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Abstract

Image-based brain maps, generally coined as ‘intensity or image atlases’,
have led the field of brain mapping in health and disease for decades, while
investigating a wide spectrum of neurological disorders. Estimating repre-
sentative brain atlases constitute a fundamental step in several MRI-based
neurological disorder mapping, diagnosis, and prognosis. However, these are
strikingly lacking in the field of brain connectomics, where connectional brain
atlases derived from functional MRI (fRMI) or diffusion MRI (dMRI) are
almost absent. On the other hand, conventional connectomic-based classifi-
cation methods traditionally resort to feature selection methods to decrease
the high-dimensionality of connectomic data for learning how to diagnose
new patients. However, these are generally limited by high computational
cost and a large variability in performance across different datasets, which
might hinder the identification of reproducible biomarkers. To address both
limitations, we unprecedentedly propose a brain network atlas-guided fea-
ture selection (NAG-FS) method to disentangle the healthy from the disor-
dered connectome. To this aim, given a population of brain connectomes,
we propose to learn how estimate a centered and representative functional
brain network atlas (i.e., a population center) to reliably map the functional
connectome and its variability across training individuals, thereby capturing
their shared traits (i.e., connectional fingerprint of a population). Essentially,
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we first learn the pairwise similarities between connectomes in the popula-
tion to map them into different subspaces. Next, we non-linearly diffuse and
fuse connectomes living in each subspace, respectively. By integrating the
produced subspace-specific network atlases we ultimately estimate the pop-
ulation network atlas. Last, we compute the difference between healthy and
disordered network atlases to identify the most discriminative features, which
are then used to train a predictive learner. Our method boosted the clas-
sification performance by 6% in comparison to state-of-the-art FS methods
when classifying autistic and healthy subjects.

Keywords: functional network atlas estimation, brain network fusion,
connectomic feature selection, multi-kernel network manifold learning,
discriminative biomarker identification, brain connectome, autism spectrum
disorder, classification

1. Introduction

Autism spectrum disease (ASD) is the fastest growing neurodevelopmental
disorder characterized by varied impairments in cognitive function, restricted
interests, and behavioral challenges (Amaral et al., 2008; Ecker et al., 2010;
Association et al., 2013; Wee et al., 2016). According to (Autism and In-
vestigators, 2014), an estimate of 1 in 68 American children under 8 years
old has ASD. (Leigh and Du, 2015) mentioned that the direct cost of autism
was $268 billion in 2015 in the United States only, and it is expected to be
$461 billion by 2025. To efficiently identify biomarkers that can improve
ASD diagnosis, non-invasive measures derived from resting-state functional
magnetic resonance imaging (rfMRI) have been used in combination with ad-
vanced machine learning techniques (Brown and Hamarneh, 2016; Minshew
and Keller, 2010; Uddin et al., 2013; Abraham et al., 2017; Guo et al., 2017;
Li et al., 2018). One of the most commonly used measures is functional con-
nectivity (FC), quantifying the correlation of blood oxygen level-dependent
(BOLD) signals between pairs of anatomical regions of interest (ROIs) (Min-
shew and Keller, 2010; Guo et al., 2017). FC is conventionally encoded in
a symmetric functional connectivity matrix (i.e., connectome) of size r × r,
where r denotes the number of ROIs (Yap et al., 2010; Van Den Heuvel and
Pol, 2010).

Although promising, existing machine learning techniques suffer from the
curse of ‘high-dimensional-feature-low-sample-size’, where the number of fea-
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tures largely exceeds the number of training samples –particularly in med-
ical datasets. To address this fundamental issue, several machine learning
pipelines integrated dimension reduction techniques (Khalid et al., 2014),
which can be categorized into feature extraction and feature extraction meth-
ods. As for feature extraction methods such as principal component analysis
(PCA) (Shams and Rahman, 2011) or graph embedding techniques (Morris
and Rekik, 2017), they are not suitable for neurological biomarker discovery
since there is no biological meaning for the new extracted features. Fur-
thermore, following the projection onto a low-dimensional space, the original
neurological features (e.g., brain connectivity) become intractable, hindering
biomarker discovery. On the other hand, feature selection methods explic-
itly select the most relevant features from the original data (Kosmicki et al.,
2015; Guo et al., 2017) without generally resorting to any intractable fea-
ture transformation. Besides, they are more interpretable and readable than
feature extraction methods (Tang et al., 2014; Xue et al., 2016), hence their
common use for ASD diagnosis and biomarker identification using FC data
(Zhao et al., 2018; Dryburgh et al., 2019). However, despite the major ad-
vances in the vibrant field of feature selection methods, there remains key
challenges in using these methods for identifying discriminative brain features
for neurological disorder diagnosis including ASD.

The first challenge is generalizability and reproducibility. A recent work
(Abraham et al., 2017) investigated the performance of different FS methods
in identifying functional connectomic features distinguishing between normal
controls (NC) and ASD subjects. They found out that the performance of FS
methods is not consistent across datasets, which makes the task of choosing
the best feature selection method for a particular dataset difficult and time-
consuming. Also, they pointed out other challenges for FS methods such
as data heterogeneity and the computational cost including time and space
complexities. In a more recent study, (Georges et al., 2018) addressed the
problem of identifying reproducible connectomic features associated with a
particular brain disorder for a connectomic dataset of interest. This was
highlighted as one of the grand challenges in connectomic data analysis since
the performance of a particular FS method in training a typical classifier
highly fluctuates depending on the input data (Georges et al., 2018).

The second challenge is scalability (Xue et al., 2016). Due to the large
scale of the available datasets, the number of features dramatically increased,
which caused an increase in the computational cost and a decrease in the
classification performance. Furthermore, the performance of FS methods
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might lack stability when scaling up the training dataset (Abraham et al.,
2017; Georges et al., 2018).

