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Modifications of radiofrequeney capacitive discharge for deposition of carbon 

coatings

Alexander Goruppa 

Abstract

A thesis submitted for the degree of Doctor of Philosophy at the Open University

March 2002

This thesis is an investigation of modifications of RF excited discharge for 

deposition of carbon coatings. Two separate discharge configurations were examined: 

an RF capacitive discharge with electron injection and removal by means of an 

emissive filament and a DC electrode, and an RF discharge with a hollow cathode 

powered electrode. Plasma characterization was conducted by means of an 

electrostatic probe and an energy and mass analysis probe. Interpretation of the 

electrostatic probe data in presence of RF harmonics in plasma has been discussed.

Electron injection and removal has been found to control strongly plasma 

potential and maximum of ion energy at the grounded electrode, reducing them to less 

than 10 V or increasing above 90 V accordingly. Related changes of electron 

temperature and density have been measured, with plasma density being increased up 

to an order of magnitude by electron injection. This effect has been linked with a 

regime, when hot filament instigates discharge inside of an electron source.

A model, based on the analysis of electron movement in an RF matrix sheath, 

has been developed to investigate an effect of the DC electrode on stochastic 

heating/cooling of electrons in the sheath. It has been demonstrated that an adequate 

heating of the EEDF tail and cooling of the bulk electrons could be produced by a 

combined effect of the sheaths of powered and grounded electrodes, assuming the 

multi-harmonic grounded sheath and non-equal plasma density at the sheath



boundaries.

Another model, based on balance of conduction currents from RF plasma to 

the electrodes, has been aimed at investigation of discharge potentials. It has predicted 

correctly variation of time-averaged plasma potential with electron injection and 

removal.

Deposition experiments were conducted from both discharge configurations. 

Carbon coatings were analysed by means of Raman spectroscopy and scanning 

electron microscope (SEM). Raman spectra of coatings from the plasma with injected 

electrons revealed a polymeric-like nature of the coatings. SEM study of carbon films 

from the RF hollow cathode configuration demonstrated a wide variety of coating 

morphology: from porous films, consisting of separate particles, to nucléation of 

conical, spherical and cauliflower-like carbon phases.
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Chapter I. "Introduction”

1.1. Diamond as an engineering material.

During the last two decades chemical vapour deposition (CVD) of diamond-based 

films has been one of the most interesting directions in thin film technology. Its popularity 

originates from the unique combination of physical properties of the materials (Table 1.1)

[2]. In contrast with the high pressure high temperature (HPHT) method of growing 

separate diamond crystals, CVD techniques produce the material in the form of 

polycrystalline film, expanding significantly application areas of the material. At first it 

seems that CVD diamond formation at pressures and temperatures as low as 1 Torr and 

600°C contradicts the carbon-phase diagram, reproduced from [1] in Fig. 1.1. The diagram 

depicts the various thermodynamic conditions under which carbon exists stably as diamond 

or graphite. At any fixed temperature graphite will be converted into diamond at a pressure 

exceeding the equilibrium boundary on which both phases co-exist. At any pressure below 

the boundary the diamond phase is metastable, so it reverts to graphite. Reversion to 

graphite proceeds at a rate determined by chemical kinetics. This rate is evidently very 

slow at room temperature and pressure since diamonds are gemstones of high value. But 

the diagram, reflecting thermal equilibrium conditions does not imply any restrictions to 

non-thermal equilibrium approaches in diamond synthesis.

PRESSURE 

(10^ atm) 100

Room temperature and 
pressure

80

60

40

20

DIAMOND

GRAPHITE

1000 2000 3000

TEMPERATURE (K)

Fig. 1.1 Diamond-graphite phase diagram in terms of pressure and temperature.



CVD diamonds versus competing materials

Properties of diamond Comparison with 
competitors

Possible applications

Vickers'
hardness

( kg/mm^ )

12000-
15000 hardest material known

drill bits, polishing material, cutting 
tools, surgical knives, sintered or 
brazed diamond compacts.

Coefficient of 
friction

0.1
( in air )

very low in air; (higher if kept 
clean under vacuum)

wear resistant coatings on lenses, 
bearings, tools, or hard disks, 
sliding parts.

Young's modules 

(N /m ^ )
1.2x10^2

twice the value of alumina; 
highest mechanical strength

stiff membranes for lithography 
masks, radiation windows, high-end

Sound 
propagation 
velocity ( km/s )

18.2 1.6xthe value o f alumina
audio twitter domes, 
micro-mechanical applications.

Chemical
inertness

inert at room temp, resistant to all 
acids, bases and solvents

coatings for reactor vessels, sample 
containers for analytical 
instruments.

Range o f high
transmittance
( p m )

0.22 - 2.5
and > 6

in the IR orders o f magnitude 
lower than other materials

UV-VIS-IR windows and coatings, 
spectrometer sample containers, 
microwave windows, optical

Refractive index 2.41 1.6xthe value o f silica interference filters, optical wave 
guides.

Band gap ( eV ) 5.45
1.1 for Si;
1.43 for GaAs; 
3.0 for p -SiC

passive and active electronics, high 
power, high frequency

Electron/hole 
mobility 
( cmxA/s )

1900/1600 1500/600 for Si; 
8500/400 for GaAs

semiconducting devices, wide range 
thermistors, hot transistors,
Schottky diodes, short wavelength 
lasers.

Dielectric
constant

5.5 11 for Si;
12.5 for GaAs

Y - ray detectors.

Thermal 
conductivity 
( W/cm/K )

20
value for type lia  natural 
diamond at room temp.
4 X the value of Cu or Ag

highly efficient, insulating heat 
sinks for high power or ULSI 
electronics.

Thermal 
expansion coeff.

( K - ' )

0.8 X 10"̂
value at room temp, close to 
silica value of 0.57 x 10'^

thermally stable substrates, e.g. for 
X - ray lithography masks, power 
laser windows.

Luminiscence
( p m )

0.44
0.52
(B-doped)

blue luminescence scarce 
(P-SiC)

blue or green LEDs, detectors.

Table 1.1 CVD diamond properties (from [1])

Low-pressure plasmas, produced in electrical discharges through gases, are by their very 

nature non-equilibrium media. A diversity of chemical processes can be promoted by them.



The technological potential of such media is reflected in the fact that the majority of 

diamond and diamond-like carbon (DLC) deposition methods are based on various gas 

discharge techniques.

1.2 A brief history of diamond and diamond-like carbon growth

The starting point of the scientific approach to diamond study and its synthesis can 

be traced back to the XVIII century, when A.L.Lavoisier determined that the product of 

diamond combustion was limited to carbon dioxide. It was not until the beginning of the 

XX century, when it became possible to look at the atomic structure of material using X- 

rays, that W.H.Bragg jointly with W.L.Bragg demonstrated that carbon had three allotropie 

states: cubic (diamond), hexagonal (graphite) and amorphous. Numerous attempts to grow 

artificial diamond resulted in success fifty years later. In 1953 W.G.Eversole from the 

Union Carbide corporation (USA) synthesised diamond from carbon monoxide grown on 

natural diamond crystals at pressures in the range from 53 to 309 atmospheres ((53- 

309) 10̂  Pa) and temperature in the range from 850 to 1100 °C. Further development of 

this approach, using only solid precursors, became known as a high pressure and high 

temperature (HPHT) method. Later the same year diamond was synthesised without pre

existing diamond seeds using HPHT method at Allemana Svenska Electrisia Aktiebologet 

(ASEA) in Sweden. In 1954 the General Electric Company (USA) independently achieved

successful growth of diamond by the HPHT method, which was widely publicised. The 

typical pressure and temperature of the HPHT method for direct graphite-to-diamond 

conversion without a metal catalyst are 120 kbar (12010^ Pa) and 2000 °C. Subsequent 

perfection of the HPHT method achieved growth of diamonds as large as 11.1 ct (2.22 g)

[3], which corresponds approximately to crystal size of 1cm. The HPHT method effectively 

uses the rapid chemical kinetics at HPHT conditions to reach the equilibrium state. Further 

in this chapter only low-pressure synthesis from the gaseous phase will be considered. In 

1956 B.V.Spitsyn from the Moscow Physical Chemistry Institute deposited diamond on 

pre-existing diamond crystal at a pressure of the order 3T0’̂  torr (4T0'"  ̂ Pa). In his



experiments substrates were heated from 800 to 1000 °C, and CBr^ or CI  ̂were used as the 

source of carbon.

Summarising early successes in diamond synthesis it is obvious to note that major 

efforts were directed at a replication of the natural geological phenomenon of diamond 

growth that resulted in domination of the HPHT method. The idea of diamond deposition 

from the vapour phase was so contradictory to the physical properties of the material that 

the low growth rates of the first experiments were almost recognised as the method's 

natural limit; though partly it may be explained by the absence of any open publications. In 

addition, the unique role of low-temperature plasmas as chemically active media was not 

yet widely appreciated; that happened in the 70s [4].

The next important advance in the low pressure deposition of diamond was 

achieved by the group of J.C.Angus at the Case Western Reserve University (USA). 

Eventually after repeating in the mid 60s Eversole results they came to use of hydrocarbon 

gases (typically CH^) in the deposition medium and, subsequently, reached an 

understanding of the role of molecular, and later atomic, hydrogen in the suppression of 

graphite deposition. The cyclic process developed by the group in 1970 [5] consisted of 

two stages. A mixed phase diamond-graphite film was precipitated from thermally 

decomposed methane in the first stage. In the second stage the graphite deposits were 

removed by reaction with atomic hydrogen, generated at a hot tungsten foil over which the 

hydrogen gas stream was passed. An analogous route was devised by the group of Deryagin 

from the Physical Chemistry Institute in Moscow. The Moscow group also started from 

confirmation of Eversoles results in the late 60s. Similar to the process developed in USA, 

Deryagins group used a cyclic method, based on deposition from thermally decomposed 

methane and subsequent admittance of air for selective etching of graphite phase [6]. Later 

they came to use of atomic hydrogen during the growth process, resulting in the mid 70s in 

the deposition of diamond crystals on non-diamond substrates [7]. Another experimental 

method, called chemical transport reaction technique (CTR), was a continuous etching and



deposition process in hydrogen, that achieved growth rates up to 1 pm/h [8]. At that time 

little experimental details were revealed. According to J.C.Angus [9], "if open 

communication had been possible, low pressure diamond technology would have 

developed about a decade earlier than it actually did".

At the same time, another class of carbon materials started to attract the interest of 

the scientific community. That was hydrogenated amorphous carbon (a-C:H) or diamond

like carbon (DLC) films. The interest was stimulated by the work of Aisenberg and Chabot 

from the Whittaker Corporation (USA), published in 1971 [10]. In their experiment, films 

exhibiting many of the properties of diamond were deposited from a beam of carbon ions, 

accelerated electrically to the substrate by means of negative bias. In 1976 similar carbon 

films were deposited by Whitmell and Williamson from AERE Harwell (UK) [11] in a DC 

plasma and by Holland and Ohja from the University of Sussex (UK) [12] in an RF 

discharge. Characterising the 60s and 70s stage in CVD diamond deposition it is possible 

to conclude that a significant step had been made in establishing the most favourable gas 

components for the deposition process, that is hydrocarbon gases and hydrogen, and an 

understanding of their function in the deposition process. However, the experimental 

approach still relied on traditional thermodynamic methods, namely thermal decomposition 

of gases and cyclic processes. The growth rates achieved by these methods were rather 

slow.

The start of the modern era in diamond film growth is connected with the research 

programme at the National Institute for Research in Inorganic Materials in Japan. The 

programme was initiated by Nobuo Setaka in the mid 70s. In 82, 83 the group published a 

series of papers [13-16], describing deposition of diamond films by hot filament and 

microwave methods at remarkably high rates of several pm/h. Gas mixtures were typically 

1-2% of methane in hydrogen. The success of the NIRIM group spawned numerous 

research programs all over the world, which led to the development of various deposition 

methods [17]. A considerable advancement was made in the understanding and description



of separate gas phase and surface mechanisms of deposition, which are reviewed in [18]. 

Popularity of the subject has grown to such an extent that since the late 80s annual 

international conferences on CVD diamond and related materials are held in Europe, the 

USA and Japan. At the same time a significant progress has been made in research on DLC 

coatings, resulting in the emergence of commercial products for optical, electronic, wear 

resistance and biomedical applications [19]. At this period several review monographs 

have been published, describing properties and applications of natural and synthetic 

diamond crystals [3], and growth methods, properties and applications of diamond and 

diamond-like films [20-22].

At the beginning of 90s the choice of the main CVD diamond growth methods was 

as follows. For low pressure (1-100 torr) there are microwave and hot filament techniques, 

for high pressure (up to atmospheric) - DC and RF arc jet and flame techniques. By 94 the 

level of perfection of these methods had become quite high. For example, a 125 kW 

microwave system, manufactured by the Applied Science and Technology Company 

(ASTeX) from the USA allows the growth of CVD diamond on a deposition area of 30 cm 

diameter at a rate of 10s pm/h. The purity of the film is higher than that of natural 

diamond. In general, the focus of CVD diamond research is shifting from the process itself 

to the material characterisation and application.

1.3 Diamond crystal structure and film morphology

The basis of the extraordinary properties of diamond is its regular lattice. The

lattice structure of natural diamond was determined by W.H.Bragg and W.L.Bragg by

means of X-ray diffraction at the second decade of last century. Each carbon atom shares

each of its four outer electrons with four other carbon atoms, forming in this way four s p ^

bonds. The combined effect of s p ^  bonds leads to the regular arrangement of carbon atoms

in the lattice, pictured in Fig. 1.2. Dots, shown black, represent carbon atoms and are

located at the comers of the cube and at the centres of the cube faces. This arrangement is

repeated all over the lattice, which is known as face-centred cubic. Those, shown white,

6



also represent carbon atoms and form another face-centred cubic lattice similar and parallel 

to the first, but displaced from it. Therefore, the complete diamond lattice consists of two 

interpenetrating face-centred lattices.

0.154 nm

a = 0.3567 nm

Fig. 1.2 Model of the diamond lattice

CVD diamond growth produces at the initial stage multiple crystallites of various shapes, 

depicted on Fig. 1.3 [23].

(a) (b) (c) (d)

Fig. 1.3 Schematic diagrams of diamond particle morphologies
(a) Cube-octahedron (a single crystal);
(b) Twinned cube-octahedron;
(c) Decahedral Wulff-polyhedron;
(d) Icosahedron.

The growth process leads to the covering of all the substrate by crystallites and the 

formation of a polycrystalline film. In general, a polycrystalline film exhibits a columnar 

structure, which is shaped by "evolutionary selection" of microcrystals [24]. Microcrystals 

with a direction of fastest growth more or less perpendicular to the substrate surface are



more favourable and grow at the expense of microcrystals with different orientation. The 

selection process is schematised in Fig. 1.4.

Fig. 1.4 Cross-section of a growing film

Finally grown film can have the following typical morphologies, determined by crystalline 

faces directed upwards: the {111} triangular faces, the {100} square faces or cauliflower- 

like small crystalline aggregates. These morphologies have been correlated with the 

substrate temperature, gas composition and gas flow rate [25].

