
Open Research Online
The Open University’s repository of research publications
and other research outputs

Full report on challenges with learning to program and
problem solve: an analysis of first year undergraduate
Open University distance learning students’ online
discussions
Other

How to cite:

Savage, Simon and Piwek, Paul (2019). Full report on challenges with learning to program and problem solve:
an analysis of first year undergraduate Open University distance learning students’ online discussions. The Open
University, Milton Keynes.

For guidance on citations see FAQs.

c© 2019, 2020 The Authors

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Full report on challenges with learning to program
and problem solve: an analysis of first year
undergraduate Open University distance learning
students’ online discussions

SIMON SAVAGE∗ and PAUL PIWEK∗, School of Computing and Communications, The

Open University, United Kingdom

Students who study problem solving and programming (in a language such as Python) at University level

encounter a range of challenges, from low-level issues with code that won’t compile to misconceptions about

the threshold concepts and skills. The current study complements existing findings on errors, misconceptions,

difficulties and challenges obtained from students through after-the-fact instruments such as questionnaires

and interviews. In our study, we analysed the posts from students of a large cohort (~1500) of first-year

University distance learning students to an online ‘Python help forum’, recording issues and discussions

as the students encountered specific challenges. Posts were coded in terms of topics, and subsequently

thematically grouped into python-related, problem-solving/generic, and module-specific topics. This report

documents the full set of topics and the statistics for each of them. We also provide examples from the

forum discussions which illustrate the topics that were identified.

CCS Concepts: • Social and professional topics → Computing education; Computational thinking;

Software engineering education; Adult education; •Applied computing→Distance learning; E-learning.

Additional Key Words and Phrases: programming, Python, problem solving, online student discussions,

challenges, misconceptions, threshold concepts and skills

∗
This work has been completed with support from The Institute of Coding, an initiative funded by the UK Office for

Students.

Authors’ address: Simon Savage, s.a.savage@open.ac.uk; Paul Piwek, paul.piwek@open.ac.uk, School of Computing and

Communications, The Open University, United Kingdom, Walton Hall, Milton Keynes, Buckinghamshire, MK7 6AA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice.

© 2019, 2020 The authors

2 Savage and Piwek

Contents

Abstract 1

Contents 2

List of Tables 5

List of Figures 6

1 Introduction 7

2 Related Work 7

3 Methodology 8

3.1 Student demographics 9

3.2 Instructor demographics 9

3.3 Programme components 10

3.4 Data analysis methods 10

3.5 Scope and limitations 11

4 Results: Topic statistics 13

4.1 Statistics relating to all topics 15

4.2 Python-related topics 19

4.3 Problem-solving/generic topics 22

4.4 Module-specific topics 25

5 Results: Topic descriptions and examples 27

5.1 Python-related topics 27

5.1.1 IDE: Shell vs Editor 27

5.1.2 IDE: Using the quiz framework 29

5.1.3 IDE: Basic application usage 30

5.1.4 Collections 31

5.1.5 Collections: Zero indexing 31

5.1.6 Collections: Muddling up indexing and contents 32

5.1.7 Collections: Performing operations on lists rather than contents of lists 33

5.1.8 Functions: Calling functions 34

5.1.9 Functions: Passing parameters to functions 35

5.1.10 Error messages 36

5.1.11 Iteration 37

5.1.12 What constitutes output? Outputting results 39

5.1.13 Indentation 41

5.1.14 Variables: Naming 43

5.1.15 Variables: Declaration 44

Full report on challenges with learning to program and problem solve 3

5.1.16 Imports: Purpose 45

5.1.17 Imports: Usage 46

5.1.18 If-structures 47

5.1.19 Software installation problems 48

5.1.20 Strings 49

5.1.21 Turtle 49

5.1.22 Case sensitivity 49

5.1.23 Executing code 50

5.1.24 Typo 50

5.1.25 Brackets 51

5.1.26 Character encoding 51

5.1.27 Code formatting 52

5.1.28 Docstring versus comment 52

5.1.29 File handling 53

5.1.30 File naming (.py) 53

5.1.31 Memory leaks 54

5.1.32 Random numbers 54

5.1.33 Reading keyboard 54

5.1.34 Strings versus numbers 55

5.1.35 Whitespace 55

5.1.36 Wildcard 55

5.1.37 Windows versus Linux 56

5.2 Problem-solving/generic topics 56

5.2.1 Code fragment with problem 56

5.2.2 Bug finding 56

5.2.3 Learning Python 57

5.2.4 Maths 58

5.2.5 Code review 60

5.2.6 Problem-solving workflow 60

5.2.7 Code explanation 61

5.2.8 Following instructions 61

5.2.9 Patterns 61

5.2.10 Algorithm 62

5.2.11 How to start 62

5.2.12 Admissible values 62

5.2.13 Barriers to learning 63

4 Savage and Piwek

5.2.14 Borderline tests 63

5.2.15 Converting algorithm to code 63

5.2.16 How to explain things 64

5.2.17 Sorting 65

5.2.18 Testing 65

5.2.19 Understanding requirements 65

5.3 Module-specific topics 65

5.3.1 Approach to quiz, TMA and approach to activities 66

5.3.2 Forum use 67

5.3.3 General conversation 68

5.3.4 Errata 68

5.3.5 Activities 69

5.3.6 Approach to studying 69

5.3.7 Understanding activity 69

5.3.8 Module choices (for degree) 70

5.3.9 Module progress 70

5.3.10 Other modules 70

5.3.11 Quiz contents 71

5.3.12 Welcome to forum 71

5.4 Miscellaneous 72

5.4.1 Peer support 72

5.4.2 Communal project/Case study 73

6 Discussion and recommendations 74

Acknowledgments 76

References 77

Full report on challenges with learning to program and problem solve 5

List of Tables

1 List of post types 15

2 Discussion statistics by Python-related topic 19

3 Discussion statistics for each problem-solving/generic topic 22

4 Discussion statistics for each module-specific topic 25

6 Savage and Piwek

List of Figures

1 Forum consisting of a series of discussions 11

2 Each discussion consists of a series of posts 12

3 Number of discussions in which a topic occurs (for all topics across the three themes) 16

4 Mean discussion size for discussions in which a topic occurs (for all topics across the

three themes) 17

5 Number of discussions per Python-related topic 20

6 Rounded mean discussion size (measured in number of posts) per Python-related topic 21

7 Number of discussions per problem-solving/generic topic 23

8 Rounded mean discussion size (measured in number of posts) per problem-solving/generic

topic 24

9 Number of discussions per module-specific topic 26

10 Rounded mean discussion size (measured in number of posts) per module-specific topic 27

11 Syntax error due to saving code in IDLE’s shell and trying to run it in the editor 28

12 Student’s screen capture of quiz attempt illustrating confusion in using lists 33

13 Screen capture of error message when trying to invoke a method without the brackets 35

14 Student results from online Python quiz question 40

15 Variable name case sensitivity preventing code from executing 44

Full report on challenges with learning to program and problem solve 7

1 INTRODUCTION

The introduction to a text-based procedural programming language poses a range of challenges

for students, especially when this is done in a distance learning environment. Introducing students

to programming (and problem solving) is generally acknowledged as difficult or at least perceived

as a significant challenge [4, 5].

Students encounter threshold concepts and skills [9, 15, 16] and can get entangled in miscon-

ceptions [3, 13]. These issues may be amplified in distance and, more specifically, online learning

environments, which have gained ground not only in the form of moocs and courses offered by

online education providers, but also in more traditional teaching establishments that apply the

‘flipped classroom’ approach [1].

The purpose of the current study is to examine the challenges that first year distance learning

students face when learning a procedural programming language such as Python over the course of

a 21-week computing and IT course which includes 6 weeks on problem solving and programming

with Python. So far, much of the evidence on students’ challenges is based on retrospective

surveys/interviews with students and instructors, and analysis of student assessment results or

student-authored concept maps [13, 16]. To our knowledge, no results draw on large data sets of

contemporary student discussions in their own language around challenges. The current study

provides an additional perspective by examining the evidence from a large collection of student

online discussions as they learn to program.

In Section 2, we summarise research methods and findings from the literature on the chal-

lenges faced by students when learning to program. Section 3 introduces the methodology of

the current study which uses (online) discussions that took place as students encountered and

struggled with specific challenges. Section 4 presents the results of our study, grouping chal-

lenges by topic and, at a higher level, into themes. This sections gives statistics for each topic

that was identified. Section 5 provides specific examples from the forum discussions. This report

concludes with a discussion of our findings and recommendations based on our findings (Section 6).

This report is intended as a companion to [11]. Sections 2 and 3 of this report overlap with [11]

and can be skipped by readers already familiar with the paper.

2 RELATEDWORK

A wide range of instruments have been used to study the challenges that students face when

learning to program.

Perhaps the most direct evidence comes from studies that analyse compiler error messages

when students attempt to execute their code. [8] found that such errors (in Java) be classified

into different types with good reliability. Errors found this way can be ordered by frequency

8 Savage and Piwek

and therefore provide some indication of their prevalence. However, the error type are relatively

low-level (e.g. the top five reported by [8]) are: variable not declared, colon missing, incorrectly

written variable name, invalid syntax, method naming incorrect.

Using the terminology of [13] most of these errors go back to difficulties in syntactic knowledge.

However, [13] identify two further levels at which misconceptions can arise: the conceptual and

strategic levels. E.g., at the conceptual level a student may fail to understand that a variable can

only hold one value at a time. Strategic knowledge or know how concerns expertise on how to go

from a problem to an implemented solution for that problem. This includes for instance problem

decomposition, development of an algorithm and implementation of this algorithm in a specific

language, whilst testing and debugging the code as it is developed.

Within computing, specific attention has been given to ‘Threshold concepts’, originally proposed

by [9] as transformative, integrative, irreversible, potentially troublesome and often indicating the

boundaries of a discipline. Early research identified for instance objected orientation and pointers

as threshold concepts [2]. More recently, [16], in their literature review, enumerate a long list

of further concepts that have since been identified, from data abstraction and design patterns

to polymorphism and program-memory interaction. Additionally, [15] highlight that not only

concepts, but also skills, can play the role of thresholds in computing.

[16] enumerate the instruments that have been used so far for collecting data on threshold

concepts. They distinguish evidence from faculty and students. Much of the evidence focuses on

after the fact data collection through surveys and interviews. Similarly, work building concept

inventories (e.g. [3], a concept inventory is multiple-choice questionnaire where each distractor

answer maps to a specific student misconception) typically relies on questionnaires to gather

initial evidence on where students face difficulties in understanding concepts.

[18] argue that collecting evidence from students on where they experienced difficulties in the

past can be unreliable, with students struggling to recall and recount specific occasions on which

challenges were encountered. This suggest that records of challenges as they occur may be more

informative on actual problems that students encounter.

As described by [10], specific challenges can arise in distance learning contexts. These are related

to the type of students (distance learning students often study part-time whilst being in full-time

employment) and reliance on technology to allows students to communicate and collaborate with

each other.

3 METHODOLOGY

Our research question is: What are the challenges that first-year distance learning students face when
learning to program in Python? Rather than rely on post-hoc accounts of what students remember

Full report on challenges with learning to program and problem solve 9

about the challenges they encountered, we examine records of discussions around the challenges

as they emerged for our students.