The third challenge is data heterogeneity. Given that connectomic data
might vary in number of features and distribution, the problem of hetero-
geneity is present. Typical FS methods might fail to handle the heterogeneity
of the connectomic data distribution (Abraham et al., 2017; Georges et al.,
2018) and identify connectional features that are reproducible and stable
across heterogeneous datasets.

The fourth challenge is computational time. Devising an FS method with
low time and space complexities, yet accurate and fast remains a compelling
problem to solve. Overall, existing FS methods which were demonstrated
to perform well on diverse datasets and outperform several state-of-the-art
methods for feature selection have a non-constant time complexity. For in-
stance, the time complexity of a landmark feature selection method (infinite
feature selection –IFS) (Roffo et al., 2015) is quadratic, which cannot handle
big data with a large number of samples.

To address all these challenges, we resort to brain maps (also called at-
lases) to design an efficient feature selection method for boosting neurological
disorder diagnosis using connectomic data. Brain maps are widely used to
derive discriminative features (or biomarkers) for diagnosing different brain
disorders such as mild cognitively impaired patients and Alzheimer’s dis-
ease patients (Liu et al., 2015; Adler et al., 2018), and autistic patients
(Dhifallah et al., 2018). We hypothesize that neurological connec-
tional biomarkers can be effectively identified by first learning
then comparing well-representative and centered brain network at-
lases of populations of healthy and disordered brains, respectively
(Figure 1). To do so, we first aim to efficiently produce a unified normalized
connectional representation of a population of brain networks. Second, by
comparing the difference between the learned healthy and disordered brain
atlases, we can easily spot discriminative brain connectivities, which will be
used to train a predictive learner for accurate and fast diagnosis.

For the last few decades, neuroscientific and neuroimaging studies have
relied heavily on the use of anatomical brain atlases for brain mapping, nor-
malization and comparison across individuals and populations (Toga and
Thompson, 2001; Gholipour et al., 2007). However, the connectional aspect
of the brain, captured by the wiring of its functional and structural neural
connections, was overlooked in the field of building population-based brain
maps. A few recent landmark works (Rekik et al., 2017, 2018b,a; Dhifallah
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Figure 1: Conventional dimensional reduction methods for neurological biomarker dis-
covery and proposed network atlas-guided feature selection method. While typical feature
selection (FS) methods aim to identify the most discriminative features in the original fea-
ture space for the target classification task, feature extraction (FE) methods cannot track
the original features as they extract new discriminative features via projection. Hence, FS
methods are more convenient for clinical applications for biomarker discovery. However,
existing FS methods are generally challenged by space, time, scalability, and reproducibil-
ity. To address these issues, we design a simple but effective feature selection method,
which identifies the most discriminative features by comparing healthy and disordered
brain network atlases to learn.
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et al., 2018) aimed to fill this gap in connectional brain mapping by introduc-
ing and developing the concept of a network atlas) estimated from a popula-
tion of brain networks. Although pioneering, the majority of these methods
were not evaluated on functional brain networks. More importantly, the dis-
criminative potential of the estimated connectional brain atlases for discov-
ering neurological biomarkers that can reliably distinguish between typical
and disordered brain networks remains unexplored.

To meet the four aforementioned challenges and address this gap, we un-
precedentedly propose a novel brain network atlas estimation technique for
fast and efficient feature selection method to boost neurological disorder diag-
nosis. Specifically, we propose a novel network atlas-guided feature selection
(NAG-FS) method, which is reproducible, scalable, computationally efficient,
and can handle data heterogeneity. By learning how to cluster similar func-
tional brain networks into non-overlapping subspaces using multiple kernels,
we can capture potential data distribution heterogeneity with different band-
widths. Next, we leverage the network diffusion and fusion technique intro-
duced in (Wang et al., 2014) to nonlinearly fuse networks lying in the same
subspace, hence creating a cluster-specific network atlas. Last, we obtain
the population functional network atlas by non-linearly diffusing and fusing
network atlases. This produces a centered and well-representative network
atlas for a population of brain networks. Ultimately, to identify the top Nf

most discriminative connections, we simply compute the absolute difference
between the healthy network atlas, estimated using healthy individuals, and
the disordered network atlas, estimated using disordered individuals. This
time-constant operation O(1) pins down the most distant connections in both
brain templates, which will be used to train a linear classifier. By cleaving
each functional network into its positive and negative parts, we also define a
positive functional network atlas and a negative functional network atlas. We
evaluate NAG-FS using negative, positive, and whole functional connectomes
for efficiently and accurately classifying healthy and autistic brains.

