneracies. R.C Sharpley
and K.B. Fadimba in [7] and [8], and K.B. Fadimba in [6] treat the full
advection-diffusion equation in several dimensions with two degeneracies.
Error analysis for Sβ is performed in each of these papers.

One main concern in this paper is the regularity of Sβt. A conjecture
in [11] is that Sβt is bounded independently of β, for the degenerate case.
This is important since it improves the estimates in the error analyses
for the finite element method applied to the problem. In [10] and [14],
the analyses are performed assuming that this conjecture is true. Indeed
the conjecture is true for µ = 1 by [10].

In this paper, without proving the conjecture itself, we attempt to
bring some improvement to the existing results on this matter. More
precisely we show that ‖Sβt−St‖L2((H1)∗) tends to 0 as β → 0, in the de-

generate case (condition (1.13)). We also show
∥∥∥√kβ(Sβ)(Sβt − St)

∥∥∥
L2(L2)

tends to 0 as β → 0, in the nondegenerate case (condition (1.12) or
(1.11)),with possibly a0 small), among other results. A drawback for the
last result is that the constants appearing in the estimates depend on St,
∇S and S. For these reasons, we make the following assumptions.

‖St‖L∞(L∞) + ‖S‖L∞(L∞) + ‖∇S‖L∞(L∞) ≤ C. (1.11)

Condition (1.11) is unlikely to be satisfied if we have a degenerate prob-
lem, i.e. if the coefficient k vanishes at some places. Hence the assump-
tion

k(s) ≥ a0 ∀s ∈ [0, 1], (1.12)

with a0 possibly small. Nevertherless our first result (Theorem 3.1) is
gotten under the degeneracy condition

k(0) = k(1) = 0. (1.13)

The remaining of the paper is structured as follows. In Section 2, we
give some preliminary results on the solution operator T . Also we give a
summary of some previous results on the problem considered.
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In Section 3, we prove our main result: ‖Sβt−St‖L2((H1)∗) tends to 0 as

β tends to 0. We also obtain in this section that
∥∥∥√kβ(Sβ)(Sβt − St)

∥∥∥
L2(L2)

tends to 0 as β → 0, but under the restriction (1.11).
In section 4, additional error estimates are given for Sβt, and conver-

gence estimates are established for ∇Sβ.

2 Preliminaries

2.1 The Solution Operator

The solution operator defined below is a very useful tool in the analysis
of problems of parabolic nature, in the sense that it can help simplify
somehow the analysis. In particular, it helps define an equivalent norm
on (H1)∗ more appropriate for the analysis of the P.D.E. than the usual
dual norm. Here we give a summary of some of the properties of the
solution operator and its discrete analogue. We refer to [14], [6], and also
to [10, 11, 12] for more details. Denote

fΩ =
1

|Ω|

∫
Ω
fdx =

1

|Ω|
(f, 1)

when this has a meaning. We consider ω ∈ H1(Ω) given by
−∆ω = f − fΩ in Ω
∂ω
∂n

= 0 on ∂Ω
ωΩ = fΩ

(2.1)

Then ω is well-defined for a given f ∈ (H1)∗. We define the Solution
Operator T by

T (f) = ω for all f ∈ (H1)∗

where ω is the unique solution to problem 2.1.
A weak formulation of Problem 2.1 is{

(∇Tf,∇φ) = (f − fΩ, φ) ∀φ ∈ H1(Ω)
(Tf)Ω = fΩ

(2.2)
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If we take φ = Tg with g ∈ (H1)∗, then we get

(∇Tf,∇Tg) = (f, Tg)− fΩgΩ,

and if g = f we get

(f, Tf) = ‖∇Tf‖2
L2 + (fΩ)2 ∀f ∈ (H1)∗. (2.3)

We have the following

Proposition 2.1 The solution operator as defined by (2.1) is linear,
symmetric in the sense (Tf, g) = (f, Tg) for all f, g ∈ (H1)∗,and positive
definite in the sense that (Tf, f) > 0 if f 6= 0.