The course in question, Introduction to computing and information technology 2 (henceforth

TM112), included a dedicated online ‘Python help forum’ where students could discuss challenges

with their study of Python. The online forum relied primarily on peer support (enabled partly

by a wide mix of abilities among our students, from absolute novices to programming experts

seeking a qualification). We also observed that students were particularly effective in motivating

and providing emotional support to each other, where they faced difficulties. In addition to the

peer support, there was a team of moderators (three) who monitored the forum discussions and

would steer the discussion if needed.

3.1 Student demographics

We studied the 2018 April-September TM112 cohort of about 1500 students. More than half of

students were between 25 and 39 years old; 10 students were over 65 years old; approximately

200 were under 21. The female to male ratio is 24 to 76. Race/ethnicity of students (rounded): 89%

of students were White, 2% Black, 3% Asian, 1% Mixed, 1% Other and 3% did not specify. 19% of

students declared a disability. 16% of students are classified as low socio-economic status by the

university, with a further 5% being unknown.

TM112 is the second module for most Computing and Information Technology undergraduate

students at the University and also taken by some students on other pathways, such as Data

Science. Most students will have completed a predecessor module Introduction to computing and
information technology 1 (TM111, see [19]) which introduces students to University level study, a

range of computing and IT topics and basic programming in a visual programming language.

All students (both those who completed and those who did not complete the module) are

surveyed at the end of the module (before they receive their results). The response rate for the

survey for the April 2018 cohort was 16%. Most students, over 90% agreed with the statement ‘I

was satisfied with the quality of the module’ (and less than 5% disagreed). About 80% agreed that

‘My studies have helped me develop my self-confidence’, (less than 4% disagreed). Also, more than

90% agreed that ‘It was obvious how the module materials related to the assessed tasks on this

module’, (less than 3% disagreed).

3.2 Instructor demographics

The online ‘Python help’ forum was moderated by 2 tutors (male and female). Additionally, the

course leader (male) monitored the forums and supported the two tutors. All three staff involved

are white and have, each individually, over 20-years of computing and Information Technology

teaching experience.

10 Savage and Piwek

3.3 Programme components

6 of the 21 study weeks of TM112 are on ‘Problem solving with Python’:

Week 2 Sequence, selection, variables, lists and (nested) iteration, Python Turtles library.

Week 4 Formula problems, case analysis, Booleans, testing, documentation, pattern for gener-

ating a sequence.

Week 7 Generating lists, Reduce (count and aggregate), Search (finding a value/the best value),

Combining patterns.

Week 9 Python functions (and automated testing of functions with assert), Python objects and

names.

Week 10 Worked example of analysis, with Python, of health and wellbeing dataset.

Week 15 Worked example using Python dicts, interactive loops, the random library and reading

from a file.

[12] provides more information about the approach taken in TM112.

The results in this study concern the cohort that took TM112 from April to September 2018.

During each week, students work with printed materials and online activities and during some

weeks attend tutorial events (face-to-face or online). At the end of each week, there is a formative

quiz. To encourage students to engage with the quizzes, they are rewarded with a small number

of marks for including evidence of engagement with the questions in their assignments. Marks

are for the evidence of engagement and personal narrative/reflection on their engagement with

the quiz questions. Since the quiz questions were not summatively assessed, students were also

encouraged to discuss their attempts and answers with their peers on the module forums. For the

weeks covering Python, see above, they are referred specifically to the Python help forum.

Students were made aware of the forums through several routes. Initial contact from their tutors

mentioned the forums and that it is permissible to discuss quiz questions in them. This latter point

was reinforced in the introductory video that students watch during their first week of study.

Students were also encouraged to explore the module website, including the forums, during that

first week and the ‘Python Help’ contained a pinned post explaining that it is okay to discuss quiz

questions in it. Students who posted in less appropriate forums were redirected to the correct

forum. Forums consist of a series of discussions as illustrated in Figure 1 (personal information

has been hidden).

Each discussion consists of one or more posts as shown in Figure 2

3.4 Data analysis methods

Our raw data was the full collection of posts to the Python help forum. We extracted the post data

from the forum site and stored it in a spreadsheet – see [17] for the scripts used to extract the

Full report on challenges with learning to program and problem solve 11

Fig. 1. Forum consisting of a series of discussions

data. Information which could identify participants was anonymised. One or more topics were

assigned to each post, providing a descriptive label for the content of the post (i.e. during the First

Cycle coding we applied Descriptive coding [14]). In the first instance, all coding was carried out

by one of the authors and subsequently validated by the other author. On some occasions, some

topics were combined. A second thematic grouping of the topic labels was carried out (as part of

the Second Cycle coding [14])
1
. This led us to a division of topics into three higher level themes:

python-related, problem-solving/generic programming-related, and module-specific. Based on

the qualitative coding, certain quantitative information emerged which is presented in the results

section.

3.5 Scope and limitations

There is a limitation with the core data in that it doesn’t record the engagement of non-speakers.

This means that we can’t accurately measure how individual discussions reverberated within the

student community. The forum software does track the most read discussions with the top five

being read 250, 268, 277, 311 and 386 times respectively. Thus we can be confident that discussions

are being read with some attracting hundreds of readers.

1
Additional annotation of emotions and the nature of turns was also recorded. We may analyse these at a later date.

12 Savage and Piwek

Fig. 2. Each discussion consists of a series of posts

The methodology does have other potential limitations. The manual nature of the coding process

means that it may be biased by the opinion of the encoder’s choice of a single topic and turn-type

per turn although this is somewhat mitigated by team members reviewing the coding process.

Furthermore, the ‘Python Help’ forum’s prime purpose was to support students in their under-

standing of Python concepts and problem-solving concepts raised in TM112 (see the list in Section

3.3 on Page 10). Topics which are beyond TM112 are unlikely to be raised, thus skewing the results

in favour of TM112-related concepts.

Similarly, the student cohort in question was constituted primarily of part-time distance learning

undergraduate computing and information technology students, whose profile is likely to differ

from, for instance, computer science students. For many of our students, TM112 helps to decide

the subsequent study pathway, with options ranging from computer science (with a significant

programming and theoretical CS component) to information and communications technology.

Full report on challenges with learning to program and problem solve 13

The "Python Help" forum is unlikely to be students’ only point of support and we could reason-

ably expect them to utilise their tutors; external social network facilities; and specialist websites

for support. It is not possible to quantify the effect of this on our results.

All data collection and analysis complied with approval processes and methods at the University,

ensuring participant privacy, confidentiality, and protection. Neither participants nor researchers

received monetary or gift incentives. The data analysis was financially supported through a grant

from The Institute of Coding.

4 RESULTS: TOPIC STATISTICS

Our overall aim was to learn which challenges students face on their first encounter (during their

studies) with a text-based procedural programming language.

We tagged student posts on the module forums with topics. This gives us some indication of the

specific topics that pose challenges. Additionally, we counted the number of discussions in which

each topic was mentioned as a rough estimate of their prevalence as a challenge for members of

the current student cohort. The topics were also categorised as to whether they belonged to one

of three themes:

• Python-related,

• problem solving/generic programming-related, or

• module-specific.

The Python help forum contained 178 discussions with a total of 1430 posts. Nine discussions

containing 29 posts were present which didn’t fall within the scope of this study, such as one

informing students of upcoming tutorials. These discussions have been maintained to ensure

completeness of data but given the post type and topic type of ‘irrelevant’. Thus, there are 169

relevant discussions containing 1401 posts. The encoding process identified 66 topics in the forum

posts:

• 30 Python-related (see Section 4.2 from Page 19),

• 21 on problem solving and general programming skills (see Section 4.3 from Page 22), and

• 15 focusing on module-specific questions/issues (see Section 4.4 from Page 25).

Since topics are allocated to posts, each discussion may represent several topics. Tables 2 (Page 19),

3 (Page 22) and 4 (Page 25) show the number of discussions per topic relative to these categories.

163 people actively engaged (posted) in the forum, of these 154 were students. The remaining 9

were moderators, module team members and tutors. 105 students posted 4 times or fewer indicating

that 49 students were responsible for most of the engagement. Many members of the TM112 cohort

did not post in the forum although a substantial number regularly read them.

14 Savage and Piwek

Topics were also analysed for an indication of engagement in terms of the number of discussions

they appeared in; the minimum and maximum number of posts in those discussions; and the mean

and median number of posts in those discussions. Tables 2, 3 and 4 also show these statistics.

Full report on challenges with learning to program and problem solve 15

4.1 Statistics relating to all topics

In this section we provide some statistics on the topics, without grouping them by theme. However,

before we look at the topics themselves, we want to highlight that the student postings to the

forum discussion consists of a wide variety of contribution types or dialogue acts. For information,

we show the types we identified in Table 4.1.

Table 1. List of post types

Acknowledgment Acknowledgment/thank you Admonishment

Agree Celebrating Clarification

Complaint Contradiction/Explanation Demonstration

Direction to module material Direction to other forum Direction to other sources

Direction to other threads Direction to tutor Elaboration

Explanation Explanation/admonishment Explanation/question

External source General conversation Giving up

Irrelevant No message Question

Question/request for help Reassurance Reassurance/Suggestion

Recommendation Reflection Request for elaboration

Request for explanation Self-answered Sharing resource

Shutting down conversation Statement of current understanding

Suggestion Walkthrough

16 Savage and Piwek

Fig. 3. Number of discussions in which a topic occurs (for all topics across the three themes)

Full report on challenges with learning to program and problem solve 17

Fig. 4. Mean discussion size for discussions in which a topic occurs (for all topics across the three themes)

18 Savage and Piwek

Full report on challenges with learning to program and problem solve 19

4.2 Python-related topics

Table 2. Discussion statistics by Python-related topic

Topic Number of Min. discus. Max. discus. Rounded Mean Rounded Median

discussions size (posts) size (posts) discus. size (posts) discus. size (posts)

IDE 40 1 57 10 7

Collections 21 4 57 13 8

Functions 16 2 31 14 12

Error messages 15 1 57 12 10

Iteration 14 2 39 11 9

Outputting results 12 2 33 14 9

Indentation 10 3 16 8 6

Variables 8 3 57 15 8

Imports 7 7 17 12 11

If-Structures 5 2 30 11 5

Software installation 5 1 17 8 5

problem

Strings 4 12 57 31 27

Turtle 4 6 17 10 9

Case sensitivity 2 4 4 4 4

Executing code 2 8 9 8 9

Typo 2 4 5 4 5

Brackets 1 6 6 6 6

Character encoding 1 11 11 11 11

Code formatting 1 31 31 31 31

Docstring versus comment 1 11 11 11 11

File handling 1 4 4 4 4

File Naming (.py) 1 6 6 6 6

Memory leaks 1 33 33 33 33

Random numbers 1 31 31 31 31

Reading keyboard 1 6 6 6 6

Strings versus numbers 1 7 7 7 7

Whitespace 1 7 7 7 7

Wildcard 1 8 8 8 8

Windows versus Linux 1 11 11 11 11

20 Savage and Piwek

Fig. 5. Number of discussions per Python-related topic

Full report on challenges with learning to program and problem solve 21

Fig. 6. Rounded mean discussion size (measured in number of posts) per Python-related topic

22 Savage and Piwek

4.3 Problem-solving/generic topics

Table 3. Discussion statistics for each problem-solving/generic topic

Topic Number of Min. discus. Max. discus. Rounded Mean Rounded Median

discussions size (posts) size (posts) discus. size (posts) discus. size (posts)