2. Proposed Network Atlas-Guided Feature Selection Method

2.1. NAG-FS overview

Figure 2 provides an overview of the key steps of the proposed network
atlas-guided feature selection (NAG-FS) for a fast and accurate classification
of normal controls (NC) and ASD subjects. In the first stage, we learn how
to estimate a centered and representative network atlas for positive (when
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the activity in a brain region increases, there is the same increase in activity
in the correlated region), negative (when the activity in a brain region in-
creases, there is the opposite effect in activity in the correlated region (Chen
et al., 2011; McGrath et al., 2013; Parente and Colosimo, 2016)), and whole
functional brain connectivities (Smith et al., 2015), respectively. To this aim,
we first divide our population into NC and ASD groups. Next, to estimate
a representative and centered average functional network for each group, we
learn multiple local network atlases, each occupying the center of a subpop-
ulation in the target group as illustrated in Figure 3. To tease apart the
different clusters within each group, thereby capturing the heterogeneous dis-
tribution of the data with most likely varying bandwidths, we leverage Single
Cell Interpretation via Multikernel Learning (SIMLR) framework for cluster-
ing (Wang et al., 2018). SIMLR efficiently learns sample-to-sample similarity
measure that best fits the structure of the data by combining multiple ker-
nels. Next, we use the learned similarity matrix to cluster the functional
networks within each group into different subpopulations. We then estimate
the average local network at the center of each subpopulation by utilizing
similarity network fusion (SNF) technique (Wang et al., 2014; Rekik et al.,
2017). SNF non-linearly integrates the input networks into a single network
using a local diffusion and global fusion processes. SNF is an efficient net-
work fusion algorithm in the sense that (i) it can capture both on common
patterns and complementary information across samples, (ii) it can derive
useful information even from a small number of samples, (iii) is robust to
noise and data heterogeneity, and (iv) scales to a large number of features.
To estimate the final population-specific network atlas, we apply SNF to fuse
all local network atlases estimated for each subpopulation. The last step in
the proposed NAG-FS is to utilize the estimated ASD and NC network at-
lases to devise an accurate but fast feature selection technique. Specifically,
by computing the residual network atlas (absolute difference between both
network atlases), we select the non-zero features with the highest discrepancy
and use those to train a linear support vector machine (SVM) classifier in a
leave-one-out fashion.

2.2. Construction of a centered and representative functional network atlas

In this section, we detail the first step of NAG-FS framework, which aims
to estimate centered and representative network atlases using the healthy
and disordered populations respectively. Throughout the paper, matrices
are denoted by boldface capital letters, e.g., X, vectors by boldface lower-
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Figure 2: Illustration of the proposed network atlas-guided feature selection (NAG-FS) framework for
a fast and accurate classification of normal controls (NC) and subjects diagnosed with autism spectrum
disorder (ASD). (A) Given a population of N functional brain networks, each individual i is encoded in a
matrix Xi of size r×r. Given the symmetry of each Xi, we extract features from the upper off-diagonal tri-
angular part to define a connectivity feature vector ci, then concatenate them all together into a functional

data matrix of size N × r×(r−1)
2

. In addition to whole functional network, we define positive and negative
functional networks by cleaving each functional network into its positive and negative parts for both ASD
and NC groups. (B) In order to disentangle the heterogeneous distribution of the functional networks, we
adapt the multi-kernel clustering method (Single Cell Interpretation via Multikernel Learning (SIMLR)
(Wang et al., 2018)), which can effectively capture the inherent data distribution. For each cluster, we
non-linearly diffuse and fuse all networks into a local centered network atlas using similarity network
fusion (SNF (Wang et al., 2014)), then we merge all these local atlases into a global population-centered
network atlas. Next, by computing the residual network atlas which is the absolute difference between
ASD and NC network atlases Awhole

ASD and Awhole
NC , we select the features with the highest discrepancy and

use those to train a linear support vector machine (SVM) classifier within a leave-one-out cross-validation
scheme. In this figure, we illustrate the steps for whole connections. These are also applied to negative
and positive connectomes, respectively.
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Table 1: Major mathematical notations used in this paper.

Mathematical notation Definition

N total number of subjects in the population
r number of anatomical regions of interest
Xi brain network in Rr×r of the i-th subject
ci feature vector of a subject i
kk k-th learning kernel in RN×N
S similarity matrix in RN×N
Nc number of clusters
nk number of kernels
wk weighting vector of the kernels in Rnk

L latent matrix in RN×Nc

IN identity matrix in RN×N
Gi = (Vi,Ei) brain network graph of a single subject (connectome)

Vi brain ROIs (nodes)
Ei edges connecting brain regions
Qi kernel similarity matrix of the i-th subject
Wi connectivity matrix of the i-th subject
Pi full kernel matrix of the i-th subject
Ac subpopulation network atlas
A population network atlas
Nf number of selected features
D difference absolute matrix between AASD and ANC

case letters, e.g., x, and scalars are denoted by lowercase letters, e.g., x. XT

denotes the transpose operator. For easy reference and enhancing the read-
ability, we have summarized the major mathematical notations in (Table 1).

Given a population of N functional networks, each network i is encoded
in a matrix Xi of size r × r, where r denotes the number of anatomical
regions of interest (ROIs). The diagonal of the matrix is zeroed since self-
connectivity is not considered in this context. An element xkl of network
Xi of the ith individual represents the Pearson correlation between the mean
blood oxygen-level dependent (BOLD) signal between ROIs k and l, which
falls in the [−1 1] range, allowing for positive and negative connectivities
between brain regions. Since each matrix Xi is symmetric, we vectorize the
upper off-diagonal triangular part to define a connectivity feature vector ci
for subject i of size r×(r−1)

2
(Fig. 2–A).

Next, we display in Fig. 2–B the fundamental stages for estimating the
target population connectional center. In the first stage, we aim to disentan-
gle the heterogeneous distribution of the functional networks by leveraging
multiple kernels to learn a connectomic manifold for healthy and disordered
networks, respectively. Multiple kernels have been shown to correspond to
different informative representations of biological data and often are more
flexible than a single kernel (Gönen and Alpaydın, 2011). In particular,
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we adapt the recently developed SIMLR method presented in (Wang et al.,
2018) to our aim as it has shown significant outperformance in comparison
with clustering methods that used pre-defined similarity measures such as
Euclidean similarity and Pearson correlation, instead of learning it in a data-
driven manner. In the second stage, we estimate a local network atlas for
each cluster, then we merge all local atlases into a global population-centered
network atlas.

Multiple kernel-based clustering of brain networks. Fig. 3 provides
an overview of the key steps for brain network data clustering taking as input
the functional data matrix of sizeN× r×(r−1)

2
where each row vector ci denotes

the feature vector of a subject i. Specifically, (Wang et al., 2018) proposes to
learn the network manifold by learning the weights {wk}nkk=1 associated with a
set of Gaussian kernels {Kk}nkk=1 with different bandwidths that can capture
the diverse statistical characteristics of the input data. The learned manifold
also addresses the challenge of high levels of dropout events by employing a
rank constraint in the learned cell-to-cell similarity.