This proposition allows us to define a new norm on (H1)∗ (see [10],[12],[6]
and [11]), by

‖u‖(H1)∗ = (Tu, u)
1
2 = (‖∇Tu‖2

L2 + (uΩ)2)
1
2 = ‖Tu‖H1 . (2.4)

2.2 Previous Results

We summarize here some results from [7], which are still valid without
condition (1.13) being necessarily satisfied [6], and which we need in the
following analysis. Define

γ =
2 + µ

1 + µ
(2.5)

i.e. γ is the conjugate complement of 2 + µ.
We make the following assumption.

C∗|f(b)− f(a)|2 ≤ (K(b)−K(a))(b− a) (2.6)

for all 0 ≤ a ≤ b ≤ 1, and for some positive constant C∗.
Assumption (2.6) is verified under condition (1.4) for the nondegen-

erate case. In the degenerate case we need the additional hypothesis:

f ′(0) = f ′(1) = 0 (2.7)
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We will be using (2.6) in the form

C∗‖f(u)− f(v)‖2
L2(Ω) ≤ (K(u)−K(v), u− v) (2.8)

A consequence of (2.6) is

|f ′(ξ)| ≤ C
√
k(ξ) (2.9)

These inequalities remain true when k is replaced by kβ. Also

C∗∗‖u− v‖2+µ
L2+µ ≤ (K(u)−K(v), u− v) (2.10)

for all u, v ∈ L2+µ. Inequality (2.10) is also true when K is replaced by
Kβ. Given that K is Lipschitz, we have:

(K(u)−K(v))2
Ω ≤ ‖K(u)−K(v)‖2

L2

≤ ‖k‖∞(K(u)−K(v), u− v). (2.11)

The next Theorem gives the error estimates for S − Sβ, when the initial
problem (1.1)–(1.3) is replaced by the regularized nondegenerate problem
(1.8)–(1.10).

Theorem 2.1 Assume that hypothesis (2.6) hold. Let Sβ be the solution
to (1.8)–(1.10), and S the solution to (1.1)–(1.3), then

sup
0≤t≤T0

‖Sβ − S‖2
(H1)∗ + η

∫ T0

0
(Kβ(Sβ)−Kβ(S), Sβ − S)(τ)dτ ≤ C(βδ)γ

(2.12)

‖Kβ(Sβ)−K(S)‖2
L2(L2) ≤ C(βδ)γ. (2.13)

and

‖Sβ − S‖2+µ
L2+µ(L2+µ) ≤ C(βδ)γ. (2.14)

The following regularity results are found in [7].
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Lemma 2.1 If Sβ is the solution to (1.8)–(1.10), then∥∥∥∥∥∂Sβ∂t
∥∥∥∥∥
L∞(0,T0,L1(Ω))

≤ C. (2.15)

Lemma 2.2 Under the conditions of Lemma 2.1, we have

‖Sβ‖2
L∞(L2) +

∥∥∥∥√kβ(Sβ)∇Sβ
∥∥∥∥2

L2(L2)
≤ C · T0 + ‖S0‖2

L2 . (2.16)

Lemma 2.3 Under the hypothesis of Lemma 2.1, we have∥∥∥∥√kβ(Sβ)Sβt

∥∥∥∥2

L2(L2)
+ ‖∇Kβ(Sβ)‖2

L∞(L2) ≤ C. (2.17)

The above Lemmas help to prove the following.