Code fragment with 73 1 57 9 6

problem

Bug finding 21 2 20 8 5

Learning Python 15 6 57 16 14

Maths 10 2 57 12 7

Code review 7 7 57 24 21

Problem-solving Workflow 6 1 30 17 17

Code explanation 5 5 30 13 8

Following Instructions 5 10 18 13 12

Patterns 3 7 12 10 10

Algorithm 2 10 36 23 23

How to start 2 7 30 18 19

Admissible Values 1 9 9 9 9

Barriers to learning 1 24 24 24 24

Borderline tests 1 4 4 4 4

Converting algorithm 1 21 21 21 21

to code

How to explain things 1 7 7 7 7

Sorting 1 5 5 5 5

Testing 1 36 36 36 36

Understanding requirements 1 6 6 6 6

Full report on challenges with learning to program and problem solve 23

Fig. 7. Number of discussions per problem-solving/generic topic

24 Savage and Piwek

Fig. 8. Rounded mean discussion size (measured in number of posts) per problem-solving/generic topic

Full report on challenges with learning to program and problem solve 25

4.4 Module-specific topics

Table 4. Discussion statistics for each module-specific topic

Topic Number of Min. discus. Max. discus. Rounded Mean Rounded Median

discussions size (posts) size (posts) discus. size (posts) discus. size (posts)

Approach to quiz 36 1 57 14 11

Tutor Marked Assignment 14 3 36 12 10

Irrelevant 9 1 24 6 4

Approach to activities 7 3 39 11 4

Forum use 6 4 57 20 12

General conversation 5 6 33 14 9

Errata 3 3 39 17 10

Activities 2 2 7 4 5

Approach to studying 2 4 28 16 16

Understanding activity 2 8 57 32 33

Module choices (for degree) 1 14 14 14 14

Module progress 1 39 39 39 39

Other Modules 1 14 14 14 14

Quiz contents 1 8 8 8 8

Welcome to forum 1 13 13 13 13

26 Savage and Piwek

Fig. 9. Number of discussions per module-specific topic

Full report on challenges with learning to program and problem solve 27

Fig. 10. Rounded mean discussion size (measured in number of posts) per module-specific topic

5 RESULTS: TOPIC DESCRIPTIONS AND EXAMPLES

In this section, we present examples of postings for the topics together with a supporting narrative.

Where there were further subdivisions within a specific topic, subtopics are identified using the

format: ‘topic : subtopic’ in the section headings. Examples of all topics are given but narration is

reduced for less frequent topics (those which appeared in 5 or less discussions), since there was

too little data to generalise specific findings for these topics.

5.1 Python-related topics

Python-related topics are those whose details are uniquely or significantly peculiar to Python in

the context of the module. Similar topics may exist for other languages but the specifics will vary

dramatically. For example configuring the Python IDE will be different to that for, say, Java or C++.

5.1.1 IDE: Shell vs Editor. The IDE was a topic in 40 discussions (24%).

Prominent in these was confusion between how to use the IDLE Shell and the Editor.
2

For

example, a student experienced a syntax error with the following code as shown in Figure 11. It

2
IDLE is the standard/default IDE for Python.

28 Savage and Piwek

transpires that they had created the code in the shell, saved it as a ‘.py’ file and then tried opening

it in the editor.

Fig. 11. Syntax error due to saving code in IDLE’s shell and trying to run it in the editor

Another student experiencing similar difficulties was able to resolve it themselves:

thanks [Anon.]

I realized that the problem consisted in

using the shell instead of opening a file

and saving it. Therefore, having opened

and saved the file, I could use the "Run"

menu and let the turtle program draw the

line. The screenshot of the file is enclosed

below

[Anon.]

Full report on challenges with learning to program and problem solve 29

5.1.2 IDE: Using the quiz framework. A separate IDE, CodeRunner [7], was used for the modules

formative quizzes which involved programming questions. An issue here was students wanting

to test their answers in IDLE prior to submitting them in the quiz environment - a reasonable

approach since the quiz penalises incorrect answers. However, they hadn’t appreciated that the

quiz questions may have underpinning supporting code as pointed out by this student explanation:

You can't be using get_input() in idle since

it's not defined outside the test environment,

so I assume either you used input() or

something else that results in a string type.

Short answer is you cant mix strings and ints

in addition, either 1+1 is 2 or "1" + "1" is "11",

if you try and mix and match python will throw a

TypeError exception because it doesn't know which

you want.

you can fix this by using int() to convert to

an int or str() to convert to string.

e.g. var = "1", var = int(var). var is

now 1 (with type int), if you're using input()

you can use int(input()) to convert your input.

The get_input() function mentioned above was provided as part of the quiz IDE, but with its

implementation hidden. For instance, the code field for one of the quiz questions was prepopulated

with the following lines:

i n i t i a l i s e t h e i n p u t v a l u e s

magnitude = g e t _ i n p u t ()

i f i n p u t v a l u e s f a l l i n t o t h e f i r s t c a s e :

compute o u t p u t s a c c o r d i n g t o t h e f i r s t c a s e

(. . .)

The use of get_input diverted students from the main quiz activities by them:

• trying to understand what it does

• working out how to use it with their own code

• wondering why code which called get_input didn’t work in the IDLE environment

• trying to use their own test data instead

30 Savage and Piwek

All these points were addressed in the forums by more experienced students as demonstrated

by :

(...)

Don't add anything to it don't take anything

away from it, just leave it alone.

as you surmised its purpose is to drag in test data

without you having to do anything other than run

the program when its in the quiz.

(...)

Interestingly, the quiz question instructions also told the students to leave the line alone!

5.1.3 IDE: Basic application usage. Also, some students seemed to struggle with basic IDE func-

tionality such as copy and paste, and saving files. For example:

Hi [Anon.]

Please, could you give me some advice on

how to save Python files? I think I am

doing this wrong (...)

[Anon.]

and

Hi all

I wonder if anyone can help please.. is there an

easy way of copying code within python?

Whenever i copy code I always get a Syntaxerror

so currently have to rewrite the code.

I dont think ive missed anything in the

book that says how we do this?

Full report on challenges with learning to program and problem solve 31

Im on a mac, not sure if that makes any

difference?

Thanks

[Anon.]

Which seem to suggest a lack of confidence in using transferrable skills learned when working

with other software.

5.1.4 Collections. Collections featured as a topic in 21 discussions (12.5%) with most discussions

revolving around lists. Students had trouble with indexing; confusing indices and contents; and

inadvertently performing operations lists rather on the contents of lists.

5.1.5 Collections: Zero indexing. Here the student is trying to find the last number in a list but

hasn’t appreciated that Python’s zero indexing means that the index will be one less than the

length of that list.

How do i do this? Sorry for so many questions of

such a newbie nature, i'm trying to figure out stuff

and the book doesn't seem to cover it, so using

logic to try and figure it out but i have holes in my

programming knowledge that are just not helping me.

So i have tried making a list eg. [1,3,5,8,9]

Then i tried to pull out the last number by using

len(list). Something like this:

last_number=len(list)

Which pulls up the index of the last number on the

list. All very well and good.

But how do i actually use the number in this

position (in this case, it's number 9)?

When i do something like

32 Savage and Piwek

last_number + list[0]

I just add together the index position with

the first item.

And doing

list[last_number] + list[0]

doesn't work either, i just get error messages.

And i can't find explanation anywhere in the module

material about this? Help... feeling in over

my head and i'm only on week 2. I don't

know what i'm doing wrong, i've spent a few hours

trying to figure this out and going over and over the

material.

5.1.6 Collections: Muddling up indexing and contents. This post combines the above problem with

mixing up the role of indices and contents of items in a collection. Note that in the code below

(shown in Figure 12), line 9 indicates that the student is wanting to record the position of the

highest temperature but is actually keeping track of a temperature value (and not the one wanted

at that).

I had difficulty with Q12 weeks ago and have

revisited several times, for some reason I

can't wrap my head around it when

everything else has been a breeze!

Here is where I have got to so far.

I'd appreciate it if anyone can share what they

have so far and the process of working it out. I feel

like I am missing something obvious!

Thanks.

Full report on challenges with learning to program and problem solve 33

Fig. 12. Student’s screen capture of quiz attempt illustrating confusion in using lists

5.1.7 Collections: Performing operations on lists rather than contents of lists. In this post the student

has been trying to convert a list of temperatures in Celsius to Fahrenheit but is inappropriately

using the multiplication and addition operators on the Celsius list. Although there is no evidence

of students being caught out by this it is worth recalling that both multiplication and addition are

valid list operators and could produce unexpected results for those unaware of them.

[0, 5.85, -2.5]

[273.15, 279.0, 270.65]

Error

Traceback (most recent call last):

File "prog.python3", line 12, in <module>

fahrenheit = celsius_list * 1.8 + 32

TypeError: can't multiply sequence by non-int of type 'float'

34 Savage and Piwek

typeError: can't multiply sequence by non-int off type float!

trying to learn this one now..:P

i n i t i a l i s e t h e i n p u t _ l i s t w i th t h e g i v e n v a l u e s

c e l s i u s _ l i s t = g e t _ i n p u t ()

i n i t i a l i s e t h e o u t p u t _ l i s t t o t h e empty l i s t

f a h r e n h e i t _ v a l u e s = []

n e g a t i v e =None

f o r each i n p u t _ v a l u e o f t h e i n p u t _ l i s t :

for f a h r e n h e i t in c e l s i u s _ l i s t :

t r a n s f o rm th e i n p u t _ v a l u e i n t o an o u t p u t _ v a l u e

f a h r e n h e i t = c e l s i u s _ l i s t ∗ 1 . 8 + 32 <<<<<<< t h i n k t h i s i s the cause !

append t h e o u t p u t _ v a l u e t o t h e o u t p u t _ l i s t

f a h r e n h e i t _ v a l u e s = f a h r e n h e i t _ v a l u e s +[f a h r e n h e i t]<<<<<

p r i n t t h e o u t p u t _ l i s t

print (f a h r e n h e i t _ v a l u e s ??? DO I INSERT CODE TO A OUTPUT : A TOTAL ,

A NON INTEGER INTO MY PROGRAM?

5.1.8 Functions: Calling functions. Functions were a key theme in 16 discussions (9.5%)

Some queries were as simple as how to call a function whereas others are unsure of the syntax.

This student appreciates that the function name is needed but isn’t sure about the use of brackets.

Notably, the function get_input() is provided as part of the quiz environment so this may indicate

that they are also struggling with the IDE.

Before I go ahead and test out my newely

created script that works in python.

Can I check if anyone knows if this would work?

get_input()

input_variable=get_input

the () makes me unsure

Whereas Figure 13 shows that this student has missed the brackets needed when calling shape()

Full report on challenges with learning to program and problem solve 35

Fig. 13. Screen capture of error message when trying to invoke a method without the brackets

Figure 13: Screen capture of error message received by student when trying to invoke a method

on a python object but forgetting the brackets.

5.1.9 Functions: Passing parameters to functions. In this post the student is clearly confused about

passing parameters to functions and is overriding them in the body of the code:

Hi [Anon.]

Can you have a look at this function, Am I on the

right track???

def A_B_and_binary (A , B) :

" " " " " " c o n v e r t two i n p u t s t o t f then back t o o u t p u t " " " " " "

A = 0

B = 0

36 Savage and Piwek

t r u t h _ v a l u e (A)

t r u t h _ v a l u e (B)

and_b inary = (A and B)

i n t e g e r _ 0 _ o r _ 1 (and_b inary)

return i n t e g e r _ 0 _ o r _ 1

thanks

[Anon.]