Each Gaussian kernel is defined as: K(ci, cj) = 1
εij
√

2π
e

(− |c
i−cj |2

2ε2
ij

)

, where ci

and cj denote the feature vectors of the i-th and j-th network atlas respec-
tively and εij is defined as: εij = σ(µi+µj)/2, where σ is a tuning parameter

and µi =
∑
l∈KNN(ci) |c

i−cj |
k

, where KNN(ci) (K-nearest neighbors) represents
the top k neighboring subjects of subject i. The weighted kernels are then
averaged to produce the target similarity matrix S. These are estimated
along with an N ×Nc latent matrix L capturing Nc inherent distributions of
the data by solving the following optimization problem:

min
S,L,w

∑
i,j,k

−wkKk(c
i, cj)Sij+β||S||2F +ηtr(LT (IN−S)L)+ρ

∑
k

wklogwk (1)

Subject to:
∑

k wk = 1, wk ≥ 0, LTL = INc ,
∑

j Sij = 1, and Sij ≥ 0 for
all (i, j).

The first term refers to the relation between the similarity and the kernel
distance with weights wk between two networks. The second term denotes a
regularization term that avoids over-fitting the model to network data. The
learned similarity S should be small if the distance between a pair of net-
works is large. The matrix (IN − S) denotes the graph Laplacian. The last
term imposes constraints on the kernel weights to avoid selection of a single
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kernel. An alternating convex optimization is adopted where each variable
is optimized while fixing the other variables until convergence (Wang et al.,
2018). Once the similarity matrix S is computed, we can perform subpop-
ulation identification by extracting the Nc blocks where similar functional
networks group together (Fig. 3).

Figure 3: Illustration of brain network data clustering using SIMLR (Wang et al., 2018).
We input the functional data matrix to SIMLR to group samples into Nc clusters. Next,
we learn the proper weights associated with multiple Gaussian kernels that can capture the
inherent statistical distributions of the input data. By leveraging the weighted kernels, we
construct the target similarity matrix S which contains Nc blocks where similar functional
networks group together.

Proposed population-based network atlas estimation strategy.
The proposed network atlas estimation framework lies in first computing lo-
cal centers at the heart of subpopulations unraveled by the previous network
data clustering step, then fusing all these network centers to produce the pop-
ulation network atlas (Fig. 4). Note that the network atlas for the healthy
population is estimated independently of that of the disordered (ASD in the
current study) population. For each individual i in the N th

c subpopulation
(or cluster) composed of ]Nc networks, we define a graph Gi(Vi,Ei) where
each vertex in vk denotes an ROI and each edge in E connecting two ROIs
k and l denotes the strength of their correlation. Prior to applying SNF
method, we first normalize each subject-specific feature vector c as follows:
c̃ = c−E(c)√

var(c)
, where c̃ presents the corresponding normalized feature vector.

E(c) denotes the empirical mean of c and var(c) represents the variance of
c.

Next, we define a kernel similarity matrix Qi for each individual i in the
population, which encodes its local structure by computing the similarity
between each of its elements ROI k and its nearest ROIs l as follows:
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Figure 4: Proposed SNF-SNF network diffusion and fusion strategy to estimate the pop-
ulation network atlas. The basic idea lies in first learning how to estimate the local center
of each cluster produced by SIMLR, then fusing local centers into a global one. To do so,
we use similarity network fusion (Wang et al., 2014) to fuse networks within each cluster
by diffusing their local structure across one another.
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Qi(k, l) =

{
Wi(k,l)∑

p∈Nk
Wi(k,p)

l ∈ Nk

0, otherwise
(2)

Nk represents the set of q neighbors of ROI k identified using KNN algo-
rithm.

Wi represents the connectivity matrix where element Wi(k, l) denotes the
connectivity between ROIs k and l. A scaled exponential similarity kernel
is used to determine the weight of each edge. For each subject i, Wi is
computed as follows:

Wi(k, l) = exp(−ρ
2(k, l)

µεk,l
) (3)

Where ρ(k, l) denotes the Euclidean distance between ROIs k and l. µ is

a hyperparameter and εk,l = mean(ρ(k,l)+ρ(k,Nk)+ρ(l,Nl)
3

is used to solve scaling
problem (Wang et al., 2014).

To capture the global structure of each network i, we define a full kernel
matrix P, carrying the full information about the similarity of each ROI to
all other ROIs as follows:

Pi(k, l) =

{
Wi(k,l)

2
∑
p 6=kWi(k,p)

l 6= k

1/2, l = k
(4)

We note that SNF is robust to noise thanks to Q, which can reduce noise
between instances. In order to integrate the different networks into a single
network, the status matrices Pi are iteratively updated for each individual
by diffusing the the global structure Pj of ]Nc−1 networks (j 6= i) along the
local structure Qi of subject i as follows:

Pi = Qi ×
(∑

j 6=i Pj

]Nc − 1

)
×QT

i , j ∈ {1, . . . , ]Nc} (5)

Where
∑
j 6=iPj

]Nc−1
denotes the diffusion structure computed as the mean global

structures of all other individuals in the subpopulation. We iterate opera-
tion 5 Nt times to progressively update each network in relation to other
networks using this diffusion process. Ultimately, following Nt iterations, we
produce the subpopulation network atlas by averaging the diffused status
matrices Pi at the final iteration Nt:
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Ac =

∑]Nc
i=1 PNt

i

]Nc

(6)

Ultimately, the population network atlas A is computed by nonlinearly
fusing the subpopulation atlases using SNF (Wang et al., 2014). Using the
proposed strategy, we estimate a network atlas AASD for ASD subjects and
ANC normal controls.

