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Abstract  32 

Rhythmic neural activity has been proposed to play a fundamental role in cognition. Both 33 

healthy and pathological aging are characterized by frequency-specific changes in oscillatory 34 

activity. However, the cognitive relevance of these changes across the spectrum from normal to 35 

pathological aging remains unknown. We examined electroencephalography (EEG) correlates 36 

of cognitive function in healthy aging and two of the most prominent and debilitating age-related 37 

disorders: Type-2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). Relative to HC, AD 38 

patients were impaired on nearly every cognitive measure, while T2DM performed worse mainly 39 

on learning and memory tests. A continuum of alterations in resting-state EEG was associated 40 

with pathological aging, generally characterized by reduced alpha (α) and beta (β) power 41 

(AD<T2DM<HC) and increased delta (δ) and theta (θ) power (AD>T2DM>HC), with some 42 

variations across different brain regions. There were also reductions in the frequency and power 43 

density of the posterior dominant rhythm in AD. The ratio of (α+β)/(δ+θ) was specifically 44 

associated with cognitive function in a domain- and diagnosis-specific manner. The results thus 45 

captured both similarities and differences in the pathophysiology of cerebral oscillations in 46 

T2DM and AD. Overall, pathological brain aging is marked by a shift in oscillatory power from 47 

higher to lower frequencies, which can be captured by a single cognitively relevant measure of 48 

the ratio of (α+β) over (δ+θ) power.  49 

 50 

Keywords  51 

Cognitive aging, Type-2 diabetes mellitus, Alzheimer’s disease, EEG, Oscillations, 52 

Neuropsychology   53 
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Introduction  54 

Some subtle neurocognitive changes occur with normal aging (Harada et al., 2013), while 55 

others are more severe and associated with specific pathophysiological processes. The most 56 

extreme example is dementia due to Alzheimer’s disease (AD). AD is associated with 57 

progressive alterations including the accumulation of beta-amyloid plaques and neurofibrillary 58 

tangles, cortical hypometabolism, and eventually widespread atrophy (Braak and Braak, 1998; 59 

Jack et al., 2013). Among AD risk factors (Burns and Iliffe, 2009), one of the most prominent is 60 

Type-2 Diabetes Mellitus (T2DM) (Biessels and Kappelle, 2005). T2DM is a chronic metabolic 61 

disorder characterized by abnormal glucose metabolism and insulin resistance, and is 62 

associated with myriad physiological complications, including in the central nervous system 63 

(CNS) (Alberti and Zimmet, 1998; Awad et al., 2004; Biessels and Kappelle, 2005; Gispen and 64 

Biessels, 2000; Koekkoek et al., 2014; Roberts et al., 2014; Saedi et al., 2016; Stewart and 65 

Liolitsa, 1999; Strachan et al., 2011). Mild deficits in memory, executive function and perceptual 66 

processing speed have been observed in T2DM (Cheng et al., 2012; Marseglia et al., 2016; 67 

Mooradian et al., 1988; Palta et al., 2014; Takeuchi et al., 2012; van den Berg et al., 2010). 68 

While the impact of T2DM on the CNS is likely multifactorial, microvascular damage and 69 

impaired insulin signaling have been identified as probable mediators in the higher risk for AD 70 

and vascular dementias (Biessels et al., 2014; Ohara, 2011; Toth, 2014). However, 71 

understanding of how T2DM fits into the spectrum from normal cognitive aging to AD remains 72 

incomplete (de la Monte, 2014).  73 

Electroencephalography (EEG) permits noninvasive measurement of temporally 74 

synchronized (i.e., oscillatory) neural activity, a ubiquitous characteristic of the brain (Buzsaki et 75 

al., 2013) which has been proposed as a mechanism for encoding and transfer of information 76 

(Bonnefond et al., 2017; Fries, 2015). These proposals are based on reliable associations 77 

between frequency-specific oscillations and various cognitive functions (Ward, 2003), as well as 78 

their implication in various neuropsychiatric disorders (He et al., 2007; Oswal et al., 2013; 79 
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Schnitzler and Gross, 2005; Uhlhaas and Singer, 2006). Systematic changes in neural 80 

oscillations occur with normal cognitive aging (Babiloni et al., 2006b; Marshall and Cooper, 81 

2017; Rossini et al., 2007; Stomrud et al., 2010; Vlahou et al., 2014). For instance, alpha-band 82 

(8-13 Hz) activity decreases in both amplitude (Babiloni et al., 2006b; Marshall and Cooper, 83 

2017) and peak frequency (Klimesch, 1999; Mierau et al., 2017; Knyazeva et al., 2018) 84 

throughout adulthood. However, changes in lower frequency (<8 Hz) activity, and the 85 

relationship with cognitive function, appear to be less consistent (Babiloni et al., 2006a; 86 

Cummins and Finnigan, 2007; Klass and Brenner, 1995; Leirer et al., 2011; Marshall and 87 

Cooper, 2017).  88 

         Oscillatory abnormalities have been consistently observed in pathological aging (Assenza 89 

et al., 2017; Babiloni et al., 2004, 2006a; Fraga et al., 2013; Neto et al., 2016; Voytek and 90 

Knight, 2015). In AD, the most prominent EEG finding is a shift in power from higher to lower 91 

frequencies: an increase in power in delta (δ; 1-4 Hz) and theta (θ; 4-8 Hz) frequency bands, 92 

and a concomitant decrease in power in alpha (α; 8-13 Hz) and beta (β; 13-30 Hz) bands, along 93 

with reduction of the individual peak α frequency (Babiloni et al., 2004; Bennys et al., 2001; 94 

Brenner et al., 1986; Coben et al., 1983; Moretti et al., 2004). The relationship between these 95 

oscillatory changes and cognitive dysfunction remains unclear, though some studies have 96 

reported correlations with individual tests of cognitive functions (Babiloni et al., 2007; Moretti et 97 

al., 2009; van der Hiele et al., 2007). While fewer studies have examined oscillatory changes in 98 

T2DM, there is some evidence of a similar shift in power from higher to lower frequencies (Bian 99 

et al., 2014; Cooray et al., 2011; Cui et al., 2014; Wen et al., 2016; Zeng et al., 2015). 100 

The aim of the current study was to compare resting-state EEG oscillatory activity, and 101 

its relationship with neuropsychological function, across healthy and pathological aging (T2DM 102 

and AD). We hypothesized that neuropsychological testing and resting-state oscillatory activity 103 

would reveal a pattern of neurocognitive dysfunction from healthy controls (HC) to T2DM to AD. 104 

Additionally, we predicted that resting-state EEG measures (i.e. power density and peak 105 
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frequencies) would be associated with domain-specific cognitive performance both within and 106 

across groups, with AD showing the strongest relationships (Babiloni et al., 2018, 2015).  107 

 108 

Methods and Materials 109 

Human Participants 110 

This is an analysis of 72 adults who participated in research at the Berenson-Allen Center for 111 

Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center between 2012 and 112 

2015. The local Institutional Review Board approved the study. All participants provided written 113 

informed consent prior to enrollment according to the Declaration of Helsinki. Participants were 114 

drawn from the following groups: 115 

Alzheimer’s disease. 18 participants (11 females, aged 52-86) with a probable diagnosis 116 

of mild-to-moderate AD according to DSM-V/NINCDS-ADRDA criteria (McKhann et al., 2011), 117 

with a clinical dementia rating (CDR) of 1.0 and a mini-mental status exam (MMSE) (Folstein et 118 

al., 1975) score between 18-24. Six patients were medicated with Cholinesterase inhibitors, 119 

nine were on Cholinesterase inhibitors and Memantine, while 3 were not taking dementia-120 

specific medications. 121 

Type-2 diabetes mellitus. 27 participants (12 females, aged 50-78) had a clinical 122 

diagnosis of T2DM, and had normal cognition as indicated by a MMSE score ≥ 27 (Rosa et al., 123 