Theorem 2.2 Assume the hypotheses of Theorem 2.1 hold. Then

‖Sβt‖γLγ(Lγ) ≤ Cβ−
µ

1+µ (2.18)

and ∥∥∥∥∥∂Sβ∂t +∇ · f(Sβ)u

∥∥∥∥∥
γ

Lγ(Lγ)

≤ Cβ−
µ

1+µ . (2.19)

Finally we have the following

Theorem 2.3 Assume µ ≥ 1. Then

sup
0≤t≤T0

(K(Sβ)−K(S), Sβ − S) + η‖∇(Kβ(Sβ)−K(S))‖2
L2(L2) ≤ Cδ

1
µ

(2.20)

‖Sβ − S‖L∞(L2+µ) ≤ Cδ
1

2+µ
1
µ (2.21)

‖K(Sβ)−K(S)‖L2(0,T0,H1) ≤ Cδ
1

2µ . (2.22)
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3 Error Analysis for Sβt

In this section we establish our main results. We show that ‖Sβt −
St‖L2((H1)∗) and ‖

√
kβ(Sβ)(Sβt − St)‖L2(L2) (for 0 < µ < 2) tend to 0 as

β → 0.
For this purpose we subtract equation (1.1) from equation (1.8) to

get

Sβt−St+∇·(f(Sβ)−f(S))u−∆(Kβ(Sβ)−K(S)) = Q(Sβ)−Q(S). (3.1)

To simplify we assume from now on that Q ≡ 0, and q ≡ 0.

3.1 Analysis in L2((H1)∗)

We have the following Theorem.

Theorem 3.1 Assume conditions (1.4), (1.13), (2.6) and (2.7) hold.
Also assume f ∈ C2([0, 1]). In addition let 0 < µ ≤ 2. Then

‖Sβt − St‖2
L2((H1)∗) + sup

0≤t≤T0

(Kβ(Sβ)−Kβ(S), Sβ − S) ≤ Cδα0 , (3.2)

where α0 = 1
µ

, and C independent of β.

Before giving the proof of the Theorem, we deduce from the above
results the following known results.

Corollary 3.1 Under the assumptions of Theorem 3.1, we have

‖Kβ(Sβ)−K(S)‖L∞(L2) ≤ Cδ
α0
2 (3.3)

‖Sβ − S‖L∞(L2+µ) ≤ Cδ
α0

2+µ (3.4)

‖f(Sβ)− f(S)‖L∞(L2) ≤ Cδ
α0
2 . (3.5)

Estimate (3.3) comes from (3.2) and (2.11). Estimate (3.4) is a conse-
quence of (3.2) and (2.10). Finally, estimate (3.5) results from (3.2) and
condition (2.6).
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Now we prove Theorem 3.1.

Proof.
First notice that under assumption (1.13) we get that δ0 = δ. We go
from identity (3.1). Multiply each side by T (Sβt − St), integrate over
the domain Ω (assume |Ω| = 1), use the Divergence Theorem, and the
boundary conditions (1.2) and (1.9) to get

‖Sβt − St‖2
(H1)∗ − ((f(Sβ)− f(S))u,∇T (Sβt − St))

+(∇(Kβ(Sβ)−K(S)),∇T (Sβt − St)) = 0, (3.6)

where we have made use of (2.4). By (2.2) the last term on the left hand
side of (3.6) can be rewritten as

(∇(Kβ(Sβ)−K(S)),∇T (Sβt − St))
= (Sβt − St − (Sβt − St)Ω, Kβ(Sβ)−K(S)). (3.7)

Now

(Sβt − St)Ω = ((Sβ − S)Ω)t = 0.

Next use the product rule on the second term of the right side of (3.7)
and substitute in (3.6) to get

‖Sβt − St‖2
(H1)∗ +

d

dt
(Kβ(Sβ)−K(S), Sβ − S) ≤ ‖(f(Sβ)− f(S))u‖2

L2

+
1

4
‖∇T (Sβt − St)‖2

L2 + |(Kβ(Sβ)t −K(S)t, (Sβ − S))|. (3.8)

Hide the second term of the right side of (3.8) in the left side, by (2.4).
Hölder Inequality on the last term then yields

1

2
‖Sβt − St‖2

(H1)∗ +
d

dt
(Kβ(Sβ)−K(S), Sβ − S)