2.3. Discriminative connectional biomarker identification

Due to the high dimensionality of the extracted connectomic features of
the order of r2 with r denoting the number of ROIs used to construct each
connectome in our population, we propose a novel feature selection strat-
egy (NAG-FS) that selects the most discriminative features distinguishing
between two populations based on the learned population-specific network
atlases (Fig. 6). Using leave-one-out cross-validation (LOO-CV) strategy,
we first use the training population to estimate AASD and ANC network
atlases. Next, we compute the absolute distance between both estimated
training network atlas matrices AASD and ANC as follows: D(NC,ASD) =
|AASD − ANC |. The intuition behind computing a residual network (i.e.,
absolute different network) is very simple: we hypothesize that the distance
between healthy and disordered network atlas is much larger than the dif-
ference between healthy network atlas and healthy individual network. The
elements in the difference (residual network D) network with the highest

Figure 5: Construction of the residual network atlas D using the absolute difference
between both estimated healthy and disordered network atlases for easy and accurate iden-
tification of the most discriminative connectivities (i.e. connectional features).
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values are identified as those most discriminative (Fig. 5). By taking all el-
ements in the upper off-diagonal part of D(NC,ASD), we select the top Nf

features with the largest non-zero distance. By extracting the top Nf from
all training networks, we train a linear SVM classifier to learn the mapping
from the selected feature space to the label space {−1, 1} (−1 for ASD and 1
for NC subjects). In the testing stage, we extract the same features from the
testing functional network, then pass the produced Nf -dimensional feature
vector to the trained classifier for predicting the testing subject label.

Figure 6: Proposed network atlas-guided feature selection (NAG-FS) framework. Given
the upper off-diagonal part of D, we select the indices of top Nf ranked features. Next,
we extract the top Nf discriminative training features to train a linear classifier. In the
testing stage, we extract the same ranked features from the testing functional network,
then we produce a feature vector of size Nf , which is fed into SVM to predict the subject
label.

3. Experimental results

Evaluation dataset and preprocessing pipeline. We evaluated our
proposed framework on 517 subjects (245 ASD and 272 NC) from ABIDE
preprocessed dataset 1. Several preprocessing steps were implemented by the
data processing assistant for resting-state fMRI (DPARSF) pipeline, which
is based on statistical parametric maps (SPM) and resting-state fMRI data

1http://preprocessed-connectomes-project.org/abide/
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analysis toolkit (REST). First, to ensure a steady signal, the first 10 volumes
of rs-fMRI images were discarded. Based on a six-parameter (rigid body), all
images were slice timing corrected and were realigned to the middle to cut
down on inter-scan head motion (Tang et al., 2018). Then, the functional
data were registered in montreal neurological institute (MNI) space with a
resolution of 3×3×3 mm3. To improve signal to noise ratio, spatial smooth-
ing were then applied with a Gaussian kernel of 6 mm. Finally, band-pass
filtering (0.01-0.1 Hz) was performed on the time series of each voxel (Price
et al., 2014; Huang et al., 2017). These steps are detailed in this link: http:
//preprocessed-connectomes-project.org/abide/. Each brain rfMRI
was partitioned into 116 ROIs.

Method parameters. For SIMLR parameters, we empirically set the
number of cluster Nc = 3 and the number of nearest neighbors k = 20. For
SNF parameters, we also set the number of nearest neighbors to q = 20, the
number of iterations Nt = 20 as recommended in (Wang et al., 2014) for
convergence. Concerning the number of nearest neighbors, we tuned them
empirically for both SNF and SIMLR (q and k = {10 : 10 : 100}). We
have remarked that the variation of these parameters did not influence the
performance. Indeed, changes in evaluation measures was negligible when
varying the number of neighbors. Hence, we opted for setting q and k to
20 which produced the best performance, although the improvement was
minimal. To investigate the discriminative power of positive and negative
brain connectivities in ASD diagnosis, we evaluated NAG-FS on positive,
negative, and whole functional network populations, respectively using LOO-
CV as explained in Section 2.3.

Source code. NAG-FS source code is available at https://github.com/
basiralab/NAGFS.

NAG-FS evaluation using different clustering techniques. We
compared SIMLR with the widely used hierarchical clustering (HC) algo-
rithm (Stevens et al., 2000). For instance, HC was previously used to reveal
the hierarchical structure of the brain function (Marui et al., 2018). To
evaluate the centeredness and representativeness of the network atlas pro-
duced by our method, we computed the mean Frobenius distance between
estimated network atlas and all individual networks in the population using
SIMLR clustering algorithm and HC algorithm with different numbers of
clusters (Fig. 7) for both ASD and NC classes. Clearly, SIMLR consistently
achieved the minimum distance across different numbers of clusters Nc for
positive, negative and whole functional network data. In particular, Nc = 3
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Figure 7: Evaluation of the estimated network atlas for NC and ASD populations using
different clustering techniques. We display the mean Frobenius distance between estimated
network atlas and all individual network atlases in the population using hierarchical clus-
tering (HC) and SIMLR with different numbers of clusters. Notably, SIMLR achieves the
minimum distance with Nc = 3 for positive, negative and whole data in both ASD and
NC groups.
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represented the best number of clusters for SIMLR for both ASD and NC
groups while Nc = 2 represented the best number of clusters for HC for NC
group and Nc = 3 for ASD group. For Nc = 5, HC produced the high-
est distance for positive {1.63, 1.47}, negative {1.48, 1.38} and whole data
{1.75, 1.57} for ASD and NC groups respectively. We also notice that the
mean Frobenius distance highly increases when Nc = 1 (without clustering),
which indicates that clustering well captures data heterogeneity. Besides,
SIMLR reduced weak similarities and clustered subpopulations more accu-
rately in comparison with HC algorithm.