2018), with no subjective cognitive complaints. All had their diabetes at least moderately 124 

controlled (hemoglobin A1c; HbA1c < 10) through some combination of diet, exercise, 125 

Metformin, insulin, or insulin homologues. 126 

Healthy control. 27 participants (13 females, aged 50-77) had normal cognition (MMSE ≥ 127 

27) and glucose metabolism (HbA1c < 6.5%).  128 

General inclusion criteria included: age-adjusted score ≥ 80 on the 50-item Wechsler 129 

Test of Adult Reading (W-TAR; as a surrogate measure of premorbid IQ); no other unstable 130 

medical or neuropsychiatric conditions (apart from AD or T2DM). All participants underwent 131 
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equivalent testing, including a structured neurological exam, medical history review, formal 132 

neuropsychological testing, and an EEG visit. Participant characteristics (Supplementary Table 133 

S1), including age, education, and premorbid IQ, were compared across groups using one-way 134 

analyses of variance (ANOVAs) with Tukey’s Honestly Significant Difference (HSD) post hoc 135 

comparisons. MMSE scores were compared using a non-parametric Kruskal-Wallis test. Gender 136 

proportions were compared using Fisher’s Exact Test. As the AD group was significantly older, 137 

Age was added as a covariate to all subsequent between-group analyses. Additionally, to verify 138 

that the main results were not confounded by between-group age differences, we reran several 139 

of the primary analyses on a cohort of 17 age-matched participants per group (see 140 

Supplementary Material for more details).  141 

This and all subsequent analyses were performed in JMP Pro (v12.0, 142 

http://www.jmp.com) using a normal distribution and a two-tailed 95% confidence interval. 143 

 144 

Neuropsychological testing 145 

Neuropsychological testing was performed on a separate visit from the EEG recording 146 

by a trained psychometrist. Tests and inventories were drawn from the National Alzheimer’s 147 

Coordination Center’s Uniform Data Set version 1.1 (NACC-UDS) (Beekly et al., 2007). The 148 

following neuropsychological tests were employed: the 15-item Geriatric Depression Scale 149 

(GDS); a 23-item Activities of Daily Living inventory (ADLs); the Digit Symbol Substitution Test 150 

(DSST; number of correct substitutions in 90 sec); Digit Span Forward and Backward tasks 151 

(longest set length repeated); the Logical Memory, Story-A (number of items recalled 152 

immediately and after a 30-minute delay without cueing) from the Wechsler Memory Scale-153 

Revised; the Trail Making Test (difference in time and in errors between parts B and A; TMTB-A) 154 

from the Halstead-Reitan Battery; the “animals” category of the Semantic Fluency Test (number 155 

of unique words generated in one min); and the 30-item Boston Naming Test (number of 156 

correctly named objects with semantic cue). In addition, the 70-item Cognitive subscale of the 157 
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Alzheimer’s disease Assessment Scale (ADAS-Cog) (Mohs et al., 1983) was administered to 158 

measure global cognitive function, and a 10-item version of the Rey Auditory Verbal Learning 159 

Test (RAVLT; percent correct during learning, 20-min delayed recall, and delayed recognition 160 

trials) (Rosenberg et al., 1984) was administered to further probe verbal learning and memory 161 

ability (Calero and Navarro, 2004). All measures were Z-transformed by subtracting the overall 162 

mean (across all three populations) of all subjects from each individual’s score and dividing it by 163 

the overall standard deviation in order to equalize the scale across measures, and facilitate data 164 

visualization and statistical analysis. Z-scores for the ADAS-Cog, GDS, and TMT were inverted 165 

so that in all measures, higher scores reflect better performance. To investigate the relationship 166 

between the EEG Spectral Power Ratio and cognitive function, three composite scores were 167 

computed by averaging together Z-scores of tests that tap into similar cognitive processes or 168 

measures: Dementia severity (ADAS-Cog, ADLs; measuring general cognitive functioning and 169 

functional independence), Executive functions (Digit Span forward and backward, TMTB-A 170 

Semantic fluency, DSST; measuring attention, working memory, set-shifting, strategic thinking 171 

and psychomotor processing speed); and Learning and memory (RAVLT, Logical Memory; 172 

measuring the acute ability to learn and recall verbal information with and without context). This 173 

approach—modelled after one from the Alzheimer’s Disease Neuroimaging Initiative (Crane et 174 

al., 2012; Gibbons et al., 2012) and used in a prior neuroimaging study (Buss et al., 2018)—175 

allowed oscillatory activity to be related to broad categories of cognitive processing rather than 176 

to specific tests. 177 

 178 

Electroencephalography acquisition and preprocessing 179 

Resting-state EEG was recorded using a 64-channel system (eXimia EEG, version 3.2, Nexstim 180 

Ltd, Finland) with a sampling rate of 1450Hz. EEG was acquired using an extended version of 181 

the “International 10-20 system” (Supplementary Figure S1 ). Ground and reference electrodes 182 

were placed on the forehead and two additional electrooculography electrodes (EOG) were 183 
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placed below and at the outer canthi of the left eye to identify vertical and horizontal eye 184 

movements. Impedances for all electrodes were kept below 5 kΩ. A 5-minute resting-state EEG 185 

recording was obtained while subjects sat in a semi-reclined armchair with their eyes closed. 186 

During recordings, the participants were instructed to remain quiet with their face muscles 187 

relaxed. The participant and EEG were monitored for signs of drowsiness at which point the 188 

participant was asked to blink their eyes a few times before closing them again. EEG data 189 

preprocessing was performed offline using a combination of the EEGLab toolbox (Delorme and 190 

Makeig, 2004a) and custom scripts in Matlab 2016a (Mathworks, USA). Data were filtered for 191 

line noise using a 55-65 Hz notch filter. Additional low-pass (100 Hz) and high-pass (1 Hz) filters 192 

were applied using a zero-phase second-order Butterworth filter. Filtered recordings were 193 

divided into 3-second epochs for visualization. Faulty or excessively noisy channels were 194 

visually detected and removed (average ±SD channels removed = 3.9 ±2.3; range = 0-9) and 195 

the remaining data were re-referenced to the average of all channels. After re-referencing, noisy 196 

epochs were identified semi-automatically and those containing excessive artifacts were 197 

rejected after visual inspection (average ±SD epochs removed = 25.9 ±20.5; range = 2-88), 198 

resulting in 48-116 usable epochs per participant with an average (±SD) of 86.9 (±14.0). 199 

Independent components analysis (ICA) was performed on cleaned data using fastICA 200 

(Rogasch et al., 2014), and components corresponding to blink/oculomotor, muscle or transient 201 

electrode artifacts were subtracted from the data. After component rejection, previously rejected 202 

channels were interpolated using a spherical spline interpolation and the data were down-203 

sampled to 1024Hz. 204 

 205 

Experimental design and Statistical Analysis 206 

Electroencephalography 207 

After EEG preprocessing, mean absolute power spectral density across epochs was calculated 208 

for each frequency band (1-40 Hz, 0.5 Hz resolution) at all electrodes using the spectopo 209 
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EEGlab function (window-size = 1024 samples, window-overlap = 512 samples) (Delorme and 210 

Makeig, 2004b). The power estimates for each frequency band were further divided by the sum 211 

of estimates across all frequencies in order to calculate the relative power of each frequency 212 

within the spectrum. To investigate group differences in EEG power, an analysis of covariance 213 