1.4 Methods of CVD diamond growth.

The growth of diamond films from the gas phase has been performed by a variety of 

plasma, flame and thermal decomposition methods (Table 1.2). Plasma techniques are 

commonly referred as plasma enhanced chemical deposition (PECVD) methods. It is 

difficult to group PECVD methods owing to the wide variety of operating conditions and 

precursor materials. The most obvious operational parameter for comparison is gas 

pressure. From the analysis, presented in [17], it has been concluded, that at least for 

plasma-based methods the growth rate is proportional to gas pressure, while the deposition 

area is inversely proportional to pressure. The more successful plasma methods, such as 

those based on microwave discharges, have operating pressure in the range 1-50 torr. 

Combining high values of deposition area and growth rate requires high power inputs to



Method Rate (|am/h) Area (em )̂ Advantages Drawbacks

Non-plasma methods

Combustion flame 30-200 0.5-3 Simple set-up, high 
growth rate

Poor stability, small 
area, contamination by 
torch material

Hot filament 0.3-8 5-900 Simple set-up, large 
deposition area

Contamination by 
filament mater., poor 
filament stability

Plasma-based methods

DC discharge 
(low pressure)

<0 . 1 70 Simple set-up, large 
deposition area

Bad quality, low 
deposition rates

DC discharge 
(medium pressure)

20-250 < 2
High rate, excellent 
quality

Small area

DC plasma jet 930 < 2
Highest rate, 
excellent quality at 
high power

Contamination by 
electrode material, 
high equipment cost

RF (low pressure) <0 . 1 1 0 0 Scaleable by area Poor quality, low rate, 
contamination by 
electrode material

RF
(thermal, 1 atm)

180 2-3 High rate, high 
quality at high 
power

Small area, poor 
stability, high 
equipment cost

Microwave 
(0.9-2.45 GHz)

1 (low pres.) 
30 (high pres.)

80
5

High quality and 
stability

Area scaling requires 
very high power

Microwave 
(ECR, 2.45 GHz)

0 . 1 1 0 0
Large deposition 
area

Poor quality, low rate

Table 1.2 Methods of diamond film deposition from [17]

the plasma in order to sustain high power density at the deposition substrate. For example, 

a microwave reactor, created by “ASTeX Inc”, maintains power density up to 177 W/cm^ 

at the substrate. It deposits diamond coating up to 30 cm in diameter at rates of up to 50 

p,m/h.



1.5 Main plasma parameters

In general, a low pressure gas discharge plasma could be defined as a gas media, 

which contains in addition to atoms and molecules of a background gas products of their 

ionisation, or negatively and positively charged particles. Typically, electrons are the main 

carriers of negative charge. The fundamental property of quazineutrality of plasma means 

that their density ng is in average equal to the density of particles, carrying a single positive 

charge, i.e. the density of ions nj. Ions originate from a process of ionisation, when 

electron, orbiting atom nucleus, gains sufficient energy from outside to leave the atom. In 

this way ion-electron pair is created. Because of low mass (proton/electron mass ratio 

equals 1836) electrons are easily accelerated by electric field, gaining high energy. In the 

first approximation, electron energy distribution function (EEDF) is described by the 

Maxwellian distribution (section 4.2.1, chapter IV). Therefore, electron component of 

plasma can be characterised by a temperature Tg. Normally, electron temperature of low 

pressure plasma is in the range 1-5 eV (leV % 11600 °C). In difference from electrons, ions 

can’t be accelerated fast by electric field due to their high mass. Their resulting temperature 

is close to the room one. Consequently, heating of electrons is the channel, through which 

electric or electromagnetic field passes energy to all the variety of kinetic and chemical 

processes in plasma volume. Therefore, electron temperature Tg and density ng are the most 

important parameters, characterising status of the discharge plasma.

Because of their high energy, electrons run away from ions near the electrode 

surface, creating a positively charged sheath between plasma and electrodes. Potential 

across the sheath of the grounded electrode is called plasma potential Vp. Ions are 

accelerated through the positive sheath towards electrode surface. Their energy is 

characterised by the ion energy distribution (lEDF) on the electrode surface. Typically, in 

low pressure radio-frequency (RF) discharge the grounded electrode is larger in area than 

the powered electrode. As the result, it acquires a time-averaged negative self-bias potential 

Vdc bias (Fig. 4.2 in chapter IV). So, ions arriving to the surface of the powered electrode,
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have maximum energy Ej = Vp + V d c  bias- Depending upon the net sheath potential, Ej could 

reach hundreds of Volts. This parameter is important for sputtering, etching or deposition 

processes on the electrode surface.

1.6 The CVD diamond growth process.

The classical low-pressure CVD diamond growth scheme includes the following 

main features. First, the concentration of methane in hydrogen makes up just 1-2%. 

Second, the gas is activated prior to deposition by a hot filament, a gas discharge or a 

flame. Third, the deposition substrate is heated to temperatures in the range 800-1000 °C. 

Fourth, the substrate material (typically silicon, molybdenum) and various types of surface 

pretreatment (scratching) or deposition-state (electrical biasing) provide high nucléation 

density.

Until nowadays there has not been a single self-consistent theory describing CVD 

diamond growth because of the complexity and diversity of the chemical and physical 

processes in the gas phase and on the surface. Nevertheless, several concepts and ideas 

have been developed to the stage of a clear understanding of various contributing 

mechanisms.

The general concept developed by the group of Deriagin at the early stage of CVD 

diamond science [26] was based on the idea that the growth process was controlled by 

kinetics rather than by thermodynamics. The key element consists of preferential etching by 

hydrogen atoms of the graphitic phase, which is deposited simultaneously with diamond. 

Later this theoretical assumption was confirmed experimentally [27]. It was demonstrated 

that removal of graphite by activated hydrogen was orders of magnitude faster than 

removal of diamond.

Other roles played by hydrogen have also been revealed. An important function of

hydrogen is the stabilisation of the diamond surface. By combining with the dangling

bonds of surface carbon, hydrogen keeps the bonds of surface carbon atoms in the s p ^

configuration and prevents surface reconstruction into s p ^  or s p  structures, that are
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characteristic of graphite and carbides respectively [28]. Hydrogen is further entangled in 

the maintenance of active growth sites by removing hydrogen from the surface, preventing 

its massive trapping within the solid [29]. In effect, the surface is kept active by a type of 

catalytic process in which hydrogen atoms are cycled onto the carbon surface. The 

chemical desorption of hydrogen from the surface by atomic hydrogen is 

thermodynamically favoured because of the strength of the H-H bond.

A positive role is played as well by molecular hydrogen. The importance of its 

excessive concentration is in the suppression of polyaromatic hydrocarbons formed in the 

gas phase [30], which may be precursors to unwanted s p ^  carbon during the growth 

process. Along with attachment kinetics hydrogen participates in energy transport 

processes. Studies of the hot filament reactor environment have shown that a significant 

amount of energy is transported by decomposition of H2 and subsequent recombination of 

H atoms on the surface [31]. For a typical pressure 20 torr the “chemical” or internal 

energy transport by hydrogen is approximately equal to that transferred “physically” by 

thermal conduction from the gas. It has been estimated that for each carbon atom added to 

the diamond lattice there are approximately 1 0 "̂ carbon atom recombination events [31].

Gas activation has two main functions in the process: production of precursor 

carbon species and dissociation of hydrogen. In methane-hydrogen mixtures methyl 

radicals and acetylene are the most often detected carbonaceous species in the vicinity of 

the deposition substrate. Many proposed mechanisms of diamond growth are based on the 

attachment of these species or their ionic products [18]. Dissociation of hydrogen occurs 

either through thermal decomposition in the case of hot filament and flame techniques or 

through direct impact between electrons and H2 molecules in low pressure plasmas. 

Typical operating temperatures of a tungsten filament are around 2500 °C. For production 

of atomic hydrogen by direct impact electron should have energy no less than the reaction 

threshold (or potential):

e + H2 ^ H 2 + 6 —>H + H + e Et = 8.5 eV (1.1)

12



Other kinetic reactions between electron and atomic/molecular hydrogen will be described 

in chapter II, section 2.8.2.

The optimum temperature range 800-1050°C of the growth process is determined 

from below by the rate of chemi-desorption of hydrogen and from above by graphitisation 

of the diamond surface. At temperatures below 800°C the formation of active sites by 

chemi-desorption is slow which leads to a rapid decrease in the film quality. The addition 

of small amounts of oxygen allows the deposition of good quality film down to 600°C. 

This occurs because of etching by OH radicals of s p ^  surface carbon together with a 

decrease in concentration of aromatics in the gas phase owing to oxidation [32].

Nucléation is the initial stage of diamond film formation. It is strongly dependent 

on substrate material. The general rule for deposition substrates is that nucléation densities 

are higher on stable carbides or carbide forming substrates (SiC, TiC, WC, Si, Mo, Ti, W, 

Ta) and on oxygen-containing substrates (Si0 2  and AI2 O3 ) than they are on substrates not 

forming carbides (Cu, Pt, Ni). Most of the materials that not form carbides are considered 

to have a high diffusivity for carbon, so much that there is a substantial reduction of the 

carbon concentration at the surface leading to a considerable delay in the onset nucléation 

[33]. A tiny diamond crystal can survive on the substrate surface only as long as the re

supply of carbon from the feed stock is no slower than the dissolution losses at the 

interface.

Silicon substrates have proved to be the most popular for basic studies of carbon 

films. It seems to be the ideal material for study of diamond nucléation and film formation 

because of similarity of its lattice to that of diamond. But diamond nucléation is very slow 

on highly polished, defect-free, single-crystalline Si wafers because it takes a long time to 

transform the surface into silicon carbide. On the other hand, diamond nucléation occurs 

readily along scratches or sharp fracture edges. So, it has become a common practice to 

scratch and polish Si wafers with diamond grits or other hard particles, such as SiC, B4 C, 

c-BN, etc. prior to deposition. This method increases the nucléation density from 10"̂  cm‘̂
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up to 10  ̂ cm*̂ . There are several hypotheses explaining this phenomenon: residual 

diamond particles act as nucléation sites; an energetically favourable "sharp edge" 

mechanism; formation of carbide is speeded at edges and groove walls. Experimental data 

do not confirm in full any of these hypotheses. Another method that has achieved a 

nucléation density of 10̂  ̂ cm'^ in the early stage of deposition is electrical biasing [34]. A 

pristine silicon substrate is biased to a voltage of -250 V for 1-2 hours at the initial stage. 

Afterwards the biasing is removed and normal growth process takes place. The core of this 

method it thought to be in fast formation of silicon carbide layer in the presence of 

bombardment by energetic ions. After achieving a nucléation layer thickness «90 Â the 

carbon on silicon carbide surface is free to form critical clusters that are eventually 

favourable for diamond nucléation.

1.7 Diamond-like carbon

Diamond-like or a-C:H carbon is a cross-linked non-crystalline network of carbon 

and hydrogen atoms. The structure and properties of DLC materials (Table 1.3) are 

strongly dependent upon the relative proportion of s p ^ -  and jp^-co-ordinated carbon atoms, 

which in its turn is mediated by the amount of hydrogen present in the film.

A large amount of hydrogen atoms acting only as network terminators permits a 

considerable fraction of s p ^  carbon bonds. DLC films are prepared by a variety of methods 

[37]. Schemes have been demonstrated based on ion beams, plasma deposition and laser 

ablated plasma plumes. All methods are nonequilibrium processes characterised by the 

interaction of energetic ions with the surface of the growing film. Ions play an important 

role in forming s p ^  bonding. The commonly used plasma method is RF parallel plate 

discharge in hydrocarbon gases.

As it has been noted in section 1.5, in low pressure RF discharge in the absence of 

collisions ion energy on the electrode surface Ej«Vjg yiag+Vp. At higher pressure, the ion 

energy has a form of an energy spectrum with a mean value that scales as Vdc bias-p'̂ ^̂ ,
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where p is operating gas pressure [38]. For typical pressure 3 Pa (« 23 mTorr) Ei«0.6-Vy.

Property CVD diamond ot-C a-C:H Graphite

Crystal structure Cubic
a = 3.561 A

Amorphous 
sp̂ lsp̂  bonds

Amorphous 
Sp̂ lsp̂  bonds

Hexagonal 
a =  2.47 A

Form Faceted crystals Smooth to rough Smooth -

sp̂  (%) * 100 3 0 -6 0 up to 95 0

Hardness, Hv 3000 - 12000 1200 - 3000 900 - 3000 -

Density
(g-cm’̂ ) 2.8-3.5 1 .6 -2 .2 1.2-2.6 2.26

Refractive index 2.41 1 .5 -3 .1 1 .6 -3 .1 2.15

Band gap (eV)* 5.5 0.4-2.5 0 .8 - 1.5
1.5-4 (soft a-C :H )

-0.04

Electrical
resistivity
(Q-cm"^)

>10^^ >10̂ ° 10^- 10̂ " 0.4

Thermal 
conductivity 
( W-m-K-1)

1100 - - 3500

Chemical
stability

Inert Inert Inert Inert

Hydrogen content 
(%)*

0 0 25-65 0

Table 1.3 Properties of DLC materials in comparison with CVD diamond and 

graphite [35]. * - Data taken from [36].

Ion beam methods can produce a high proportion of s p ^  bonds in DLC films with

very little hydrogen. a-C films deposited by mass-selected ion beam (MSIB) method have 

up to 95% of s p ^  bonding [39]. The basic idea, that explaines deposition mechanism from 

MSIB, is also germane to other types of DLC deposition. The ion flux is reckoned to 

promote s p ^  bonding through surface densification [40]. The bonding hybridisation adjusts 

itself to the local density. At low density it is s p ^ ,  at high density it becomes s p ^ .  High 

energy ions penetrate the first atomic layer of the film, entering an interstitial position and 

increasing the local density. As the result of increased density the compressive stress P, 

which can achieve the value of 15 GPa, transforms the local bonding around the atoms into 

the bulk bonding of the appropriate hybridisation. Low energy ions, which fail to penetrate, 

remain at the surface, forming s p ^  bonds.

In plasma based methods carbon is transported to the surface also by radicals in
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addition to the charged species. But the main role in the transformation of bonding 

hybridisation is played by ions. Owing to the electrical structure of low pressure plasmas, 

ions are considerably more energetic than most of the neutral radicals. For RF plasma there 

has been suggested a further mechanism considering the low degree of decomposition of 

the source gas [41]. The major ionic species from source gases methane, acetylene and 

benzene, detected by mass spectrometry, are CHg ,̂ C2 H2  ̂and respectively [42]. It is 

supposed that on impact for example the ions dissociates into m separate ions

with energy being shared between these daughter ions. As a result, each ion has an 

energy E/m. Ion bombardment dehydrogenates DLC films by preferential sputtering of 

weakly bounded hydrogen atoms. This mechanism has a good correlation with experiment. 

