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Abstract 
The Dundee Resource for Sequence Analysis and Structure Prediction (DRSASP; 
http://www.compbio.dundee.ac.uk/drsasp.html) is a collection of web services provided by 
the Barton Group at the University of Dundee. DRSASP’s flagship services are the JPred4 
webserver for secondary structure and solvent accessibility prediction and the JABAWS 2.2 
webserver for multiple sequence alignment, disorder prediction, amino acid conservation 
calculations and specificity determining site prediction. DRSASP resources are available 
through conventional web interfaces and APIs but are also integrated into the Jalview 
sequence analysis workbench which enables the composition of multitool interactive 
workflows. Other existing Barton Group tools are being brought under the banner of 
DRSASP, including NoD (Nucleolar localisation sequence detector) and 14-3-3-Pred. New 
resources are being developed that enable the analysis of population genetic data in 
evolutionary and 3D structural contexts. Existing resources are actively developed to exploit 
new technologies and maintain parity with evolving web standards. DRSASP provides 
substantial computational resources for public use and since 2016 DRSASP services have 
completed over 1.5 million jobs. 
 

 
Figure 1: The Dundee Resource for Sequence Analysis and Structure Prediction. 

JABAWS2.2

1.1AACon
NoD AMASS

Xtal



1 Introduction 
The flood of sequence data across all species continues to grow in rate and volume.  While 
there are many challenges in managing these large data sets, the major hurdle is to use the 
raw sequence data to inform our knowledge and understanding of biological systems.  In 
order to achieve this goal, accurate and reliable software tools are required to make 
structural and functional predictions from the sequence data.  Over 30 years, our group has 
developed innovative software packages, web servers and databases that allow the 
structure and function of protein sequences to be probed and has used these in conjunction 
with experiments to improve understanding of specific biological systems.    
The Dundee Resource for Sequence Analysis and Structure Prediction (DRSASP; Figure 1) 
encapsulates many of these methods with techniques developed by other groups as a 
collection of publicly available protein sequence analysis web services. The resource 
provides convenient access through websites, APIs and the Jalview1 analysis workbench to a 
variety of algorithms including secondary structure prediction, disorder prediction, multiple 
sequence alignment, evolutionary conservation calculations and other functional site 
predictions2-10. DRSASP helps to translate Barton Group research into new web services 
accessible to a wide community as well as ensuring the sustainability of the popular JPred2 
and JABAWS10. Initially, DRSASP comprised JPred311, JABAWS:MSA12 and Kinomer5. Over the 
last few years new services have been added such as NoD9 and 14-3-3 Pred3 and our main 
services have undergone significant updates. The sustained contribution and relevance of 
DRSASP has been recognised in the granting of Elixir-UK Tier 1 Resource status13. This 
signifies Elixir-UK’s view that DRSASP is an important contributor in the strategic area of 
Protein Structure and Function. In this article we summarise the current DRSASP (August 
2019) and look forward to new resources that will be added in the near future. 

2 The DRSASP Toolbox 
Table 1 presents an overview of the DRSASP tools and categorises their application, 
availability and technology. The tools address a range of general biological questions: What 
is the structure of the protein? Will the protein crystallise? Which amino-acid residues are 
conserved across a set of homologues and what type of conservation is present (e.g. 
identity, hydrophobicity, charge)? Which residues are important for functional specificity? 
Where does the protein localise in the cell? Are any residues likely to be involved in protein-
protein interactions? In terms of technology, 14-3-3-Pred, NoD and the XTal suite are 
implemented by sequence trained machine learning algorithms; Kinomer is a profile HMM 
(Hidden Markov model) based method; JPred is a multiple neural network method trained 
from sequence alignment profiles and AACon and AMAS14 contain a variety of residue set-
based calculations. JABAWS itself is a web services framework with which DRSASP serves a 
range of sequence analysis methods. Most DRSASP services are accessible via web forms, 
which are mainly suitable for small-scale analyses. For bulk analyses, some services provide 
programmatic-APIs and/ or pre-computed datasets. Many services are available directly 
from Jalview1 or provide results in Jalview compatible format. In the following sections we 
provide a concise description of each tool covering what it does, how it works, how it can be 
applied through research examples and how it is used. 
  



 
Table 1: Summary of the DRSASP tools 

   Availabilitya   

Serviceb Application Tech HTML API Jalview1 Dataset Released Ref 
JPred4 Protein 2° structure and 

solvent accessibility 
prediction 

ANN ✓ ✓ ✓ ✓c 2015 2 

JABAWS 2.2 Bioinformatics tool web 
services framework. 
Provides: MSA, conservation 
analysis, disorder prediction 
and RNA 2° structure 
prediction 

Multiple  ✓ ✓  2018 10 

Slivkad Successor to JABAWS (see 
above) 

 (✓) (✓) (✓)  -  

ProteoCached DRSASP data warehouse   (✓)  (✓) -  
pyDRSASPd 
(ProteoFAV) 
(ProIntVar) 
(VarAlign) 

Variant and structure 
analyses 

  (✓)  (✓) -  

AACon Conservation   ✓ ✓    
14-3-3-Pred PPIs ANN 

SVM 
PSSM 

✓ ✓ ✓e  2015 3 

NoD Subcellular localisation ANN ✓   ✓ 2011 9 
Kinomer Sequence classification pHMM ✓   ✓ 2009 5 
XTal 
(OB-score) 
(XANNPred) 
(ParCrys) 

Crystallisation propensity 
Construct design 

 
Z-score 

ANN 
Parzen 
window 

✓   ✓f 2008 6 
8 
7 

AMAS Functional residues  ✓    1993 14 
Columns - “Service”: The name of the DRSASP service; “Application”: The application area; “Tech”:  implementation 
technology – ANN (Artificial Neural Network – machine learning), SVM (Support Vector Machine), pHMM (Profile Hidden 
Markov Model), PSSM (Position Specific Scoring Matrix).  “HTML”: Tick means service has a web page form interface; “API”: 
Indicates the service has an Application Programming Interface; “Jalview”: shows services that are directly accessible from 
Jalview.  “Dataset”: Indicates availability of datasets associated with the method.  “Released”: First release date of the 
service. Footnotes - a) Parentheses denote that the availability is in development. b) Parentheses denote subcomponents of 
a service. c) The JPred training and test datasets are available for download from the website. Access to pre-computed 
JPred predictions for certain proteomes (e.g. Human) will be available from ProteoCache in future but for now are 
obtainable from the API or upon request from the authors. d) service is in development. e) 14-3-3-Pred provides Jalview 
compatible feature files. f) OB-Score predictions are available for Pfam 31.0.   