5.1.10 Error messages. Support with resolving error messages was a topic in 15 discussions

(9%) with students struggling to understand what the error message was telling them. For ex-

ample, the student encountering the FileNotFoundError below had not appreciated that the file

"TM112_Glossary.txt" needed to be in the same directory as the Python file despite the online

activity indicating this.

I tried running the following code related

to Activity 2.34 but it gave the following error

message in the shell:-

Traceback (most recent call last):

File "C:\Users\User\Desktop\Flashcards_for_TM112_Glossary.py",

line 39, in <module>

glossary = file_to_dictionary('TM112_Glossary.txt')

File "C:\Users\User\Desktop\Flashcards_for_TM112_Glossary.py",

line 30, in file_to_dictionary

file = open(filename, 'r')

FileNotFoundError: [Errno 2] No such file or directory: 'TM112_Glossary.txt'

This was the code taken from the module website as indicated below:-

Full report on challenges with learning to program and problem solve 37

(...) [several dozen lines of code omitted]

The problem here is more subtle in that the student had imported the entire turtle module.

This module contains a function shape() which led to a conflict when the student tried to use a

variable with the same name

Hi

Can anyone tell me what this type error means?

sidelength = (0 + shape * 10)

TypeError: unsupported operand type(s) for *: 'function' and 'int'

why doesn't my variable sidelength work?

thanks

[Anon.]

5.1.11 Iteration. Iteration has proved to be a specific issue in about 8% (14) of discussions. A

recurring theme is specifying of the range to be iterated over. The issue seems to be about

establishing the correct syntax:

Hi,

I cannot seem to initialise for each position

from 1 to length of list - 1. I keep getting errors?

Any ideas?

Thanks

This is reinforced by this student who is endeavouring to understand the for ... in ...

structure in more detail.

Hi,

I'm enjoying the python a lot but I really

want to understand what the commands actually

do rather than just memorise where/how to

38 Savage and Piwek

use them. Eg.

for sides in range():

For iteration I can understand the "for"

and "range" bits but as for the "sides"

and "in" bits I'm stuck.

I've experimented with it a bit and

found seemingly anything can be input

in place of "sides" so I assume this

is just some kind of arbitrary label to

make the code more readable. Please let me

know if I'm wrong on this.

as for "in" I have no clue other than

it's a syntax error to not use it. I'm

aware "in" is a python keyword but I'm

not sure yet what keywords are or what

"in" really does.

I'd love it if someone less of a beginner

than I am could explain this.

Thanks

[Anon.]

Iterating directly through the contents of a list doesn’t cause the same level of concern although

the potential processing of heterogenous data did worry one student:

I see.

It's the 'iterates directly' concept that had me.

I was expecting an index as I couldn't imagine

a construction that didn't need something

Full report on challenges with learning to program and problem solve 39

that effectively points to 'this is the 1st

element ' , ' this is the second element ' and

so on as it works through the list.

I remember reading about python and variable

types. It's why there is no need for initial

type declaration. But I do note that if you

had the list items=[1,'one'] you couldnt do

total= items [0]+items [1] without explicitly

casting one or the other to the correct type.

As I recall (vaguely) in c and c++ this isn't

an issue, but then again I seem to remember

you can't have arrays of mixed types in those

languages,, and a struct is a completely

different beast.

Thanks for the explanation.

[Anon.]

5.1.12 What constitutes output? Outputting results. 12 discussions (7%) consider output in terms

of print or return and there is some confusion about the distinction between them. Students seem

to appreciate that both are methods to output results from code but don’t make the distinction

between printing to the console or providing values to be used elsewhere in the code.

Figure 14 on Page 40 relates to a student problem with one of the quiz questions. None values

are a classic sign that the code in question is not returning a value. This is later confirmed by the

student after feedback from their tutor:

Thanks for your replies. I had some feedback

from my tutor via email and it turns out I was

printing the value rather than returning the

value, this is why it appeared to be the correct

results but was still incorrect.

Do no t change t h e f o l l o w i n g l i n e

t e s t _ d i c t i o n a r y = { 1 : ' a ' , 2 : ' b ' , 3 : ' c ' , 4 : ' d ' }

En t e r your f u n c t i o n (and n o t h i n g e l s e) be l ow t h i s l i n e

40 Savage and Piwek

def show_value (key , d ic t_name) :

i f not key in dic t_name :

print (s t r (key) + ' ␣ i s ␣ not ␣ a ␣ v a l i d ␣ key . ')

e l se :

print (d i c t_name [key])

Fig. 14. Student results from online Python quiz question

A response to another activity suggests that this could be a legacy of working in the shell rather

than the editor where functions can be called directly and returned values are displayed as if

they have been printed. Although not mentioned in the forums, many students only previous

programming experience will be based on OU Build
3

which does not have the concept of returning

values.

Thankyou for explaining. I thought it shoud

print the median value in the shell as in case of

mean previously.

3
The Open University’s adaptation of MIT’s Scratch.

Full report on challenges with learning to program and problem solve 41

I will check again as you told.

Thankyou

[Anon.]

5.1.13 Indentation. Indentation was raised as an issue in 10 discussions (6%), particularly where

the incorrect use of indentations was leading to bugs that students struggled to find. For example,

the following code was a student’s attempt at drawing four squares across the screen using the

turtle.

Draw s q u a r e s a c r o s s page

from t u r t l e import ∗
number_of_shapes = 4

for shape in range (1 , number_of_shapes + 1) :

Draw a s qua r e

for s i d e s in range (1 , 5) :

forward (4 0)

r i g h t (9 0)

#Move f o rwa rd t o s t a r t o f p o s i t i o n o f n e x t s qua r e

penup ()

forward (5 0)

pendown ()

The student had identified that the code was indeed drawing four squares but that they were being

drawn on top of each other. The solution was to indent the code responsible for moving the pen to

be inside the outer loop as shown in the final four lines below.

Draw s q u a r e s a c r o s s page

from t u r t l e import ∗
number_of_shapes = 4

for shape in range (1 , number_of_shapes + 1) :

Draw a s qua r e

42 Savage and Piwek

for s i d e s in range (1 , 5) :

fo rward (4 0)

r i g h t (9 0)

#Move f o rwa rd t o s t a r t o f p o s i t i o n o f n e x t s qua r e

penup ()

forward (5 0)

pendown ()

This approach was provided by a fellow student with the following guidance:

I think it's cause you've not indented the penup()

part, so it's not included in the loop. Which

means the program won't run penup() till it's

iterated over the contents of the loop first,

hence the 4 squares drawing over each other.

Another student exploring Python further wrote the following code, reporting that IDLE was

giving indentation errors.

" " " The e cho chamber program −

Th i s program w i l l k e ep r e p e a t i n g

t h e u s e r s [s i c] i n p u t back t o them u n t i l t h e u s e r e n t e r s ' q u i t '

" " "

print (' s e e ␣ your ␣ own ␣ i n p u t ␣ r e p e a t e d , ␣ u n t i l ␣ you ␣ type ␣ q u i t . ')

e x i t = F a l s e

while not e x i t :

u s e r _ i n p u t = input (' Type ␣ your ␣ i n p u t ␣ here : ␣ ')

i f u s e r _ i n p u t == ' q u i t ' :

e x i t = True

e l se :

print (u s e r _ i n p u t)

The solution here is to outdent the final ‘else:’ so that it is in parity with the ‘if’-line as shown

below:

" " " The e cho chamber program −

Th i s program w i l l k e ep r e p e a t i n g

t h e u s e r s [s i c] i n p u t back t o them u n t i l t h e u s e r e n t e r s ' q u i t '

Full report on challenges with learning to program and problem solve 43

" " "

print (' s e e ␣ your ␣ own ␣ i n p u t ␣ r e p e a t e d , ␣ u n t i l ␣ you ␣ type ␣ q u i t . ')

e x i t = F a l s e

while not e x i t :

u s e r _ i n p u t = input (' Type ␣ your ␣ i n p u t ␣ here : ␣ ')

i f u s e r _ i n p u t == ' q u i t ' :

e x i t = True

e l se :

print (u s e r _ i n p u t)

Here, fellow students picked up on the indentation and the solution but, perhaps, muddied

things through the mention of Python standards.

All indents must be consistent length, the

python standard is 4 spaces. In both examples

your if/else block is incorrectly indented,

the if and else keywords must be indented

the same amount, and the code blocks within

must also be the same (4 spaces more than the

if/else lines).

Edit: the indent on the while not exit:

block is too large too, while you technically

can use any amount of spaces (as long as it's

always the same amount) you should use 4.

5.1.14 Variables: Naming. 8 discussions (5%) highlighted variables as an issue. Here careless

variable naming (together with indentation issues) is causing a student problems. It can be seen

that temp and temperatures are being used interchangeably.

i n i t i a l i s e t h e i n p u t _ l i s t w i th t h e g i v e n v a l u e s

t e m p e r a t u r e s = [0 , 3 , 5 , 7 , 5 , 4 , 2 , 0 , − 0 . 2]

i n i t i a l i s e t h e o u t p u t _ l i s t t o t h e empty l i s t

temp = []

f o r each i n p u t _ v a l u e o f t h e i n p u t _ l i s t :

for t e m p e r a t u r e s in t e m p e r a t u r e :

i f t h e i n p u t _ v a l u e s a t i s f i e s t h e c o n d i t i o n :

44 Savage and Piwek

i f temp > 0 or temp < 5 :

append t h e i n p u t _ v a l u e t o t h e o u t p u t _ l i s t

temp = temp + [t e m p e r a t u r e s]

p r i n t t h e o u t p u t _ l i s t

print (temp)

wondering where i am going wrong??

Figure 15 shows a student has fallen foul of case sensitivity in names.

Fig. 15. Variable name case sensitivity preventing code from executing

5.1.15 Variables: Declaration. These two posts illustrate some confusion about the declaring of

variables in the context of loops:

been at this all day ..only just got on q10 ..

using module material bl2 pg 83

for guidance:

still got q10 wrong grrrr (...)

i n i t i a l i s e t h e i n p u t _ l i s t w i th t h e g i v e n v a l u e s

c e l s i u s _ v a l u e s = g e t _ i n p u t ()

i n i t i a l i s e t h e o u t p u t _ l i s t t o t h e empty l i s t

f a h r e n h e i t _ v a l u e s = []

f o r each i n p u t _ v a l u e o f t h e i n p u t _ l i s t :

for c e l s i u s in c e l s i u s _ v a l u e s :

t r a n s f o rm th e i n p u t _ v a l u e i n t o an o u t p u t _ v a l u e

f a h r e n h e i t = c e l s i u s ∗ 1 . 8 + 32

Full report on challenges with learning to program and problem solve 45

append t h e o u t p u t _ v a l u e t o t h e o u t p u t _ l i s t

f a h r e n h e i t _ v a l u e s = f a h r e n h e i t _ v a l u e s + [f a h r e n h e i t]

p r i n t t h e o u t p u t _ l i s t

print (' the ␣ t e m p e r a t u r e ␣ i n ␣ f a h r e n h e i t ␣ a r e ' , f a h r e n h e i t _ v a l u e s) . . .

[Where am i going wrong] argh!!

[Anon.]

It transpires that the calculation was wrong but the following post shows confusion about

the variable celsius, clearly not understanding that it is declared in the line for celsius in

celsius_values:

You've probably sorted this but I think [Anon.]

is right. The question asks for degrees

Kelvin, so look at it again and check the

formula converting Celsius to Kelvin. I also

wondered about the word 'celsius'. Does it

need defining? You've defined celsius_value

but not celsius, does that matter?

