Abstract

In this article, a certain new concept of connectedness in frames is introduced, namely, local connectedness with respect to. We show that whenever $h: L \longrightarrow M$ is a dense homomorphism with M locally connected with respect to h, then h preserves connectedness. (And this provides a "partial" converse to a result of Baboolal and Banaschewski.) Also, under the hypothesis, the right adjoint preserves pairwise disjoint joins.

Local connected ness "with respect to"

¹Hlengani J. Siweya,

²D.Baboolal and R.G. Ori

Subject Classification: 54D05, 54E15

Keywords and phrases : Local connectedness, local connected with respect to.

1. Introduction. We introduce a new notion of local connectedness which we call "local connectedness with respect to" into the theory of frames. With it, it is shown that if $h: L \longrightarrow M$ is a dense homomorphism with M locally connected with respect to h then h(u) is connected, whenever $u \in L$ is (Lemma 2.4). This provides a "partial" converse to a result of Baboolal and Banaschewski [1], namely, that a dense frame homomorphism $h: L \longrightarrow M$ reflects connectedness. Whereas it is known that under dense surjections, uniform local connectedness with respect to and uniform local connectedness coincide [6], we have not investigated conditions under which local connectedness with respect to is equivalent to local connectedness.

It is well-known that the right adjoint h_* of a frame homomorphism $L \longrightarrow M$ preserves arbitrary meets but not joins - not even disjoint binary joins. The second purpose then is to show that under the hypothesis of the previous paragraph, the right adjoint does preserve pairwise disjoint joins (*Proposition* 2.9). So, using a result of Baboolal and Banaschewski [1], it then follows that whenever M is locally connected with respect to h, a dense homomorphism $h: L \longrightarrow M$ preserves connectedness. Other results, which are of independent interest are also provided. (See *Proposition* 2.7 and 2.10.)

Recall that a *frame* is a complete lattice L in which the following *infinite* distributive law holds:

$$x \land \bigvee S = \bigvee_{s \in S} x \land s,$$

for any $S \subseteq L$. A *frame homomorpism* is one which preserves finitary meets (including the empty meet $\bigwedge 0 = e$) and arbitrary joins (including the empty join $\bigvee 0 = 0$).

We follow Baboolal and Banaschewski [1] and say an element $u \in L$ is *connected* if, whenever $u = x \lor y$ with $x \land y = 0$, then x = 0 or y = 0. The frame L is *locally connected* if

$$u = \bigvee_{x \in L} x$$
 (x is connected),

for each $u \in L$. A component of an element $u \in L$ is a maximally connected $x \leq u$ ($x \in L$), that is, an element $x \in L$ is called a component of $u \in L$ if it is connected a connected $t \in L$ satisfies $x \leq t \leq u$ then u = t. Throughout the article, whenever x is a component of y our notation will be $x \leq_c y$. For properties of (local) connectedness, see [1] and [3], and for general knowledge on frames we refer to [5].

2. Local connectedness with respect to. According to Fox [4], a topological space X is locally connected in another topological space Y if there is a basis of Y such that $V \cap X$ is connected for every basic open set V. An example of a topological space which is not locally connected in another topological space Y is the following (also due to Fox): Let Y be the Cartesian plane, let Y - X be the origin and the positive half of the real axis. Then X is not locally connected at any point of Y - X except at the origin.

Now here is the point-free analogy of the notion "local connectedness in":

Definition 2.1. Given an onto frame homomorphism $h : L \longrightarrow M$, the frame M is said to be **locally connected with respect to** h if there is a basis B of L for which h(b) is connected, for each $b \in B$.

Example 2.2. Given a uniformly locally connected frame L, let us denote its Banaschewski-Pultr uniform completion by CL. That is CL is the quotient $\Re L/L$ where $\Re L$ is the collection of all (uniformly) regular ideals on L. (For the construction of this completion, see [2].) It is known that the map γ_L :

 $CL \longrightarrow L$ is a dense surjection. Since L is uniformly locally connected, so is CL. In particular, it follows from [6] that L is locally connected with respect to CL.

It is immediate that if M is locally connected with respect to h, then, for any $z \in M$, there is $x \in L$ with z = h(x). Also, for the basis B of L,

$$x = \bigvee_{u \in B} u \quad (h(u) \text{ is connected})$$

so that

$$z = \bigvee_{u \in B} h(u)$$
 (h(u) is connected).

Thus, M is locally connected as well.