(ANCOVA) was performed at all electrode-frequency (1:40 Hz) points. The ANCOVA model 214 

included EEG power as the outcome measure, Diagnosis (HC, T2DM, AD) as a grouping 215 

variable, and Age as a continuous predictor to control for its effects on group differences in EEG 216 

power. Follow-up pairwise contrasts between groups were calculated using the Tukey-Kramer 217 

method. To control for the large number of multiple comparisons across electrode-frequency 218 

space, a non-parametric cluster based permutation approach was adopted (Maris and 219 

Oostenveld, 2007). Calculation of the test statistics involved the following: based on the initial 220 

ANCOVA’s and follow-up contrasts performed at all electrode-frequency points, data points 221 

corresponding to an uncorrected p-value < 0.05 were formed into clusters by grouping together 222 

adjacent significant electrode-frequency points. Note that for a sample to be included in a 223 

cluster it was required to have at least 1 neighboring significant sample in either frequency or 224 

space. The spatial neighborhood of each electrode was defined as all electrodes within 4 cm, 225 

resulting in a mean of 2.9 (min = 1, max = 4) and median of 3 neighbors per electrode. The F-226 

values (overall ANCOVA) or t-values (follow-up contrasts) within each identified cluster were 227 

summed to produce a cluster-level statistic. For the follow-up contrasts, the cluster-building 228 

procedure was performed separately for data points with positive and negative t-values (two-229 

tailed test). Subsequently, this cluster-building procedure was repeated across 2000 230 

permutations of the data. On each iteration, diagnostic group labels were randomly shuffled, 231 

thereby cutting the hypothesized relationship between diagnostic group and EEG power. The 232 

most extreme cluster-level F- or t-score was retrieved on each iteration to build data-driven null 233 

hypothesis distributions, separately for both the overall model and for each of the follow-up 234 

contrasts. The location of an original real cluster statistic within the null hypothesis distribution 235 
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indicates how probable such an observation would be if the null hypothesis were true (F-test: No 236 

difference in EEG power between any of the groups. Follow-up t-tests: No difference in EEG 237 

power between given two groups). For the overall model, if a given real cluster had a cluster-238 

statistic > 95% of the respective null distribution cluster-statistics, then this was considered a 239 

significant effect (5% α level). For the follow-up contrasts, if a given negative/positive cluster had 240 

a cluster-statistic lower/higher than 97.5% (2.5% α per tail) of the respective null distribution 241 

cluster-statistics, then this was considered a significant effect (5% total α level). This entire 242 

analysis was performed separately for both absolute and relative EEG power.  243 

 244 

EEG frequency bands and Spectral power ratio 245 

For subsequent analyses of EEG power, including its relationship with cognitive function, 246 

relative and absolute power estimates were extracted for each classical frequency band: δ (1-4 247 

Hz), θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), and gamma (γ; 30-40 Hz). Absolute power estimates 248 

were used to compute the Spectral Power Ratio, defined as the ratio of power in α and β to 249 

power in δ and θ: (α+β)/(δ+θ) (Supplementary Table S2 ). This approach has been utilized to 250 

assess alterations in the frequency distribution of EEG power, capturing in a single variable the 251 

pattern of a general shift in power from higher to lower frequencies that has been previously 252 

reported in AD (Babiloni et al., 2004; Bennys et al., 2001; Brenner et al., 1986; Coben et al., 253 

1983; Moretti et al., 2004). In order to assess the spatial distribution of the effects, the average 254 

of the relative power estimates for each frequency band and the average of the Spectral power 255 

ratio values were calculated separately for four cortical regions of interest (ROIs): Frontal 256 

(incorporating electrodes FP1, FPz, FP2, AF1, AFz, AF2, F5, F1, Fz, F2, F6), Central (FC5, 257 

FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, 258 

CP6), Temporal (F7, F8, FT9, FT7, FT8, FT10, T3, T4, TP9, TP7, TP8, TP10), and Posterior 259 

(P9, P7, P3, P1, Pz, P2, P4, P8, P10, PO3, POz, PO4, O1, Oz, O2, Iz). 260 
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The relative power estimates from each of the four frequency bands plus the Spectral 261 

power ratio values were assessed independently via five mixed-effects linear regression 262 

analyses, each with a full-factorial model comprised of the between-subjects factor Group and 263 

the within-subject factor Cortical ROI (crossed with the random factor Subject to control for 264 

variance associated with repeated observations within the same individual), plus Age as a 265 

covariate (for details on the linear regression analysis of Spectral power ratio in the age-266 

matched subgroup cohort, see Supplementary materials). Each of the five analyses was 267 

followed by four fixed-effect linear regression analyses to test for group differences within each 268 

ROI separately. Significance values for these 20 follow-up analyses were adjusted for multiple 269 

comparisons using Holm-Bonferroni correction. Finally, post-hoc Tukey’s HSD tests were used 270 

to test for pairwise differences between groups.  271 

 272 

Analysis of neuropsychological performance and its relationships with Spectral power 273 

ratio 274 

Multivariate analyses of variance (MANOVAs) with a Wilk’s lambda (λ) distribution were used to 275 

compare neuropsychological performance across groups (MANOVA-1) and investigate its 276 

relationship with the Spectral power ratio across ROIs (MANOVA-2).  277 

MANOVA-1 was performed on Z-scores for the individual neuropsychological tests with 278 

the main factor of Group (HC, T2DM, AD), and Age as a covariate (for details on the MANOVA-279 

1 in the age-matched subgroup cohort, see Supplementary materials). Follow-up analyses 280 

consisted of separate linear regression models for each cognitive measure. Tukey’s HSD 281 

pairwise comparisons were performed for any regression model that survived a 5% false 282 

discovery rate (FDR) correction (Benjamini and Yekutieli, 2001). 283 

To investigate relationships between the Spectral power ratio and cognitive functions, 284 

MANOVA-2 was performed on the three composite scores with the factors Group, Cortical ROI 285 

and Spectral power ratio in a full-factorial model, plus Age as a covariate. Follow-up linear 286 
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regression analyses were performed for each domain (Learning and memory, Dementia 287 

severity, Executive functions), with the factors Group and Spectral power ratio in a full-factorial 288 

model with Age as a covariate (for details on the MANOVA-2 in the age-matched subgroup 289 

cohort, see Supplementary materials). As all effects that included the factor Cortical ROI were 290 

highly non-significant (see Results ), it was excluded from post-hoc analyses. For Learning and 291 

memory, the Group*Spectral power ratio interaction was highly non-significant (see Results ), so 292 

the model was rerun without that term. From these models, an overall correlation coefficient was 293 

calculated to express the relationship between the composite score and Spectral power ratio 294 

across all participants. Lastly, simple linear regression analyses were performed to assess the 295 

association of Spectral power ratio with each composite cognitive score in each group. 296 

Individual p-values for these 9 group-specific post-hoc analyses were adjusted for multiple 297 

comparisons with a 5% FDR.  298 

 299 

Individual α and posterior dominant frequencies 300 

During eyes-closed wakefulness, one of the most prominent features of the EEG signal is α-301 

band (~8-13Hz) activity, leading to the characteristic α peak in the power spectrum (Klimesch, 302 

2012; Keitel et al., 2019). We sought to investigate group differences in this dominant 303 

frequency, and whether these differences were related to cognitive function, using two 304 

independent metrics. First, in each participant we identified the individual frequency between 5-305 

15 Hz with the highest power density across all posterior electrodes using an automated peak-306 

finding algorithm based on smoothing of the 2nd order gradient of power spectral density (PSD) 307 

estimates with an 11-point, 3rd order polynomial Savitzky-Golay filter (Savitzky and Golay, 308 