Just a thought. [Anon.]

5.1.16 Imports: Purpose. Imports were also an issue in 7 discussions (4%)

Here the student doesn’t grasp the purpose of the import

Hi [Anon.],

The code on page 98 is shown below

Move 100 un i t s , bu t t e n a t a t ime .

from t u r t l e import ∗

for s e c t i o n in range (1 0) :

fo rward (1 0)

These 4 lines of code ad me all over the place

trying to understand them, to the extent that I

doubted what a whole number is. I looked it up

and basically it is the same as an integer, which

is a term you used in a line of your reply your

reply to Ian>>>>--range(10) generates a sequence

46 Savage and Piwek

of integers from 0 to 9.

I understand from previous pages in the book

that we can use Python to programme a turtle,

which is fair enough.

However, line 2 of the code reads from turtle

import * >> why is this line even in the Python

code.? Is 'turtle' some kind of computer package

we can access via Python but only if we include

this line in the code?

[Anon.]

5.1.17 Imports: Usage. Whereas here the student appreciates that an import statement is needed,

but is struggling with the syntax:

for some reason i can not open this program?

def corr_coef(): from stats_utils import

has been saved ubuntu16.04

Although a solution is readily available from a peer

Import statements must be in the format

""import <module>"" or ""from <module> import <object>""

you probably want a type of the second form

""from stat_utils import *""

Here the student has a valid import statement which still won’t work

Hi all, I am on question 6,b and I am having a

problem loading the corr_coef function, I get this

error when I run my program.

from tma02_stats import corr_coefModuleNotFoundError:

No module named 'tma02_stats'

Full report on challenges with learning to program and problem solve 47

Can someone check and see what's going on and how can I fix this.

Thanks

[Anon.]

It transpires that the the module in question is not in the same directory as the source file (or the

file path for that matter):

Hi [Anon.]

I'm just guessing at the cause, but after unzipping

the download you should be able to find a folder

TM112_18D_TMA02_Q6-files, and inside that

q6a.py

q6b.py

tma02_stats.py

If the three files are not all together in

all in the same folder the imports will not work.

[Anon.]

The following topics all occurred in fewer than 6 discussions, see Table 2. Examples are provided

but with reduced narration.

5.1.18 If-structures. Here the student has not understood the purpose of the catch-all "else"

statement:

Hi a l l ,

he re i s my code so f a r for t h i s q u e s t i o n

i n i t i a l i s e t h e i n p u t v a l u e s

mag = g e t _ i n p u t ()

i f i n p u t v a l u e s f a l l i n t o t h e f i r s t c a s e :

48 Savage and Piwek

i f mag < 4 :

quake = ' minor '

o t h e r w i s e i f i n p u t s f a l l i n t o t h e s e c o nd c a s e :

e l i f mag >= 4 and mag < 6 :

quake = ' moderate '

o t h e r w i s e i f i n p u t f a l l s i n t o t h i r d c a s e :

e l i f mag >= 6 and mag < 7 :

quake = ' s t r o n g '

e t c .

e l i f mag >= 7 and mag < 8 :

quake = ' major '

o t h e r w i s e :

e l se mag >= 8 :

quake = ' g r e a t '

p r i n t t h e o u t p u t s

print (' That ␣ i s ' , (quake) , ' e a r t h q u a k e ')

I am g e t t i n g a s y n t a x e r r o r on the f o l l o w i n g

l i n e and word :

e l se mag >= 8 :

% I dont g e t why t he s y n t a x e r r o r s dont

%appear on the o t h e r mag v a r i a b l e s . . .

%am i m i s s i n g something o b v i o u s ???

%Thanks

5.1.19 Software installation problems. Here the student is worried about a warning during software

installation. Interestingly, it was highlighted as something that could be ignored in the instructions

given to students.

Hi I downloaded the latest version of Python

for Mac... the one that was suggested

Full report on challenges with learning to program and problem solve 49

when I went on the website, after

downloading I clicked on IDLE but a screen

popped up saying

Python 3.6.4 (v3.6.4:d48ecebad5, Dec 18 2017, 21:07:28)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type ""copyright"", ""credits"" or ""license()"" for more information.

>>> WARNING: The version of Tcl/Tk (8.5.9) in use may be unstable.

Visit http://www.python.org/download/mac/tcltk/ for current information.

I then downloaded the version above and the

same thing happened. What to do?!

feel so stupid lol

Thanks!!

5.1.20 Strings. This follows on from a discussion about manipulating strings.

you can make the number a string then use variable = numberString + "am"

variable = numberString + "am"

numberString = str(number)

5.1.21 Turtle. This ‘problem’ with the turtle is self-explanatory.

When I type from turtle import * and return nothing

happens, except I get a new prompt line appear

underneath.Am I missing something?

5.1.22 Case sensitivity. Python is case sensitive which is a new concept for those whose only

prior experience is programming in a variant of scratch in the module preceding this one.

I think your problem is more with using "Shape"

then "shape".

50 Savage and Piwek

I ran the code using "shape" in the for loop and it

worked perfectly. Python (and all programming

languages) will often throw errors up pointing to the

code directly after the problem because it's expecting

something different.

5.1.23 Executing code. This post by a moderator aims to reassure a student who is struggling to

execute their code

Hi

(...)

Running the provided programs won't produce any output

on its own, because all they do is load the functions

into memory.

To make any function actually execute we need to call

it, with arguments if these are required, and to display

the result.

In another post [url provided]

I've explained how we could see the result of a call

to the median() function, by running the program, then

going to the shell and calling the program.

(...)

[Anon.]

5.1.24 Typo. Here a student’s problem is due to a typographical error, which is being pointed out

to them:

Hi [Anon.],

Compare your use of table1 here

table1 = []

Full report on challenges with learning to program and problem solve 51

with that here

table_1.append(row)

There's a small difference.

[Anon.]

5.1.25 Brackets. Here a student is following up on an explanation about using brackets to control

the priority of calculations but seems uncertain of the use of square brackets.

Sorry, i have another question... if in the above code i

wanted to do [index] multiplied by 20 instead,

would it be like this:

20 + ([index]*20)

or like this:

20 + [index * 20]

I'm thinking that it's the first one?

5.1.26 Character encoding.

I have rubber ducked myself stupid.

My code is attached.

Essentially.

This line runs ok without error

reader=csv.reader(mort_file1)

this one

reader1=csv.reader(geog_file1)

52 Savage and Piwek

causes the following error message.

Traceback (most recent call last):

File ""/home/[Anon.]/Dropbox/OUCloudBackupTM112/TM112Various Block 2 Files/Text and

Python files for Week 10-20180610/activity5.32prog_17.py"", line 37, in <module>

for row in reader1:

File ""/usr/lib/python3.4/codecs.py"", line 319, in decode

(result, consumed) = self._buffer_decode(data, self.errors, final)

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xaa in position 510: invalid

start byte

Any one any idea?

Is geog_2.txt faulty in some way?

Gedit is highlighting this as the issue (...)

[Anon.]

5.1.27 Code formatting. The post forms part of the communal project. Here a couple of students

have been considering the approach to naming variables etc.

My preference is underscores for readability but camelCase is more compact (although

I’m sure someone will say there’s one coding language at least that doesn’t support

underscores in names). Happily it doesn’t make any difference to the code, it’s just

custom.

5.1.28 Docstring versus comment. Here a student is responding to a query about when to use

"docstrings" as opposed to "comments"

Comments will never be shown unless you go into the

program code.

Docstrings are shown for functions if you call them

(ie use the help function). Any file you

save can be called in a similar way (so acts

like a function with no inputs).

Full report on challenges with learning to program and problem solve 53

Using """...""" is also useful if you want

the program to print something over several lines

without using print() repeatedly.

5.1.29 File handling. Here a couple of students are analysing some code provided in support of

an activity to understand how the file handling aspect of it works.

It uses open() to open the file with the correct

(non-default) encoding, then initialises a CSV.reader

object to read the file line by line, then returns

the contents as a list.

The "with open (...) as name:" block guarantees

that once your code is done with the file

(when the indented code block ends) the file

will close, including in the case of exceptions.

[row for row in csv.reader(infile)] is list

comprehension and it's really neat, it makes a new

list the same as:

L = []

For row in csv.reader(infile):

L = L + [row]

5.1.30 File naming (.py). The post below is an explanation to a student who gave their Python file

the same name as a module which led to scope problems.

(...)

It would cause a problem, because I think Python

would look at the 'nearest' turtle module and

that would be the program we have just written

ourselves and names turtle.py. Because it doesn't

include a definition of forward() [or any other

turtle command for that matter] we'd get the

54 Savage and Piwek

'forward not defined error'.

(...)

5.1.31 Memory leaks. This post is in response to a student who had read something on Wikipedia

and needed their schema amending in relation to Python and memory leaks.

Anyone who is bemused by this thread will be relieved to learn that memory leaks are

not an issue in Python, and won’t be in Java, which many of you will do as your next

language (but they would be for example in C).

5.1.32 Random numbers. Part of the project part (implementing a simple flashcards program that

makes use of the module glossary) led to a discussion about random numbers. Here a student

highlights the dangers of assuming that random number generators are truly random.

As a small note for real world use, you should

be very careful which random function you use for

anything that someone may be interested in

exploiting. Most functions in the random module are

actually predictable given enough time and

effort, python 3.6+ offers a module called secrets

which uses the most secure random numbers

available from your operating system.

Obviously not actually important in our little

test case, but if this were used in an online

casino or some such then a small mistake like

that could end up costing a lot of money.

5.1.33 Reading keyboard. Here the student is looking for alternative ways to read the keyboard.

I'm trying to find a way to get typed user input

without printing a newline to the terminal after.

The goal here is that code similar to

"input("some prompt"); print("\r............") will

completely overwrite the input prompt and whatever

input was typed but since input always ends with a new line

this clearly does not work.

Anyone any ideas?

Full report on challenges with learning to program and problem solve 55

5.1.34 Strings versus numbers. This post is clarifying a fellow students’ understanding of breaking

a list into individual member elements. In particular whether those elements will be strings or

numbers:

the " or ' around an item denotes that it's a string.

When "1" is turned into an integer it becomes simply 1.

5.1.35 Whitespace. This post is in response to a student querying the use of whitespace in a

Python statement.

The gap isn't important.

"Whitespace

Generally significant only to the left of code,

where indentation is used to group blocks. Blank

lines and spaces are otherwise ignored and optional

except as token separators and within string

constants."

Mark Lutz, Python pocket reference (5th Edition), O'Reilly Feb2014 Pg 69.

But having them can assist in readability.

[Anon.]

5.1.36 Wildcard. Here a student has a question about the use of wildcards in data-analysis.

Hey [Anon.],

It was the wildcard part that threw me. Don't remember

that being mentioned before. Can you use more than

one wildcard? Like filter _by(..2, 0, table1)?

Thanks for the reply

The respondent highlights regex which may be somewhat daunting for someone new to the

language.

I believe filter by uses regex for its expressions,

so yes you can match pretty much any pattern

56 Savage and Piwek

you want but it might get complicated.

https://en.wikipedia.org/wiki/Regular_expression

5.1.37 Windows versus Linux. This plenary post is from a student experiencing problems process-

ing data in Linux but not Windows.

Thank you all for your input.

I have used IDLE in windows to run the activity and lo and

behold it has no issue with Parsing geog2.txt, no errors there.