Hydrogen content and s p ^  fraction as functions of self-bias potential V^c bias relate to source 

gas as 1/m. The maximum density of DLC film occurs at about Vdcbias=300 V in methane, 

500 V in acetylene and over 1000 V in benzene [40].

Their mixed s p ^ l s p ^  structure and hydrogen content places DLC films in between 

diamond, graphite and polymeric hydrocarbons [43]. Although their properties are poorer 

than those of diamond, the low cost of production, based on standard deposition 

equipment, and low deposition temperature rate (room temperature - 300°C) makes DLC a 

competitive coating in many areas. High hardness and chemical resistance make DLC a 

good material for wear-resistant coatings on metals and on optical and electronic 

components. Smoothness of the order 3% for film several tens of nm thick makes them a 

valuable protecting film for magnetic recording media. Such protecting layers must be less 

than 50 nm thick (to maintain adequate signal to noise ratio). The high value of electrical 

resistivity (Table 1.3) of a-H:C films makes them a useful insulator in microelectronics 

devices. Like a-H:Si films it is possible to dope hydrogenated amorphous carbon films, 

making them a prospective candidates for semiconductor devices. It appears that DLC 

films are highly compatible with biological tissue. This biocompatability opens up many 

opportunities for DLC the area of medical implants [19, 44].
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1.8 Advantages and drawbacks of RF capacitive discharge for carbon films 

growth.

The appeal of low-pressure RF (13.56 MHz) capacitive discharges for carbon film 

deposition is the availability of fully developed equipment, capable of coating large areas 

of a wide variety of substrates whether insulators or conductors. This type of discharge is 

widely used in the microelectronics industry. Its physics and chemistry in various 

environments has been thoroughly studied during the last three decades. For these reasons a 

new coating technology based on the capacitive discharge may be applied in industry quite 

fast and at a low cost. As it has been demonstrated in sections 1.4 and 1.6 RF discharges 

have completely justified early hopes for the deposition of DLC films yet have had a very 

poor performance for CVD diamond. This contradictory achievement is closely linked with 

discharge physics. The self-bias potential Vj^ characteristic of the powered electrode, is 

a valuable feature for the deposition of DLC films (section 1.6 ), but it is not desirable 

throughout the groAVth period of diamond films. In fact, energetic ions (Ej > 130 eV) can 

destroy the diamond lattice, converting s p ^  hybridisation into s p ^ .  Other drawbacks of the 

discharge as a medium for diamond growth are its relatively low mean electron temperature 

and plasma density; at typical pressures 10-100 mtorr they are 1-3 eV and lO^ -̂lO^  ̂ m'^ 

respectively. The mean electron energy is far below the dissociation energy for the 

hydrogen molecule, which is 8.5 eV. This leads to a quite low amount of atomic hydrogen, 

produced in the discharge. Its content has been measured to be around 0.8% [45].

For comparison, the microwave discharge (2.45 GHz) has density up to 10̂  ̂ m'^ 

[46] at the pressure «1 torr. This results in up to 70% of hydrogen dissociated in 

microwave plasma [47]. The potential drop in the sheath of a microwave plasma is much 

smaller than that of an RF one. It produces an ion energy flux of the order 20-50 eV. These 

properties of microwave discharge make it most commonly used for CVD diamond 

growth.

An important combined parameter reflecting a discharges ability to create high
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density plasma is the power density. For CVD diamond microwave discharge it's value is 

in the range 10-30 W-cm'^, whilst for capacitive discharge it is just 0.1-1 W cm- .̂ In order 

to increase the value of this parameter it is possible simply to apply more RF power. This 

leads to even higher V̂  ̂bias accordance with Vj^ ~ (P/p)^ [37], where P - discharge 

power and p - gas pressure. Preserving the value of power and decreasing the reactor 

volume, which is equivalent to change in the electrode area ratio, can mainly redistribute 

sheath potentials at the electrodes in accordance with V^A^^ = (A^/A^)^, l<n<2 , where V^ 

and V^ are sheath potentials and A^ and A^ are areas for cathode and anode respectively. 

Increase of power density results in higher values of Vdc bias equally with higher current to 

the electrodes, which reflects growth of plasma density. This lack of independent control in 

the self-bias voltage, consequently ion bombardment energy, and plasma parameters is the 

crucial limiting feature of RF discharges in CVD diamond growth. So, it is necessary to go 

outside the frames of the standard RF parallel plate configuration to make it more feasible 

for CVD diamond groAvth.

1.9 Outline of the research program.

In order to enhance the scope for making CVD diamond by alow pressure RF 

plasma route it is necessary to achieve higher levels of density and electron temperature. 

Electrons are the main vehicles of energy transfer from electric field to ions, atoms and 

radicals.

A transverse magnetic field of 100-200 G can be used for RF discharge 

enhancement. It causes a magnetic confinement of electrons, thereby increasing plasma 

density 2-3 times and decreasing self-bias potential up to 5 times. This scheme is 

commonly knovm as an RF magnetron. Its chief disadvantage is a strong nonuniformity of 

plasma, which may lead in turn to uneven coating.

Another method is plasma enhancement by an electron beam or flux. This approach 

has been used in 60s to maintain dc glow discharge at the pressure below 20 mtorr. The 

method of supplying additional electrons is attractive because it opens the way of
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controlling plasma parameters, which is not coupled directly to the discharge power, and in 

the case of RF diode to the self-bias potential. At the same time, it may provide the 

possibility of fine tuning of energetic electrons, that is crucial for production of atomic 

hydrogen and methyl radicals.

A third way of plasma enhancement is to confine electrons created by the discharge 

itself electrostatically using physical boundaries. This is by utilising a "hollow" glow effect, 

which can be seen at higher pressures within recessed structures of powered and grounded 

electrodes. Its advantage is in the simplicity of localizing high density plasma.

This work has been aimed at the investigation of RF capacitive plasma, enhanced at 

lower pressures by the addition of electrons and at higher pressures by the hollow glow 

effect, with particular attention to applications of the enhanced discharges for carbon film 

deposition. Studying the effects of these enhancements on the main plasma parameters, 

such as plasma potential, density and electron temperature, was of a special interest. 

Plasma characterisation has been performed by such diagnostic techniques as Langmuir 

probe, energy and mass analysis and emission spectroscopy. A number of carbon film 

deposition experiments have been done in order to verify specific features of film growth 

processes in enhanced plasmas.
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Chapter II. "Experimental deviee and plasma charaeterisation" 

2.1 Experimental device specification.

A special experimental device has been developed in order to accomplish the 

research programme, outlined in the section 1.8. This programme has determined two main 

requirements of the design. The first one is the high temperature of the deposition 

substrate, which must be heated up to 1000°C in order to comply with typical diamond 

deposition regimes. The second one constitutes a specific configuration of the vacuum RF 

power line, which allows the device to operate at high temperature and over wide pressure 

range: from 0.01 up to 6  torr. These requirements resulted in a device configuration which 

included such major units as water cooled base plate, high temperature heater, heat shield 

and RF line with quartz or ceramic insulation, as depicted in Fig. 2.1.

2.2 The base plate unit.

The design of the vacuum chamber has arisen from the traditional vacuum 

equipment utilising a glass bell-jar chamber with a rubber ring sealing. The glass bell-jar 

chamber, marked (1) in Fig. 2.1, has an advantage of a good visual control of any processes 

inside it and of easy access to units and diagnostics based within the vacuum. In order to 

prevent the rubber seal from being damaged by heat it was decided to provide the base 

plate (2) with a water cooling bath (3). Maintaining the base plate near room temperature 

has also allowed the use of rubber o-ring sealing for multiple ports. This solution has made 

the vacuum system servicing quite convenient and cheap. Duraluminium was chosen as the 

material for the base plate because of its high heat conductivity and its machinability. The 

base plate (2) is a cylindrical plate 330 mm in diameter and 30 mm thick. Another 

cylindrical plate of smaller diameter was joined on top of it in such a way as to form the 

cooling bath. A copper disk (4) on the top of the cooling bath, covering almost all the 

vacuum area of the base plate, is intended for collection of heat flux from the discharge
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Fig. 2.1 Schematic diagram of the main vacuum vessel

1 - Glass bell-jar 11 - Fteat shield

2 - Base plate 12- Outward heat shield

3 - Water cooling bath 13 - Outward shield lid

4 - Copper disk 14- Meshed viewport

5 - RF line vacuum leadthrough 15- Vacuum RF power line

6 - Gas input tube 16- Powered electrode

7 - Pressure sample tube 17- Ceramic spacers

8 - Pumping port 18- RF shield

9 - Furnace 19- Air cooling fan

10- Deposition substrate
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In this way it protects multiple leadthrough ports positioned in a circle around the cooling 

bath. In all there are 8  standard 26 mm diameter ports, which are used for RF and DC 

voltage leadthrough, furnace power supply, thermocouple and electrical probe leadthrough; 

one port of diameter 40 mm (8 ) is used for pumping. Additionally, inside the bath wall 

there are two specialised ports for gas input (6 ) and pressure measurement (7) tubes, 

passing directly into the discharge volume. In the cooling bath volume the input nozzle and 

the output tube are positioned so that they create a circular movement of water. This leads 

to an ascending spiral flux of water, which provide good convectional heat transfer. Both 

nozzle and output tube have been manufaetured also from duraluminium in order to 

prevent electrochemieal corrosion.

The typical diamond deposition regime requires heating of the substrate up to 800- 

1050°C (see section 1.5). For this purpose it was decided to equip the experimental device 

with a special furnace (9), utilising a heating element "Philips Thermocoax", type 

SEI15/100. The heating element of this type is capable of achieving the power level 500W 

and temperature up to 1000°C. It is a coaxial wire with a resistive core, which is separated 

from the metallic sheath by mineral insulant. The sheath protects the resistive core from 

interaction with gases filling the chamber. This metal casing of the heating core allows it to 

be used extensively in multiple deposition runs; whereas a heating wire of bare tungsten 

would last in a hydrogen medium no more than a few hours. The length of the heating wire 

hot part is 1 m with the diameter just 1.5 mm. The wire operates from a 50 V AC supply. 

The heating element was sandwiched between two stainless disks of diameter 80 mm and 

3.5 mm thick. It was interleaved with a 1.5 mm stainless steel wire, shaped as a flat spiral 

by spot-welding to one of the disks. This spiral wire provided additional heat removal from 

the heating element. The disks of the furnace were fastened together by screws.
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Two positions of the furnace in the discharge volume were tried out during 

deposition experiments. One was just beneath the powered electrode (16), the other - 

behind the deposition substrate (10), which was opposite the powered electrode. Several 

runs with the furnace at the first position led to heat and weight overload of the top part of 

the RF line. This resulted in cracking of the quartz insulation of the RF line. More 

suecessful was the second position, where the furnace was fixed to the lid unit of the heat 

shield. Surface temperatures of the furnace and the deposition substrate were measured by 

separate chromel-alumel thermocouples.

The heat shield (11) was necessary in order to reduce radiation heat losses from the 

discharge volume; maintaining in that way the high temperature of the furnace (up to 

1000°C) and the deposition substrate. The heat shield scheme was analogous to that one 

described in Ward and Allen [48]. The heat shield consists of multiple layers of thin metal, 

which re-radiate both inward and outwards. In [48] a formula was deduced for the radiated 

power as a function of the furnace temperature and number of shield layers.

4

Pr = (2.1)

where (3 = 1 + + . . . - ^ ,  a  = ■  ̂ , Ai and T i - area and temperature of the furnace,
A 2 A^ 2  8

A2 ...An - areas of shield layers, s - emissivity of the layer, cr - Stefans constant. By

revolting (2 .1 ) in the form Tj = ^— (2 .2 )

it is possible to calculate the furnace temperature as a function of the number of shield 

layers for various values of emissivity. The idealised scheme of the heat shield, used in 

calculations, is presented in Fig. 2.2. The diameter of the heat shield was constrained by 

the glass bell-jar at the upper limit and the electrode and substrate assembly at the lower 

limit. Further constraints were imposed by the requirement of inserting an electrostatic 

probe through the heat shield and the need to install the extracting orifice of an energy and
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Furnace
height - 9.5 mm

Gap - 2 mm
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diameter - 80 mm

1st layer diameter - 150 mm

Gap - 2 mm

1 St layer 

height 

75 mm

Gap - 2 mm

Fig. 2.2 Simplified scheme of the heat shield, used for calculations

m ass analyser. T he tem peratu re  o f  the fu rnaee is ca lcu la ted  from  the  fo rm u la  (2 .2) for the 

sh ie ld  geom etry  in  the  Fig. 2 .2 and  a fu rnaee p o w er setting  o f  800 W . R esu lts  are p resen ted  

in Fig. 2.3.
2500

2000  -

c r  1500

H  1000 - 0.2
0.4
0.6500 -

31 2 84 5 6 7

Fig. 2.3 Calculated temperature of the furnace Tl as the function of the 

number of shield layers N for various values of emissivity s.

A s it is seen from  the Fig. 2.3 seven layers o f  m ateria l w ith  an  em issiv ity  o f  0 .4  (e.g. sh iny

m etal) give abou t 500 degrees m arg in  for the furnace. E ven  for h ig h er em iss iv ity  (s =  0.8), 

co rrespond ing  to  a dark  m etal surface, the tem peratu re  m arg in  is enough  to  cover p art o f  

the requ ired  tem peratu re  in terval 1073-1323 K. In reality  the  hea t sh ie ld  w as m ad e  o f  

s ta in less steel sheet 0.1 m m  th ick , w h ich  afte r several therm al cycles has changed from  

shiny m etal to various b lack  to grey tin ts  (A ppendix  H). F or convenience o f  serv ic in g , 

access o f  p o w er lines and d iagnostics the sh ield  included  th ree  parts: th e  base , th e  side w all 

and  the  lid, w ith  several input ports. T his resu lted  in  add itional channels  o f  h ea t lo ss and
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lowered the furnace temperature below 1073 K. In order to maintain the temperature in the 

required range it has become necessary to make the outward heat shield, marked (1 2 ) in 

Fig. 2.1. Then, the furnace, heated up to 990 °C, maintained temperature of the deposition 

substrate at 800 °C.

2.4 Vacuum RF power line.

In order to realise high temperature and high pressure features of the experimental 

device the vacuum part of the RF power line had to satisfy the following requirements. The 

top end of the line had to withstand temperature up to 1000°C. The insulation and 

grounded sheath of the line had to allow operation up to 1 0  torr without electrical 

breakdown. The line had to be of the staggered shape, marked (15) in Fig. 2.1, because of 

the off centre position of the vacuum leadtlirough. The natural choice of the line concept 

was a coaxial cable. Two designs were tried out to implement this concept.

The first one has been developed on the base of the quartz tube of internal and 

external diameters 4.2 and 8.2 mm. The staggered shaping of the tube was done by 

softening the quartz on butadiene-oxygen torch. The ground casing and the core RF wire 

were made of copper braids. The hot part of the casing was made of stainless tube. Quartz 

proved to be an excellent insulating material for RF potential. But the design, utilising a 

single piece tube, had serious disadvantages. Difficulties of threading of the core wire 

through the tube knees have constrained it's diameter to 2 mm. This resulted in the position 

of the core wire inside the tube, changing during thermal cycles of the device. So, it was 

impossible to make precise measurements of the line impedance. The small inside diameter 

of the tube has led to complications in fixing the core wire to end connectors.