1964; Corcoran et al., 2018; Keitel et al., 2018; Benwell et al., 2019). The posterior electrodes 309 

included in the analysis were P9, P7, P3, P1, Pz, P2, P4, P8, P10, PO3, POz, PO4, O1, Oz, O2 310 

and Iz. This approach incorporated a wider band of activity than the typical α range in order to 311 

capture potentially large shifts in the dominant frequency. Hence, we labelled this the Dominant 312 
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frequency analysis. In parallel, to look specifically at frequency and power changes within the 313 

classic α-range (8-12 Hz), two clinical neurophysiologists trained to interpret EEG (authors PDP 314 

and MMS) manually estimated the individual α frequency (IAF) for each participant using visibly-315 

identifiable alpha activity from the occipital and parieto-occipital electrodes. We labelled this the 316 

IAF analysis. For both the Dominant frequency and IAF analyses, we obtained both the peak 317 

frequency itself and the power density value averaged over the peak frequency ± 2.5 Hz. 318 

Hence, we were able to test simultaneously for group differences in both the peak frequency 319 

itself and the surrounding power density. These metrics were each entered into separate one-320 

way ANOVAs (with Age as a covariate) to investigate group differences and were also 321 

correlated with the cognitive composite scores.   322 

 323 

Results  324 

Participant characteristics 325 

By design, MMSE scores were lower in the AD group relative to both T2DM and HC. AD 326 

participants were also significantly older than HC, but not T2DM. The groups were equivalent in 327 

years of education, pre-morbid IQ, and proportions of men and women (for full details on 328 

participant characteristics across groups, see Supplementary Table S1 ). 329 

 330 

EEG Power 331 

The following details the results of the primary analysis of relative EEG power. For equivalent 332 

analyses of absolute EEG power and their results, see Supplementary Materials Section 1 333 

(including Table S2  and Figure S2 ).  334 

 335 

A main effect of Group, controlling for age, was identified in the δ+θ frequency bands (~1–7 Hz) 336 

and also in the α+β (~8.5–21 Hz) and low–γ bands (30–40 Hz, Figure 1A-B ). Relative δ+θ 337 

power were higher for AD compared to T2DM and HC, whereas relative α+β power were lower 338 
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for AD compared to T2DM and HC (Figure 1C ). Pairwise contrasts (Figure 1D-F ) demonstrated 339 

higher relative δ+θ power in AD than both HC and T2DM, and lower relative α+β power in AD 340 

compared to either HC or T2DM. Additionally, there was significantly higher relative power in the 341 

low–γ band in AD compared to HC. No clusters survived correction for the T2DM-HC contrast.  342 

 343 

 344 

Figure 1. Whole-brain analysis of relative power. A. F-ratios associated with between-group mass univariate 345 
analyses of variance (ANOVAs) comparing relative electroencephalography (EEG) power between Alzheimer’s 346 
disease (AD), Type-2 diabetes mellitus (T2DM), and healthy controls (HC) across all electrodes (y-axis) and 347 
frequencies (x-axis). The solid black contour represents data points surviving cluster-based multiple comparison 348 
correction. B. Topographic representation of the F-ratios averaged across the significant frequencies. C. Mean power 349 
spectra (with 95% confidence intervals) for each group separately at the electrode (CP6) for which group differences 350 
were maximal. Alpha/beta power showed a linear decrease across groups, being highest for HC and lowest for AD 351 
with T2DM having intermediate values whereas delta/theta power showed a linear increase across groups. D-F. T-352 
values associated with follow-up tests comparing relative EEG power between each pair of groups separately. Solid 353 
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black contours indicate data points surviving cluster-correction. G-H. Topographic representation of the t-values 354 
associated with the respective significant effects. Significant electrodes are highlighted in gray. 355 
 356 

Classic EEG frequency bands across ROIs 357 

Delta: There were significant main effects of Group (F2,68 = 8.7, p < .001) and Cortical ROI (F3,207 358 

= 59.1, p < .001), but no Group*Cortical ROI interaction (F6,207 = 1.2, p = .292). Follow-up tests 359 

showed a similar pattern of group differences across the four Cortical ROIs (p values < .015, 360 

adjusted), with AD showing greater relative δ power than both HC and T2DM (p values < .05). 361 

 362 

Theta: There were significant main effects of Group (F2,68 = 12.7, p < .001) and Cortical ROI 363 

(F3,207 = 3.3, p = .023), but no Group*Cortical ROI interaction (F6,207 = 2.1, p = .060). Follow-up 364 

tests showed a similar pattern of group differences across the four ROIs (p values < .004, 365 

adjusted), with AD showing greater relative θ power than both HC and T2DM (p values < .05). 366 

 367 

Alpha: There were significant main effects of Group (F2,68 = 9.9, p < .001) and Cortical ROI 368 

(F3,207 = 61.7, p < .001), as well as a Group*Cortical ROI interaction (F6,207 = 4.9, p < .001). 369 

Follow-up tests showed somewhat different pattern of group differences across the four ROIs (p 370 

values < .013, adjusted). Relative α power was lower in AD than HC across all ROIs. Relative α 371 

power was also lower in AD than in T2DM in the Frontal, Temporal, and Posterior (but not 372 

Central) ROIs. T2DM had significantly lower α power than HC in the Temporal ROI only (all p 373 

values < .05).  374 

 375 

Beta: There was a significant main effect of Cortical ROI (F3,207 = 47.5, p < .001), while Group 376 

(F2,68 = 1.1, p = .337) and Group*Cortical ROI were not significant (F6,207 = 1.8, p = .094). 377 

Follow-up tests showed a similar pattern of equivalent β power across groups, regardless of the 378 

ROI (p values > .7, adjusted). 379 

 380 
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Spectral power ratio: There were significant main effects of Group (F2,68 = 9.2, p < .001) and 381 

Cortical ROI (F3,207 = 20.8, p < .001), as well as a Group*Cortical ROI interaction (F6,207 = 3.3, p 382 

= .004). Follow-up analyses showed a pattern of group differences in Posterior ROI (HC > AD; p 383 

= .012, adjusted) that was distinct from the other ROIs (HC, T2DM > AD; p values < .008, 384 

adjusted) (Figure 2 ). These results indicate a shift of power from higher frequencies to lower 385 

frequencies in AD and suggest a similar pattern may be emerging in T2DM. Of note, an 386 

equivalent analysis in the age-matched sub-cohort demonstrated essentially identical findings 387 

(see Supplementary materials Section 2).   388 

 389 

 390 

Figure 2. Spectral power ratio. Figure shows the age-adjusted comparison across groups of the Spectral Power 391 
Ratio (α+β)/(δ+θ) estimated from each cortical region of interest (ROI). Tukey’s Honestly Significant Difference post-392 
hoc tests demonstrated that (α+β)/(δ+θ) was lower in Alzheimer’s disease (AD) than in Healthy Controls (HC) across 393 
all ROIs (p values < 0.001) and lower than Type-2 Diabetes (T2DM) in all but the Posterior ROI (p values = 0.0499 – 394 
0.063). T2DM was lower than HC across all ROIs though this difference did not reach significance (p values = 0.064 395 
– 0.136). Data shown represent the least squared means and standard deviations derived from the linear regression 396 
models.  397 
 398 
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Neuropsychological function and relationship to EEG spectral power 399 

Group averaged neuropsychological test scores (z-scored) are displayed in Figure 3 .  400 