 
2.1 JABAWS: Java Bioinformatics Analysis Web Services 
One of our objectives for DRSASP is to deliver resources via a common interface and to 
make it easy for others to deploy the same services on their own computing infrastructure. 
With this in mind we developed the JABAWS10,12 framework. JABAWS simplifies the 
provision of bioinformatics tools as web services by abstracting web interfaces, tool 
wrapping, wrapper execution and data models. The DRSASP instance of JABAWS provides 
access to multiple sequence alignment methods, disorder predictors, an RNA secondary 
structure predictor and methods for conservation calculation from multiple sequence 
alignments. 



 
For multiple sequence alignment, JABAWS includes Clustal Omega15, Clustal W16, Mafft17,18, 
Muscle19, T-coffee20, Probcons21, MSAProbs22 and GLProbs23. The availability of these varied 
multiple sequence alignment programs allows the user to select the best tool for the 
sequences they wish to align or to compare the results from different algorithms 
interactively in Jalview or programmatically using the JABAWS client. This approach can also 
be taken with the multiple options JABAWS provides for residue conservation scoring and 
disorder prediction. For disorder prediction we have DisEMBL24, IUPred25, Jronn26 and 
GlobPlot27 and there are examples where users report the results from two or more of these 
options28. For MSA interpretation, 17 conservation scores and the SMERFS score4 for 
functional site prediction are available through JABAWS, implemented with our AACon 
software discussed further in §2.3. For RNA secondary structure prediction, JABAWS 
provides the RNAalifold method from the ViennaRNA package29. 
 
JABAWS allows the specification of command line parameter presets. For example, in 
addition to the default settings, MUSCLE19 is configured with separate presets that are 
suitable for protein alignments and nucleotide alignments whilst MAFFT18 presets are 
configured to implement the NW-NS-PartTree-1, FFT-NS-i, FFT-NS-1, L-INS-i, E-INS-i and G-
INS-i strategies. For maximum flexibility, command-line options are exposed via the JABAWS 
interface allowing users to run tools with options suitable for their own needs. 
 
Most Jalview1 users will access the Dundee JABAWS instance as this is pre-configured by 
default Jalview installations. This makes JABAWS functions accessible immediately after 
installing Jalview.  If a user prefers to keep their data local, work without access to the 
internet or tackle very large problems, they may wish to install JABAWS on their personal 
computer or site-wide computing resource at their institution.  The simplest way to create a 
JABAWS instance is with the JABAWS virtual appliance or Docker container (see 
http://www.compbio.dundee.ac.uk/jabaws22/archive/docker/Dockerfile) but a WAR file 
(Web Application Archive) is provided that is better suited for institutional installations. 
Jalview can be configured to use the alternative JABAWS instance via Tools → Preferences → 
Web Services. JABAWS services can also be accessed programmatically via a downloadable 
command line client. Alternatively, users may interface with the JABAWS SOAP API with 
their own preferred SOAP client. These modes are best suited to users who wish to use 
JABAWS service for high-throughput analyses or as part of computational pipelines. The 
public JABAWS service at www.compbio.dundee.ac.uk/JABAWS/ currently has no fair usage 
policies imposed, but public jobs are restricted to defined maxima for the number of 
submitted sequences and average sequence length. These restrictions are applied on a tool/ 
preset specific basis and are obtained via SOAP operations, for example with the -limits 
argument to the JABAWS command line client. Limits vary from 500 – 2,000 sequences for 
sequence alignment, 2,000 – 5,000 sequences for disorder prediction and 2,000 – 10,000 
sequences for disorder calculations. Additionally, all jobs are limited to one hour of compute 
time. Jobs of larger than the relevant size limits will not be accepted and long running jobs 
are terminated. 
 
Figure 2 illustrates how to run MAFFT18 on an alignment using the L-INS-i presets in Jalview. 
Jalview has a sophisticated yet intuitive interface to JABAWS. Jalview permits custom tool 
parameters, alignment or realignment of alignment subsets and automatically displays 



results from JABAWS appropriately. In this example, the result is a new MSA and is 
displayed in a new alignment window. The JABAWS protein disorder or conservation tools 
create annotation tracks on the alignment on which they are run. Jalview also allows custom 
parameters to be set for a JABAWS tool via a dialog accessed under the appropriate Web 
Service sub-menus. 

 
Figure 2: Running MAFFT18 L-INS-i alignment with Jalview’s1 default JABAWS10 configuration. 1) Web Service → Alignment 
→ Run Mafft with preset → L-INS-i. If custom parameters are desired they can be set in the dialog available through “Edit 
settings and run…” 2) A new window reports the job arguments and its progress. 3) The resulting alignment opens in a new 
window (NB. the results MSA can be reopened with the “New Window” in the progress window). 

We have found the convenience of JABAWS beneficial in our own research. An analysis of all 
four disorder predictions in JABAWS in a set of known O-linked β-N-acetylglucosamine 
transferase (OGT; 620 proteins) compared to a negative control set (1,164 proteins) showed 
that disorder was likely to be an element of OGT substrate recognition, despite the absence 
of clear sequence motifs30. High-throughput disorder predictions were tried as features in 
the prediction of 14-3-3 protein binding-sites (see §2.4)3. JABAWS also simplified the 
calculation of conservation scores for several thousand Pfam31 alignments32. 
 
2.2 JPred4: A Protein Secondary Structure Prediction Server 
The JPred42 web server predicts secondary structure and solvent accessibility for a given 
protein sequence or multiple sequence alignment with the JNet 2.3.1 algorithm. A predicted 
protein secondary structure is useful in many ways when experimentally determined 
structures are unavailable. For example, secondary structure predictions can be used to 



improve multiple sequence alignments, as a starting point for 3D structure prediction or to 
interpret patterns of conservation in an alignment. 
 