Figure 8: Evaluation of the estimated network atlas for NC and ASD populations using
different fusion strategies. We display the mean Frobenius distance between estimated
network atlas and all individual networks in the population using AV-AV, AV-SNF, SNF-
AV and SNF-SNF. Clearly, SNF-SNF achieves the minimum distance for positive, negative
and whole data in both ASD and NC groups.

NAG-FS evaluation using different fusion strategies. For network
atlas estimation, we benchmarked our method against four network fusion
strategies. Particularly, we used AV-AV algorithm which first averages net-
works in each cluster, then averages the cluster-specific atlas networks to
generate the final network. The same process is repeated using AV-SNF,
SNF-AV and SNF-SNF. Then, we computed the mean Frobenius distance

defined as dF (A,B) =
√∑

i

∑
j |aij − bij|2 between the population network

atlas and all individual networks in the population. We observe that the
best result was given by the SNF-SNF method for positive, negative and
whole data followed by SNF-AV, AV-SNF and SNF-SNF, respectively. We
also note that linear fusion using AV-AV produced the highest distance for
positive {1.30, 1.33}, negative {1.04, 1.06} and whole data {1.50, 1.55} in
ASD and NC groups, respectively (Fig. 8).
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Rank First region Second region
1 Right inferior frontal gyrus, pars triangularis Left globus pallidus

(Frontal lobe) (Basal Gonglia lobe)
2 Left inferior frontal gyrus, pars orbitalis Left gyrus rectus

(Frontal lobe) (Frontal lobe)
3 Right inferior frontal gyrus, pars opercularis Left thalamus

(Frontal lobe) (Basal Gonglia lobe)
4 Right inferior frontal gyrus, pars opercularis Right putamen

(Frontal lobe) (Basal Gonglia lobe)
5 Left inferior frontal gyrus, pars opercularis Left superior temporal gyrus

(Frontal lobe) (Temporal lobe)

Table 2: Top 5 discriminative connections using positive connectomic data.

Comparison with different feature selection methods. First, we
compared NAG-FS with four baseline methods: (1) without using any fea-
ture selection method, (2) recursive feature elimination with random forest
(RFE-RF) (Granitto et al., 2006), (3) local learning-based clustering fea-
ture selection (LLCFS) method (Zeng and Cheung, 2010), and ultimately
(4) using a landmark feature selection method (supervised IFS) (Roffo et al.,
2015), which was evaluated on 13 datasets and outperformed 8 feature selec-
tion methods. Using leave-one-out, we trained an SVM classifier using the
top Nf most discriminative features identified by each of the following feature
selection methods: (i) RFE-RF, (ii) LLCFS, (iii) IFS, and (iv) the proposed
NAG-FS. Clearly, our method achieved the best classification accuracy for
the whole connectome (65.03%), positive connectome (59.69%) and nega-
tive connectome (63.22%) (Fig. 9) with the lowest computational time com-
pared to using IFS (Roffo et al., 2015) and LLCFS (Zeng and Cheung, 2010)
(Fig. 11), respectively. Although SVM achieved the lowest computational
time as it was not combined with any feature selection method (Fig. 11), its
classification performance was the lowest (Fig. 9). The computational time
displayed for the proposed and comparison methods was computed using the
difference between the time at the end of LOO-CV and the time right before
it started.

4. Discussion

The brain network atlas is a recent stimulating discovery in the field of neu-
roscience connectomics. Estimating representative and reliable brain atlases
constitute a fundamental step in several MRI-based neurological disorder
mapping, diagnosis, and prognosis. In this paper, we proposed the first net-
work atlas-guided feature selection framework to disentangle the healthy from
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Rank First region Second region
1 Left superior frontal gyrus Left superior frontal gyrus, orbital part

(Frontal lobe) (Frontal lobe)
2 Right superior frontal gyrus Right inferior frontal gyrus, pars opercularis

(Frontal lobe) (Frontal lobe)
3 Right superior frontal gyrus Left middle frontal gyrus, orbital part

(Frontal lobe) (Frontal lobe)
4 Right superior frontal gyrus Left inferior frontal gyrus, pars opercularis

(Frontal lobe) (Frontal lobe)
5 Left superior frontal gyrus Right caudate nucleus

(Frontal lobe) (Cerebellum lobe)

Table 3: Top 5 discriminative connections using negative connectomic data.

Rank First region Second region
1 Right posterior cingulate gyrus Right crus I of cerebellar hemisphere

(Cingulate lobe) (Cerebellum lobe)
2 Left posterior cingulate gyrus Left caudate nucleus

(Cingulate lobe) (Basal Ganglia lobe)
3 Right inferior frontal gyrus, pars orbitalis Left medial orbitofrontal cortex

(Frontal lobe) (Frontal lobe)
4 Left supplementary motor areas Right medial orbitofrontal cortex)

(Frontal lobe) (Frontal lobe)
5 Left inferior frontal gyrus, pars orbitalis Left paracentral lobule

(Frontal lobe) (Parietal lobe)

Table 4: Top 5 discriminative connections using whole connectomic data.