Lemma 2.3. For any dense frame homomorphism $h : L \longrightarrow M$ with M locally connected with respect to h, the frame L is locally connected. **Proof.** For any $x \in L$,

$$x = \bigvee_{u \in B} u \quad (h(u) \text{ is connected}).$$

Since h reflects connectedness [1], the result follows. \Box

Recall (cf. e. g. [4]) that a frame homomorphism $h: L \longrightarrow M$ has a right adjoint $h_*: M \to L$ given by

$$h_*(x) = \bigvee_{y \in B} y \quad (h(y) \le x).$$

If h is onto then $hh_*(x) = x$. The homomorphism h is said to be *dense* whenever h(a) = 0 implies a = 0, or equivalently, h is dense whenever $h_*(0) = 0$.

In [1], it was shown that a dense homomorphism reflects connectedness, and, that a dense onto homomorphism whose right adjoint preserves disjoint binary joins preserves connectedness. Here is a partial converse of the former statement:

Lemma 2.4. Let $h : L \longrightarrow M$ be a dense frame homomorphism with M locally connected with respect to h. Then, if $u \in L$ is connected, so is h(u). **Proof.** Let $h(u) = x \lor y$ but $x \land y = 0$. Find a basis B of L such that

$$u = \bigvee_{w \in B} w \quad (h(w) \text{ is connected}).$$

Then each w is connected. Now,

$$h(u) = x \lor y = \bigvee_{w \in B} h(w) \quad (h(w) \text{ is connected}),$$

which implies

$$h(w) \le x \lor y.$$

Since $x \wedge y = 0$ with h(w) is connected, we must have

$$h(w) \le x \quad or \quad h(w) \le y; \quad i.e., \quad w \le h_*(x) \quad or \quad w \le h_*(y).$$

Taking joins over all such w yields

$$u = \bigvee_{w \in B} w \quad (h(w) \text{ is connected})$$

$$\leq \quad h_*(x) \lor h_*(y) \quad and \quad h_*(x) \land h_*(y) = 0.$$

Connectedness of u implies that $u \leq h_*(x)$, say. Then $h(u) \leq x$, so $x \leq h(u)$ gives h(u) = x, and

$$y = y \land (x \lor y) = y \land k(u) = y \land x = 0,$$

which proves that h(u) is connected. \Box

In the following proposition, we characterize components in L in relation to those in M, for $h: L \longrightarrow M$; it is shown that the components x of y in M are exactly those for which the components of $h_*(y)$ are $h_*(x)$ in L, whenever M is locally connected with respect to h.

Lemma 2.5. For any dense homomorphism $h : L \longrightarrow M$ with M locally connected with respect to h,

 $x \leq_c y$ in $M \implies h_*(x) \leq_c h_*(y)$ in L.

Proof. Take $x \leq_c y$ in M. Since h reflects connectedness and $h \circ h_*(x) = x$ is connected, $h_*(x)$ is connected. Now, if

$$h_*(x) \le t \le h_*(y)$$
 with t connected,

then $x \leq h(t) \leq y$. By Lemma 2.4, h(t) is connected, so x = h(t). Now,

$$t \le h_* \circ h(t) = h_*(x)$$

	4	
	1	
		۷
•	1	

and then $t = h_*(x)$; thus $h_*(x) \leq_c h_*(y)$. \Box

Lemma 2.6. For any dense homomorphism $h : L \longrightarrow M$ with M locally connected with respect to h,

 $h_*(x) \leq_c h_*(y)$ in $L \implies x \leq_c y$ in M.

Proof. Certainly, $x \leq y$ in M and x is connected by Lemma 2.4. Suppose then that

$$x \le w \le y$$
 with w connected

Then

 $h_*(x) \le h_*(w) \le h_*(y)$ and $h_*(w)$ is connected.

Now, $h_*(x) \leq_c h_*(y)$ implies that $h_*(x) = h_*(w)$, so x = w. \Box

Combining these results we have the following characterization

Proposition 2.7. For any dense homomorphism $h: L \longrightarrow M$ with M locally connected with respect to h, the components in M are precisely those that are components in L under the right adjoint $h_*: M \longrightarrow L$ in L. \Box

Remark. Observe also that under the hypothesis of the proposition if $z \leq_c h_*(a)$ then h(z) is connected. So, if $h(z) \leq u \leq a$ with u connected then $z \leq h_*(u) \leq h_*(a)$ and $h_*(u)$ is connected. So, $z \leq_c h_*(a)$ implies $z = h_*(u)$ or h(z) = u, i.e., $h(z) \leq_c a$. Consequently, if $z \leq_c h_*(a)$, then $h(z) \leq_c a$ and $z = h_*h(z)$.