 401 

 402 

Figure 3. Group analysis and post-hoc comparisons of cognitive measures adjusted for age. All data represent least 403 
squared means and standard error. Individual neuropsychological tests (x-axis) are shown grouped by cognitive 404 
domain. Scores (y-axis) were z-normalized and inverted (if necessary) so higher numbers reflect better 405 
performance/function. Following the first omnibus multivariate analysis of variance (MANOVA-1), group performance 406 
on individual tests was assessed using separate multiple linear regression analyses with age as a covariate. All 407 
results survived a 5% false discovery rate (FDR). In general there was a continuum of deficits with healthy controls 408 
(HC) scoring higher than Type-2 diabetics (T2DM), who performed better than Alzheimer’s disease (AD). Post-hoc 409 
pairwise comparisons were conducted with Tukey’s honestly significant difference (HSD) tests. Three patterns were 410 
observed: (§) all three groups were significantly different; (†) AD scored significantly worse than both HC and T2DM, 411 
which were equivalent to each other; (^) HC were significantly better than AD, with T2DM not significantly different 412 
from either group. Additional abbreviations. Alzheimer’s disease Assessment Scale-Cognitive subscale (ADAS-Cog); 413 
Activities of Daily Living (ADLs); Digit Symbol Substitution Test (DSST); Trail Making Test (TMT); Rey Auditory 414 
Verbal Learning Test (RAVLT); Geriatric Depression Scale (GDS). 415 
 416 

MANOVA-1 (Table 1 ) demonstrated that the variance in cognitive scores was different 417 

between the groups after controlling for Age, F(30, 86)=6.7, η2
p=0.70, p<0.001, while Age itself 418 

was not a predictor of cognitive function, F(15,43)=1.7, η2
p=0.37, p=0.096. Follow-up linear 419 

regression analyses yielded significant variance by Group for each neuropsychological measure 420 
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after controlling for Age (F’s>5.7, p’s<0.006: see Supplementary Table S3 ). All measures 421 

survived a 5% FDR correction. For equivalent analyses in the age-matched sub-cohort with 422 

similar findings, see Supplementary materials Section 2.  423 

 424 

Table 1. Results of Multivariate Analyses of Variance (MANOVAs).  

 MANOVA-1 

 Factor Wilks' λ df F ratio P value Partial Eta
2
 

Group 0.090 30,86 6.670 <.001 0.699 

Age 0.581 15,43 1.666 0.0958 0.368 

 MANOVA-2 

 Factor Wilks' λ df F ratio P value Partial Eta
2
 

Group 0.550 6,522 30.200 <.001 0.260 

Spectral Power Ratio 0.399 3,261 36.100 <.001 0.290 

Group*Spectral Power Ratio 0.532 6,522 29.100 <.001 0.250 

Age 0.215 3,261 6.200 <.001 0.070 

 425 
In MANOVA-1, the dependent variables included z-normalized, rectified scores on the Alzheimer's disease 426 
Assessment Scale-Cognitive Subscale, Activities of Daily Living, Digit Symbol Substitution Test, Semantic Fluency 427 
Test, Trail Making Test time and errors (difference Part B-Part A), Digit Span length forward and backward, Rey 428 
Auditory Verbal Learning Test (learning, delayed recall, delayed recognition), Logical Memory story (immediate and 429 
delayed recall), Boston Naming Test, and Geriatric Depression Scale. In MANOVA-2, the dependent variables 430 
include the averaged Z-scores of the three cognitive domains (Learning & memory, Dementia severity, Executive 431 
function). Spectral Power Ratio refers to a whole-brain averaged power ratio [(alpha + beta)/(delta + theta)] obtained 432 
from eyes-closed resting-state electroencephalography. 433 
 434 

Following Tukey’s HSD comparisons, two major patterns emerged (Figure 3 ): For 435 

scores on the DSST, RAVLT learning and delayed recognition trials, Logical Memory immediate 436 

and delayed recall trials, there were significant differences between all three groups with AD < 437 

T2DM < HC (p’s<0.03). By comparison, on the ADAS-Cog, ADLs, Semantic fluency, TMT time, 438 

TMT errors, Digit Span backward, RAVLT delayed recall, Boston Naming Test, and GDS, the 439 

AD group performed worse than either the HC or T2DM groups (p’s<0.04), while the latter two 440 

groups did not differ from each other (p’s>0.2). Lastly, on the Digit Span forward test was there 441 

a difference only between HC and AD (p=0.004) with T2DM not different from either HC or AD 442 

(p>0.1).  443 
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Concerning the association of cognitive function with the Spectral power ratio, 444 

MANOVA-2 (Table 1 ) indicated a main effect of Group, Wilks’ λ=0.55, F(6,522)=30.2, η2
p=0.26, 445 

p<0.001, and an overall relationship between the composite neuropsychological scores and the 446 

Spectral power ratio, F(3,261)=36.1, η2
p=0.29, p<0.001. In addition, there was a Group*Spectral 447 

power ratio interaction, F(6,522)=29.1, η2
p=0.25, p<0.001, indicating that the overall relationship 448 

between cognition function and (α+β)/(δ+θ) differed between groups. Importantly, none of the 449 

effects that included Cortical ROI as a factor were significant (F ratios < .7, p values > .78), 450 

indicating that the overall relationship between the (α+β)/(δ+θ) and cognitive function did not 451 

vary as a function of cortical region. In contrast to MANOVA-1, Age was a predictor of cognitive 452 

function after controlling for Group, Cortical ROI, and Spectral power ratio, F(3,261)=6.2, p<.001. 453 

Post-hoc linear regression analyses showed that across all participants, Spectral power ratio 454 

had significant positive associations with Learning and memory (R67=0.27, p=0.040), Dementia 455 

severity (R65=0.44, p<0.001), and Executive functions (R65=0.43, p<0.001) (Figure 4 ); partial 456 

correlation coefficients were calculated from a model that included Group, Age, and the 457 

Group*Spectral power ratio interaction (except Learning and memory, for which the interaction 458 

term was highly non-significant, p=0.954). 459 

Considering cognition-EEG relationships within each group separately, higher Spectral 460 

power ratio was associated with better Learning and memory performance in HC (Figure 4A ; 461 

p=0.018, uncorrected). In AD, higher (α+β)/(δ+θ) was associated with lower Dementia severity 462 

(Figure 4B ) and better Executive function performance (Figure 4C ), p’s<0.05, uncorrected). In 463 

contrast to HC and AD, no significant relationships were observed for T2DM (p’s>0.1). After 464 

subjecting p-values to a 5% FDR, the relationship between Spectral power ratio and Executive 465 

function in AD remained significant (p’s<0.05). 466 

 467 
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 468 

Figure 4. Relationship between electroencephalography (EEG) Spectral Power Ratio and cognitive function. Z-469 
normalized scores (higher score indicates better performance) from individual neuropsychological tests were 470 
averaged together to form three domains: A. Learning & memory (Rey Auditory Verbal Learning Test, Logical 471 
Memory Story); B. Dementia severity (Alzheimer’s disease Assessment Scale-Cognitive subscale, Activities of Daily 472 
Living); C. Executive function (Digit Symbol Substitution Test, Semantic fluency, Trail Making, Digit Span forward and 473 
backward). Computed averages were related to the EEG Spectral Power Ratio (α+β)/(δ+θ) and plotted separately for 474 
the three groups. In healthy controls (HC), higher (α+β)/(δ+θ) was significantly associated with better Learning & 475 
memory performance (p = 0.018, uncorrected). In Alzheimer’s disease (AD), higher (α+β)/(δ+θ) was significantly 476 
associated with better Dementia severity and Executive function (p’s < 0.05, uncorrected). By contrast, no significant 477 
relationships were observed in the Type-2 diabetes mellitus (T2DM) group (p’s > 0.1).  478 
 479 
 480 
Individual alpha and posterior dominant frequencies 481 

Dominant frequency (see Figure 5A ): A main effect of Group, controlling for Age, was identified 482 

(F(2,68) = 6.26, η2
p = 0.22, p = 0.001). The Dominant frequency was significantly lower in AD 483 

(mean = 8.2 Hz) compared to both T2DM (9.4 Hz: p = 0.002) and HC (9.3 Hz: p = 0.003). There 484 

was no significant difference between T2DM and HC (p = 0.99).  485 

 486 

Power density at dominant frequency (see Figure 5B ): A main effect of Group was identified 487 