Statistical and machine learning based approaches have proven effective at predicting 
protein secondary structure from sequence33-35. JNet 2.3.1 has a secondary structure 
prediction three-state accuracy (Q3; α-helix, β-strand and coil) of 82.0 %2, which was as good 
as the PSIPRED36 and PredictProtein37 self-reported blind test accuracies at the time of 
development. Since then, Xu and co-workers38 reported Q3 accuracies for JPred of 80-83 % 
across a series of five other test datasets, values which were comparable to the other 
algorithms they tested and only slightly below the authors’ DeepCNF-SS program (82-85 % 
across the five datasets)38. JPred4 solvent accessibility predictions are 90.0 %, 83.6 % and 
78.1 % accurate for buried, part-exposed and surface residues, respectively2. 
 
JPred4 can make predictions for a single sequence, a batch of single sequences or a pre-
computed multiple sequence alignment. The sequence pipeline begins by searching the PDB 
for homologues and will advise the user of any matches that are found since if the 3D-
structure of a homologue is known, this provides a strong guide to the secondary and 
tertiary structure of the protein and secondary structure prediction is less useful. The 
sequence is then checked against the DRSASP ProteoCache (see §3.2) and if found, the full 
JPred results are retrieved from the datastore within a few seconds. The sequence is 
queried against Uniref90 with PSI-BLAST and a non-redundant multiple sequence alignment 
is constructed from the matches. From here, JPred  generates a profile HMM with HMMER 
and passes this profile HMM and the PSSM from PSI-BLAST to JNet and the Lupas coiled-coil 
predictor39. In the MSA pipeline, the profile HMM and PSSM are generated directly from the 
user supplied MSA and these are fed to JNet without any PSI-BLAST search. Figure 3 
illustrates JPred results visualised with Jalview and UCSF Chimera. The JPred predicted 
secondary structure is shown in Jalview as an annotation track where green indicates strand 
and red indicates predicted helical regions. This colouring is then transferred to the mapped 
PDB structure 3axm40 through the Jalview-UCSF Chimera interface to illustrate the accuracy 
of the prediction. JPred4 returns results in several formats: graphically by generating an SVG 
with Jalview; HTML formatted alignment with prediction tracks; PDF generated with 
Alscript41 and in Jalview1 via a JVL file (Jalview Launch file; requires Jalview ≥2.11 installed 
locally). 
 
JPred4 can be accessed in multiple ways. The website provides a convenient interface to 
allow users to make secondary structure predictions for a single sequence, a batch of 
sequences or for a user-provided MSA. JPred4 predictions for a sequence or MSA can also 
be obtained from directly within Jalview. Alternatively, JPred4 can be accessed 
programmatically via its REST API and a Perl command-line client is available as the 
recommended interface. This allows users to submit, monitor and retrieve JPred4 
predictions en masse or as part of computational pipelines. The API client is a suitable 
means to obtain whole proteome scale JPred prediction sets without overloading the JPred4 
server. 
 



 
Figure 3: Illustration of a JPred42 secondary structure prediction displayed in Jalview1 (left) and UCSF Chimera42 (right). 
Below the query sequence, JPred provides several annotation tracks for visualisation in Jalview. These are the Lupas39 Coil 
predictions with varying window sizes (“-“ = no coil; “c” = likely coil; “C” = coil); the final JNet prediction (red, helix; green, 
strand) followed by a confidence score for the prediction (0-9; least to highest  confidence). These are followed by separate 
predictions where JNet is given only the profile HMM or PSSM and the JNETJURY track that indicates positions where these 
predictions differ (indicated by ‘*’). Finally, burial predictions are represented by a histogram of values ranging 0-3, 
representing no burial and burial at 25%, 5% and 0% thresholds, respectively. The query sequence and structure illustration 
are derived from PDB ID: 3AXM40. 

A good way to understand JPred’s relevance is to see how others have applied JPred 
predictions to address problems. JPred can be applied in analyses involving a few proteins, 
whole proteomes or other large sets of proteins or as part of new computational pipelines. 
An example of the application of JPred to guide experimental work is the identification of 
the paired amphipathic helix protein Sin3a interaction domain in the methylcytosine 
dioxygenases TET1 and TET343. The authors’ identified a common helical region in TET1 and 
TET3 outside of the known oxygenase and Zinc finger domains that was absent in TET2. The 
putative TET1-Sin3A interaction helix was confirmed experimentally with co-
immunoprecipitation, site-directed mutagenesis and NMR. JPred predictions were also used 
to assist the Cryo-EM structure determination of the DNA-bound PolD complex44. High-
throughput applications of JPred include structurally rationalising the distribution of aspirin 
mediated lysine acetylations in the human proteome45; determining the factors affecting 
heterologous protein solubility46 and identifying kinases with a helix present in their 
activation loop across the human kinome47. Lastly, JPred is an essential part of the 
QuanTest48 method for MSA benchmarking that compares MSAs containing sequences of 
known structure by assessing the accuracy of the JPred secondary structure predictions 
made from them. 
 
2.3 AACon 
AACon is a Java implementation of 18 methods of scoring amino acid residue conservation 
in multiple sequence alignments. The majority of the methods are described in Valdar’s 
2002 review49 with additional algorithms that were developed in the Barton group. The 
methods include the symbol frequency based Shenkin score50, the physicochemical property 
based Zvelebil score51, the redundancy aware Valdar score52 and the specificity sensitive 
SMERFS score4.These examples illustrate how different scoring algorithms consider residue 
conservation as characterised by different features of the alignment. This point is 
demonstrated in a real-world example in Figure 4, which compares five different 
conservation scores for an excerpt of the Pfam31 WD40 repeat family MSA. In this example, 
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the scores do not all concur on what positions are most conserved in this alignment. 
Jalview’s physicochemical conservation score highlights the consensus Asp and Val/Ile as the 
two most physicochemically conserved in contrast with the consensus, Valdar and Shenkin 
scores that all include the His and Trp consensus positions amongst the most conserved. 
Indeed, even the physicochemical-based Zvelebil score identifies very different positions as 
the most conserved due to different treatments of gaps and aberrant or atypical residues. 
 
 

 
Figure 4: Comparison of evolutionary conservation scores. An excerpt of the Pfam31 WD40 repeat family (PF00400) is 
displayed together with Jalview1 annotation tracks representing five different conservation metrics (the scores were 
calculated for the first 89 SwissProt sequences in this Pfam, only the first 17 are shown). The Conservation and Consensus 
tracks are calculated by Jalview  whilst the Valdar, Shenkin and Zvelebil tracks are calculated with AACon via JABAWS called 
from the Jalview webservices menu. 