Overload of the hot part of the line resulted in cracking around the knee, 

necessitating the making the whole new tube. In order to avoid these systematic problems 

the second design, depicted in Fig 2.4, was developed. The second design was based on 

insulation made of ceramic alumina spacers with spherical convex and concave ends,
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Fig. 2.4 Schematic diagram of the vacuum RF power line

1 - RF core w ire 8 - P ow ered  elec trode

2 - A lu m in a  in su la ting  spacers 9 - S tain less steel co n n ec to r

3 - C opper tube casing l o  S ocket set screw

4 - Stain less steel connecto r l l  - Q uarts in su la ting  tube

5 - Q uarts in su la ting  tube 12- B rass casing

6 - S ta in less steel casing 13 - E lec trical feed th ro u g h  b ased  on

8 - S ocket set screw 6 m m  d iam eter copper ro d

w hich  a llow ed  the line to be curved in knees. Ceramic in su la to rs  w ere  strung  closely on  a

2.9 m m  d iam eter copper bra id , func tion ing  as the R F core w ire. A  so lid  co p p e r tube  w as 

used  as the ground ing  easing  around  ceram ic insu lato rs w ith  the  gap  ju s t  0 .2-0 .3  m m . 

S ta in less steel end connectors w ere fastened  to the R F w ire by  so ck e t set screws and 

e lee trieally  insu la ted  by  short quartz  tubes, w h ich  m ig h t be easily  rep laced . T he  w h o le  line 

had  very  sm all gaps betw een  the g rounded  shea th  and insu la to rs , th a t p ro v id ed  its re liab le  

opera tio n  up to  a p ressu re  6 torr.

2.5 Experimental set up

T he vacuum  vessel (Fig. 2 .1) w as connected to a n u m b er o f  system s, fo rm in g  the 

assem bly  o f  the experim ental set up, shown in  the Fig. 2.5. T he v acu u m  p u m p in g  line is
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based on a "Leybold" TRIVAC B mechanical pump and a "Leybold-Heraeus" 

TURBO VAC 220 turbo pump with the pumping speed 220 1/s. The vacuum line has the 

main pass with a butterfly valve and a by-pass with a tap valve. The pressure inside the 

vacuum chamber is measured: in the range 10'^-10'^ torr by the "Edwards" CP25-K 

penning gauge and in the range 10'^-10 torr by a "Chell" MKS 122a baratron. The gas 

supply line utilises three "Chell" MKS 258 mass flow controllers with ranges up to: 10 

seem for CH4 , 50 seem for H2 and 100 seem for Ar. RF current is produced by an ACG-5 

RF (13.56 MHz) generator, which is connected through an MW-5 matching unit and a 

specially designed high current RF vacuum feedthrough to the vacuum chamber.

.Cooling fan

Vacuum vessel
Baratroj

Grounding line

T hem ocouple millivoltmeter

X lutterfly valve

Furnace 
power and 
control unit

Penning
gauge .Turbopump

Ar

Mass flow controllers iechanical pumpCH

Matching
unit

Chilling unitRF
(13.56 MHz) 

generator

Fig.2.5 Schematic diagram of the experimental set up
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The furnace power supply is based on a standard 10 A variac and a WEST 2072 

process controller, which allows a preset temperature up to 1300 ±0.1 °C. Temperature of 

the furnace, rather than of the deposition substrate, was controlled directly in order to 

safeguard the heating element from overheating beyond its top limit of 1000 °C. The water 

cooling of the device is provided by the laboratory cooling system, based on a chiller unit 

with a cooling capacity 6.7 kW at 15°C water temperature. A special grounding line was 

made for the device, ending with 1 m steel rod inserted in ground outside the building. 

During runs with high temperature of the deposition substrate the top part of the vacuum 

glass bell-jar was air cooled.

2.6 Electrostatic probe and mass and energy analysis diagnostie systems.

Two diagnostics have been utilised for RF discharge plasmas characterisation. The 

first one is a passive electrostatic (Langmuir) probe, connected to the "AEA Technology" 

PlasmaProbe acquisition system. The second one is the "Hiden Analytical" energy and 

mass analysis system. The arrangement of both diagnostics in the vacuum chamber is 

depicted in Fig. 2.6.

The electrostatic probe design is based on the passive probe approach, described by 

Annaratone and Braithwaite [49]. The ring reference electrode (6 ), connected to the probe 

tip through a 6 . 6  nF capacitor (8 ), provides excitation of the tip potential so that it exactly 

follows the RF fluctuations of the plasma potential. In this way the tip (5) draws only 

conduction current and no displacement current. The EC filter, formed by the 50 pH chain 

of inductors (9) and 4.7 nF capacitor (12), has a resonance at « 0.3 MHz. It effectively 

impedes RF currents and passes only DC or slowly varying signals. As a result the probe 

characteristic can be interpreted as for DC plasmas without distortions from RF currents. 

The PlasmaProbe diagnostic system performs automated measurement of current to the 

probe tip and processing of acquired data. For signal processing the system uses an 

algorithm based on standard Langmuir probe theories [50]. It provides graphical and
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analysis data 

acquisition 

system
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Electrostatic 

probe data 
automated 
acquisition 
system

13.56 MHz

Fig. 2.6 Arrangement of plasma diagnostic systems in the vacuum chamber

(The scale of the diagram is arbitrary)

1 - Vacuum chamber 1 1  - Screwed connector

2 - Powered electrode 1 2 - 4.7 nF capacitor

3 - Grounded (top hat) electrode 13 - Vacuum seal

4 - Gas discharge plasma 14- 50 pm sampling orifice

5 - Cylindrical probe tip 15- Ion source

6  - Ring reference electrode (side view) 16- Ion transfer optics

7 - RF guard 17- Electrostatic deflector energy filter

8  - Three 2.2 nF capacitors 18- Quadrupole mass filter

9 - Five 10 pH inductors 19- Detector

10- Glass tube 2 0 - Turbo pump
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numerical information about the probe current and the main plasma parameters: plasma 

potential Up, electron temperature Tg and electron number density n^ (see Appendix A).

The energy and mass analysis diagnostic includes an extraction orifice for sampling 

ions and neutrals from the discharge volume and electronic blocks for powering the 

spectrometer and processing acquired signals. The sampling orifice is positioned in the 

plane of the earthed electrode. Ions from plasmas, accelerated by the potential drop of the 

sheath, enter the probe through 50 pm aperture, (14) in Fig. 2.6. Inside the probe before 

reaching a detector (19) ions pass in series through an electrostatic energy filter (17) and a 

quadrupole mass filter (18). By arranging the status of these filters it is possible to scan 

particles of specific mass through their energy spectrum or to detect various masses of a 

given energy (Appendix B). For analysis of neutrals the system has a special ion source 

(15) behind the sampling orifice, where neutral particles are ionised by electron impact. 

The two major types of data, produced by the system, are mass spectra of neutrals and 

energy spectra of ions.

2.7 Hydrogen and argon plasma characterisation.

Before trying various methods of RF plasma modification it was decided to 

characterise a basic asymmetrical RF discharge. Hydrogen was chosen as the main working 

gas because of its fundamental importance for diamond film deposition. Argon discharges 

were also characterised for adjusting diagnostics, being best studied medium of low- 

temperature plasma.

In order to use simultaneously the electrostatic probe and energy and the mass 

analysis probe the heat-shield grounded electrode assembly was replaced by a "top hat" 

grounded electrode (Fig 2.6), made of stainless steel. The "top hat" electrode is identical in 

size to the inner heat shield: diameter of the side wall -150 mm, distance from the powered 

electrode to the top lid - 57 mm. At the centre of the top lid there is a sampling orifice of 

the energy and mass analysis probe.
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The electrostatic probe is inserted through a special port in the side wall with its tip 

38 mm above the powered electrode. The probe tip of the length 7.5 mm is made of a 0.25 

mm diameter tantalum wire. The Debye length has been calculated subsequently to be 0.2- 

0.3 mm. So the probe perturbs plasma very little. Measurements of electron temperature, 

electron density and space potential as function of pressure are shown in figures 2.7 for 

hydrogen and 2.9 for argon. The pressure range was 30-135 mtorr for hydrogen and 20- 

105 mtorr for argon at the power 20 and 30 W.

The same figures contain data of DC bias potential of the powered electrode as 

function of pressure. These measurements were made by a high impedance voltmeter, 

connected to the pre-filtered and pre-scaled DC bias output of the matching unit.

Data of the energy and mass analysis probe of ion energy distribution function 

(lEDF) and neutral composition of RF plasma are presented in figures 2.8, 2.10 and 2.11. 

These experimental results will be discussed in the next section.

In hydrogen discharges a rapid degradation of the electrostatic probe signal was 

observed below 0.030 torr. This was evident from a strongly distorted second derivative of 

the signal. The automatic software algorithm, processing probe data, does not recognise 

any deviations from a perfect probe signal. Consequently, the software could choose for 

calculation a corrupted part of the probe characteristic. Typically, this led to a spreading of 

values of the main plasma parameters during repetitive measurements. A method of 

bypassing this problem, using manual data processing, will be discussed in the next chapter 

(section 3.5).

Such behaviour of a passive electrostatic probe in RF plasmas is usually caused by 

a poor compensation of RF potential at the probe tip, which results in passing of RF 

currents through the probe sheath. Most likely, this problem is a result of higher frequency 

harmonics, which are generated in plasma at some regimes. In order to tackle this difficulty 

a reference ring, three times larger in collecting area, has been tested.
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Fig. 2.7 Probe measurements of plasma parameters in hydrogen discharge 

with pressure variation. Power -  23 W, gas flow -  30 seem.
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Fig. 2.8 Variation of ion composition and lEDF in hydrogen discharge

with increasing pressure (power-30 W). Measurements are taken by the 

mass and energy analysis probe. Note the different vertical scale.
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Fig. 2.9 Probe measurements of plasma parameters in argon discharge with 

pressure variation (power -  20 W, gas flow -  30sccm).

Solid lines on the Te and ne graphs distinguish the real data from the one, distorted 

by RF signal. Typically, RF contamination of the probe signal raises electron 

temperature values and understates density values. In more details, this problem is 

described in the section 3.5, chapter III.
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Fig. 2.10 Variation of ion composition and lEDF in argon discharge (power-30 W)

with increasing pressure. The chamber has been pre-pumped for 30 h. 

Measurements are taken by the mass and energy analysis probe.

Broken line of the Ar^ lEDF at 0.015 torr depicts the part, which exceeds the chosen 

vertical scale of the capture screen. The 2 10  ̂ c/s maximum have been measured 

separately at the screen with vertical scale 10  ̂c/s.
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Fig. 2.11 Mass analysis data for the experimental chamber from the energy and 

mass analysis probe.

It is possible to estimate content of water vapour from the mass spectra of 

argon environment. Assuming equal sensitivity of the mass analyser to 

water (17 and 18 a.m.u. peaks) and to argon (20 and 40 a.m.u. peaks), the 

water vapour density is estimated to be 9%.
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The large reference ring did extend probe measurements of acceptable quality down to the 

pressure 27-28 mtorr in hydrogen. But subsequently the original reference ring was used 

for the bulk of the experiments reported here, because its smaller vertical size facilitated 

electron injection.

Typically, with gas flow being at a preset level pressure increase was achieved by 

throttling the pump line using the butterfly valve (Fig. 2.5). When the gas pressure rises in 

argon discharges, electron temperature first demonstrates a tendency for a steady decrease 

(Fig.2.9). But starting from 42 mtorr the values of the electron temperature become 

scattered. Again, it could be associated with the poor compensation of the probe against 

higher frequency harmonics. The fact, that they appear with pressure rise, could be linked 

with a complete substitution of argon ions by water (or hydronium) ions (Fig. 2.10) by 42 

mtorr. Most likely, substitution of the major positive charge carrier has changed plasma 

impedance, generating higher harmonics. The residual water vapour in the chamber (Fig. 

2.11) originates from several layers of the heat shield above the base plate ((Fig. 2.1, (4) 

and (11)), which can not be easily removed. It is impossible to outgas water by heating the 

chamber because of the inductances, that form probe filter circuit and positioned inside the 

vacuum vessel. Therefore, the remaining solution is a longer pumping period before 

starting discharge (Fig.2.11). It gives some effect by delaying the ion substitution in argon 

discharge up to 50 mtorr.

2.8 Discussion

2.8.1 Variation of plasma parameters with pressure

Basic tendencies of variation of plasma parameters with pressure change agree with 

commonly known discharge plasma properties. Most data from the probe showed the 

electron energy distribution to be not to far from Maxwellian, and therefore an electron 

temperature can be defined.

Plasma potential is determined by balance of electron and ion fluxes to the
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grounded electrode surface. At low pressures, where plasma is less dense, energetic 

electrons can easier escape from quasineutral plasma through the sheath potential barrier. 

In this way the positive potential of the sheath or plasma potential is created. With 

increasing pressure such electron escape is impeded by the decline of their temperature. So, 

plasma potential declines. “Argon” discharges, where hydronium (water) ions completely 

dominate above 40 mtorr (Fig 2.10), has the opposite tendency (Fig. 2.9). Their increase 

apparently causes a growth of plasma potential by 3 V at 105 mtorr.

A simple model using a particle balance can be applied to calculate electron 

temperature for comparison with experimental results. Assuming ions production only by a 

direct electron-molecule impact and equalising ionisation rates in the plasma volume and 

losses of charged particles to the surfaces leads to the following formula (Appendix C):

A
T In 1.651-10^’ • 1 +

2-T, 

V  y
- X  = 0  (2.3)

J

where Tg - electron temperature (eV), Vj - ionisation potential (V), Tg - gas temperature 

(K), p - gas pressure (mtorr), cJmax - maximum value of ionisation cross-section (m^). Mi -  

ion mass (a.m.u.), dgff - effective size of plasma (m). The last parameter is determined as 

deff = t î/Sioss where - plasma volume (m^), Sioss - total area of charged particles losses 

(m^). We assume Tg = 330 K, l î = 1.35x10'^ m ,̂ Sjoss = 8.64x10'^ m .̂ Initially, Tg is

calculated, considering H2+ ions only: Mj= 2, <Jmax= 1.01-10'^^ m^, Vj = 15.4 eV.

As it can be seen in Fig.2.12 theoretical values (curve (b)) exceed experimental 

values (curve (a)) 1.7-5 times. Assumption of Mj = 3, corresponding to the most numerous 

hydrogen ion lowers theoretical values just by a few percents (curve (c)). Calculation 

of the formula (2.3) for water ions (M, = 18, (Tmax = 4-10'^° m^, V, = 12.67 V) produces 

curve (d), which still exceeds experimental data almost 3 times above 70 mtorr. Finally, 

curve (e), which coincides with experimental values above 70 mtorr, is obtained for water 

ion with assumption of hypothetical V; = 6.5 V.
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Fig. 2.12 Electron temperature Tg as a function of pressure p in hydrogen discharge.

(a)-experimental data from Fig.2.7, 

otherwise -  theoretical curves with:

(b) (c) (d) (e)
Vi(V) 15.4 15.4 12.67 6.5
Mi (a.m.u.) 2 3 18 18

The model has not produced theoretical curve, which has a similar point of bending as the 

experimental one. It could be ascribed to the fact, that ion composition of the discharge 

changes with pressure (Fig. 2.8). On the contrary, the model doesn’t account for presence 

of several different ions in plasma, no for the shift of their pressure dependent balance. In 

addition, stochastic heating of electrons, hence non-maxwellian EEDF, and non-uniformity 

of plasma density are significant at lower pressures. Coincidence of part of theoretical data 

(curve (e)) with experiment occurs at the ionisation threshold, which is much lower than 

the typical values for hydrogen and water. It points out at more complex ionisation 

mechanisms: step ionisation, requiring lower threshold values compared to electron 

ionisation of non-excited neutrals, or ionisation through neutral-ion collisions.