≤ C{f(Sβ)− f(S)‖2
L2 + ‖Kβ(Sβ)t −K(S)t‖Lγ‖Sβ − S‖L2+µ} (3.9)
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with γ = 2+µ
1+µ

. Integrating in time over [0, T0], and using again Hölder,
we obtain:

‖Sβt − St‖2
L2((H1)∗) + σ sup

0≤t≤T0

(Kβ(Sβ)−Kβ(S), Sβ − S)

≤ C{‖f(Sβ)−f(S)‖2
L2(L2) +‖Kβ(Sβ)t−K(S)t‖Lγ(Lγ)‖Sβ−S‖L2+µ(L2+µ)}

+ sup
0≤t≤T0

|(Kβ(S)−K(S), Sβ − S)|. (3.10)

Thus referring back to Theorem 2.1, condition (2.6), estimate (2.17),
and the definition of Kβ, we get

‖Sβt − St‖2
L2((H1)∗) + σ sup

0≤t≤T0

(Kβ(Sβ)−Kβ(S), Sβ − S) ≤ Cδα0 , (3.11)

where

α0 =
1

µ
. (3.12)

This ends the proof of the Theorem. 2

Note : If we make the following hypotheses, as made in many papers
[10, 11, 14] :

k(s) + k(1− s) ≤ Cβµ, (3.13)

then
δα0 � β.

3.2 Analysis in L2(L2)

From now on, we assume that condition (1.12) holds in place of condition
(1.13), unless otherwise stated.

Now we show that
∥∥∥√kβ(Sβ)(Sβt − St)

∥∥∥
L2(L2)

→ 0 as β → 0. We go

from (3.1). Multiply each side of (3.1) by Kβ(Sβ)t − K(S)t, integrate
over Ω, use the Divergence Theorem, and the boundary conditions (1.2)
and (1.9), to get

(Sβt− St, Kβ(Sβ)t−K(S)t) + (∇(Kβ(Sβ)−K(S)),∇(Kβ(Sβ)t−K(S)t)
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= ((f(Sβ)− f(S))u,∇(Kβ(Sβ)t −K(S)t)). (3.14)

We split the first term on the left side of (3.14) into 2 terms:

(Sβt − St, Kβ(Sβ)t −K(S)t) = (Sβt − St, kβ(Sβ)(Sβt − St))

+(Sβt − St, (kβ(Sβ)− k(S))St) (3.15)

so that (3.14) becomes

(Sβt − St, kβ(Sβ)(Sβt − St)) +
1

2

d

dt
‖∇(Kβ(Sβ)−K(S))‖2

L2

= ((f(Sβ)−f(S))u,∇(Kβ(Sβ)t−K(S)t))+(Sβt−St, (kβ(Sβ)−k(S))St).
(3.16)

Next, using the product rule on the first term of the rightside of (3.16)
we have ∥∥∥∥√kβ(Sβ)(Sβt − St)

∥∥∥∥2

L2
+

1

2

d

dt
‖∇(Kβ(Sβ)−K(S))‖2

L2

=
d

dt
((f(Sβ)− f(S))u,∇(Kβ(Sβ)−K(S)))

+(((f(Sβ)−f(S))u)t,∇(Kβ(Sβ)−K(S)))+(Sβt−St, (kβ(Sβ)−k(S))St).
(3.17)

By the product rule

((f(Sβ)− f(S))u)t = ((f ′(Sβ)− f ′(S))Stu)

+f ′(Sβ)(Sβt − St)u + (f(Sβ)− f(S))ut. (3.18)

The second term of the right side of (3.18) gives

(f ′(Sβ)(Sβt − St)u,∇(Kβ(Sβ)−K(S)))

≤ 1

4
‖f ′(Sβ)(Sβt − St)‖2

L2 + C‖∇(Kβ(Sβ)−K(S))‖2
L2
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≤ 1