AACon is accessible via the JABAWS10 web service, which as described §2.1, is available via 
Jalview or the JABAWS CLI client. AACon is also available as an executable JAR file, Java 
library or its own web service. Users interested in analysing conservation in only a few MSAs 
will probably find the Jalview-JABAWS interface sufficient for their needs. Studies that 
require high throughput conservation calculations or where a numerical comparison of 
different conservation scores is desired will best be served by either JABAWS Client or 



AACon executable. In this case, the user should determine whether remote execution would 
be advantageous and check if their alignments are within the Dundee JABAWS service 
sequence limits. The precise limits vary depending on what conservation scores are 
requested but range between 2,000 – 10,000 sequences of average length 1,000 – 10,000 
residues for the most intensive to least intensive requests; the precise limits can be queried 
with the JABAWS client. If these conditions are met then the JABAWS Client is suitable, 
otherwise it is recommended to use the AACon executable locally 
(https://github.com/bartongroup/aacon). 
 
2.4 14-3-3-Pred 
14-3-3-Pred3 is a webserver that predicts 14-3-3-binding sites. 14-3-3 proteins regulate a 
variety of cellular processes by binding pairs of phosphorylated Ser/Thr residues on its 
target substrates53. 14-3-3-Pred combines predictions from PSSM, SVM and ANN models, 
which were trained on a gold standard set of 14-3-3 binding sites created by a modest 
extension of the ANIA54 database and curated negative set, into a consensus predictor. 
Recent applications of 14-3-3-Pred include a screen of 106 putative substrates in tomato55; 
the localisation of the 14-3-3 target residues in the Nuclear receptor subfamily 1 group I 
member 2 protein56 and a target residue in the inactive tyrosine-protein kinase 
transmembrane receptor ROR157. 
 
Figure 5 displays the 14-3-3-Pred web interface where proteins of interest can be queried 
using single UniProt accession identifiers or as sequences in FASTA format. The results page 
displays a table with the site scores as well as information on the phosphorylation state of 
the respective Ser/Thr for each queried protein. Alternatively, a file containing up to 100 
protein sequences in FASTA format can be uploaded. 14-3-3-Pred then generates comma/ 
tab-separated output results files that can be used to compare predictions, elaborate 
hypotheses, and prioritise laboratory experiments to investigate the predicted sites. Results 
can be accessed using single UniProt IDs ('pid=<identifier>') and specifying the output 
format ('out=<format>') as either JSON, CSV or TSV. An example query is 
http://www.compbio.dundee.ac.uk/1433pred/pid=O96013&out=json 
 



 
Figure 5: 14-3-3-Pred3 submission page (back). The website presents a form where you can enter either a UniProt accession 
(1a), a FASTA sequence (1b) or upload a set of sequences in a FASTA file (1c). The prediction is started by clicking “Submit” 
(2). 14-3-3-Pred results page (front). The results indicate the query sequence with S/T sites highlighted (3); a table showing 
the query motifs, the prediction scores and whether the site is known to be phosphorylated (4); a sequence view of the 
predictions (5) and download links including Jalview feature file format (6). 

Figure 6 illustrates the results of a 14-3-3-Pred analysis on sheep serotonin N-
acetyltransferase. The prediction was run via the webserver and the results downloaded as 
Jalview features. These were then loaded into Jalview and Jalview’s PDB lookup identified 
the structure 1ib158 and this was opened in UCSF Chimera via Jalview. Out of 22 Ser/Thr 
sites, 14-3-3 Pred correctly identifies pThr 31 as a 14-3-3 binding-site with high-confidence 
(i.e., all method concordance) whilst Ser 118 is falsely predicted to be a 14-3-3 binding-site 



albeit with low-confidence. A third high-confidence positive prediction is found for pSer 205, 
which is not resolved in this structure. 

 
Figure 6: Illustration of Serotonin N-acetyltransferase (right; white) in complex with 14-3-3 zeta (left; tan) showing the 
interaction of pThr31 with 14-3-3 zeta. The 14-3-3-Pred predicted 14-3-3 targets pThr 31 and Ser 118 in Serotonin N-
acetyltransferase are indicated with black arrows. Figure adapted from PDB ID: 1ib158 chains A and E, with UCSF Chimera 
and Jalview. 

2.5 NoD 
NoD9,59 is a predictor of nucleolar localization sequences (NoLSs) in proteins. NoLSs are 
short basic motifs that localize proteins to the nucleolus. The NoD algorithm is an artificial 
neural network (ANN) that was trained using 3-fold cross-validation on 46 experimentally 
validated NoLs and negative sequences representing non-NoL nuclear localisation 
sequences and randomly selected non-nucleolar cytoplasmic and nucleoplasmic sequences. 
NoD predictions were computed for the human proteome and 10 of the top scoring NoLSs 
were experimentally confirmed59.    
 
Figure 7 illustrates the NoD submission and results pages. You can search the set of NoLSs 
predicted in 9,531 human proteins out of the 43,534 human proteins considered from IPI60 
(version 3.40). NoLS predictions for an arbitrary protein sequence in FASTA format can be 
obtained via the text input box. If possible, full-length protein sequences should be used to 
obtain maximum prediction accuracy. Optionally, users can decide to include JPred311 
secondary structure prediction in the prediction of NoLSs. This results in more accurate 
predictions but requires more computation time (usually around 10 minutes but up to 6 
hours is known). Once the protein sequence has been submitted, a waiting page is displayed 
providing users with a link to the output page. This link can be bookmarked and consulted 
later. The results page indicates the positions and sequences of any predicted NoLS. A graph 
of the predictor score along the length of the sequence is also shown. NoD can also be 
downloaded and run locally, in which case tabular output can be obtained more amenable 
to high-throughput analyses. 
 



 
 

 
Figure 7: NoD9 input form (back). The user can input either a protein accession to query a pre-computed set of results (1) or 
paste a FASTA sequence (2a) to run an ab initio prediction. If a sequence prediction is requested this can be done with or 
without using a JPred prediction as a feature (2b; n.b. NoD uses JPred3). The prediction is started by clicking “Submit” (3). 
NOD output form (front). Any predicted nucleolar localisation sequences are shown both in isolation (4) and in context of 
the query sequence (5) and a line plot of the indicating the average score of 20 residue segments (6; see online help for 
more info). 