For the probe measurements in “argon” discharge it is possible to separate the real 

data for temperature and density. They are marked by solid lines on the Fig. 2.9. Starting 

from 40 mtorr, electron temperature rises, contradicting the formula (2.3). The possible 

explanation is a complete substitution of argon ions by water ionised species by 42 mtorr 

(Fir. 2.10). It leads to generation of higher harmonics, reflected in spreading of the probe 

data (Fig. 2.9). It will be demonstrated in chapter IV, that presence of higher RF harmonics

benefit an effective electron heating by the sheath.
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The strong decline with pressure of the energy and mass analysis probe signals in 

hydrogen and argon discharges (Fig. 2.8 and 2.10) seems contradictory to the formula, 

describing ionic flux to the substrate:

(2.4)
V

where Ug - electron density, e - electron charge, Tg - electron temperature, m, - ion mass. By 

using values of relative change of electron temperature and density in the range 30-100 

mtorr in hydrogen (Fig. 2.7) it is estimated, that ion flux to the grounded electrode should 

increase 3.5 times. At the same pressure interval lEDF signal declines nearly by order of 

magnitude (Fig. 2.8). This phenomenon could be associated with the following two effects. 

First, the 50 pm sampling orifice of the probe allows in only ions with very small 

deflections from trajectories normal to the electrode surface. At higher pressures ions are 

scattered in collisions while passing through the sheath. Many of them are lost on the 

surfaces of the sampling orifice. Second, there could be redistribution of plasma density 

with pressure growth; density at the sheath boundary of the grounded electrode being a lose 

side.

2.8.2 Brief overview of impact reactions, forming hydrogen species

The plasma chemistry of hydrogen discharge is extremely complex. It is beyond the 

scope of this work to analyse it in detail. At the same time some general information is 

necessary in order to explain results of the energy and mass analysis probe. A number of 

collisional reactions [52], describing production of various hydrogen species, are presented 

in table 2.1. Complete graphs of collisional cross-sections and reaction rates of some 

reactions are presented in Appendix D.

As it could be seen from table 2.1, the probability of direct dissociation and 

dissociative ionisation of hydrogen (reactions (2.7) and (2.8)) in RF discharge is quite low, 

because of small cross-section values and high threshold energy (or ionisation potential)
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for impacting electrons. The ion originates from the reaction (2.12). Its domination 

among hydrogen ions is based on highest cross-section value of the reaction and,

Reaction Eth (eV) Cmax (cm ) <av> (cm^s-i)

e + H(ls) e + + e 13.6 7 10''7 4-10''“ (4) (2.5)

e + H*(2s) ^  e + H"" + e 3.4 8  1 0 '* 1.8-10‘’ (50) (2 .6 )

e + H] e + H2 —>e +H+H 8.5 3T0-17 4-10'^(17) (2.7)

e + H2 e + + H + e -50 7-10-18 - (2 .8 )

e + H2 ^  (H2 I* -> H' + H 0 . 1 1-10-15 MO'* (2) (2.9)

e + H2 —> e + H2  ̂+ e 15.4 l.OMO-i^ (4) (2 .10)

H2  ̂+ H2  ̂  H2 + H2^ - :Fio^5** - (2 .11)

H2 ‘'  + H2 -> H 3  ̂+ H 0 4-10-15 ** - (2 .12)

e + Hŝ  -^ e + Ĥ  + H+H 14 7.2-lO'i* I-I0'®(3) (2.13)

e + Hs"" ^ H  + H + H - 1-10^4** 2 -10'’ (0 .1) (2.14)

Table 2.1 Impact reactions, producing various hydrogen species,

where amax - maximum value of cross-section, <av> - reaction rate 

coefficient with energy of striking particle in brackets. Values, marked **, 

are for incident ion energy 0.1 eV

practically, no threshold barrier. But this reaction requires the H2  ̂ ion, which originates 

from the reaction (2.10). Therefore (2.10) reaction stands at the beginning of reaction 

chains, producing hydrogen species on the discharge.

Production of atomic hydrogen could proceed through several reactions: (2.7), 

(2.8), (2.9), (2.12) and (2.14). Again, ion-atom reaction (2.14) has the highest cross- 

section. At the same time, cross-section of the electron impact reaction (2.9) is just four 

times lower, and involves low energy electrons. It is necessary to point out, that most of the 

electron reactions have maximum cross-section values between 50 and 100 eV electron 

energy (Appendix C). On the contrary, reaction (2.9) has its cross-section maximum just at
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0.4 eV. Consequently, there should be negative ions in RF hydrogen discharge.

ions are produced by the reactions (2.5) and (2.6). Reaction (2.6) has higher 

cross-section and reaction rate together with a lower threshold due to excited state of the 

hydrogen atom. It is the most likely route in RF hydrogen discharge, having low electron 

temperature.

Summarising available information, it is possible to conclude, that domination of 

ions among hydrogen species arises from practically a zero energy threshold of the 

reaction (2.12). Majority of H2  ̂ species are converted in even at weakest collisions 

with hydrogen molecules. Preference of ionisation route for hydrogen molecule (2.10) over 

the dissociation one (2.7) is attributed to the higher value of ionisation cross-section.

2.8.3 Formation of water ions in plasma discharge

The residual concentration of water vapour is quite low. At 0.1 torr of total pressure 

in the chamber it is less than or about 1% in hydrogen and in argon. Despite this ratio in 

the measurements, presented here, hydronium ions, mainly H3 O+ and H2 O+, form two 

thirds of all the ions in hydrogen discharges and a dominant part, around 99%, in argon 

discharges at the same pressure (Fig.2.11). A significant amount of hydronium ions in 

hydrogen RF discharges with increasing pressure was confirmed in [53]. The presence of 

hydronium ions in hydrogen and hydrogen-argon DC discharges was registered at the 

pressure 0.105 torr in [54]. Only little has been published about plasma chemistry, 

involving water molecules.

During the course of this work information about the cross-section of water 

ionisation by electron impact wasn’t found. Water and carbon dioxide molecules are close 

in their effective size (Table 2.2) and are both strongly polarisable. Consequently the 

ionisation cross-section of water is probably similar to that of carbon dioxide. In this case a 

maximum value of the water ionisation cross-section exceeds that of argon by no more 

than 10%. At the same time the ionisation potential of water molecule is «3 V less than
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potentials of argon and hydrogen (Table 2.2). These differences can not explain the 

domination of hydronium ions in both argon and hydrogen discharges, if their production is 

only by electron impact ionisation. But they permit effective hydronium ions production in 

reactions, originating from collisions of ions, atoms and molecules. It is possible to suggest 

reactions, based on the Penning effect, chemical bond rearrangement and charge transfer 

mechanisms.

Gas Ionisation 

potential V; (V)*

Effective molecular 

diameter d (lO'^cm) **

Maximum of ionisation 

cross-section aj (lO’̂ ĉm̂ ) ***

H2 15.4 2.75 0.97

Ar 15.8 3.67 3.21

H2 O 12.67*** 4.68 -

CO2 13^ 4.65 3.53

Table 2.2 Ionisation potentials, effective diameters and ionisation cross-sections 

of selected molecules. (Data are taken from: *- [55], **- [56], ***- [57])

Penning ionisation reactions (2.17) and (2.19) (Table 2.3) are possible, because 

both hydrogen molecule and argon atom have metastable states with an excitation 

threshold of the order or exceeding ionisation potential of water molecule 12.67 eV. For 

hydrogen molecule it is O fly  state with 12.6 eV threshold, for argon - 3p  ̂ states with 

thresholds in the range 12.76-12.89 eV. There is no information about rates and cross 

sections of these reactions. In [58] the cross section of the reaction (2.21) was measured, in 

which excited argon atom (3 p2 o state) with 11.24 eV threshold passes excitation to water 

molecule with subsequent dissociation of the last. It is likely, that the reaction (2.19) has 

the similar value of cross section. Then the order of the reaction rate for (2.19) can be 

estimated by multiplying the cross section and relative velocity of colliding particles.

Chemical bond rearrangement reactions (2.16) and (2.20) can be sources of H3 O+ 

ions. Thermal collisions of charged and neutral particles are dominated by the polarisation 

force. So, the maximum rate constants of the reactions are of the Langevin value [59]:
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Kl, =8.99x10-" x (a^ /m ^ )""  , cmV> (2.15)

where - relative polarisability (for water molecule %=9.8); m^ - reduced mass in atomic 

mass units, derived as m^ = m̂  - m 2 /(mj -i-mj) from masses of colliding particles.

Reaction Rate constant 

cm ŝ'i

Cross section 

cm2

Hydrogen discharge:

H3+ + H2O -4-H2 + H3O+ 1.753x104 (2.16)

H2 * + H2 O —> H2  + H2 0 ^ + e (2.17)

Argon discharge:

Ar+ + H2 O ^  Ar + H2 O+ -8x10^0 (2.18)

Ar* + H2 O -> Ar + H2 O+ + e 8 .12x 10-10 -10-14 (2.19)

H2 0 + + H2 0 -> H 0  + H3 0 + 9.37x10-10 (2 .20)

Ar* + H2 0 ^ A r  + H2 0 * 8-11x10-15 (2 .21 )

Table 2.3 Hydronium ions production reactions

High probability of the reaction (2.18) originates from its exothermic character: the 

ionisation potential of argon exceeding the one of water aE=3.13 eV. Water molecules are 

greatly outnumbered by argon atoms with high internal energy. As a consequence almost 

all the water molecules are ionised. It is reflected in measurements by the energy and mass 

analysis probe (Fig. 2.10), which show water ions to be the second largest group after 

argon ions. This process can not be attributed to the class of resonant charge transfer 

reactions, that requires AE«0. So, the order of the reaction (2.18) rate constant has been 

estimated from the formula (2.15).

Summing up, it is possible to conclude that hydronium ions in hydrogen and argon 

discharges are produced mainly in collisions between heavy particles. Rate constants of 

these reactions are one-two orders higher than for ionisation by electron impact. This
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determines preferable ionisation of the minor fraction of water molecules in mixtures with 

hydrogen and argon.

2.9 Conclusion

Residual water vapour is generally difficult to pump away. In the vacuum vessel 

(Fig. 2.1), designed for heated deposition experiments, multiple layers of the bottom heat 

shield, remaining in the chamber during plasma characterisation experiments, present a 

large area for water absorbtion. The pumpdown time has been observed to be considerably 

less, when the bottom heat shield assembly and the protective copper disk (Fig. 2.1, (11) 

and (4)) are removed from the chamber. In addition, deposition experiments resulted in 

growth of carbon films on various parts of the device. It is extremely difficult to clean 

away completely these deposits, especially from the heat shield. The porous structure of 

such films can be an ideal site for water attachment.

It can be concluded that the present configuration of the vacuum vessel has a 

feature of slow outgasing of residual vapour due to the multipurpose nature of the device. 

Residual water molecules play an active role in discharge plasma chemistry and can 

strongly influence plasma parameters. Nevertheless, it is possible to select regimes of 

discharge, where their effect will be minimal. In argon discharges it is below 25 mtorr and 

in hydrogen - below 50 mtorr. In hydrogen discharges the passive electrostatic probe 

implies lower boundary for measurements 30 mtorr. These pressure ranges are quite 

sufficient for conducting experiments on characterisation of plasma with injection-removal 

of electrons. In deposition experiments it is quite difficult to conduct monitoring of gas and 

plasma composition due to high temperature regimes 800-900°C. The energy and mass 

analysis probe can operate no higher than 400°C. Preheating of vacuum vessel is a 

common procedure for a rapid outgasing of residual water vapour; so, at this stage it is 

assumed that the problem with water impurities at high temperatures is somewhat lessened.
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Chapter III.

“RF capacitive discharge with injection and removal of electrons”
3.1 Introduction

As it has been outlined earlier (Chapter I, section 1.8) electron injection looks like 

an attractive way of enhancing low pressure RF discharges. It allows the introduction into 

the plasma volume of an electron stream of preset energy. The energy of electrons in low- 

pressure RF plasmas is usually within the range 1-3 eV, which appears to be the main 

disadvantage of the RF discharge as an environment for diamond film growth (Chapter I, 

section 1.7). That is why an introduction in RF plasma of an electron stream in excess of 

10-20 eV could be beneficial for this purpose.

On the other hand, the variation of electron temperature Tg and density n^ resulting 

from the presence of the more energetic electron stream, can have a strong effect on other 

discharge parameters: plasma potential Up and DC bias potential of the powered electrode 

U d c  bias- This rigid link between plasma parameters is determined by the balance of rates of 

charged particle production in the plasma bulk and their losses on electrode surfaces. For 

example, it has already been shown in Chapter II how a single variable, like gas pressure 

influence all the main plasma parameters.

It is important to know the effects, which result from electron injection. Such 

information will define to what extent this approach can be beneficial for carbon film 

deposition. So, the main target of this part is the investigation of the effect of electron 

injection on discharge plasma parameters and plasma composition.

3.2 Brief review of previous works on electron injection in plasma.

Injection of electrons into low-temperature plasma has quite a lengthy history. At 

the beginning of 50s an electron beam was used by Little and von Engel for measuring the 

electric field of a hollow cathode discharge [60]. The electron gun, used in that experiment, 

utilised thermionic effect for electron production. The hot emissive filament was
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positioned between two copper hemispheres. The small hemisphere had an extraction 

orifice, connecting the volume of the electron gun with the main discharge chamber. The 

large hemisphere had a potential of a few hundred volts negative with respect to the 

filament, which was itself biased the grounded, small hemisphere. The emitted electric 

beam had energy up to 12 kV, but quite low current lO’̂ A. The low current value was 

necessary to minimise ionisation by the electron beam in the main discharge plasma. The 

vacuum volume of the gun had a separate pumping system and was at a pressure below 

1 mtorr.

In the 60s the necessity to operate DC sputter-coating reactors below 10 mtorr led 

to the development of the thermionically supported glow discharges, described by Maissel 

and Glang [61]. The scheme of this discharge presents a DC diode configuration with two 

additional electrodes: a second anode and a thermionic cathode. The thermionic cathode 

was based on electron emission from a heated tungsten filament. Also oxide-coated and 

thoriated filaments were in tested.

In the paper by Christensen [62] various schemes of thermionically enhanced DC 

and RF discharges were considered. Special attention was paid to the analysis of a triode 

system, which was described as an RF parallel plate electrode configuration with an 

additional DC biased electrode. A qualitative analysis is given for variation of potentials at 

all three electrodes. No plasma parameters were measured.

A detailed description of thermionically supported sputter-coating apparatus was 

given by Tisone and Cruzan in [63], where it had the name of a low-voltage sputtering 

(TVS) system. The basic plasma in this device was created between the thermionic cathode 

and the anode. A hot emissive filament was made of a pure Ta wire. Typical voltage and 

current of the discharge in Ar at a pressure S'lO’"̂ torr were 90 V and 6  A respectively. The 

540 W of discharge power together with 680 W of power for the filament heating required 

a special water-cooled confinement tube within the vacuum chamber. Another pair of
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electrodes, a negatively biased sputter target and a substrate table, were positioned in 

openings of the confinement tube. An account of this work on sputter-deposition problems 

characterised the discharge system in terms of current-voltage characteristics. No direct 

measurements of plasma parameters were made.