My working hypothesis is that there is an issue with my

Linux Locale settings, which are according to Gedit

(UTF 8). This is odd because as i understand it

there is support in UTF8 for over a million characters!

Will finish today's study, then get out the reference

books to work out how to alter my Linux locale to fix this (...)

[Anon.]

5.2 Problem-solving/generic topics

Problem-solving/generic topics are those which occur across multiple programming languages

and typically have the same details. For example, a typical problem-solving workflow will be

largely independent of the target programming language. Similarly, discussions about how to

learn Python could equally apply to C, Z80-assembly or FORTRAN.

5.2.1 Code fragment with problem. Code fragment problems were the most prevalent in terms

of the number of discussions relating to problem-solving/generic topics. Typically, these posts

initiated a discussion where students knew they needed support, but in many cases the information

provided was insufficient to receive targeted help and indicated that they may not have the language,

confidence, or knowledge to seek that support.

5.2.2 Bug finding. Over 43% of discussions (73) presented readers with a code fragment and a

problem. Of these 21 related to specifically to bug finding. For example, in the ‘Another quiz Q17

query!’ discussion we have:

Just catching up with the quiz, but can't see

Full report on challenges with learning to program and problem solve 57

where I'm going wrong; am just getting the moderate

earthquake response >= line 6 (haha.)

Any direction would be great.

Thanks

[Anon.]

In this instance, the student did include a screen shot of part of their code and another one with

the CodeRunner feedback.

And in the "where am I going wrong" discussion

hello all would be grateful for advice i am practising

python anf from the book have just typed in program 2:4

but when running programme it gives me error code

saying traceback but have followed completely to process

so should be no problems please see diagram

(Note that the diagram wasn’t provided despite repeated requests for it.)

In both these cases there is some confusion about which activity/quiz the student is referring

too (although it can be deduced with some effort). Omitting the code and not communicating their

efforts at debugging leads to generic advice from peers.

One of the quiz questions asks students to write code which analyses values stored in a list and

to print the percentage which meet given criteria. The student’s code returns incorrect results and

a syntax error and they don’t explain their efforts to resolve it. Guidance is offered in terms of

checking variable states with print statements and the student resolves the problem themselves

(an incorrect indent). Again, the guidance can be viewed as generic.

In another quiz question a different student provides much more detail including enough

information to easily find the relevant material. The student has explained what they are observing

and has tried to identify where the problem is. This quickly led to the problem being identified

and targeted support offered by their peers.

5.2.3 Learning Python. Learning Python was raised as an issue in 15 discussions (9%). Whilst

some of these were students venting frustration as illustrated by:

(...) Just unable to get my head around Python :) Getting

to end of my last nerve :(Sorry just had to vent.

Hope everyone else has cracked it.

58 Savage and Piwek

Others are more sanguine and recognize that time and commitment are often needed to master

the concepts as shown here:

(...) Sometimes it takes a while to get your head

round things...

I worked hard and used extra resources (fiddled

around in my own time over summer holidays - and

did parts of courses from places like codecademy)

and the next coding module I did I understood

and got on well with.

The only thing with this was that I did have to

take the time to push through. (...)

and here:

(...) Understanding other people's code is a skill

that will come with practice (...)

5.2.4 Maths. 6% (10) of discussions identified mathematics as an issue. Dominant amongst these

were queries where student knew what they wanted to do but not how to achieve it with Python,

indicating, perhaps, that the Maths topic is on the cusp of both the Python and general programming

themes. For example, here a student is trying to use integer division to calculate the modulus

rather than directly using the modulus operator.

(...)

First of all, I couldn't work out why I was getting odd

results for the modulus operation. After a bit of testing

and research I realised (d'oh!) that it was because of

integer division. I couldn't find a way round this except

by defining the constants as floats from the outset,

and then simply casting them as ints for the final output

(...)

Similarly, several discussions arose about how to return integer values when Python calculations

were producing floats such as shown here:

The issue was the format of the output integer percentage

in the answer that was expected by the quiz.

Full report on challenges with learning to program and problem solve 59

"75" was acceptable "75.0" was not.

Rather than create a second list which was not to be

used for anything other than to be fed to the function

len() as the formal parameter (I've just read 4.1),

I counted the number of out of range items into a

variable. Even so the division part of the percentage

calculation was the issue, floor or otherwise.

Unless your method of calculation the percentage

was based on a formula something other than

(number_out_of_range / number_of_items_in_the_list) * 100

there seems to be no way of avoiding a result

that looks like 75.0. For example.

>>> (2 / 3) *100

66.66666666666666

>>>

Would have given an incorrect answer to the quiz

question, and

>>> ((2/3)*100)//1

66.0

>>>

which rounds down, would also fail the quiz because

of the way the integer result is presented.

(...)

60 Savage and Piwek

Whilst sometimes heated due to students expressing their frustration these discussions do

generate a detailed discussion about how Python handles mathematics leading to creative solutions.

This does indicate that the students are learning from the process.

5.2.5 Code review. Code reviews featured in 7 (4%) discussions and were typically in response to

requests for help resolving a bug or to make solutions better in some way. Posts tended to give

more detail than simply resolving the immediate issue. For example, this response was provided

to the request from a student looking to make their code more efficient

Two quick comments:

- The variables new_list and old_list are misnamed

because they aren't lists, they are integers.

Naming is very important, especially as programs

get bigger. Using bad names will only confuse

others and yourself if you have to look at your

own programs much later.

- Efficiency is not the only criterion. As you

will learn later, computations can be packaged into

functions so that they can be reused. And functions

should only compute one thing, so that they

can be reused in many contexts. So, although going

twice through a list may seem a waste, if each

of the passes through the lists does something

different, it's easier to package each of the passes

into a different function so that they can be

reused for other problems.

5.2.6 Problem-solving workflow. Six discussions (3.5%) incorporated posts with ‘problem-solving

workflow’ as a topic. These were given in response to vague pleas for help where there is not

enough detail to provide targeted guidance. For example this student has previously posted some

code intended to process data in a list but not given any details relating to errors or problems.

Peers begin with a partial code review but the student then posts this:

(...)

what ever i have tried it seems to not work?

where am i going wrong?.

Full report on challenges with learning to program and problem solve 61

(...)

And receives the problem-solving workflow guidance of

When ever I get to this point, I rubber duck it.

Then if I am still stuck I write code one

line at a time and check each line works.

When it does. Next line of code.

Repeat until finished.

The following topics all occurred in fewer than 6 discussions, see Table 3. Examples are provided

but with reduced narration.

5.2.7 Code explanation. This explanation is provided in response to a student who has attempted

an activity but can’t see where they have gone wrong.

Line 3: "and_binary = A and B" does nothing, you

never check the value of this variable untill

after its been replaced.

Line 3: if(...) The most obvious thing is

comparing against true is not needed,

"if(a==1 and b==1) == True" is exactly the same

as "if(a==1 and b==1)"

Also notable I'll advised habit that a lot of people

are doing: don't name two things the same,

naming functions and variables the same is a bad

idea. (And_binary is both in this case)

5.2.8 Following instructions. One post starts a discussion about following the instruction of

sticking to the programming instructions in summative assessment. Students may miss the point

that the assessment is to check the understanding and application of the material and that the

instructions are in place to aid with that.

5.2.9 Patterns. This post extract is in response to a student who is confused by the difference

between patterns, algorithms and programs:

62 Savage and Piwek

I think we need to capture the idea that patterns are

resuable outlines; they are not algorithms for

sub-problems, but problem shapes we can recognise as #

ones we have met before. So we can take the previous

solution and just plug in the change.

5.2.10 Algorithm. This post is in response to queries about how to create an algorithm to draw

triangles. They limit their discussion due to it relating to summative assessment.

I find that doing it methodically by hand, then for

anything that's wrong in the resulting programme using

trial-and-error, usually works fairly well.The starting

point of the triangles is very important. Anything else

I say could be seen as cheating so I'm going to steer

clear.

5.2.11 How to start. This post extract is from a student who is unsure about how to approach the

coding element of a question.

Just wondering if anyone can point me in the right

direction to help solve Question 5d? I'm not really

sure where to look in the book to even start with this

one.

Interestingly, it seems that they have not associated it with a previous question where they were

asked to write the algorithm for that code as identified by this student:

You should have written the algorithm in 5c. 5d is

simply writing this out in python (...)

5.2.12 Admissible values. This student is unsure about what admissible values are.

Hi again. This is a question I keep struggling with.

What is an admissible value. I know it's

part of the TMA but this is not a reference

to that more just a general question. I failed with

epic proportion in the first TMA when it was

speaking about admissible values (literally got

zilch) so I want to learn what is meant by an

admissible value before starting on TMA02

Question 3.

Full report on challenges with learning to program and problem solve 63

Again, no ref to the question please. just a

generalisation + examples if possible - but nothing

to do with the assessment.

5.2.13 Barriers to learning. Lack of time to practice is certainly a barrier to learning for this

student:

Cheers [Anon.], I'l get there in the end.....I'm not one

for giving up! I've been struggling with coding,

mainly due to lack of time to practice, I'm doing

two modules side by side, TM129 being the other.

Also working full time on shift work and I get

quite frustrated sometimes, not having time for

it to sink in. My mind does work in a logical way

I think but if it weren't for you guys, especially

yourself and [Anon.] I may have given the white flag

of surrender weeks ago!

Keep up the good work and thank you.

[Anon.]

5.2.14 Borderline tests. This post explains the benefits of borderline testing in response to a

student’s query about how we undertake testing.

Also when testing programs we would use data that's

well below a bordeline, just below, on the borderline,

just above it and well above it. That way you have a

good chance of finding errors in your logic.

5.2.15 Converting algorithm to code. This student is asking for help in converting their algorithm

to Python. All the responses focused on the code that other students had produced rather than

how they approached it.

Hi everyone,

Compute medians can use the following algorithm:

64 Savage and Piwek

initiate the list

sort number of list from smalest to greatest value

find length of list

if length is ood:

set median to the middle

else:

find two middle numbers

set median to mean of two middle number.

Could anyone help me to change the algorithm (...)

into python code? Thank you

5.2.16 How to explain things. This reflective post is in response to another student’s appreciation

of them taking the time to explain a concept in some detail.

No bother, I love the python problem-solving bits,

they're my favourite parts of the module (:

Putting things into words, writing explanations about

things is the part of the module I find the most difficult.

It takes me ages to write something down. I struggle a bit

with putting sentences together and comprehension, so

I spend long amounts of time working on those parts.

I get there in the end though, after a shed load of editing.

I'm appreciating those parts now, even though I don't like

them much, cause I can see why good academic english and

making something readable is a useful skill. I think

replying to posts on the forums and trying to put something

into words is good practise for me when it comes to this,

even if I do make some

Full report on challenges with learning to program and problem solve 65

daft posts sometimes (:

5.2.17 Sorting. Here the student has been working with some code that sorts a list by levels of hap-

piness. Their statement is correct demonstrating a reasonable understanding of list manipulation

as well.

If it's sorted such that table4[0] is the happiest (or

least happy) I can't see how table4[-1] wouldn't be the

opposite, unless there's a tie for least happy?

5.2.18 Testing. This student extols the virtues of preventing code execution through the use of

comments as a tool for testing.

Something I found really useful doing this question

and indeed all my Python so far is using

the 'comment out region' and 'uncomment region'

functions (under the format menu)

So you can then test each section (or subsection) of

code without re writing all the time.

As others have said use the examples in the course

material and it isn't too great a leap.