4

∥∥∥∥√kβ(Sβ)(Sβt − St)
∥∥∥∥2

L2
+ C‖∇(Kβ(Sβ)−K(S))‖2

L2 (3.19)

where we have used the fact that |f ′(σ)| ≤ C
√
kβ(σ) (see (2.9)). Since

f ∈ C2([0, 1]), f ′ is Lipschitz. Thus the first term of the right side of
(3.18) gives

((f ′(Sβ)− f ′(S))Stu,∇(Kβ(Sβ)−K(S))) ≤ C‖Stu‖L∞(L∞)‖Sβ − S‖2
L2

+‖∇(Kβ(Sβ)−K(S))‖2
L2 (3.20)

The third term on the right side of (3.18) gives the bound

|((f(Sβ)− f(S))ut,∇(Kβ(Sβ)−K(S)))| ≤ 1

2
‖(f(Sβ)− f(S))ut‖2

L2

+
1

2
‖∇(Kβ(Sβ)−K(S))‖2

L2 (3.21)

Finally the last term on the right side of (3.17) is bounded as follows:

(Sβt − St, (kβ(Sβ)− k(S))St) ≤
1

4
‖
√
kβ(Sβ)(Sβt − St)‖2

L2

+C‖St‖L∞(L∞)

∥∥∥∥∥∥kβ(Sβ)− k(S)√
kβ(Sβ)

∥∥∥∥∥∥
2

L2

. (3.22)

We can hide the first term on the right side of (3.22) in the left side
of (3.17). The last term is treated as follows:

∥∥∥∥∥∥kβ(Sβ)− k(S)√
kβ(Sβ)

∥∥∥∥∥∥
2

L2

≤
∥∥∥∥∥kβ(Sβ)− kβ(S)√

δ0

∥∥∥∥∥
2

L2

+

∥∥∥∥∥kβ(S)− k(S)√
δ0

∥∥∥∥∥
2

L2

≤
∥∥∥∥∥kβ(Sβ)− kβ(S)√

δ0

∥∥∥∥∥
2

L2

+ C
δ2

δ0

(3.23)
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where we use the definition of kβ (see (1.7)). By the Lipschitz nature of
kβ, we have ∥∥∥∥∥kβ(Sβ)− kβ(S)√

δ0

∥∥∥∥∥
L2

≤ ‖kβ‖L∞δ
− 1

2
0 ‖Sβ − S‖L2 . (3.24)

Now going back to estimate (3.17), substituting and hiding the appro-
priate terms from the above analysis, we obtain

1

2

∥∥∥∥√kβ(Sβ)(Sβt − St)
∥∥∥∥2

L2
+

1

2

d

dt
‖∇(Kβ(Sβ)−K(S))‖2

L2

≤ d

dt
((f(Sβ)− f(S))u,∇(Kβ(Sβ)−K(S)))

+C‖Stu‖L∞(L∞){‖Sβ − S‖2
L2 + ‖(f(Sβ)− f(S))u‖2

L2

+δ−1
0 ‖Sβ − S‖2

L2 +
δ2

δ0

}+ C‖∇(Kβ(Sβ)−K(S))‖2
L2 . (3.25)

Using Grönwall Lemma yields:∥∥∥∥√kβ(Sβ)(Sβt − St)
∥∥∥∥2

L2(L2)
+ η‖∇(Kβ(Sβ)−K(S))‖2

L∞(L2)

≤ C sup
0≤t≤T0

|((f(Sβ)− f(S))u,∇(Kβ(Sβ)−K(S)))|

+C‖Stu‖L∞(L∞){‖Sβ − S‖2
L2(L2) + ‖f(Sβ)− f(S)‖2

L2(L2)

+δ−1
0 ‖Sβ − S‖2

L2(L2) +
δ2

δ0

T0 + ‖∇(Kβ(S0)−K(S0))‖2
L2} (3.26)

where S0 is as in (1.3). The first term on the right side of (3.26) is
bounded as follows:

sup
0≤t≤T0

|((f(Sβ)− f(S))u,∇(Kβ(Sβ)−K(S)))|

≤ C(u)‖f(Sβ)− f(S)‖2
L∞(L2) + η/2‖∇(Kβ(Sβ)−K(S))‖2

L∞(L2) (3.27)
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so that the second term of the right side of (3.27) can be hidden in the
left side of (3.26). In [7] (page 46) it was shown that