The NoD server has been in continual use since its creation. A recent study employed NoD 
to scan for nucleolar localisation motifs in Fbw7α, -β and -γ isoforms61. NoD correctly 
identified the nucleolar localisation signal in Fbw7γ, suggested the presence of a weak signal 
for the nucleoplasmic Fbw7α and reported no signal for the cytoplasmic Fbw7β. The NoLS in 
Fbw7γ was also shown to be the binding epitope for nucleophosmin (NPM1). Predicted 



NoLS in the CENP-W and Tat proteins were also experimentally verified by the authors to 
bind NPM161. Predicted NoLs were subsequently found in p14arf, another NPM1 
interactor62. Mitrea et al.63 found that, 63 % of a curated list of 83 NPM1 interactors had 
NoLS predicted by NoD and many of these NoLs overlapped with the so-called “multivalent 
R-motifs” the authors hypothesised. In a separate study,  Duan et al.64, used NoD to locate a 
suspected NoLS in the C-terminal domain of poly(A)-specific ribonuclease (PARN), which 
they then demonstrated experimentally was essential for nucleolar localisation.  
 
2.6 Kinomer 
The Kinomer5,65 webserver allows accurate identification of protein kinases (PKs) and their 
classification into kinase families. Kinomer also includes a browsable database of pre-
computed predictions of PKs in 43 eukaryotic genomes organised in kinase classes. Kinomer 
works by scanning sequences against a library of PK multilevel profile HMMs. The Kinomer 
profile HMM library comprises 38(+1) profile HMMs and is known as “KinaseLib2” (KL2). KL2 
was developed by iteratively sub-dividing the known PK families by sequence similarity and 
testing the performance of profile HMMs built from these subgroups to recall and classify 
other known PKs. KL2 was determined to be more accurate than an alternatively trialled 
KinaseLib1 (KL1), which contained 12 profile HMMs, one for each of the eight known 
conventional eukaryotic protein kinase (ePK) and four atypical protein kinase (aPK) families. 
The ePKs are AGC, CAMK, CK1, CMGC, RGC, STE, TK and TKL. The aPKs are Alpha, PIKK, PDHK 
and RIO. The Kinomer database was built by scanning whole proteomes against the 
Kinomer’s multilevel profile HMM library. Recent applications include the classification of 
kinases in the fungal pathogen Cryptococcus neoformans66. They compared the proportions 
of kinase classes in the fungal pathogens, C. neoformans, Candida albicans and Aspergillus 
fumigatus. The C. neoformans Kinase Phenome Database contains Kinomer annotations. 
 
Users are also able to browse the Kinomer database or classify a sequence by scanning 
against the Kinomer profile HMMs.  Figure 8 displays the Kinomer sequence classification 
submission page. From here, a single sequence can be input via the text box or uploaded in 
FASTA format. The results of previous jobs can also be retrieved via the job ID. The Kinomer 
results page reports the best classification for the input sequence along with high-scoring 
alternative matches. Scores for all potential matches are also shown as well as the 
alignments corresponding to each match. 



 
Figure 8: The Kinomer5 search input (left) and output forms (right). The user can paste a FASTA sequence (1) and start the 
classification by clicking “Submit” (2) or retrieve the results from a previously submitted job using the Kinomer job ID (3). If 
there are any hits to the Kinomer profile HMM library above Kinomer’s thresholds then the best matching kinase group (4) 
and alternative matches are reported (5). Alignments for each hit are shown below (6) and can be downloaded from the top 
of the page. 

2.7 Xtal 
Xtal6-8 is a collection of methods that predict the likelihood of a protein succeeding in a 
crystallisation experiment. Predicting the crystallisation propensity is useful for construct 
design and prioritising targets for structural genomics projects. The algorithms within Xtal 
are the OB-Score6, ParCrys7 and XANNPred8. The Xtal algorithms were developed over 
several years and each represented an improvement over the previous in terms of 
predictive performance as a result of improved algorithms and training data. Despite the 
precedence of XANNpred, which in our hands is the most accurate of the three, we provide 
and maintain the OB-Score and ParCrys since they remain useful and display their own 



strengths. For example, although it was our first crystallisation propensity predictor, OB-
score was one of four algorithms determined to be ideal for fast proteome-wide target 
selection in a recent review67. 
 
 
The OB-Score6 predicts whether a protein is likely to lead to a successful structure 
determination by calculating and assessing its predicted isoelectric point (pI) and grand 
average of hydrophobicity (GRAVY)6. This is achieved by comparing the pI, GRAVY values to 
proteins that have been successfully crystallised. This relatively simple approach yielded an 
accuracy of 69.8 % with AUC 0.711 on an independent test dataset7. The OB-Score was 
calculated for nearly 250 proteomes to compare each organisms’ suitability for high-
throughput crystallography as well as the sequences in Pfam 17.068 to identify a good 
candidate template structure for the protein families. These datasets remain available for 
download from the website for archival reasons but a researcher wishing to conduct a 
similar analysis is urged to use a recent dataset. For this reason, we recently calculated OB-
Scores for 30,498,342 sequences across 16,449 families from Pfam 31.0; this new dataset 
and future updates can be found at http://www.compbio.dundee.ac.uk/xtal/ob_datasets/. 
It is also simple to calculate OB-Scores on a large-scale via the distributed Perl application, 
for example it took less than 30 seconds to calculate OB-Scores for the 42,500 sequences in 
PF00001.20. The OB-Score webserver returns the raw value of the OB-Score. This is 
interpreted with the following thresholds: a predictive threshold of 0.809 optimised 
accuracy over the test dataset; OB-Score ≥ 5 can be considered high-scoring, and 1.5 yields 
an optimal MCC (Matthews’ Correlation Coefficient69) on a real-world dataset. The OB-Score 
was also recently employed to prioritise tractable targets for insecticides against the malaria 
vector Anopheles gambiae70. 
 