5.2.19 Understanding requirements. This post extract indicates that the student is struggling to

understand the requirements of a quiz question.

Can someone please explain what it is I'm supposed to

be doing for question 9 in the quiz, without giving me

the answer? Either I'm being a bit slow today or the

question is poorly worded. Am I supposed to be creating

a list of my own to solve it, or is the answer somehow

related to that unexplained top/second line...?

5.3 Module-specific topics

Module-specific topics are those whose focus is particularly related to the module and have little

relevance outside of it (except, perhaps, where advice may apply to other modules). For example,

the module utilises online quizzes for formative assessment and discussion of those quizzes would

have little relevance to the wider Python learning community. Below we discuss module-specific

topics that were identified.

66 Savage and Piwek

5.3.1 Approach to quiz, TMA and approach to activities. The three most common module-specific

topics (excluding the irrelevant topic) all relate to how to tackle an item of work; either a quiz

question; a TMA
4

question; or an activity from the module materials. Typically, a student has

asked how to approach something or where they have gone wrong.

Responses tend to fall into three categories:

• empathy,

• a demonstration of how to achieve a goal and

• more detailed guidance.

Empathy. Empathy can be seen here in relation to a TMA question:

I feel your pain on this!

I thought I had a decent understanding of the basics of

Python after going through the book, but spent

close to 4 hours on this question for the TMA and

I am no closer to solving it.

I eventually had to walk away since I was ready

to throw my laptop out the window.

Hoping that a break from it will somehow give me some

additional inspiration for it.

A demonstration of how to achieve a goal. A demonstration, often presented ‘as is’ with little

narration or explanation other than embedded comments, can be seen in this in response to a

student struggling with a quiz question and providing the results as integer values:

Snap [Anon.]!

i n i t i a l i s e t h e i n p u t s

seed = g e t _ i n p u t ()

print (s eed)

s e t v a l u e t o t h e f i r s t v a l u e o f t h e s e q u e n c e

a = 9

b = 5

4
A TMA, or Tutor Marked Assignment, is student course work which is formally marked by a student’s tutor as part of

a module’s summative assessment strategy.

Full report on challenges with learning to program and problem solve 67

c = 8

random_num = ((seed ∗ a) + b) % c

p r i n t v a l u e

print (random_num)

wh i l e t h e t e rm i n a t i o n c o n d i t i o n i s no t t r u e :

s e t v a l u e t o t h e n e x t v a l u e o f t h e s e q u e n c e

p r i n t v a l u e

while random_num != seed :

random_num = ((random_num ∗ a) + b) % c

print (random_num)

More detailed guidance. An example of more detailed guidance on how to achieve the task is

illustrated by this response to a student seeking help with their approach to a module activity

creating "flashcards" in Python (...)

(...)

The def show_flashcard: has completely thrown

me off track. Does the code on p.106 get joined with

other previous code related to glossary dictionary

list. Show_flashcard() from Activity 2.29 does

not work for me as indicated by the discussion.

Yes, it needs to be added. See the first

paragraph of Activity 2.28 on Page 105 for details.

Activity 2.31 states 'You can find a complete

version of the program on the online resource page for

this part.' I only found the python file related to TMA3.

See the online activities section for Week 15

at: URL provided

(...)

5.3.2 Forum use. Posts relating to ‘forum use’ don’t relate to students’ learning of Python but

are included for completeness since they were relevant to the forum itself. For example, here a

student is being reminded of forum etiquette:

68 Savage and Piwek

And I now realise you have already posted exactly the same

question in here as well.

Please don't cross post like this - your message will be

read and responded to wherever you post it,

but if you post it everywhere, you make unnecessary

work for the mods and your fellow students may

not see what someone else has said in another reply

elsewhere.

(...)

The following topics all occurred in fewer than 6 discussions, see Table 4. Examples are provided

but with reduced narration.

5.3.3 General conversation. As the topic suggests some posts were broader than Python:

PS

BE BACK TOMORROW..ITS NETFLIX AND UNWIND BEEN

STRESSFUL DAY have a great weekend all

regards

[Anon.]

5.3.4 Errata. This post from a moderator acknowledges an erratum and also the benefits of

discovering it!

Hi [Anon.]

I never said the text is right, I was explaining

it was incorrect! My sincere apologies for any confusion!

There will be an erratum, obviously not until after Easter now.

But the discussion has been quite useful I think,

because it's brought out a lot of issues about

iteration; where it start and ends; and how

different languages do it. And the error in the text

shows it is easy to get it wrong.

Full report on challenges with learning to program and problem solve 69

Hope that makes sense!

[Anon.]

5.3.5 Activities. This student’s reflection that there is more than one way to approach program-

ming activities is pertinent:

ive only just come across this one, i have done it but

the code i used to get to the next triangle is

different to the one at the back in the answers, i

guess its the same as OU Build [An adaptation of MIT's Scratch] where theres many

different ways of achieving the same result...

5.3.6 Approach to studying. This student relays their approach to studying based on prior experi-

ence:

Algorithms weren't a problem. Matrices, imaginary

numbers, la place transforms and some other maths I

needed for my first degree were. I nearly failed a

couple of modules because of it.

I spent a summer practising them almost every day and

in final year used them without a problem.

Getting through a module it's important to focus on

getting as many marks as possible, but it doesn't mean

you can't revisit things later and put in the work to

understand them better and move forward.

As an aside on hard work vs natural ability: I got the

same overall marks as someone who did half the work but

was naturally talented (went on to do PhD and wrote

music albums at the same time). I literally worked

every waking hour (and didn't sleep much) but the

result was the same.

5.3.7 Understanding activity. Here a student is querying a peer’s point about limiting code con-

structs that can be used in solutions. This was also an issue highlighted in section 5.2.8.

70 Savage and Piwek

'..I also think there is a problem with some quiz

questions requiring the use of code which is either

suboptimal or just pointless...'

Why do you think it's suboptimal or pointless?

5.3.8 Module choices (for degree). This post extract highlights the importance of using the univer-

sity’s support structures for making module choices, particularly since the student in question

seems to be struggling with problem solving and programming.

So if you avoid the problem-solving techniques and

programming in TM112 you will almost certainly be less

prepared for some of the pathways in Computing at Level

2. So I would suggest that before you make this

decision, you make sure that you discuss what your

options are with the SST [Open University Student

Support Team] if you decide that there are some areas

of TM112 that you are finding particularly difficult.

What the SST should do under these circumstances is to

forward on your query to a member of the Computing and

Communications department, who will know the

implications for future study choices.

5.3.9 Module progress. This post extract aims to calm some students down who are alarmed that

their peers are making a significant head-start with their studies before the module officially starts.

Before anyone starts panicking at the complexity of

this don't forget the module hasn't even started yet

and we don't expect any of you to be able to do this

right now.

5.3.10 Other modules. This student post extract responds to a peer’s query about the contents of

another module. Interestingly, the details about the robot programming are somewhat inaccurate.

There's some robot programming (more similar to scratch

with a less pretty interface) but a lot more discussion

on what makes a robot a robot and AI and ethics, etc.

Block 2 is all about networking (using a Microsoft text

book with extra text telling us how to do it on other

OS's). Block 3 is about OS's and it uses Ubuntu on a

Full report on challenges with learning to program and problem solve 71

virtual machine.

5.3.11 Quiz contents. This student joins the discussion about quiz contents, particularly enjoying

the Python questions.

I really enjoy the python questions still, this module

is the first time I've used python so they're

interesting little brain teasers. I did think the

question was going to be harder than it was, but it

definitely introduces dictionaries in an easily

understandable way. My current hope is that since block

3 part 2 is called "my python project" there will be

something fun in that, and cryptography is really

interesting, so block three looks pretty good

5.3.12 Welcome to forum. Included for completeness, this post welcomes the cohort to the Python

help forum and establishes ground rules.

Welcome to the 'Python help' forum.

The purpose of this forum is to

- help with any technical difficulties you have

getting Python up and running

- help you pick up the Python needed for TM112.

Please ask your Python questions and we will

do our best to answer them. If you know the answer

to a question asked by a fellow

student please feel free to post it here!

Note

this forum is only aimed at the Python taught

and used in TM112. If you are interested in

discussing Python topics that range beyond the

scope of TM112 there is a separate forum for

this, 'Python beyond TM112'.

72 Savage and Piwek

We hope you have a fantastic time studying the module!

[Anon.] and [Anon.], your 'Python help' moderators"

5.4 Miscellaneous

In addition to the topics that could be grouped with one of our three themes, we identified two

further topics that fit with none of the themes: the emergent behaviour of peer support and a

student instigated communal project which generated significant engagement. We discuss these

two topics briefly in this section.

5.4.1 Peer support. 87% (1221 out of 1401) posts were made by students with many (about 300) of

these being requests for help or direct questions. A cohort of actively engaged students answered

these requests with detailed explanations and suggestions. A core group of 3 students became

prominent with a further half-dozen collaborating to a lesser extent.

These supporting students were self-selecting and accepted by the community despite not being

subject specialists. This is a supporting student in response to a summative assessment related

question:

You need to work out what ""range"" means mathematically.

We really aren't allowed to give you any more help than that.

I suggest moderators delete the code and lock this post.

As is this, but from a different supporting student

Since this is a summative assessment question we

can't really help much, the answer to how to do

subtraction is fairly simple and intuitive so you

should be able to find the answer it you look.

Other than that you just have to ask your tutor

for more guidance.

This response is provided from a typical student. Point three relates to one of the supporting

students.

1) You cannot discuss summative assessment

questions on this forum.

Full report on challenges with learning to program and problem solve 73

2) The mods will delete the code from your post

because this is a summative assessment question.

3) Take [Anon.] advice.

Which elicits this from another typical student

Especially rule number three.

[Anon.] is the expert.

The supporting student in question rebukes the idea of expertise but continues to provide

support in response to many other questions

Good god no. I just read things and I'm an

[job title provided]. Written details stand out (and I

apparently spend too much time on this forum).

5.4.2 Communal project/Case study. One student had been experimenting with Python and shared

their attempts at simulating the game of poker - to the extent of dealing random hands to a range

of players - with the invitation to suggest ways to simplify the code. Although this was the only

discussion of its type on the Python help forum, it proved significantly engaging and resulted in 32

posts (29 from students contributors and 90 readers) as the program evolved and students tried

to apply a number of the principles they had learned such as manipulating lists; the difference

between functions and methods; and variable naming.

There were other similar discussions on the Python beyond TM112 forum, and this posting should

have been made there. Nevertheless, we include here the following post extracts to illustrate one

positive effect of such an activity:

(...)

It is beginning to make some sense to me. I

wonder if TM112 is going to go into this stuff,

i.e. Classes, Methods etc. I hope so as I

am a noob when it comes to OOP. More like WOOPS

when I start trying to teach myself

(...)

and

I have spent a worthwhile hour going through

this implementation, understanding what is going on

74 Savage and Piwek

where.

Once i had worked out that 'players' and

'player' were two different things it made it easier!!

It still wasn't clear what was going on so

i commented out the shuffling, and reduced the number

of 'players' to 4.

It then made sense.

(...)

6 DISCUSSION AND RECOMMENDATIONS

This report describes findings based on analysing the forum discussions of a large cohort of first-

year undergraduate computing and information technology students at the UK’s Open University.

This is the first encounter of these students in their computing and information technology studies

with the Python programming language. The report provides statistics on the topics and themes

that are recurrent in the discussions. Additionally, we have included a significant sample of actual

extracts from the discussions to illustrate the content and topics of the discussions.