‖∇(Kβ(S0)−K(S0))‖L2 ≤ Cδ
1
2

∥∥∥∥√kβ(S0)∇S0

∥∥∥∥
L2

(3.28)

so that the last term on the right hand side of (3.26) is bounded by Cδ.
Finally using Theorems 2.1, 2.2, Corollary 3.1 for the second term on the
right side of (3.26), taking σ = η

2
, we see that we have just proved the

following.

Theorem 3.2 Assume conditions (1.4), (1.11), (1.12), and (2.6) hold.
Also assume f ∈ C2([0, 1]) and that k is Lipschitz. Then we have∥∥∥∥√kβ(Sβ)(Sβt − St)

∥∥∥∥2

L2(L2)
+σ‖∇(Kβ(Sβ)−K(S))‖2

L∞(L2) ≤ Cδ1 (3.29)

where

δ1 =
δ

2
µ + δ2 + δ0δ

δ0

. (3.30)

Before deriving in the next section additional error estimates for Sβt
and convergence results for ∇Sβ, we make some comments on the above
two theorems. First notice that the results in Theorem 3.1 are valid even
for the degenerate case, that is when (1.13) holds. Next, Theorems 3.2
and 3.1 give new results at least if we are referring back to [6], [7], [10],
[11], [12] and [14]. Namely,

‖Sβt − St‖L2((H1)∗) ≤ Cδ
α0
2 , (3.31)∥∥∥∥√kβ(Sβ)(Sβt − St)

∥∥∥∥
L2(L2)

≤ Cδ
1
2
1 , (3.32)

‖Sβ − S‖L∞(L2+µ) ≤ Cδ
1

µ(2+µ) (3.33)

‖Kβ(Sβ)−K(S)‖L∞(H1) ≤ Cδ
1
2
1 . (3.34)

δ1 being defined by (3.30) . Inequality (3.33) is obtained from Theorem
3.1 and inequality (2.10). Thus Theorem 3.1 is an alternative way for
obtaining (3.33), the other one being Theorem 2.3.
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4 Additional Error Estimates for Sβt and

Convergence Results for ∇Sβ.

4.1 Additional Estimates .

With the help of Theorem 3.2 we prove that Kβ(Sβ)t −K(S)t tends to
0 as β tends to 0, but under condition (1.11).

Lemma 4.1 Under the hypotheses of Theorem 3.2, we have

‖Kβ(Sβ)t −K(S)t‖L2(L2) ≤ C(‖u‖L∞(L∞), ‖St‖L∞(L∞))δ
1
2
1 . (4.1)

Proof.
The proof is straightforward since

‖Kβ(Sβ)t −K(S)t‖L2(L2) ≤ ‖kβ(Sβ)(Sβt − St‖L2(L2)

+‖(kβ(Sβ)− k(S))St‖L2(L2). (4.2)

Theorem 3.2 then does the rest. 2

4.2 Convergence Results for ∇Sβ.

As for Sβt we prove that, for 0 < µ < 2,
√
kβ(Sβ)∇(Sβ − S) → 0 as

β → 0.

Theorem 4.1 Under the hypotheses of Theorem 3.2, we have

‖Sβ − S‖2
L∞(L2) + σ

∥∥∥∥√kβ(Sβ)∇(Sβ − S)
∥∥∥∥2

L2(L2)
≤ Cδ1, (4.3)

where C = C(‖∇S‖L∞(L∞)), and where δ1 is defined by (3.30).