A system, identical to the LVS one in its basic configuration, was used by Heinman 

and co-workers for high rate reactive ion etching of alumina and silicon in CCI4 [64]. The 

etched material (AI2 O3 or Si) was positioned on the negatively biased electrode. The main 

point of this work concerned problems associated with etching.

In the beginning of 70s a discharge device configuration was developed by 

Limpaecher and Mackenzie, which combined electron emission from a filament and 

plasma confinement by a magnetic field [65]. Emissive filaments were positioned directly 

in the main discharge volume; and a multipole cusp magnetic field along the surface of 

discharge chamber provided plasma confinement. The magnetic field was created by dipole 

permanent magnets. One of the first devices, based on this principle, had an 8 6  litre 

discharge chamber with 1252 bar magnets, mounted on walls. 48 filaments with bias 

between - 40 and -120 V performed the function of cathodes. The magnet pole faces served 

as anodes. A plasma density as high as 8-10^  ̂m'^ was achieved in this device in Ar at 1 

mtorr and the emission current of filaments 20A. This configuration became the basis for 

numerous broad beam sources of ions and electrons. In this case one of walls of the 

discharge chamber was replaced by an extraction grid. For example, Intrator and co

workers described a triple plasma device [6 6 ]. It had two counterstreaming electron 

sources, producing beams of 30 cm diameter with energies up to 350 eV.

The configuration with locating the emissive filament in the main discharge plasma 

was utilised in some deposition experiments. Thus, Dehbi-Alaoui and co-workers 

developed a PVD system with enhancement by the emissive filament [67]. Carbon films 

were deposited on the RF or DC biased substrate. The filament with bias -100 V and
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heating current 5 A was located at 25 cm from the substrate. Electron emission provided 

additional control of the current to the substrate and supported the discharge at pressures 

below 1 0  mtorr.

Some characterisation of plasma with injected electrons was performed by Ando 

and co-workers [6 8 , 69]. The purpose of these works was to study potential formation in 

plasmas after the completion of gas breakdown. The injection of electrons was intended to 

imitate the process of secondary electron production on the cathode surface. The electron 

beam source consisted of a heated, oxide-coated cathode and a mesh grid, separating the 

cathode from the main discharge volume. The cathode was at a negative potential with 

respect to the mesh, up to - 40 V, and could operate in DC and pulsed regimes. The 

pressure of argon in the chamber was (3-5)-lO'"̂  torr. Temporal evolution of the spatial 

potential in the discharge volume was measured by means of an electron-emitting probe.

A number of works have been performed with electron beams used for probing RE 

or DC plasma sheaths. The beam energy in such systems was of the order of several kV. 

For example, Sato and Lieberman used the 8  kV electron beam for probing an RF 

capacitive discharge in Ar at 2.3 and 20 mtorr pressure [70].

A detailed description of an energetic (up to 3 kV) electron source was given 

Schatz and Ruzic [71]. Its function was as a secondary source of ionisation and an 

additional way of process control in an RF reactive ion etching reactor. The principle of 

operation of this source is based on secondary electron emission from the cold cathode and 

subsequent acceleration of electrons in the cathode potential fall. The maximum electron 

current 50 mA was achieved, when the reactor operated in O2 or CFg. In He the current was 

at the level of tens pA. This effect was explained by the formation of an oxide or a fluoride 

insulating layer on the cathode, which enhanced secondary electron emission. Attractive 

side of this source is its ability to operate at pressures as high as 50 mtorr. A cold cathode 

electron gun for X-ray spectrometry, having the similar design, was described by Legrand
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and co-workers [72].

A more powerful electron source, developed for electron beam welding, was 

described by Galanski and co-workers [73]. The beam was formed by extracting electrons 

from a hollow cathode reflected discharge. The discharge was confined inside a cylindrical 

anode between a hollow cathode and a planar reflected cathode. Both cathodes were 

positioned opposite to each other at the but-ends of the anode. The reflector cathode had a 

1 mm diameter channel for electron emission. Argon gas was supplied into the hollow 

cathode cavity and pumped away through the emission channel, maintaining the source 

pressure in the range 0.01- 0.5 torr. Axial magnetic field up to 0.1 T was applied to the 

discharge. The source was able to produce electron beam with the current up to 0.7 A. No 

data on the beam energy were presented. But from the current-voltage characteristic of the 

discharge it is possible to conclude, that it had the maximum value around 500 eV.

Recent works have started to address the issue of plasma parameters measurements. 

Early results of the experiments reported later in this chapter were presented in [74]. An RF 

deposition plasma with an external thermionic source was characterised by means of 

Langmuir probe and energy and mass analyser.

The influence of thermionic emission on a plasma, created by a screened RF coil, 

was investigated Schwager and co-workers [75]. The electron source consisted of an 

industrially manufactured, heated emissive disk, which was impregnated with barium 

calcium aluminum scandate. The disk was electrically insulated and directly exposed to the 

basic discharge plasma. Experiments were conducted in a hydrogen discharge at 11 mtorr. 

Plasma parameters and composition were diagnosed by a Langmuir probe and an energy 

and mass analyser. Probe measurements were performed in two positions: 20 mm in front 

of the emissive disk and with 70 mm shift to the side from the first position. Plasma 

potential, density and electron temperature were measured at two different temperatures of 

the emissive disk. Experimental data demonstrated that the effect of electron emission on
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discharge plasma is localised in the vicinity of the emissive disk. This can be attributed to 

the low energy of emitted electrons, though the authors fail to make this point themselves. 

The only accelerating potential which affected the thermionic electron flux was the one 

between plasma and floating potentials. As a result, the injected electrons were localised 

near the emissive disk, and no charge multiplication was involved.

A more advanced scheme of electron source with controlled energy of the electron 

flux, was described by Sato and co-workers [76]. This work investigated the effect of 

electron injection on RF capacitive discharge. Powered and grounded electrodes were 110 

mm in diameter and separated by 40 mm. The electron source was positioned behind the 

meshed grounded electrode, which separated an auxiliary plasma in the source from the 

main discharge. The auxiliary discharge was created in a DC cylindrical magnetron. The 

energy of injected electrons was controlled by biasing (up to 40 V) the magnetron with 

respect to the grounded electrode. A Langmuir probe provided data on plasma density and 

electron temperature, an emissive probe - on plasma potential. A multi-grid analyser was 

utilised for ion energy measurements. Experiments were conducted in argon at a pressure 

of 5 mtorr. Basic discharge parameters were quite moderate. RF voltage was just 40 V, 

resulting in a feeble plasma density of 2-10^  ̂m'^. Injection of electron current up to 20 mA 

resulted in decrease of the plasma potential from 20 V to 3 V. Variation of maximum of 

ion energy, measured by the energy analyser, confirmed the decrease of plasma potential. 

Data on variation of plasma density and electron temperature were not presented.

Modelling of RF plasma with electron injection was described by Kushner and co

workers [77]. Two cold cathode electron beam sources, positioned at the opposite sides in 

RF discharge, were considered in order to compensate for asymmetry in bulk plasma 

parameters. Calculations of bulk distributions of plasma electron and injected electron 

densities, as well as of ion fluxes to the RF electrode were conducted.
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Haas, Goodyear and Braithwaite studied injection of electron beam up to 100 eV 

energy in RF plasma both theoretically and experimentally [78]. Such effects, as cooling of 

the bulk electron temperature, increase of the bulk electron density and decline of plasma 

potential, were examined.

The reviewed publications demonstrate, that despite quite a long history of the 

method of electron injection into low-temperature plasma, there has been no systematic 

research of its physical effects on discharge conditions. Only during the last decade there 

has appeared several experimental programmes, looking at the relation between injected 

electron beam characteristics and plasma parameters.

The list of described publications with the main characteristics of electron sources 

is presentsd in the Table 3.1. It is not exhaustive, but it represents the main trends in 

development of electron sources for low-temperature plasma.
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3.3 Design of the electron source and the discharge volume configuration.

In order to implement electron injection in an RF capacitive discharge a special 

electron source was designed and manufactured. Thermionic electron emission from a 

heated filament was chosen for electron production. This choice was determined by the 

following considerations. The source should be compact in size for mounting inside the 

vacuum chamber between the side wall of the top hat electrode and the glass wall of the 

chamber (Fig. 2.6). Thermionic electron emission is a well established technology, which 

offers a selection of materials for the filament, allowing one to minimise its heating power. 

Too much thermal heating, produced by the filament, may damage the electric probe. The 

most important consideration was possibility of a straightforward regulation of electron 

energy flux by negative biasing of the filament. After a number of trials the electron source 

design depicted on Fig. 3.1 was developed.

The electron source assembly is mounted on a circular base made of machinable 

ceramic. The base acts as a fixing and insulating plate for the two electrical contacts of the 

filament and the body of the source. The body is a cylinder of 26 mm diameter and 40 mm 

length, spot-welded from 0.1 mm thick stainless steel. Its stiffness is provided by a quartz 

insert. The quartz tube also prevents a part of the emitted electron current from closing on 

the grounded body. The front part of the body is connected directly to the top hat grounded 

electrode of the main RF discharge. Between the source and the main chamber volume is a 

meshed window for extraction of the electron flux and protection of the filament from RF 

currents. The area of the window is approximately 2 cm^. The mesh has density of 400 

wires per inch with transparency of 69%. It is made from stainless steel. The emissive 

filament is positioned 3 mm behind the meshed window. It is made in the form of an 

helical spiral of 4 mm diameter and 13 mm length, formed from 0.325 mm diameter 

tungsten wire. At the rear side of the filament is a hemispherical reflector which is 

connected to the negative contact of the filament.
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(A) (C)

m M m j

(D)

23 mm

10 mm

Fig. 3.1 Schematic diagram of the electron source.

(A) - Side section*, (B) - Plan*, (C) - Front section without 

mounting plate, (D) - Mounting plate.

* - with longitudinal eross-seetion of the body

1 - C eram ic base 6 - E m issive  filam en t

2 - S ta in less steel body 7 - F ilam en t h o lders

3 - Q uarts tube 8 - R eflec to r

4 - C lam p 9 - F asten ing  screw

5 - M eshed  window 1 0 - M ou n tin g  p la te

G eom etric  configurations o f  the sem icirc le  re flecto r and the fla t ex trac tin g  m esh  arc close 

to  the schem e o f  the Peers spherical e lec tron  gun w ith  eonfocal flux  [79]. So, it is assum ed , 

th a t the  d ispersing  electron  flux from  the quasi cy lindrical em ittin g  surface  o f  the  filam en t 

is tran sfo rm ed  into a parallel flux  at the ex it o f  the source.

E ffective therm ion ic emission from  heated  ca thodes occurs at m u ch  low er 

tem pera tu res, w hen  they are coated  by ox ides o f  a lkaline  m etals , th an  it does from  pure
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tungsten or molybdenum cathodes [80]. So, the tungsten emissive filament is coated with a 

powder mixture of equal parts of barium and strontium carbonates (Ba,Sr)COg. Barium and 

strontium carbonates are transformed into oxides during preheating of the filament in 

vacuum.

The problem of preserving the emissive layer on the filament surface for a 

sufficiently long time to study the injection of electrons into the RF plasma appeared to be 

the most difficult one. The barium-strontium carbonate powder was fixed by a blue mineral 

wax in the first prototypes. At the pressure range 10-40 mtorr in hydrogen or argon and the 

heating power of the filament 20-25 W the coating lasted no more than 30 min at most. 

The combined effect of heating and ion bombardment completely eroded the coating layer. 

In addition the emission from the filaments was very unstable.

Fixing of the emissive coating without the wax became possible, when quite an old 

technique, described in [81], was used. It uses electrophoresis, or electrochemical 

precipitation. A small amount of coating powder is stirred in acetone or amyl alcohol to the 

state of a turbid whitish liquid. Some solid phase in the liquid is acceptable. Two filaments, 

connected to a DC power source, are dipped into the mixture. Precipitation occurs on the 

positively biased filament. The process lasts 15-18 minutes at 180 V with a current up to 

30 mA. Quite a uniform coating up to 0.5 mm thick is obtained all over the dipped surface. 

Although the electrophoresis method allows one to make a coating with good adhesion to 

the filament without the wax or other binder, it doesn't resolves the problem of erosion. 

The emissive layer deposited by the electrophoresis lasted just a few minutes at 30 mtorr in 

hydrogen.

The erosion problem has been eliminated by developing a porous-like cathode 

surface. Porous cathodes are sintered at high temperatures from coarse-grained powders of 

tantalum or molybdenum [82]. During electrophoresis emissive material penetrates into the 

pores of these structures. Such cathodes, impregnated with thorium and yttrium oxide, are
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150 mm

10 mm

5

2

10 12 11 2 3

20 mm

HC

13.56 M Hz

613 87

80 mm

Experimental configuration of the discharge volume: plan and 
side section.

8 - Filam ent bias power supply

Cylindrical electrostatic probe 

Ring reference electrode 

Energy-mass analyser grounded shield 

Energy-mass analyser biased plate with 

sampling orifice

Stabilising resistance; 988 Q , 100 W.

M arking o f the circular recess in the 

grounded electrode where the glow of 

“hollow cathode” type was observed

Fig. 3.2

1 - Powered electrode

2 - Earthed electrode

3 - DC bias electrode (DC anode)

4 - Insulating ceramic beads

5 - Electron source

6 - DC electrode power supply

7 - Heated filament power supply

9 -

1 0 -  

1 1  -  

12  -

13 -
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capable of providing an emission current density up to several A-cm'^ and are highly 

resistant to poisoning and ion bombardment. In order to mimic porous structures, the core 

tungsten wire used in this work was braided by 5-6 loose strands of a 0.025 mm diameter 

molybdenum wire. Afterwards it was shaped into the spiral filament and permeated by 

(Ba,Sr)COg, using electrophoresis. The filament with porous braiding has appeared to be 

both durable and stable.

The braided filament was preheated for about 10 min by a power of 12 W at 5-10'^ 

torr in order to transform the impregnated carbonates to oxides by thermal decomposition. 

In the emission regime the filament is heated at arate of 15W (= 3A-5V) and negatively 

biased up to 200V. A source with such a filament has worked more than 3 hours in 

hydrogen at 45 mtorr.

The electron source is mounted on the side wall of the top hat grounded electrode 

with the bottom part of the extracting window 1 0  mm above the plane of the powered 

electrode (Fig. 3.2). In the early experiments, involving testing of the electron source, it 

was discovered that an additional positively biased DC electrode has a strong influence on 

plasma parameters. A small cirular DC electrode 2 cm in diameter was used originally. For 

the later experiments it has been replaced by the large rectangular one. So, the complete 

arrangement of electrodes includes the DC bias electrode, positioned opposite to the 

electron source. It has sizes 41mmxl25mm

with its longer side curved along the circle of the grounded electrode. Three DC bench 

power sources are used to heat and bias the emissive filament and to power the positive DC 

electrode.