ParCrys7 is a Parzen Window based estimator of crystallisation propensity that uses pI, 
hydrophobicity and the frequencies of S, C, G, F, Y, M residues only. The sequence is 
predicted as one of three classes: difficult to crystallise (“recalcitrant”); amenable to 
crystallisation (“amenable”) or very amenable to crystallisation ("high-scoring”). Extensive 
feature selection was performed during the development of ParCrys. ParCrys surpassed the 
OB-Score even when using a reduced feature set of only pI and hydrophobicity, indicating 
that the Parzen Window model itself provided significant advantages. The inclusion of the 
remaining residue frequency features led to further performance gains compared to the OB-
score. Adding other amino acids as features besides S, C, G, F, Y and M led to performance 
degradation, which was reasoned to be due to correlation between pI and charged residue 
frequencies and consequently a no-benefit decline in the parameter/ observation ratio. 
ParCrys achieved an accuracy of 79.1 % with AUC 0.844. 
 
XANNpred-PDB and XANNpred-SG (together XANNpred8) are neural networks that predict 
whether a protein is likely to produce diffraction quality crystals based on amino acid 
frequencies (including dipeptides), sequence length and molecular weight as well as 
predicted isoelectric point, hydrophobicity (GES), secondary structure (JPred), 
transmembrane regions (TMHMM2) and protein disorder (RONN)8. The two neural 
networks differ only in their training where XANNpred-PDB was trained with a positive 
training set derived from the PDB and XANNpred-SG’s positive training set was derived from 
the now retired PepcDB, which included sequences that were known to crystallise but had 



not necessarily been solved at the time. XANNpred achieved AUC 0.8548. The XANNpred 
webserver calculates the required sequence features and runs both neural networks to 
provide the prediction results. XANNpred also provides predictions for sub-sequences 
within the query via a sliding window approach. This provides region-specific crystallisation 
propensities that are particularly useful for construct design. Figure 9 illustrates how the 
XANNpred windowed predictions vary over the XANNpred demo sequence (PDBT26731). In 
this example, the windows centred on residues 33-47 are above the threshold for 
XANNpred-PDB, this suggests that residues 2-78 are more amenable to crystallisation than 
the remaining sequence (i.e., these residues are in at least one high-scoring 31 residue 
window). 

 
Figure 9: XANNpred8 windowed predictions for XANNpred-PDB (left) and XANNpred-SG (right). The prediction threshold is 
indicated by the dashed line (0.517 for XANNpred-PDB; 0.418 for XANNpred-SG). The windows are 61 residues long and so 
the first window is centred at residue 31. A relaxed interpretation considers high-scoring regions as those residues that are 
contained within a high-scoring window (i.e., ±31 residues of the window centre). A conservative interpretation is restricted 
to where the window centres are above the prediction threshold. XANNpred provides these figures as attachments in the 
results email. 

All three predictors in Xtal are available via web forms. The OB-Score6 and ParCrys7 are 
accessed via a single submission page whilst XANNpred8 submissions are made via its own 
page. Figure 10 illustrates the OB-Score/ ParCrys submission and example results page (NB. 
the submission form for XANNpred is very similar). A user can submit sequences in FASTA 
format via a text box or file upload. After a few moments OB-Score and ParCrys predictions 
are reported via a results page in an HTML table. XANNpred predictions are returned in 
tabular format via email. If requested, XANNpred windowed predictions are included in the 
results email as PDF attachments (Figure 9). Alternatively, the OB-Score Perl application and 
data can be downloaded and run locally after following some minor configuration 
instructions returning results in TSV format (Tab Separated Values). Pre-calculated OB-
Scores are available for Pfam 31.0. 
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Figure 10: XTal input form for OB-Score6 and ParCrys7. Xtal output form. Users can input a sequence or multiple sequences 
by pasting FASTA format into the textbox (1a) or uploading a FASTA file (1b). The prediction is then run by clicking the 
“GO!” button. A link to download the ParCrys datasets is provided at the bottom of the page. Once the calculation is 
complete, the results page will load and display a table listing the OB-Score and the ParCrys score and prediction for each 
submitted sequence alongside the GRAVY, pI and the sequence length. 

2.8 AMAS 
AMAS14  (Analysis of Multiply Aligned Sequences) is an hierarchical conservation analysis 
algorithm based on a set representation of amino acid physicochemical properties. The 
AMAS server has been in operation since 1994. In addition to the standard identification of 
residues that are conserved in all sequences at a position, AMAS can indicate various types 
of sub-group conservation. For instance, the AMAS output differentiates columns that are 
conserved in some but not all subgroups (conserved and similar; e.g., where a structural 
constraint is lost in particular subgroups) from columns that are conserved in most 
subgroups but where each subgroup conserves a different feature (conserved but different; 
e.g., sites important for specificity). This description is admittedly abstract and a more 
complete illustration can be found in the AMAS paper. 
 
Figure 11 displays the AMAS submission page where users can run the analysis on their own 
multiple sequence alignments. FASTA, PFAM or AMPS formatted alignments may be pasted 
directly into the provided textbox or uploaded from the user’s local storage. AMAS also 
requires the user to provide subgroup classifications. Suitable groups could be derived from 
overall sequence similarity, functional similarity or taxonomic relationships. Group 
membership is indicated by lines of comma delimited sequence indexes or ranges as 
indicated in the paragraph preceding the textbox. Note that the AMAS conservation analysis 



can be run with only a single group specified but, in this case, only the standard 
conservation score can be returned. The AMAS analysis can then be run with default 
settings by clicking the “Do The Analysis” button at the bottom of the page. 
 

 

 
Figure 11: The AMAS14 input form. 1) AMAS accepts FASTA formatted alignments (also AMPS or Pfam) input via the textbox 
or file upload. 2) Groups are defined via a textbox with one line per group and sequences referred to by their row index (e.g. 
“1-5” on a line  defines a group of the first five sequences). Advanced options: 3a) the property table is selected (default: 
extra_ul); 3b) the conservation threshold is set (default: 7) and 3c) this section allows several to be set. The first few relate 
to alignment formatting with Alscript, “atypical residues” and “gaps to ignore” are described in the text, and other display 
options. “Only highlighted alignment” will prevent the histogram or difference table being printed (e.g., 2 in Figure 12). 