(F(2,68) = 3.41, η2
p = 0.09, p = 0.039). Power density in the Dominant frequency band was 488 

significantly lower in AD compared to HC (p = 0.05) but not compared to T2DM (p = 0.47). 489 

There was no significant difference between T2DM and HC (p = 0.08). 490 
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491 
Figure 5. Group analysis of posterior dominant frequencies. A. Individual frequency between 5-15 Hz with the 492 
highest power density across all posterior electrodes (posterior dominant frequency) as a function of group (Healthy 493 
controls (HC), Type-2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD)). B. Power density at the posterior 494 
dominant frequency (averaged over the peak frequency ± 2 Hz) as a function of group. Colored dots denote individual 495 
participants, white dots denote group medians and background fills represent kernel density estimates. 496 
 497 

Similar results were found for the IAF analysis (see supplementary Section 3 and Figure 498 

S3). Hence, there was a shift of the dominant rhythm towards lower frequencies in AD relative 499 

to both T2DM and healthy controls. However there is also a reduction in power at both the 500 

Dominant frequency and the IAF in AD. Intriguingly, T2DM showed significantly higher 501 

Dominant frequency and IAF values compared to AD (in line with HC), but did not show any 502 

significant difference in terms of power density at either the Dominant frequency or the IAF (in 503 

contrast to HC). This suggests that, unlike in AD, the frequency of the dominant posterior 504 

rhythm in T2DM is indistinguishable to that observed in HC. However, in terms of power density 505 

at the dominant rhythm, T2DM resembled AD more closely than HC. 506 

In contrast to the Spectral power ratio, there was no significant relationship between any 507 

of the composite cognitive measures and either the Dominant Frequency or IAF.        508 

 509 

Discussion  510 

The present study compared oscillatory power and neuropsychological function (and their 511 

relationship) between HC, AD and T2DM in order to better understand pathophysiological 512 
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signatures of cognitive aging. Cognitively, AD was associated with deficits across almost all 513 

neuropsychological tests, whereas T2DM was associated with selective deficits in 514 

verbal/episodic learning, memory and psychomotor processing speed. Neurophysiologically, 515 

there was a pattern of shifting EEG power from higher to lower frequencies in AD, and evidence 516 

that a similar shift is also apparent to a lesser degree in T2DM, particularly over temporal 517 

regions. Capturing this shift as a single measure (the ratio of α+β/δ+θ power) across 518 

participants allowed us to investigate the relevance of these oscillatory changes for cognitive 519 

aging. This Spectral power ratio was uniquely associated with executive functions and dementia 520 

severity in the AD group, and with learning and memory function in the HC group. The results 521 

suggest that a shift in EEG power from higher to lower frequencies represents a candidate 522 

biomarker for specific cognitive deficits associated with aging and brain-related diseases.  523 

  524 

Some of the results replicate findings from previous studies which, particularly given recent 525 

concerns about the reproducibility of scientific findings in both neuroimaging (Poldrack et al., 526 

2017) and psychology (Open Science Collaboration, 2015), is of great importance in 527 

establishing the reliability of the reported effects. Moreover, the current findings go beyond 528 

replication to extend prior work by collapsing the spectral power distribution into a single easily 529 

obtainable summary metric, and then examining how this metric relates to specific domains of 530 

cognitive function. We contribute several important novel insights into the pathophysiology of 531 

cerebral oscillations in AD and T2DM relative to normal cognitive aging. The novel aspects 532 

include (1) a direct comparison of EEG activity and neuropsychological performance between 533 

AD, T2DM and healthy controls, (2) extensive testing of group differences in both absolute and 534 

relative EEG power across all electrodes and a wide range of frequencies (1-40 Hz), (3) a 535 

parsing of the relationship between oscillatory abnormalities and specific cognitive domains (i.e. 536 

memory versus executive function) across the different groups, (4) evaluation of the distribution 537 
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of frequency changes across different brain regions, and (5) analyses of shifts in the Dominant 538 

frequency, as well as in the power density at this individually-defined dominant frequency.      539 

 540 

Differences in cognitive function associated with AD and T2DM 541 

AD participants showed marked neuropsychological deficits relative to both HC and T2DM. The 542 

most prominent deficits were observed on learning, memory and executive function tests. AD 543 

participants also reported impaired function in activities of daily living and increased symptoms 544 

of depression compared to both HC and T2DM. These symptoms are well established in AD 545 

(Burns and Iliffe, 2009).  546 

Additionally, a pattern of performance differences was observed from HC to T2DM to AD 547 

on verbal/episodic learning (RAVLT and Logical Memory) and psychomotor processing speed 548 

(DSST). These findings accord with previous reports of mild decrements in memory, motor 549 

function and attention and perceptual processing speed in T2DM relative to HC (Cheng et al., 550 

2012; Marseglia et al., 2016; Mooradian et al., 1988; Palta et al., 2014; Takeuchi et al., 2012; 551 

van den Berg et al., 2010). Thus, T2DM may affect these cognitive domains first, and the effects 552 

are detectable using commonly employed neuropsychological tests. It is important to 553 

acknowledge that cognitive impairment in T2DM is likely modulated by many variables, 554 

including vascular risk factors (Marseglia et al., 2016), presence of the apolipoprotein ε4 allele 555 

(Ravona-Springer et al., 2014) and glycemic control (Yaffe et al., 2012). These factors were not 556 

controlled for here, and may have contributed to the observed cognitive deficits. However, the 557 

current results provide evidence that mild neuropsychological deficits are detectable in T2DM 558 

even when participants report no cognitive impairment.         559 

 560 

Changes in oscillatory activity and relationship with cognition in AD 561 

The present study suggests that both AD and T2DM are associated with abnormal neural 562 

oscillations, relative to HC. In AD, we observed reduction in α+β power and increase in δ+θ 563 
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power, in line with previous findings (Babiloni et al., 2016; Bennys et al., 2001; Brenner et al., 564 

1986; Coben et al., 1990, 1983; Dierks et al., 1995; Fraga et al., 2013; Jeong, 2004; Moretti et 565 

al., 2004; Neto et al., 2016). There was a similar pattern of higher δ+θ power (HC < AD), and a 566 

similar pattern of lower α+β power (HC > AD), across all ROIs. These oscillatory signatures, as 567 

captured by the ratio of (α+β)/(δ+θ) power, correlated with learning and memory function across 568 

all groups combined, though the correlation was relatively weak within each group and only 569 

significant in HC. In AD, the Spectral power ratio was strongly associated with executive 570 

function performance and dementia severity, with the degree of change being positively 571 

correlated with symptom severity. Previous studies have found a correlation between band-572 

specific EEG power and the severity of cognitive deficits in AD (Babiloni et al., 2007, 2006a; 573 

Dierks et al., 1995; Helkala et al., 1991; Luckhaus et al., 2008; Moretti et al., 2009; van der Hiele 574 

et al., 2007). The current results confirm and expand on this literature, suggesting that the ratio 575 

of (α+β)/(δ+θ) power is a strong predictor specifically of executive function in AD (accounting for 576 

more than 55% of the variance). Notably, the Spectral power ratio was also associated with 577 

overall dementia severity, suggesting that deficits in executive functions (as opposed to learning 578 

and memory) may be more closely tied to global indicators of dementia. Intriguingly, similar 579 

neural changes are predictive of progression from MCI to dementia (Babiloni et al., 2011; 580 

Grunwald et al., 2001; Jelic et al., 2000, 1996; Rossini et al., 2006) and have been associated 581 

with cognitive deficits in disorders such as ADHD (Barry et al., 2003), dyslexia (Penolazzi et al., 582 

2008), schizophrenia (Bates et al., 2009; Boutros et al., 2008) and Parkinson’s disease (Klassen 583 

et al., 2011; Olde Dubbelink et al., 2014).  584 

In line with previous studies (Moretti et al., 2004; Poza et al., 2007; Babiloni et al., 2015), 585 

we found lower dominant posterior frequencies in AD (mean = 8.2 Hz) relative to both HC and 586 