3.4 Operation of the DC bias electrode and the electron source

The current-voltage characteristics of the DC bias electrode operating in argon and 

hydrogen RF discharges are presented in Fig. 3.3 .
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5

4

3

2

0
Ar discharge

0 40 80 120
V d c  an  ( V )

(b)

t

til d ischarge

40 1 2 0 160 240 3200 80 200 280
V d c  an  ( V )

Fig. 3.3 Current -  voltage characteristics of the DC bias electrode.
D ischarge cond itions for the large (51.25 cm^) D C  electrode:
(a) gas -  argon; RF pow er -  30 W ; p ressure  (m torr) ♦ -  15, ■ - 31, A- 47;
(b) gas -  hydrogen; R F pow er -3 1  W ; p ressu re  (m torr) ♦ -  26, ■- 47,
A- 68.
Sym bols •  m ark  the charac te ristic  o f  a sm all (3 .14  cm^) c ircu la r D C  
e lectrode : gas m ix tu re  -  m ethane (5% ) and  hydrogen; R F power -  20 W ; 
p ressure  -  30 m torr.

R ead ing  o f  the bias vo ltage m arked  V dc an was taken  from  the  analog voltmeter o f  

the D C  pow er source; and read ing  o f  the cu rren t m arked  C c an was tak en  fro m  the  d ig ita l 

m eter in  the circu it o f  the D C  electrode. C urren t -voltage ch arac te ris tic s  o f  the  large D C  

electrode are qualita tively  the sam e for argon  and  hydrogen. T hey  sta rt fro m  a  ris in g  p art 

w h ich  satu ra tes in the in terval 4 .4 - 5.7 m A  , depend ing  up o n  the  gas an d  its p ressure . 

F u rther increase o f  the DC bias voltage first leads to approximately 5 -10%  d ec lin e  o f  the 

co llec ted  curren t and than  to its recu rring  g row th  bu t at a s low er rate. T h e  ch a rac te ris tic  o f  

the sm all electrode d o esn ’t have a sa tu ra tion  region. A lth o u g h  the sm all e lec tro d e  is 

s ix teen  tim es less than  the large e lec trode in area it co llects on ly  3 tim es  lo w er cu rren t
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compared with the saturation threshold current of the large electrode marked by the dotted 

line in Fig 3.3(b) . Further the eurrent of the small electrode is eventually eatehing up with 

the one of the large electrode. It has to be noted that the conditions of operation of the large 

and small DC electrodes reflected in Fig. 3.3(b) were different in terms of gas composition 

and RF power. So, the gradual convergence of the current-voltage curves above 120 V is a 

coincidence. Nevertheless it is possible to analyse these data qualitatively using 

information from the electrostatic probe measurements. The fact that the small electrode 

appears more effective (in terms of current density) can be attributed to its time averaged 

sheath potential Vs (Fig 3.4(a)). It either diminishes almost to zero or changes from 

positive to negative already by 80 V bias.

As bias voltage is increased on the small electrode it forms an electron sheath 

during part of the RF cycle. In this way the small electrode collects electrons from all of the 

energy spectrum and for a longer fraction of the RF cycle than the large electrode, having 

as a result a higher current density.

The averaged sheath potential at the large electrode remains positive decreasing 

only by 20-25% at 30 V bias and almost restoring its original value at 55 V (Fig 3.4(b)).

(a) 100 (b) 1 0 0

c 60 -

40 -
c .>

20 - 20 -

0 20 40 60 80 100 60400 20
Vdc an (V) V (Ic an  (V)

Fig. 3.4 Plasma potentials of RF discharge in hydrogen as a function of bias 
potential of (a) the small and (b) the large DC bias electrodes.
Markings on the graph:
(a) RF power -  20 W , gas pressure : A - 31 mtorr , ♦ - 5 1  mtorr ;
(b) RF power: ♦ - 3 0 W ,  □ - 2 0 W ;  gas pressure: ♦ - 45 mtorr, □ - 70 mtorr. 
Symbols o mark DC bias potential.
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This recovery of the sheath potential contributes to the current saturation effect of the large 

electrode (Fig. 3.3(b)). At the same time variations of electron temperature and density can 

also play their part. It follows from the formula of instantaneous electron current to the 

surface based on the assumption of Maxwellian distribution:

1 -  (  V  (t)l
Zg = — - A - Ue ' n  ̂ - e - exp -  (3.1)

Here A -  electrode area, Ue =
^S-e-T

- average electron velocity, ne -  electron

density, e -  electron charge, me -  electron mass. Te -  electron temperature, Fs(t)- time 

dependent sheath potential. For example the growth of the electron current can originate 

from an increase of electron temperature due to heating by the sheath of the grounded 

electrode. Measurements of plasma parameters were limited to 60 V bias at the large 

electrode due to growing stray noise in the electrostatic probe circuit. There were also 

problems in interpretation of the automated measurement system data, which will be 

discussed in the next section. The choice between two electrodes was made in favour of the 

larger one. It collected 3 times higher current at 60 V bias, having more effect on the main 

RF discharge.

The electron source bias circuit included a 988 Ohm stabilising resistance 

connected in series with the filament (Fig. 3.2). Voltage and current at the exit of the 

filament bias power supply were measured by its analogue current and voltage meters. 

Filament bias voltage was calculated by subtracting from the power source voltage a 

product of the bias circuit current and the value of the stabilising resistance. Current- 

voltage characteristics of the source are presented on the Fig. 3.5.

By plotting characteristics on a logarithmic scale it is possible to examine the 

source current-voltage relation. The straight line marked k=3/2 represents the Child- 

Langmuir space charge limited current equation (3.1), applied to the source geometry.
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J
X

(3.2)

Here Sq = 8.9-10'^^ F/m - permittivity of free space, e = 1.6-10'^  ̂C - electronic charge, 

9.1*10’̂  ̂ kg - electronic mass, V (V) - potential difference between electrodes, x (m) 

distance between electrodes.

(a) 160-,
140 - 

120  -  

1 0 0 -

80 -

20  -

120 16080400

(b)

3

V  fil (V)

k=3/2•2

■3

■4

■5

•6

■7
63 4 52

Ln(Vfii)

Fig. 3.5 Current - voltage characteristies of the emissive fîlament electron 
source: (a) -  linear and (b) -  logarithmic scales. Filament heating power 
- 15 W. Gas - hydrogen at pressures: • - 30 mtorr, ° and ■ - 45 mtorr. 
Symbols ■ mark the regime, when the DC bias electrode operated 
simultaneously with the electron source. Power of the main RF discharge 
-30 W.

The current-voltage characteristic of the source at 30 mtorr conforms closely the Child- 

Langmuir equation (Fig. 3.5(b)). A small deviation at the beginning of the characteristic 

can be accounted for by uncertainty in the reading of small currents from the analogue 

current meter. A reduction of the source current in comparison with the k=3/2 line by the 

bias voltage 120 V might originate from the negative charge build up around the extracting 

mesh. Also at larger extraction currents the simple planar model is an increasingly poor 

representation of the filament/mesh region. Using the formula (3.1) and data of the 

characteristic it is possible to estimate the area of the emitted electron beam arriving to the 

extraction mesh. We take the source current and voltage values from the Child-Langmuir 

region of the source characteristic (dotted line on the Fig. 3.5(b)), and take the distance x 

equal to the 3 mm gap between the filament edge and the extraction mesh. Then by
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dividing the measured emission current by the calculated current density we obtain the area 

1 .6 6 -1 0 ’"̂ m  ̂, which is a little less than the front section area of the reflector 

1 0  mm - 2 0  mm (2 -1 0 "̂  m^).

At the higher pressure 45 mtorr the emission current starts to exceed the values 

allowed by the space charge limited relation above 40 V. More power from the DC bias 

generator led to growth of the emission current up to 70 mA with loss of the bias voltage 

from 54 to 40 V. Such behaviour of the emissive filament can be ascribed to a gradual 

development of breakdown inside the electron source. An internal plasma discharge was 

produced. It promoted growth of the filament emission current by neutralising the electron 

space charge in the source and by ion bombardment. At first when the DC bias electrode 

was activated the emission current grew up to 80 mA with loss of bias voltage down to 30 

V. Then the filament emission became unstable falling to 64 mA. More power was 

supplied from the filament bias generator in order to compensate for the emission loss. 

Nevertheless further substantial growth of the emission current up to 143 mA became 

possible only when the DC electrode was switched off. The connection between the 

filament and the electrode was mediated by the main RF discharge plasma. The averaged 

plasma potential grew due to the effect of the DC electrode (Fig. 3.4(b)). It caused extra 

heating to the filament through higher energy ions penetrating through the meshed window. 

Also it led to erosion of the emission layer causing a reduction of the filament current. The 

change of filament polarity at emission currents above 80 mA culminating in positive 55 V 

at 143 mA can be ascribed to an effect similar to that of an emissive probe. A high enough 

electron current neutralises the positive sheath space charge formed near the filament by 

the secondary discharge. In this way the filament potential is pulled up or close to the 

discharge potential.

The two regimes of the electron source operation (with and without the internal 

discharge) affect the main RF discharge with different intensity. This can be illustrated by
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the variation of electron density in the main discharge (Fig. 3.6). At 67 mA emission 

current for 30 and 46 mtorr the filament bias and hence the injected electron energy was 

three times higher at 30 than at 46 mtorr (Fig. 3.5(a)). But for the same filament emission 

current there was a five-fold increase of the main discharge electron density at 45 in 

comparison with 30 mtorr marked by the dotted line on the Fig. 3.6. It has to be noted that 

thermionic electrons could also gain extra energy while passing through the sheath of the 

main RF discharge narrowing the electron energy gap between 30 and 46 mtorr. A 

difference of ionisation cross sections, resulting from the difference in electron energy at 

these pressures, is unlikely to be more than 10-20% (Appendix C). So, the much stronger 

influence on the main discharge of the electron source at 46 mtorr can not be explained 

only by the 50% increase of the

10

8

6

4

2

0
20 40 600 80 100 120 140 160

Fig. 3.6

le m is  (10 A)

Variation of electron density of the main plasma discharge as a 
function of the filament emission current. Gas -  hydrogen; RF power 
of the main discharge -  30 W; pressure: • - 30 mtorr, ° - 46 mtorr.

neutral gas density combined with the 10-20% higher value of ionisation cross-section. It 

is proposed that the secondary discharge in the source promoted extraction toward the main 

discharge of a larger fraction of the emitted electrons. In the case of a pure electron sheath 

inside the source at 30 mtorr it is suggested that a substantial fraction of emitted electrons 

is reflected back by the negative potential distribution, formed in front of the electron 

source. This will be discussed further in section seven of this chapter. In order to check all
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the assumptions about the operation of the electron source it is necessary to measure the 

actual injected current by the electron energy analyser [83]. Such an experiment was 

outside the resources of this project.

Saturation of electron density of the main RF discharge following electron injection 

(Fig. 3.6) can be caused by a balancing of the density increase by the growing losses of 

electrons to surfaces. It will be demonstrated in section seven of this chapter that the 

electron temperature and the averaged plasma potential decline with electron injection. So, 

according to the formula (3.1) electron current density increases because of the net effect of 

the increased density and the decreased plasma potential. Since the electron temperature is 

under the square root in expression (3.1), it has a weaker effect on the final result. A small 

dip in the saturation area at 45 mtorr appeared as the result of the source operating 

simultaneously with the DC electrode. The last two measurements were taken after tuming- 

off of the DC electrode. Due to erosion of the emissive layer the filament produced less 

electron current, hence there was smaller electron density enhancement in the main 

discharge.

Attempts to operate the source in argon at 20 mtorr immediately resulted in the 

formation of a an arc with a peak current up to 3 A and led to the burning of hole in the 

meshed window. Interestingly, earlier versions of the source, which had a reflector in the 

form of a flat disc 8  mm behind the filament were capable of working in argon even at 30 

mtorr. These facts confirm the role of reflector shape in forming a concentrated or 

expanding electron beam.

3.5 Interpretation of data from the eleetrostatic probe.

Measurements of plasma parameters were conducted by means of the passively 

compensated electrostatic probe. A brief description of the probe was given in section 3 of 

the previous chapter. Further information about its concept is given in the work by 

Annaratone and Braithwaite [49]. One of the main advantages is its simplicity of design.
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An inductor chain is used to block RF signal from the probe tip, which is driven in phase 

with plasma potential by a reference ring. Experience of using the probe in this work has 

demonstrated that the filtering system of the probe was unable to block completely the RF 

signal in the probe circuit under certain conditions. Probe performance was dependent 

upon the input power to the RF discharge and to the pressure and nature of the gas. Probe 

measurements were more reliable above 30 mtorr, in Ar rather than in H2 and preferably 

below 20 W input power. All the factors pointed out that the probe was prone to 

contamination by RF signal following large increases of RF potential in the plasma. It 

meant that the RF component, present in the electron current collected by the probe, 

resulted in a wider retardation region (Fig. 3.7).

Fig. 3.7 Probe characteristic. Thick and thin lines mark signals with complete 

and insufficient RF compensation.

The most probable reason for insufficient RF filterring was a poor compensation of 

higher (3 d , 4th and 5 th ) harmonics. A significant fraction of higher harmonics in the 

plasma could have originated from a comparatively high RF amplitude of input voltage: 

380 V (30 W input power) in this work versus 100 V quoted in [49]. Also a specific 

configuration of the discharge volume (Fig. 3.2), capable of producing a “hollow cathode” 

effect, could promote higher harmonics.

Probe measurements were automatically processed by the “ABA Technology” data 

acquisition system. It consisted of an electronic unit connected to a personal computer. The 

unit provided probe biasing by a potential in the form of a few increasing and decreasing
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ramps. Simultaneously the probe current was measured, converted into a digital format and 

passed to the computer. A dedicated software prepared probe signals for analysis 

implementing averaging and smoothing procedures. Typically in this work a cycle for 

measuring one data point was set to contain ten repetative measurements. Main plasma 

parameters were calculated by the software, using a chosen part of probe signal and a 

corresponding probe theory (Appendix A). For the current work, the retardation part of 

probe characteristic was used. The probe theory in use was based on the assumption of a 

Maxwellian electron energy distribution.

Processing of the retardation part worked as a preset default on the software main 

screen, automatically representing, after each measurement cycle, values of plasma 

potential, electron density and temperature. This regime was convenient for accumulating 

the large amounts of data, required while studying the effects of the DC bias electrode and 

electron injection on the main RF discharge. An alternative method to determine the 

electron temperature and density was by analysis of the probe characteristic above plasma 

potential, i.e. an orbital motion limited regime. This requires the probe radius to be small 

compared to the plasma Debye length. This condition was difficult to satisfy within the 

range of plasma regimes studied, so the orbital motion area was not used for analysis. At 

the same time a closer examination of the retardation area revealed that the software 

algorithm could sometimes produce incorrect values of electron temperature and density 

owing to contamination of the probe signal by RF current.

The first step in the calculation of plasma parameters was the determination of the 

time averaged plasma potential. It was identified as the point at which the second 

derivative of the probe current crosses zero between its’ maximum and minimum. During 

subsequent checks of data, the second derivative was used to estimate the quality of the 

probe characteristic. The quality of the second derivative is much more sensitive to RF 

compensation than the characteristic itself. Typically in the case of adequate compensation

69



there is one clear narrow maximum (Fig. 3.9(b)). In the case of signal contamination there 

is a double maximum structure (Fig. 3.8(b)) or a distorted shape with a large maximum 

superimposed on a small one (Fig. 3.8(a) and 3.9(a)). Another indicator of satisfactory 

probe compensation relates to the distance between maximum and minimum in the second 

derivative, which should not be more than Tg measured in Volts.