When we compare our findings with those in the literature on the challenges, threshold concepts

and misconceptions of students learning to program, we find a significant degree of agreement. For

instance, even though [3] focuses on misconceptions relating to Java, there is a definite similarity

with our results (e.g. their Table 4 includes topics such as returning values, calling functions,

iteration, conditionals and maths which match with ones found in our study).

Many of our Python specific topics seem to be under ‘Basic Programming Principles’ in Table 1

of the literature review on threshold concepts by [16]. In our Python-specific top-ten, functions

and outputting results resonate with the identification of function-related threshold concepts

identified in [6] .

At the thematic level, [13]’s syntactic and conceptual levels (variables, conditional expressions,

loops, etc.) correspond with our Python-specific topics. Their strategic level corresponds to our

Problem-solving/generic topic level.

Despite this significant overlap between our findings and those in the literature, our top-ranked

items are not in any of the results reported previously. Of course, our study has certain limitation

and a specific scope (as described in Section 3). Nevertheless, some preliminary implications and

recommendations can be drawn relating to these top-ranked challenges.

Full report on challenges with learning to program and problem solve 75

Firstly, we would like to highlight that conceptual issues can also emerge in relation to tool use

(such as IDEs). In TM112, the focus was mostly on the how, rather than the underlying conceptual

understanding of code execution, especially early on. This has been amended in a subsequent

presentation of TM112 with informal observations suggesting a positive effect. A note of caution

also emerges from our findings in relation the recommendation by Qian and Lehman [13] to make

more use of existing tools. Our results did suggest that students can find it challenging to cope

with several code authoring tools when learning to program.

With regards to problem-solving skills, we observed that some students struggle to solicit help,

suggesting they need support early on with asking questions about their own code, e.g. by explicitly

providing the code they wrote, expected output, actual output (rather than a general comment

saying my code doesn’t work).

This theme continued in relation to module-specific issues where we observed similar behaviour

relating to tackling formative (the approach to quiz and approach to activities topics) and summative

assessment (the TMA topic). Much of this was addressed by peer support, particularly as the

community of students became more confident.

Our methodology, which differs in significant ways from most existing work on challenges

for beginning programmers has resulted in findings that confirm many of the misconceptions

and threshold concepts that have been identified. However, interestingly the most highly ranked

challenges are not found in the previous literature and suggest further investigation.

In summary, based on our findings, we propose two preliminary recommendations:

(1) Students that begin to learn to program can be supported with wide variety of tools, e.g. for

editing their code, marking it and tracing its execution. Deployment of such tools should

however be undertaken with care, since adoption and use of the tools themselves can interfere

with the student’s learning and cause them to focus on issues with the tool use rather than

the computing and programming concepts they are trying to master.

(2) Students that are learning to program should be provided with support on how to express

problems with their code. This could include explicit guidance on:

• Including the code they tried to execute.

• Describing the behaviour/output they expected from the code.

• Describing the actual behaviour and output.

76 Savage and Piwek

ACKNOWLEDGMENTS

This work has been completed with support from The Institute of Coding, an initiative funded by

the UK Office for Students.

We would like to thank the following students, forum moderators and module team members

for allowing us to quote their forum postings in this report: Alexa Hindes, Alicia Hood, Cameron

Watkinson, Chris Powell, Connor Elias, Danielle Gebbie, Darren Brown, Demi-mae Hardy, Denise

Arkley, Donna Clapham, Ellen Bedson, Emily Holmes, Emma Kirby, Francis Lavery, Gareth Oliver,

Garry Bell, Gerald Barrass, Ian Laidler, Ian Stockbridge, James Restall, Jason Dutton, Jason Rickers,

John Howden, Kate Sim, Katrina Trigari, Lindsey Court, Luke Fletcher, Mark Williams, Michael

Broadhead, Michel Wermelinger, Ming-Shih Juan, Nick Parsons, Paul Piwek, Paul Stewart, Ray

Newton, Richard Walker, Richie Cuthbertson, Sakhra Haroon, Sarah Elliott-Moore, Shafia Thmor,

Sharon Dawes, Shezeen Salman, Stephen Lord, Steve Woods and Tom Holmes.

We would also like acknowledge the support and advice from Patricia Charlton throughout the

project.

Full report on challenges with learning to program and problem solve 77

REFERENCES
[1] Jacob Lowell Bishop, Matthew A Verleger, et al. 2013. The flipped classroom: A survey of the research. In ASEE

national conference proceedings, Atlanta, GA, Vol. 30. 1–18.

[2] Jonas Boustedt, Anna Eckerdal, Robert McCartney, Jan Erik Moström, Mark Ratcliffe, Kate Sanders, and Carol

Zander. 2007. Threshold Concepts in Computer Science: Do They Exist and Are They Useful?. In Proceedings of the
38th SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’07). ACM, New York, NY, USA, 504–508.

https://doi.org/10.1145/1227310.1227482

[3] Ricardo Caceffo, Pablo Frank-Bolton, Renan Souza, and Rodolfo Azevedo. 2019. Identifying and Validating Java

Misconceptions Toward a CS1 Concept Inventory. In Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’19). ACM, New York, NY, USA, 23–29. https://doi.org/10.1145/

3304221.3319771

[4] Chris Dobbyn and Frances Chetwynd. 2014. Transforming retention and progression in a new

Level 1 course. Retrieved August 29, 2019 from http://www.open.ac.uk/about/teaching-and-

learning/esteem/sites/www.open.ac.uk.about.teaching-and-learning.esteem/files/files/ecms/web-content/2014-

05-C-Dobbyn-and-F-Chetwynd-final-report-May-14.pdf eSTEeM project Final Report.

[5] Tony Jenkins. 2002. On the Difficulty of Learning to Program. In Proceedings of the 3rd Annual HEA Conference for
the ICS Learning and Teaching Support Network. 1–8.

[6] Maria Kallia and Sue Sentance. 2017. Computing Teachers’ Perspectives on Threshold Concepts: Functions and

Procedural Abstraction. In Proceedings of the 12th Workshop on Primary and Secondary Computing Education
(WiPSCE ’17). ACM, New York, NY, USA, 15–24. https://doi.org/10.1145/3137065.3137085

[7] Richard Lobb and Jenny Harlow. 2016. Coderunner: A tool for assessing computer programming skills. ACM
Inroads 7, 1 (2016), 47–51.

[8] Davin McCall and Michael Kölling. 2014. Meaningful Categorisation of Novice Programmer Errors, In Proceedings

of the 2014 IEEE Frontiers in Education (FIE) Conference. Proceedings - Frontiers in Education Conference, FIE 2015.

https://doi.org/10.1109/FIE.2014.7044420

[9] Erik Meyer and Ray Land. 2003. Thresholds Concepts and Troublesome Knowledge: Linkages to Ways of Thinking

and Practising within the Disciplines.

[10] Christian Murphy, Dan Phung, and Gail Kaiser. 2008. A distance learning approach to teaching eXtreme program-

ming. ACM SIGCSE Bulletin 40, 199–203. https://doi.org/10.1145/1384271.1384325

[11] Paul Piwek and Simon Savage. 2020. Challenges with Learning to Program and Problem Solve: An Analysis of

Student Online Discussions. In The 51st ACM Technical Symposium on Computer Science Education (SIGCSE ’20).
ACM, New York. http://oro.open.ac.uk/68074/

[12] Paul Piwek, Michel Wermelinger, Robin Laney, and Richard Walker. 2019. Learning to Program: From Problems to

Code. In Proceedings of the 3rd Conference on Computing Education Practice (CEP ’19). ACM, New York, NY, USA,

Article 14, 4 pages. https://doi.org/10.1145/3294016.3294024

[13] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other Difficulties in Introductory Pro-

gramming: A Literature Review. ACM Trans. Comput. Educ. 18, 1, Article 1 (Oct. 2017), 24 pages. https:

//doi.org/10.1145/3077618

[14] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.

[15] Kate Sanders, Jonas Boustedt, Anna Eckerdal, Robert McCartney, Jan Erik Moström, Lynda Thomas, and Carol

Zander. 2012. Threshold Concepts and Threshold Skills in Computing. In Proceedings of the Ninth Annual
International Conference on International Computing Education Research (ICER ’12). ACM, New York, NY, USA,

https://doi.org/10.1145/1227310.1227482
https://doi.org/10.1145/3304221.3319771
https://doi.org/10.1145/3304221.3319771
http://www.open.ac.uk/about/teaching-and-learning/esteem/sites/www.open.ac.uk.about.teaching-and-learning.esteem/files/files/ecms/web-content/2014-05-C-Dobbyn-and-F-Chetwynd-final-report-May-14.pdf
http://www.open.ac.uk/about/teaching-and-learning/esteem/sites/www.open.ac.uk.about.teaching-and-learning.esteem/files/files/ecms/web-content/2014-05-C-Dobbyn-and-F-Chetwynd-final-report-May-14.pdf
http://www.open.ac.uk/about/teaching-and-learning/esteem/sites/www.open.ac.uk.about.teaching-and-learning.esteem/files/files/ecms/web-content/2014-05-C-Dobbyn-and-F-Chetwynd-final-report-May-14.pdf
https://doi.org/10.1145/3137065.3137085
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1145/1384271.1384325
http://oro.open.ac.uk/68074/
https://doi.org/10.1145/3294016.3294024
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618

78 Savage and Piwek

23–30. https://doi.org/10.1145/2361276.2361283

[16] Kate Sanders and Robert McCartney. 2016. Threshold Concepts in Computing: Past, Present, and Future. In

Proceedings of the 16th Koli Calling International Conference on Computing Education Research (Koli Calling ’16).
ACM, New York, NY, USA, 91–100. https://doi.org/10.1145/2999541.2999546

[17] Simon Savage and Paul Piwek. 2019. Full report on challenges with learning to program and problem solve: an

analysis of first year undergraduate Open University distance learning students’ online discussions: Python source

code. (12 2019). https://doi.org/10.21954/ou.rd.11336105.v1

[18] Dermot Shinners-Kennedy and Sally A. Fincher. 2013. Identifying Threshold Concepts: From Dead End to a New

Direction. In Proceedings of the Ninth Annual International ACM Conference on International Computing Education
Research (ICER ’13). ACM, New York, NY, USA, 9–18. https://doi.org/10.1145/2493394.2493396

[19] Elaine Thomas. 2019. A new approach to teaching introductory Computing and Information Technology by

distance learning - addressing key issues. In Connecting through Educational Technology - Proceedings of the
European Distance and E-Learning Network 2019 Annual Conference, Airina Volungeviciene and András Szűcs (Eds.).

292–300. http://oro.open.ac.uk/62184/

https://doi.org/10.1145/2361276.2361283
https://doi.org/10.1145/2999541.2999546
https://doi.org/10.21954/ou.rd.11336105.v1
https://doi.org/10.1145/2493394.2493396
http://oro.open.ac.uk/62184/

	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Student demographics
	3.2 Instructor demographics
	3.3 Programme components
	3.4 Data analysis methods
	3.5 Scope and limitations

	4 Results: Topic statistics
	4.1 Statistics relating to all topics
	4.2 Python-related topics
	4.3 Problem-solving/generic topics
	4.4 Module-specific topics

	5 Results: Topic descriptions and examples
	5.1 Python-related topics
	5.2 Problem-solving/generic topics
	5.3 Module-specific topics
	5.4 Miscellaneous

	6 Discussion and recommendations
	Acknowledgments
	References