T2DM, who showed typical mean dominant frequencies in the α-band (Klimesch, 1999; Mierau 587 

et al., 2017; Knyazeva et al., 2018). However, in contrast to the Spectral power ratio, we found 588 

no relationship between the posterior dominant frequency or IAF and performance on any of the 589 
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composite cognitive scores. This suggests that pathophysiological changes in power density in 590 

AD are more cognitively relevant than changes in peak frequency.  591 

 592 

Changes in oscillatory activity and relationship with cognition in T2DM  593 

Interestingly, α+β power density in T2DM participants was intermediate between HC and AD 594 

participants. This finding replicates and extends the results of Cooray et al. (2011), who found 595 

that α+β power was reduced in T2DM compared to HC. We also found that T2DM is specifically 596 

associated with a reduction of α power in the temporal regions, with no significant differences 597 

observed in other brain regions relative to HC. This is notable insofar as deficits in temporal α 598 

power have previously been linked to impairments in learning and memory in AD (Babiloni et al., 599 

2009). Interestingly, a subset of T2DM participants in the study of Cooray et al. (2011) who 600 

received a 2-month glycemic control treatment showed an increase in α power, associated with 601 

improvements in visuospatial and semantic memory performance. Collectively, these results 602 

highlight alterations in brain function and α power associated with T2DM (Fried et al., 2017; 603 

Strachan et al., 2011).  604 

No difference was found between T2DM and HC in either the Dominant posterior 605 

frequency or the IAF. However, despite the peak frequency remaining intact, a tendency was 606 

observed for a reduction in power density at both the Dominant posterior frequency and the IAF, 607 

with the power density profile in T2DM more closely resembling AD than HC. To our knowledge, 608 

this represents the first analysis of peak frequencies in T2DM. Though we found no link 609 

between these power density changes and neuropsychological performance in the current 610 

sample, future longitudinal studies may investigate further whether they are cognitively relevant 611 

and potentially prodromal of later changes in peak frequency. 612 

 613 

Differences in cognitive relevance of oscillatory signatures between AD and T2DM 614 
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Though T2DM confers an increased risk for developing AD (Biessels and Kappelle, 2005; 615 

Barbagallo and Dominguez, 2014), little is known about the mechanistic underpinnings that link 616 

the two disorders (Chatterjee and Mudher, 2018; Chornenkyy et al., 2019). In contrast to AD, we 617 

found no correlation between the Spectral Power Ratio and the degree of cognitive impairment 618 

in T2DM for any of the neuropsychological tests in our battery. It is possible that this highlights 619 

the domain-specific nature of the EEG–cognition link, as the T2DM group showed no marked 620 

deficits on the executive function tests, which were most strongly related to the Spectral Power 621 

Ratio in AD. A related possibility concerns the multifactorial nature of T2DM-related impact on 622 

the brain. Despite some similarities in the observed EEG changes associated with AD and 623 

T2DM, the electrophysiological signatures linked to cognitive deficits may not be the same due 624 

to differing neurodegeneration and cerebrovascular pathologies. This proposal could be tested 625 

in future studies by combing resting-state EEG recordings and comprehensive 626 

neuropsychological testing with structural magnetic resonance imaging (MRI) in both AD and 627 

T2DM samples. This may allow for the establishment of a physiological link between oscillatory 628 

activity, structural abnormalities and cognitive functions. Such an approach would shed further 629 

light on similarities and differences in the neuropathological processes underlying cognitive 630 

impairment in T2DM and AD. 631 

 632 

EEG oscillations and cognition 633 

Oscillatory EEG activity reliably co-varies with cognitive functions in a band- and domain-634 

specific manner (Basar et al., 2001). For example, α-band activity has been associated with 635 

memory (Bonnefond and Jensen, 2012; Klimesch, 1999; Palva and Palva, 2007), attention 636 

(Benwell et al., 2017, 2018; Foxe and Snyder, 2011), and arousal (Benwell et al., 2018; Cantero 637 

et al., 1999; Sadaghiani et al., 2010), while β-activity is believed to play a role in sensorimotor 638 

functions (Pfurtscheller et al., 1996) and the maintenance of top-down attention (Buschman and 639 

Miller, 2007; Engel and Fries, 2010). These findings have led to suggestions that oscillations are 640 
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computationally relevant for neuronal synchrony/communication and higher-order cognition 641 

(Canolty and Knight, 2010).  642 

Hence, changes in EEG power associated with pathophysiology may reflect abnormal 643 

synchronization of large-scale networks of pyramidal cortical neurons and consequent 644 

impairment of information transfer required for cognitive functions. Recent studies employing 645 

both structural neuroimaging and EEG/MEG suggest that increases in δ+θ power (and 646 

reductions in α power) correlate with neurodegenerative processes associated with AD such as 647 

atrophy of sub-cortical white matter, cortical gray matter and hippocampus (Babiloni et al., 2013, 648 

2006b; Fernandez et al., 2003; Helkala et al., 1996).  649 

From a functional perspective, one theory linking frequency ratio changes with cognitive 650 

impairment suggests a possible reciprocal relationship between α-band and low-frequency 651 

(δ+θ) activity (Knyazev, 2012, 2007). Specifically, α-activity is implicated in controlling adaptive 652 

functional inhibition (Klimesch et al., 2007), facilitating goal-directed sensory and behavioral 653 

regulation. Accordingly, when this reciprocal relationship is unbalanced, through reductions in α-654 

mediated inhibition and/or abnormal increases in low-frequency activity, pathological 655 

disinhibition occurs with consequent cognitive and behavioral impairments (Knyazev, 2012, 656 

2007). Notably, differences in the spectral ratio between T2DM and HC were primarily driven by 657 

reduced power in higher (α+β) frequencies in T2DM, without a strong increase in low-frequency 658 

(δ+θ) power. If reduction in α-power indexes decreased functional inhibition relevant for 659 

cognitive performance, then this may be prodromal in T2DM of subsequent increase in low-660 

frequency activity and accelerated cognitive decline. Unfortunately, due to the single time-661 

point/cross-sectional nature of the current study, the results cannot provide evidence as to the 662 

existence of any causal link between T2DM and AD. It is crucial to acknowledge that the causal 663 

factors underlying cognitive impairments may not be shared across the disorders; hence, we 664 

cannot yet ascribe the EEG differences to a single underlying cause. Future longitudinal, 665 

prospective studies are however warranted given existing epidemiologic data and the reported 666 
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cross-sectional findings here. Longitudinal measurements of EEG power and 667 

neuropsychological performance in individuals with T2DM could test the prognostic power of 668 

EEG changes in terms of subsequent cognitive decline, including progression to AD (Gispen 669 

and Biessels, 2000; Stewart and Liolitsa, 1999).  670 

Additional limitations of the current study include a lack of older participants, particularly 671 

in the T2DM and HC groups. Future studies should look to recruit from a wider range of older 672 

adults. It is important to note that, despite no individuals scoring as clinically impaired on the 673 

MMSE, we were unable to fully rule out the possibility of pre-clinical AD being present in the HC 674 

and T2DM groups. It would also be of benefit to collect more potentially relevant demographic 675 

details which were not available here, including smoking status, comorbid psychiatric 676 

symptomology and time since diagnosis. Additional information regarding medication use might 677 

be of particular value given that T2DM treated with medications may not experience equivalent 678 

neurocognitive consequences to those controlling the disease through exercise and diet (Walker 679 

and Harrison, 2015; Ngandu et al., 2015). Furthermore, we did not consider the potential 680 

association between γ-band (~30-100 Hz) oscillations and cognitive function in either T2DM or 681 