Figure 12 illustrates the AMAS output visualisation. The block colouring indicates the 
subgroup conservation, distinguishing identity in all subgroups (red), identity within a 
subgroup (blue) and conservation within a subgroup (green). The histograms summarise the 
AMAS comparison of the subgroups. The upper histograms show the overall conservation 
(red) and subgroup similarities (pink) whilst the lower histogram (orange) shows the 
average of the subgroup differences. The most dissimilar sites in terms of subgroup-



subgroup comparison (i.e., large values on the inverted histogram) are most likely to be 
important for specificity and are worth closer inspection. AMAS results are also available in 
text format. 

 
Figure 12: AMAS14 results visualisation of an illustrative analysis upon Pfam PF03760. The alignment illustrates within group 
and between group conservation. Within group conservation is illustrated by block shading within the subgroups: blue 
indicates subgroup identity whilst green indicates property conservation. Additionally, red shading indicates total 
conservation across all groups. The histogram displays the similarities (orange) and differences scores (violet). The 
visualisation is generated with Alscript41. 

Several important settings can be adjusted. The property table selection defines the amino 
acid physicochemical set memberships used to define the properties that can be conserved. 
Three options are available via the web interface: extra_ul is recommended for extracellular 
proteins where Cys is assumed to form disulphide bonds whilst intra_ul is recommended for 
intracellular proteins where Cys are assumed to be present as free thiols. The third option 
available ch is specifically for detecting conserved charges and changes in the polarity of 
conserved charges in certain subgroups and defines positive (His, Arg and Lys), negative (Glu 
and Asp) and charged (His, Arg, Lys, Glu and Asp) sets (NB. This last group is documented in 
the AMAS manual). The conservation threshold, T defines what AMAS will consider to be a 
conserved position in a subgroup or subgroup pair. Higher (T) values will also result in a 
more specific analysis since only subgroup pairs where both subgroups have individual 
conservation scores > T are evaluated. Note that T must be less than the maximum possible 
conservation score (Cmax), which is determined by the number of properties in the property 
table; the server will error and report the allowed values if this rule is broken. The 
parameters labelled “Ignore atypical residues” and “Number of gaps to ignore per sub 
group” influence how sensitive the conservation score is to gaps and potentially aberrant 
residues. The remaining parameters in the lower options section control the formatting of 
the Alscript41 output alignment. Of particular note is the “Frequency histogram, or 
similarity/difference report” option, which controls whether summaries of the subgroup 
pairwise comparisons are shown (histogram; best when there are many subgroups) or the 
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individual subgroup pair conservations are shown (differences; clearest when there are only 
a few groups). 

3 New Services under Development 
We are currently developing several new services for DRSASP. Slivka is an evolution of the 
JABAWS10 concept written in Python that is designed to improve upon JABAWS’ limitations. 
ProteoCache is the DRSASP “data warehouse”, at its core it is an Apache Cassandra 
database designed to hold and return pre-calculated results for all DRSASP tools, 
accelerating performance and providing a means to perform integrated analyses across our 
resources. ProteoFAV, ProIntVar and VarAlign are Python packages that we created to meet 
our own research requirements for carrying out integrated analyses across protein 
sequences, multiple sequence alignments, 3D structures and human genetic variation. 
These tools are discussed individually in brief below; further detailed discussion of their 
capabilities will be published upon each tool’s release. 
 
3.1 Slivka 
Slivka is a new web services framework currently in development that will supersede the 
JABAWS framework. Slivka is implemented in Python with Flask, ZeroMQ and MongoDB. 
Key advantages of Slivka compared to JABAWS are significantly simplified tool configuration, 
better facilities for tool chaining and the capability of Slivka to generate tool specific web 
forms. Tool configuration in Slivka requires just two YAML files: a run configuration file to 
specify the command line interface of the tool and a form configuration that specifies the 
parameters exposed through web API. Files uploaded to or generated by (i.e., results) the 
Slivka server for analysis (e.g., sequence files, MSAs) can be referenced via a uuid, which 
facilitates tool chaining since results can be referenced server-side. Slivka is currently in 
advanced testing stages and we expect to deploy a public production server early in 2020. 
 
3.2 ProteoCache 
ProteoCache is a database containing pre-computed results of DRSASP and other 
applications for whole proteomes built with Apache Cassandra together with a Node.js API 
based on DataStax’s cassandra-driver. Apache Cassandra is a scalable and robust NoSQL 
database. At the time of writing, the database contains JPred4 predictions (Including full 
alignments and PSI-BLAST profiles) for most of the Human (57,823 sequences; 78 %), S. 
cerevisiae S288C (5,049; 83 %) and E. coli K-12 (4,144; 94 %) UniProt reference proteomes as 
well as disorder predictions for 79,513 sequences from the four disorder predictors 
provided by JABAWS. Tables in ProteoCache are indexed by sequence to allow fast lookup of 
new DRSASP queries. Currently, JPred4 interfaces with ProteoCache to improve the 
performance of JPred4 for previously run sequences. Our goal is that all DRSASP 
applications will similarly interface with the ProteoCache to improve performance of our 
web services. The ProteoCache itself will in the future be able to serve bulk downloads of 
whole proteomes or other large selections of sequences and also permit complex queries 
over the data. 
 
3.3 ProteoFAV, ProIntVar & VarAlign 
Over the last few years we have been researching how human genetic variants are 
distributed in proteins with respect to protein structure and conservation32. This has led to 



the development of software that simplifies the complex task of connecting the 
heterogenous data derived from variants, protein sequences, protein structures and 
multiple sequence alignments. Our approach is to represent the data as Pandas 
DataFrames. Once all these data are harmonised, we can conduct complex queries and 
aggregations. For example, “return all missense variants at residues where the position is 
conserved and involved in a hydrogen bond with a ligand in Pfam PF00001” and “count all 
missense variants in each alignment column of PF00017”. This software is being developed 
as a series of Python modules and we will release the libraries and provide a webservice 
through Slivka upon journal publication of an updated version of our analysis of human 
variation in Pfam alignments32. 
 
Figure 13 illustrates one view of these data in Jalview. gnomAD71 variants were mapped to 
the residues in the Pfam31 SH2 domain alignment and are formatted as Jalview features with 
VarAlign. The sequences shown in Figure 13 are amongst the most missense depleted 
(constrained) human sequences in this family and were identified in Jalview by (View → 
Feature settings… → Sequence sort by Density) when only the missense variants were 
shown. VarAlign also fetched protein-ligand interaction data for all sequences in the 
alignment from the PDBe with ProIntVar. Rendering these data as features in Jalview allows 
the identification of co-located missense variants at these sites if there are any. Jalview 
allows quick visualisation of these features on a mapped protein structure through its 
integration with UCSF Chimera. 
 