Figure 9: ASD identification accuracy using our method (NAG-FS + SVM), IFS+SVM
(Roffo et al., 2015), LLCFS+SVM (Zeng and Cheung, 2010), RFE-RF+SVM (Granitto
et al., 2006), and SVM methods. The best performance was achieved respectively using
positive, negative and whole data by our method.
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the disordered connectome while easily pinning down the disorder-specific
connectional fingerprint (or features). Our learning-based framework com-
prises two steps. In the training stage, for each group of individuals, we first
learn how to estimate a centered and representative functional network atlas
to reliably map the functional connectome and its variability across training
individuals, thereby capturing their shared traits (connectional fingerprint of
a population). Second, instead of resorting to feature selection methods for
network dimensionality reduction, we propose a simple but effective feature
selection method called network atlas-guided feature selection (NAG-FS),
shifting the way we usually design feature selection methods for biomarker
discovery. Our approach has two compelling strengths: (1) the estimated
network atlas was most centered and representative in comparison with net-
work atlases produced by baseline methods, and (2) the proposed NAG-FS
method largely boosted the classification of ASD patients in comparison with
several feature selection methods including the landmark IFS technique.

Insights into baseline methods. Clustering step. As shown in Fig. 7,
hierarchical clustering produced the highest atlas-to-individuals distance for
both ASD and NC classes using positive, negative and whole correlations
compared to SIMLR. These results can be explained by the fact that the
hierarchical clustering is not effective in unraveling the inherent data dis-
tribution. For this reason, we adopted SIMLR, a learning-based clustering
technique, which learns a pairwise network similarities prior to clustering
(Wang et al., 2018). Notably, SIMLR consistently outperformed HC in both
NC and ASD populations.

Fusion step. To evaluate the centerdness of the estimated network atlases,
we computed the average Frobenius distance between the estimated network
atlas and individual networks in the population. As shown in Fig. 8, the
SNF-SNF method produced the most centered atlas for both ASD and NC
populations. This might indicate that alternative network fusion methods
simply average all networks without capturing their nonlinear relationship.
Therefore, these results demonstrate the effectiveness of SNF in capturing
both common patterns and complementary information across samples and
producing a representative fused network (Wang et al., 2014).

Classification step. To evaluate the performance of the proposed NAG-
FS, we benchmarked it against a landmark IFS (Roffo et al., 2015), which
outperformed several feature selection methods in the state-of-the-art, and
other feature selection methods including RFE-RF (Granitto et al., 2006),
and LLCFS method (Zeng and Cheung, 2010). Clearly, our method achieved
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Figure 10: Strongest connections present the 5 most discriminative network connections
between ASD and NC classes using positive, negative, and whole functional connectomes.
The circular graphs were generated using Circos table viewer (Krzywinski et al., 2009).
We used BrainNet Viewer Software (Xia et al., 2013) to visualize the regions of interest
involving the most discriminative connectivities.
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the best results as shown in Fig. 9 and Fig. 11 in terms of classification
accuracy as well as computational time.

Clinical interest. ASD is a progressive neurodegenerative disease. All
ASD patients displayed severe social isolation, language impairment, motor
stereotypes and insistence on sameness (Caronna et al., 2008). Although
autism is a lifelong condition, researchers showed that an early intervention
creates a big difference to the development of children especially babies out-
standing to improved outcomes for ASD children, including the increased
daily and social living skills, higher intelligence (IQ) (Prior et al., 2011; Ma-
giati et al., 2012). Thus, different to previous studies that focused on select-
ing features for classification without paying attention to the inter-population
variabilities and intra-population differences which are much more of a clini-
cal interest, estimating a well-representative brain network atlas for healthy
and autistic groups might help clinicians better interpret the altered brain
connections.

Insights into most discriminative connectional features. In Fig. 10,
we display the top 5 most discriminative functional connectivities identified
by NAG-FS. We found that the frontal lobe has the highest discriminative
power (Table 2, Table 3, Table 4). In particular, for positive functional
connectomic data, we notice that all second most discriminative functional
brain connectivities involved the frontal lobe. In Table 3, we found that
80% of the second most discriminative connectivities also involved the frontal
lobe. Furthermore, we identified other discriminative connectivities between
different regions such as the parietal cortex, temporal lobe, basal ganglia,
cingulate and cerebellum, which were reported in previous studies (Chan-
dana et al., 2005; Sundaram et al., 2008; Ha et al., 2015). The frontal lobe
has a major role in speech and language production (Alexander et al., 1989),
understanding and reacting to others, forming memories (Curran et al., 1997)
and making decisions (Collins and Koechlin, 2012), which might explain the
prevalence of altered brain connectivities in this brain region. (Ha et al.,
2015) also reported that the frontal, temporal, parietal cortex and basal gan-
glia mediate clinical phenotypes of ASD. (Balsters et al., 2016) demonstrated
that the anterior cingulate cortex activates very weakly in ASD patients. Ad-
ditionally, the development of the brain during childhood in ASD seems to
be predominated by an enlarged brain volume of the frontal lobe (Ha et al.,
2015). In the functional brain imaging research, the left inferior and middle
frontal gyri have showed hypo-activation in adolescent with ASD compared
with NC (Kana et al., 2006). (Kim et al., 2010; Adolphs, 2001) showed that
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the mediate impairments of social behaviors caused by the abnormalities in
the frontal lobe, superior temporal cortex and parietal cortex. All these
studies support the discriminative functional connectivities revealed by our
estimated functional network atlases.

Multi-site data heterogeneity. As mentioned above, we evaluated our
method using the worldwide multi-site (ABIDE) dataset. ABIDE dataset
consists of 1112 subjects with different age, gender and handedness. Hence,
all these factors make the data highly heterogeneous. So, to limit this issue,
first, we have included 50% of the available data (only 517 subjects). Second,
to design a robust method that can handle multi-site datasets in a fully un-
supervised way, we have leveraged SIMLR framework in order to disentangle
the heterogeneous distribution of the data. Besides, we have used the SNF
network fusion algorithm which is robust to data heterogeneity. All these
steps help our method better handle data heterogeneity in an unsupervised
and generic way, which is blind to data sites/sources.