AD, despite previous research suggesting γ-band activity to be cognitively relevant (van 682 

Deursen et al., 2008; Başar et al., 2016). We chose not to include EEG-measured γ because it 683 

is often contaminated by muscle (Whitham et al., 2007) and eye-movement artifacts (Yuval-684 

Greenberg et al., 2008). An optimal approach to investigate pathophysiological signatures of γ 685 

activity in future studies would be to employ magnetoencephalography, in which cerebral γ 686 

activity can be more clearly and robustly identified than in EEG (Mandal et al., 2018). 687 

 688 

Conclusions 689 

Neuropsychological deficits are widespread in AD and selective in T2DM (with relative sparing 690 

of executive functions). Relative to HC, AD patients had higher EEG power in lower frequencies 691 

and lower power in higher frequencies across all brain regions. In contrast, patients with T2DM 692 
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showed decreases in specifically α power relative to HC restricted to the temporal regions. The 693 

ratio, (α+β)/(δ+θ), showed a continuum of differences from HC to T2DM to AD. This Spectral 694 

power ratio correlated with dementia severity and executive functioning in AD and learning and 695 

memory performance in HC and across all groups combined. In contrast, no relationship was 696 

found between IAF and cognitive function in any of the three groups. Shift in the ratio of relative 697 

power (in favor of low frequencies) within the EEG power-spectrum represents a candidate 698 

neural signature of cognitive deficits associated with aging-related diseases including AD and 699 

T2DM.  700 
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Figure Legends 1220 

Figure 1. Whole-brain analysis of relative power. A. F-ratios associated with between-group 1221 

mass univariate analyses of variance (ANOVAs) comparing relative electroencephalography 1222 

(EEG) power between Alzheimer’s disease (AD), Type-2 diabetes mellitus (T2DM), and healthy 1223 

controls (HC) across all electrodes (y-axis) and frequencies (x-axis). The solid black contour 1224 

represents data points surviving cluster-based multiple comparison correction. B. Topographic 1225 

representation of the F-ratios averaged across the significant frequencies. C. Mean power 1226 

spectra (with 95% confidence intervals; CI) for each group separately at the electrode (CP6) for 1227 

which group differences were maximal. Alpha/beta power showed a linear decrease across 1228 

groups, being highest for HC and lowest for AD with T2DM having intermediate values whereas 1229 

delta/theta power showed a linear increase across groups. D-F. T-values associated with follow-1230 

up tests comparing relative EEG power between each pair of groups separately. Solid black 1231 

contours indicate data points surviving cluster-correction. G-H. Topographic representation of 1232 

the t-values associated with the respective significant effects. Significant electrodes are 1233 

highlighted in gray.  1234 

 1235 

Figure 2. Spectral Power Ratio. Figure shows the age-adjusted comparison across groups of 1236 

the Spectral Power Ratio, (α+β)/(δ+θ), estimated from each cortical region of interest (ROI). 1237 

Tukey’s Honestly Significant Difference post hoc tests demonstrated that (α+β)/(δ+θ) was lower 1238 

in Alzheimer’s disease (AD) than in Healthy Controls (HC) across all ROIs (p values < 0.001) 1239 

and lower than Type-2 Diabetes (T2DM) in all but the Posterior ROI (p values = 0.0499–0.063). 1240 

T2DM was lower than HC across all ROIs though this difference did not reach significance (p 1241 

values = 0.064–0.136). Data shown represent the least squared means and standard deviations 1242 

derived from the linear regression models.  1243 

 1244 
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Figure 3. Group analysis and post-hoc comparisons of cognitive measures adjusted for age. All 1245 

data represent least squared means and standard error. Individual neuropsychological tests (x-1246 

axis) are shown grouped by cognitive domain. Scores (y-axis) were z-normalized and inverted 1247 

(if necessary) so higher numbers reflect better performance/function. Following the first omnibus 1248 

multivariate analysis of variance (MANOVA-1), group performance on individual tests was 1249 

assessed using separate multiple linear regression analyses with age as a covariate. All results 1250 

survived a 5% false discovery rate (FDR). In general, there was a continuum of deficits with 1251 

healthy controls (HC) scoring higher than Type-2 diabetics (T2DM), who performed better than 1252 

Alzheimer’s disease (AD). Post-hoc pairwise comparisons were conducted with Tukey’s 1253 

honestly significant difference (HSD) tests. Three patterns were observed: (§) all three groups 1254 

were significantly different; (†) AD scored significantly worse than both HC and T2DM, which 1255 

were equivalent to each other; (^) HC were significantly better than AD, with T2DM not 1256 

significantly different from either group. Additional abbreviations. Alzheimer’s disease 1257 

Assessment Scale-Cognitive subscale (ADAS-Cog); Activities of Daily Living (ADLs); Digit 1258 

Symbol Substitution Test (DSST); Trail Making Test (TMT); Rey Auditory Verbal Learning Test 1259 

(RAVLT); Geriatric Depression Scale (GDS). 1260 

 1261 

Figure 4. Relationship between electroencephalography (EEG) Spectral power ratio and 1262 

cognitive function. Z-normalized scores (higher score indicates better performance) from 1263 

individual neuropsychological tests were averaged together to form three domains: A. Learning 1264 

& memory (Rey Auditory Verbal Learning Test, Logical Memory Story); B. Dementia severity 1265 

(Alzheimer’s disease Assessment Scale-Cognitive subscale, Activities of Daily Living); C. 1266 

Executive function (Digit Symbol Substitution Test, Semantic fluency, Trail Making, Digit Span 1267 

forward and backward). Computed averages were related to the Spectral Power Ratio 1268 

(α+β)/(δ+θ) and plotted separately for the three groups. In healthy controls (HC), higher 1269 

(α+β)/(δ+θ) was significantly associated with better Learning & memory performance (p = 0.018, 1270 
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uncorrected). In Alzheimer’s disease (AD), higher (α+β)/(δ+θ) was significantly associated with 1271 

better Dementia severity and Executive function (p’s < 0.05, uncorrected). By contrast, no 1272 

significant relationships were observed in the Type-2 diabetes mellitus (T2DM) group (p’s > 1273 

0.1).  1274 

 1275 

Figure 5. Group analysis of Dominant posterior frequencies. A. Individual frequency between 5-1276 

15 Hz with the highest power density across all posterior electrodes (Dominant posterior 1277 

frequency) as a function of group (Healthy controls (HC), Type-2 diabetes mellitus (T2DM) and 1278 

Alzheimer’s disease (AD)). B. Power density at the Dominant posterior frequency (averaged 1279 

over the peak frequency ± 2 Hz) as a function of group. Colored dots denote individual 1280 

participants, white dots denote group medians and background fills represent kernel density 1281 

estimates. 1282 

  1283 
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Table Legends 1284 

Table 1 . Results of Multivariate Analyses of Variance (MANOVAs). In MANOVA-1, the 1285 

dependent variables included z-normalized, rectified scores on the Alzheimer's disease 1286 

Assessment Scale-Cognitive Subscale, Activities of Daily Living, Digit Symbol Substitution Test, 1287 

Semantic Fluency Test, Trail Making Test time and errors (difference Part B-Part A), Digit Span 1288 

length forward and backward, Rey Auditory Verbal Learning Test (learning, delayed recall, 1289 

delayed recognition), Logical Memory story (immediate and delayed recall), Boston Naming 1290 

Test, and Geriatric Depression Scale. In MANOVA-2, the dependent variables include the 1291 

averaged Z-scores of the three cognitive domains (Learning & memory, Dementia severity, 1292 

Executive function). EEG refers to a whole-brain averaged power ratio [(alpha + beta)/(delta + 1293 

theta)] obtained from eyes-closed resting-state electroencephalography. 1294 
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