 
Figure 13: Example output from VarAlign and ProIntVar analysis32 of SH2 domains from Pfam31 PF00017 visualised with 
Jalvew1 and UCSF Chimera42. In the alignment, nine of the most missense depleted SH2 domains are shown. The locations of 
missense variants from the gnomAD71 dataset are shown as semi-transparent red features. The locations of residue-ligand 
interactions by ligands that bind in the SH2 canonical binding-site are shown in semi-transparent green. In these proteins, 



no missense variants occur at these positions (i.e., these features do not overlap). Four annotation tracks are shown, from 
top to bottom: Jalview calculated consensus; whether positions are classified as unconserved-missense depleted (UMD), 
unconserved-missense enriched (UME), conserved-missense enriched (CME) or conserved-missense depleted (CMD) by 
VarAlign default thresholds and the missense enrichment score. The structure shows the interaction between the SH2 
domain of Phosphatidylinositol 3-kinase regulatory subunit alpha and the Platelet-derived growth factor receptor beta 
phosotyrosyl peptide in PDB ID: 2IUI. The locations of missense variants from the gnomAD dataset are shown red. The 
locations of residue-ligand interactions by ligands that bind in the SH2 canonical binding-site – in any structure that maps to 
this protein – are shown in green. 

4 DRSASP Workflows in Jalview 
Jalview1 – a program for multiple sequence alignment editing, visualisation and analysis – 
provides an interface to many of the DRSASP tools. This enables users to carry out 
sophisticated workflows that combine DRSASP tools and Jalview’s built-in analysis 
capabilities interactively. For example, a useful Jalview workflow is to cluster sequences 
iteratively, prune outliers and align the remaining sequences. Once the alignment is judged 
sufficiently accurate, further DRSASP services can be invoked to calculate residue 
conservation, predict specificity determining sites (SMERFS; Calculate → Calculate Tree → 
AMAS) and predict structural features (solvent accessibility, secondary structure and 
disorder). This rich annotation set can help interpret experimental observations (e.g. 
UniProt mutation data) and/ or provide an enhanced understanding of the protein by 
projecting them onto structure in a Jalview linked MSA-structure session. 

5 General Developments 
We are committed to improving our software and data practices by working towards 
implementing OSS recommendations72 (see also guidelines cited therein) and the FAIR 
principles73. In this vein, we will continue to add DRSASP resources to the bio.tools 
registry74, deposit annotations in collaborative repositories (e.g., PDBe-KB, see below) and 
make datasets and code publicly available. Some DRSASP projects align well with these 
ideas in their very concept. For instance, the JABAWS and Slivka frameworks will enhance 
the interoperability (aggregate services) and reproducibility (consistent execution 
environment) of bioinformatics tools in general whilst the ProteoCache promotes data 
reuse and integration. 
 
A relevant development is our work to improve DRSASP’s efficiency in whole proteome 
analyses. The pre-computed data in ProteoCache (§3.2) is one aspect of this. Another 
direction we have pursued is the annotation of PDB structures in collaboration with the 
PDBe-KB75 project as a data depositor. So far, we have annotated the set of human 
sequences in PDBe with 14-3-3-Pred predictions. This resulted in 1,941 representative PDB 
chains receiving at least one positive prediction. These are accessible via PDBe-KB (e.g., 
https://www.ebi.ac.uk/pdbe/pdbe-kb/proteins/Q92879; see in expanded “Predicted PTM 
sites” track in “Functional Annotations” section). Python scripts to assist running DRSASP 
tools in a high-throughput manner and generating PDBe-KB compliant JSON output are 
available from https://github.com/bartongroup/FM_FunPDBe.git. 
 
As part of the PDBe-KB deposition process we were required to conform DRSASP results 
data to an agreed upon JSON standard. This effort is the beginning of a larger effort to 
harmonise the data out from DRSASP tools. A further step will be to ensure this work is 
efficiently translated into better Jalview integration for the DRSASP tools that are not 
currently well integrated. This might be achieved by introducing PDBe-KB JSON parsing to 



Jalview or by converting the JSON to an existing Jalview format. Whilst this does not 
constitute full Jalview integration (i.e., the services are not called from Jalview) this may 
prove a useful stopgap and is worthwhile anyway to enable high-throughput data 
generation where it is advantageous to generate required data in bulk (e.g., an analysis on 
Pfam might generate Jalview compatible annotations for 1000s of alignments, these 
annotated families can then be “browsed” with Jalview). 
 
Lastly, we are making improvements in the testing and portability of DRSASP tools. A key 
priority in the short-term is to improve the deployment of the DRSASP tools with the initial 
focus being JPred. This will involve applying modern technologies such as containerisation 
(e.g., Docker) or modern dependency management solutions (e.g., Conda). In addition to 
simplifying our internal maintenance workflows, this will have the added advantage of 
simplifying the local installation of JPred so that users will have the option of running a local 
instance. Moreover, improving the portability of our software is an important component of 
our efforts to ensure our work is as reproducible as possible. On the technical front, we 
have also made improvements to DRSASP service reliability through the introduction of 
continuous monitoring. In addition to standard HTTP checks we now use end-to-end 
interface tests for JPred and JABAWS services. 

6 Conclusion 
The Dundee Resource for Sequence Analysis and Structure Prediction provides several 
bioinformatics web services for the scientific community. The tools address a wide variety of 
biological questions but are connected by the common themes of protein sequence analysis 
and structure prediction. The services provide secondary structure prediction, disorder 
prediction, multiple sequence alignment, functional site prediction and more. DRSASP tools 
are accessible via web forms, programmatic APIs and some are suitable for local installation. 
A unique aspect of DRSASP is its tight integration with Jalview. 
 
As well as maintaining and continually developing existing tools DRSASP has several new 
services that are close to release. Slivka and ProteoCache will improve the delivery of 
DRSASP services but the will also enable new developments in the future. (e.g., aggregated 
services and large-scale integrated analyses). ProteoFAV, ProIntVar and VarAlign are new 
services close to release that will enable new research, especially at the intersection of 
human genetics and protein structure. 
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