Computational cost. Most efficient feature selection methods are com-
putationally expensive (Duch et al., 2012; Wong et al., 2018). Devising a
fast and efficient feature selection technique with low computationally cost
that can meet the formidable challenge of exploding large datasets remains
an active area of research. In this work, we demonstrate that brain net-
work atlases can be used to select discriminative and reliable features in a
constant computational time O(1) as it simply relies on computing the dif-
ference between two matrices. Although RFE-RF method achieved lower
computational time than our method, our method boosted the classification
performance by more than 11% in comparison to RFE-RF (Fig. 11). We
also note that the RFE-RF may not scale up to high-dimensional data which
makes it less effective in handling connectomic datasets (Darst et al., 2018).
Notably, NAG-FS is less computationally expensive than IFS and LLCFS
methods. As demonstrated in (Roffo et al., 2015), IFS is less computation-
ally expensive than 7 state-of-the-art methods. This shows that NAG-FS is
not only accurate, but also practical and efficient.

Remark 1. We note that the whole pipeline (Fig. 2 ) is in O(n3). Yet,
in our work we would like to accentuate in how to leverage well-estimated
brain network atlases to effectively select the most relevant features without
resorting to training complex FS methods with high computational time and
memory space, whose performance generally largely fluctuates when vary-
ing the dataset they are trained on (Georges et al., 2018). Hence, once the
network atlases are estimated, we easily and reliably identify the most dis-
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criminative features in O(1) time complexity.
Remark 2. In Fig. 11 we report the computational time including the

network atlas estimation step. However, once the network atlases are esti-
mated, the identification of the most discriminative feature is performed in
almost a constant time O(1). In a real-world clinical setting, pre-estimated
network atlases can be directly utilized for diagnosis in a constant time.

Figure 11: Computational time. Run time comparison between the proposed (NAG-FS
+ SVM) method, (RFE-RF+SVM), (LLCFS+SVM), (IFS+SVM), and SVM methods in
ASD/NC classification. Notably, SVM does not use any feature selection technique, hence
it is the least time-consuming. All our experiments were performed using a Windows
machine with 4 Go RAM and i5 Cores.

Limitations and future directions. Although our proposed method
achieved promising results, there are several improvements that can be ex-
plored as future work.

Integrating other brain network representations. Our method was evalu-
ated using only functional brain networks derived from rfMRI. We intend
to explore the discriminative power of brain network atlases derived from
other brain modalities such as structural brain networks estimated from diffu-
sion MRI and morphological brain networks estimated from conventional T1-
weighted MRI (Morris and Rekik, 2017; Soussia and Rekik, 2017; Lisowska
et al., 2018; Mahjoub et al., 2018; Soussia and Rekik, 2018; Nebli and Rekik,
2019; Seidlitz et al., 2018). Integrating multi-modal connectomic networks
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to estimate a holistic network atlas of the brain may provide complementary
information to improve ASD/NC diagnosis (Liu et al., 2017).

Atlas parcellation. The produced brain network atlases were derived from
a single brain parcellation. Leveraging multiple parcellations will provide a
more coarse-to-fine landscape of the effect of a neurological disorder on func-
tional brain connectivities. One can also utilize a multi-modal brain par-
cellation of the brain to estimate multimodal brain network atlases (Glasser
et al., 2016).

Integrating multi-view brain networks. In addition to using an algorithm
which integrates multi-view brain networks, we can use multi-view clustering
techniques to take advantage of the multi-view aspect of the data and create
more homogenous clusters across views (Yang and Wang, 2018).

Integrating multi-view clustering techniques. Add to integrating multi-
view brain networks, we can use multi-view clustering techniques to take
advantage of the multi-view information and unleash the power of knowledge
(yang et al. 2018). So, we can simultaneously carry out the clustering using
each view of data samples to exploit the complementary information.

Deep learning models as a potential future research direction. At present,
most investigators (Guo et al., 2017; Heinsfeld et al., 2018) focused on de-
veloping deep learning algorithms thanks to its efficiency in classification
task. Nevertheless, these techniques have not been broadly adopted by the
neuroimaging studies and still immature (Li et al., 2018). Also, they used
modest sample size. And as it is known deep learning algorithms are data
hungry which needs massive samples. Consequently, the use of small or
modest data size make the reliability and the reproducibility of these ap-
proaches debatable. (Wang et al., 2019) proposed another technique called
“multi-site adaption framework via low-rank representation decomposition
(maLRR)” which addresses deep learning algorithms issues. However, from
a neuroscience and treatment perspectives, there is a key limitation that oc-
curs both in deep learning and maLRR methods. These techniques do not
allow to track the most discriminative features (i.e., connectivities) which
may help to discover the disease-relevant markers, but, they learn new fea-
ture representations, which might boost the classification results but unfor-
tunately loose data interpretability. With the increase of the public pool
of connectomic datasets, designing connectivity-based deep learning models
for estimating centered and well-representative network atlases without loss
of interpretability and tractability would be of high utility in mapping the
human brain and diagnosing neurological disorders.
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5. Conclusion

In this paper, we proposed how to estimate representative and centered
brain network atlases, which can be leveraged to identify discriminative brain
connectivities between healthy and disordered populations. The proposed
network atlas-guided feature selection (NAG-FS) achieved the best results in
terms of classification accuracy and overall computational time in compari-
son to state-of-the-art feature selection methods. We also used NAG-FS to
investigate the discriminative power of positive, negative, and whole func-
tional connectomes in classifying ASD and NC subjects, thereby identifying
disordered brain connectivities fingerprinting autism spectrum disorder. To
sum up, the estimation of centered brain network atlases provides a new and
exciting venue for better understanding a wide spectrum neurological dis-
orders and easily and effectively spotting reliable biomarkers for improving
diagnosis and prognosis. In our future work, we will further investigate the
discriminative power of network atlases in the diagnosis of neurodegenerative
disorders including dementia.
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