Lemma 2.8. Let $h : L \longrightarrow M$ be a dense homomorphism with M locally connected with respect to h. Then $h_* : M \longrightarrow L$ preserves disjoint binary joins.

Proof.

Pick $x, y \in M$ with $x \wedge y = 0$, and a basis B of L such that

$$h_*(x \lor y) = \bigvee_{s \in B} s \quad (h(s) \text{ is connected}).$$

Then, for each $s \in B$,

$$h(s) \le h \circ h_*(x \lor y) = x \lor y.$$

Now, connectedness of h(s) together with $x \wedge y = 0$ ensures that

 $h(s) \le x$ or $h(s) \le y$, that is, $s \le h_*(x)$ or $s \le h_*(y)$,

which then implies

$$s \le h_*(x) \lor h_*(y)$$

Now, taking joins over all such s, we have

$$h_*(x \lor y) = \bigvee_{s \in B} s \quad (h(s) \text{ is connected})$$
$$\leq h_*(x) \lor h_*(y).$$

so that $h_*(x \lor y) = h_*(x) \lor h_*(y)$. \Box

In general, we have

Proposition 2.9. Under the hypothesis of Lemma 2.8,

$$h_*(\bigvee_{u_i\in M}u_i)=\bigvee_{u_i\in M}h_*(u_i),$$

whenever the $u_i \in M$ are pairwise disjoint. \Box

Note that *Lemma 2.4* can now be rediscovered from this result and *Lemma* 1.8 of Baboolal and Banaschewski [1].

Proposition 2.10. In the following commutative triangle

$$L \xrightarrow{f} M$$

L and M are arbitrary frames, f and g are frame homomorphisms, N is a locally connected frame and k is an onto frame homomorphism which preserves connectedness. Then $k(t) \leq_c f(u)$, whenever $t \leq_c g(u)$, for some $u \in L$. **Proof.** For any $u \in L$, we have

$$g(u) = \bigvee_{c_i \in N} c_i \quad (c_i \leq_c g(u)).$$

Now $t \leq_c g(u)$ implies that $t = c_j$, for some j. Also,

$$f(u) = \bigvee_{c_i \in N} k(c_i) \quad (c_i \leq_c g(u))$$

and $k(t) = k(c_j)$, for this j. Then $k(t) \leq f(u)$. By hypothesis, k(t) is connected. Suppose then that

 $k(t) \le w \le f(u)$, and $w \in M$ is connected.

Then

$$w \le \bigvee_{c_i \in N} k(c_i) \quad (c_i \le_c g(u)).$$

We observe that $k(c_i) \wedge k(c_j) = 0$, for any $i \neq j$. Since w is connected, we must have $w \leq k(c_i)$, for some i. Thus

$$k(t) = k(c_j) \le w \le k(c_i),$$

for these $i \neq j$. But $k(c_i) \wedge k(c_j) = 0$, so $k(c_j) \leq k(c_i)$ holds only if $k(c_i) = k(c_j)$. Therefore $w = k(c_j) = k(c_i) = k(t)$, thus $k(t) \leq_c f(u)$. \Box

References

- Baboolal, D and Banaschewski, B.: Compactification and local connectedness of frames, J. Pure & Appl. Algebra 70 (1991), 3-16.
- [2] Banaschewski, B and Pultr, A.: Samuel compactification and completion of uniform frames, Math. Proc. Camb. Phil. Soc 108 (1990), 63 - 78.
- [3] Chen, X.: On local connectedness of frames, J. Pure & Appl. Algebra 79 (1992), 35 - 43.
- [4] Fox, R. G.: Covering spaces with singularities, Algebraic Geometry & topology: A Symposium in Honour of S. Lefschetz, edited by R. H. Fox et al, Princeton University Press, Princeton, New Jersey, 1957, 243 - 257.
- [5] Johnstone, P. T.: Stone spaces, Cambridge University Press (Cambridge), 1982.
- [6] Siweya, H. J.: On relative uniform local connectedness, (in Press, Journal of Transfigural Mathematics, 1999).

1. Department of Mathematics, University of the North, Private Bag X1106, Sovenga, 0727, South Africa

e-mail: siweyah@unin.unorth.ac.za

2. Department of Mathematics and Applied Mathematics, University of Durban-Westville, Private Bag X54 001, Durban, 4 000, South Africa e-mail : dbab@pixie.udw.ac.za

e-mail : rori@pixie.udw.ac.za