Proof.
The argument goes as in the proofs of Theorems 3.1 and 3.2. We go from
equality (3.1), which we multiply by Sβ − S, assuming that Sβt − St ∈
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L2(L2), integrate the result over Ω, use the Divergence Theorem together
with the boundary conditions (1.2) and (1.9). We then get:

1

2

d

dt
‖Sβ−S‖2

L2 +
∥∥∥∥√kβ(Sβ)∇(Sβ − S)

∥∥∥∥2

L2
= ((f(Sβ)−f(S))u,∇(Sβ−S))

+((k(S)− k(Sβ))∇S,∇(Sβ − S)). (4.4)

We can rewrite and bound the terms on the right side of (4.3) as follows:

((f(Sβ)−f(S))u,∇(Sβ−S)) =

(f(Sβ)− f(S))u√
kβ(Sβ)

,
√
kβ(Sβ)∇(Sβ − S)

)

≤ C

∥∥∥∥∥∥(f(Sβ)− f(S))u√
kβ(Sβ)

∥∥∥∥∥∥
2

L2

+
1

4

∥∥∥∥√kβ(Sβ)∇(Sβ − S)
∥∥∥∥2

L2
. (4.5)

and
|((kβ(Sβ)− k(S))∇S,∇(Sβ − S))|

=

∣∣∣∣∣∣
kβ(Sβ)− k(S)√

kβ(Sβ)
∇S,

√
kβ(Sβ)∇(Sβ − S)

∣∣∣∣∣∣
≤ C

∥∥∥∥∥∥kβ(Sβ)− k(S)√
kβ(Sβ)

∇S

∥∥∥∥∥∥
2

L2

+
1

4

∥∥∥∥√kβ(Sβ)∇(Sβ − S))
∥∥∥∥2

L2
. (4.6)

Now we see the second terms of the right sides of (4.5) and (4.6) can be
hidden in the left side of (4.4). It remains to treat the corresponding first
terms. But recall that k and kβ are assumed Lipschitz in this analysis,
and that we have |kβ(s) − k(s)| ≤ Cδ, by definition of kβ. Integrate in
time (4.4) over [0, T0], use the fact that Sβ(x, 0) = S(x, 0) = S0(x) to get

‖Sβ − S‖2
L∞(L2) + σ

∥∥∥∥√kβ(Sβ)∇(Sβ − S)
∥∥∥∥2

L2(L2)

≤ Cδ−1
0 ‖f(Sβ)− f(S)‖2

L2(L2)
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+C‖∇S‖2
L∞(L∞){‖Sβ − S‖2

L2(L2)δ
−1
0 + δT0}. (4.7)

Finally, use (2.14) (since 2 < 2 + µ), with condition (2.6) to see that the
right hand side of estimate (4.7) is bounded by C(‖∇S‖L∞(L∞))δ1, which
proves the Theorem. 2

5 Conclusion.

The main result in this paper is Theorem 3.1 which is established for the
degenerate problem i.e. equation (1.1) satisfying condition (1.13), and
which was not given in our previous paper [7], or in any other paper of
our knowledge. But the estimate on the error Sβt − St is gotten in the
negative space (H1(Ω))∗. We wish we had it in a more regular space.
The other results in this paper come from an attempt to get the same
result in the space L2(Ω) for the degenerate problem. But we are doubly

handicapped: first we obtain an estimate for
√
k(Sβt)(Sβt−S) (with some

weight), and secondly we impose a stronger condition on the solution
(condition (1.11)).

We notice that if condition (1.13) is satisfied then we have

δ0 = δ

so that δ1 becomes
δ1 ≤ Cδλ0

where λ0 = min
(
1, 2−µ

µ

)
. But then (1.11) and (1.13) are unlikely to be

compatible, though the constants appearing in the various estimates re-
main independent of β, the regularization parameter. So the open prob-

lem is the following. Assuming that (1.13) holds and that
√
k(Sβ)(Sβt−

St) ∈ L2(L2), for all β sufficiently small, do we have√
k(Sβ)(Sβt − St)→ 0

in L2(L2), as β → 0?
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