(a)
1 2  -

T =1.42 eV.

C - 1 0

T =2.8

- 1 2  -

-13
20 25 30 35 40 45 50 55 60
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45 50 55 60 65 70 75 80 85

(d)

- 1 0  - t e = 0 .9 9  eV.

- 1 2  -
-13

-14

V p r ( V )

Fig. 3.8 Second derivative and natural logarithm of the probe electron 
current.
(a) and (b) -  RF discharge in hydrogen at 51 mtorr, 20 W input power;
(c) and (d) -  the same discharge with 80 V bias at the small DC electrode.
Straight solid lines on natural logarithm graphs mark corrected electron current 
signal, consisting of “cold” and “hot” electron groups.

For the probe configuration used in this work the uncertainty in the value of plasma 

potential was rarely less than 1 V. The two likely causes are residual RF and excessive 

smoothing of the software algorithm.

Since RF contamination of the probe signal was reckoned to be around 1-2 V the 

uncertainty in plasma potential was generally of this order. Plasma potential data were
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verified by ion energy distributions, measured with the energy and mass analysis probe, 

and demonstrated uncertainty of a comparable amount. They correlated closely with a 

small potential offset at all plasma regimes and environments.

From the data of second derivative it could be seen that compensation of RF' was 

barely sufficient for the basic RF discharges without modification (Fig.3.8(a) and 3.9(a)). 

Application of the DC bias potential made the situation worse, which was reflected in the 

double maximum structure (Fig. 3.8(c)). This was not surprising since the increase in 

plasma potential (Fig. 3.4(a)) is associated with an increase in the amount of RF in the 

plasma. Quite the opposite was the effect on the probe characteristic of electron injection - 

see Fig. 3.9. This led to a decrease of plasma potential from 44.47 V on (a) down to 7.72 V 

on (b). The probe RF filtering system had less RF to deal with at the lower plasma 

potential, resulting in a “purer” second derivative signal.
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4 . 0 0

2.00

4 . 0 0
7 . 0 0E.OO5 . 0 04 . 0 02.00 3 . 0 0
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Fig. 3.9 Second derivative of electron current to the probe
(a) -  RF discharge in hydrogen at 46 mtorr , input power 30 W;
(b) -  the same discharge with electron injection, emissive filament 

eurrent 143 mA.

The electron temperature was calculated by applying a sliding least square method 

to the natural logarithm of the electron current. The best linear fit was determined by 

locating the minimum of the associated chi-squared quality-of-fit parameter (in other 

words, by locating the longest linear part of the natural logarithm curve). Then the density 

was calculated from the electron current at plasma potential.
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As it could be seen from the Fig. 3.8(b) the logarithm curve consists of three 

quasilinear parts, which was typical for probe signals in this work. The first part marked Te 

= 2.8 eV represents a group of higher temperature or “hot” electrons. Their current could 

not be resolved well due to it’s low value (the order of ion current) just above the floating 

potential. Even after the smoothing procedure it had a saw-like structure. So the algorithm 

ignored it in favour of a smoother linear part marked Te = 1.42 eV, corresponding to cooler 

electrons named for simplicity “cold”. The last, smoothly turning part of the logarithm 

curve appeared because of distortion of the probe signal close to plasma potential. This part 

was ignored also by the algorithm since it was much shorter than the “cold” electron part. 

Then the algorithm effectively subtracted (arrow mark on the Fig. 3.8(b)) the RF 

component from the probe electron current by calculating the density using the “cold” part 

of the logarithm curve at Vp. The bi-Maxwellian nature of the electron energy distribution 

was not taken into account in automatic calculations. It is possible to estimate the 

contribution of “hot” electrons to the total electron current by extending a corrected “hot” 

part up to the plasma potential. The “hot” electrons constitute typically 20% of the total 

current at the plasma potential. Then subtraction of the “hot” electron current from the 

total current singles out the “cold” electron component marked by Tg = 1.42 eV on the Fig. 

3.8(b). Hand calculations of electron density and temperature for the bi-Maxwellian 

distribution give 1.84T0^^ m'^ for the “cold” and 0.25T0^^ m'^ for the “hot” electrons. For 

comparison the software electron density value was 2T0^^ m'^. So, the algorithm on the 

basis of a single temperature Maxwellian approximation overestimated the “cold” electron 

temperature by approximately 15% and undervalued net electron density by 5%. This is 

acceptable as an uncertainty.

When the RF distortion of the probe signal was quite strong, the algorithm could 

mistakenly determine electron temperature from the wrong part of logarithm curve. For 

measurements in plasma with the high DC bias potential (Fig. 3.8(d)) automatic calculation
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produced 3.62 eV electron temperature. This value originated from a distorted part of the 

logarithm curve since it was the longest linear part recognised by the software. In this case 

a correction by hand was needed, which produced a much lower value, 0.99 eV. An 

estimation of the “hot” electron component was also made, which gave 1.9 eV and 

constituted 17% of the total current at plasma potential. It has to be noted that this method 

of estimation of “hot” or tail electrons relies heavily on having adequately measured the 

probe current and having properly subtracted the ion contribution. This is especially 

important at and below floating potential. Such estimations have to be supported by more 

sensitive techniques such as a large area planar probe described in [84].

3.6 Some aspects of ion sampling by the energy-mass analyser

The principle of operation of the energy and mass analysis probe (model EQP300 

manufactured by Hiden Analytical Ltd) is described in the Appendix B. A few comments 

have to be made here concerning problems linked with sampling of ions from a plasma by 

this device. In the period 1993-95, when the experimental part of this work was done, the 

EQP probe was supplied by the company with a standard set of electronic parameters 

(Appendix B). Setting of the extraction orifice potential for positive ions was 

recommended to be in the range minus 200-240 V. Since then there has appeared an 

opinion that such high extraction voltage, although providing high sensitivity for the 

device, risks distortion of the ion energy distribution through perturbation of the local 

plasma. Currently Hiden Analytical devices are operated at lower extraction potentials. For 

example in the 1999 publication by Jayaraman, McGrath and Hebner [85] a potential bias -  

20 V was mentioned. During the course of this research an attempt was made to verify the 

effect of the high extraction potential on plasma and distribution of ions. For this purpose 

a grounded 5 mm aperture, situated 4 mm in front of the sampling orifice, was covered 

with a high density (400 wires per inch) mesh. In this way plasma from the main discharge 

was separated from the biased plate with the sampling orifice. No visible change was
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noticed in ion energy distribution or in the discharge plasma. Measurements presented in 

this work were made without this separating mesh. In general there are few publications, 

which study the effects of ion sampling by “Hiden Analytical” devices. In [8 6 ] the effect of 

scattering of low energy ions (~1 eV) inside the analyser was estimated. For pressures 10- 

100 mtorr from 1 % to 12% of the sampled ions experienced collisions before detection. In 

[87] the effect of extractor voltage on acceptance angle and relative error of ion signal was 

studied for ion energy ranges 1- 500 eV and 50-500 eV accordingly. It is worth mentioning 

that the EQP analyser was positioned behind the powered electrode in that work. The 

acceptance angle for the extractor voltage -200 V increased from 1° to 2° with ion energy 

change from 100 eV down to 10 eV. In the range 10-1 eV the aeeeptanee angle grew 

further up to 6 °. As for the relative error in ion signal it changed very little in the range 50- 

lOOV for -200V extractor voltage, but changes from 10% to 0% in the range 100-320 V. 

As can be seen, the available information does not provide data directly applicable to the 

current work. The only value possible to quote is that for ion energies up to lOOeV studied 

in this work the relative error is unlikely to be more than 10%. It is worth noting that in 

most of publications about ion sampling through electrostatic fields a SIMION software is 

quoted as the main tool for modelling (information on the website 

http ://www. inel.gov/teehnology_transfer/products/simion.html).

3.7 Effect of the DC bias electrode on plasma parameters

Effects of positive biasing by the DC electrode on plasma parameters were studied 

by the electrostatic probe and by the energy and mass analysis probe described earlier in 

this chapter. Measurements were conducted in hydrogen and argon discharges. Data from 

the electrostatic probe measurements in hydrogen plasmas influenced by the small bias 

electrode are presented in Fig. 3.10. It was demonstrated in the previous section that the 

automatized software processing of probe characteristic could produce distorted values of 

electron temperature and density due to deformation of the characteristic by RF current.
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Input power -  20 W. Symbol marking:
O, ♦ - data from automatic processing by software; #, ■- corrected data.

The data in Fig. 3.10 were corrected by using nondistorted sections of the probe 

signal. The natural logarithm of the probe electron current at 51 mtorr had a signal/noise 

ratio, which allowed the resolution of the temperature of a second, more energetic electron 

group from the characteristic section above floating potential (Fig. 3.8(b) and (d)). So, 

variation of the “hot” electrons temperature was traced in addition to that of the major 

“cold” group. At 31 mtorr signal/noise ratio of small electron currents was not good 

enough to perform the same operation.
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The general trends of parameter variation can be described as a decrease of the bulk 

electron temperature, increase of the electron density and of the plasma potential. At 31 

mtorr these trends were blurred for the electron temperature (practically a constant value) 

and were relatively weak for the electron density (25% increase) and the plasma potential 

(35% increase).

At 51 mtorr the bulk electron temperature decreased by 30% from 1.4 eV to 1 eV, 

the electron density increased 55% from 2T0^^ m'^ to 3.110^^ m'^ , the plasma potential 

increased almost 100% from 43 V to 82 V. The outlined growth of the temperature of “hot 

“ electron group (from 2.8 eV to 3.5 eV at 60 V bias) at 51 mtorr didn’t last until 

maximum bias of 90 V. Most likely this fluctuation of the “hot” electron temperature was 

due to a growing measurement uncertainty owing to the small level of current at the high 

bias voltages.

The effect of growing plasma potential originates from a changing balance of fluxes 

of charged particles to electrode surfaces. By drawing a net electron current from the 

plasma the positive DC electrode effectively increases the positive charge of the sheath 

between plasma and ground, causing a growth of its potential. The rate of this increase 

depends upon the DC electrode area as could be seen in Fig. 3.4, where the growth of 

plasma potential from 40 to 80 V requires 55 V bias of the large DC electrode versus 90 V 

bias of the small DC electrode. These responses of plasma potential are quite explainable 

since the large area DC electrode collects higher electron current than the small one (Fig 

3.3), resulting in a stronger effect on the plasma potential. The overall importance of 

electron flux to the DC electrode as a basis of its effectiveness could be seen from the Fig. 

3.10. In 31 mtorr hydrogen plasma without DC biasing electron density was smaller by a 

factor of 2 and the electron temperature was larger by the factor of 1.4 than in 51 mtorr 

plasma. Consequently, electron current available for collection from the plasma at 31 mtorr 

was approximately 1.5 less than at 51 mtorr. So, when positive biasing was applied, plasma
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potential and other parameters were changed less intensively at 31 mtorr than at 51 mtorr.

3.8 Effect of simultaneous operation of the electron source and the DC bias 

electrode on plasma parameters

3.8.1 Impaet of eleetron injection on RF plasma

The effect of electron injection and removal on plasma parameters has been studied by the 

electrostatic probe, described earlier in this chapter. When electrons are injected into an RF 

discharge at 30 mtorr (Fig. 3.11, left hand side graphs) the behaviour of the plasma 

parameters is quite predictable. The decline of plasma potential is associated with 

additional negative electric charge in the RF plasma brought in by injected electrons. This 

effect is confirmed by modelling in the next chapter. The increase of the plasma density is 

caused by ionisation of gas by fast injected electrons with maximum energy equal to the 

acceleration potential of the emissive filament (up to 145.8 eV). The gas density at pressure 

30 mtorr is 1.061 10̂  ̂ m’̂ . The ionisation cross-section of a hydrogen molecule by 130 eV 

electrons is 1.1-10'^  ̂ m  ̂ (Appendix C), so the mean free path for these electrons is 

approximately 90 mm. Thus, every electron from the electron source produces at least one 

electron-ion pair while passing through the discharge volume. The decrease of the 

temperature of cold bulk electrons is associated with increased plasma density. The link 

between electron temperature and plasma density, mediated by the RF sheath, will be 

demonstrated in the next chapter.

It is worth specifying that the overall electron distribution in the part of discharge, 

through which injected electrons pass, consists of “cold” bulk electrons and (2-4 eV for 30 

mtorr) and “hot” injected electron (30-145 eV). Only the “cold” group parameters are 

measured by the probe. Problems of automated measurement of plasma parameters were 

discussed in section five of this chapter. It was demonstrated that the probe measurements 

in a plasma with electron injection are reliable owing to the small amplitude of RF signal at
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the probe. When the DC anode lifts up plasma potential, the probe circuitry cannot 

completely block out the RF potential. This leads to contamination of the probe signal, 

which is reflected in dispersion of measured electron temperature and density values above 

a DC bias 60 V. For the DC anode potential above 60 V, probe measurements are 

considered to be still reflecting trends in variation of plasma density and electron 

temperature, though there is less certainty in absolute values.

Plasma potential and electron temperature start rising, and electron density continue 

to rise (Fig. 3.11, right hand side graphs), when the DC anode is activated in addition to the 

electron source. Gradually, the increased potential of the DC anode pulls plasma potential 

upward by dragging net electron current from the discharge, thus leaving the grounded 

electrode sheath more and more positively charged. The growing potential of the grounded 

sheath causes stronger heating of the “cold” electron group, which in its turn elevates the 

plasma density through enhanced ionisation. The only contradiction in this scheme is the 

extent of the density increase, which in the 30 mtorr discharge cannot be solely caused by 

the DC anode. The DC anode without electron injection increases the density 

approximately by 0.3T0^^ m"̂  (Fig. 3.10, left hand side graph), while with electron 

injection - by 1.5T0^^ m'^ (Fig. 3.11, right hand side graph). It is likely that the DC anode 

potential makes the ionisation process by injected “hot” electrons more effective. In order 

to clarify this process, it is worth testing the discharge configuration with one of its 

parameters changed, for example, with pressure increased.

The general trend of plasma parameter variation with electron injection at 46 mtorr 

is the same up to a filament bias of 55 V (Fig. 3.12, left hand side graphs). Further increase 

of potential of the filament power supply (marked 8  on the Fig. 3.2) leads to a reduction of 

the filament bias to 48.9 V, which is accompanied by a more than threefold increase of the 

plasma density (up to 8.8*10^  ̂ m'^). During this reversing of the filament bias, plasma
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potential and electron temperature reach their lowest values: 10 V and 0.5 eV respectively. 

This effect, accompanied by the rapid change of the plasma parameters, is associated with 

the ignition of a discharge inside the electron source as described in section four of this 

chapter. Practically the filament acts as an emissive probe, pulling itself close to the local 

plasma potential. This regime is beneficial for increasing the plasma density in the main 

RF discharge, but is damaging for the filament. It leads to erosion of the emissive layer and 

an unstable current-voltage characteristic of the electron source (Fig. 3.5).

3.8.2 DC anode operation during electron injection

Application of positive potential to the DC anode increases the electron temperature 

and the plasma potential, but brings plasma density down (Fig. 3.12, right hand side 

graphs). Interestingly, simultaneous operation of the electron source and the DC anode 

affects the plasma density in qualitatively different ways at 30 and 46 mtorr. The DC anode 

initiates a decrease of density at 46 mtorr, while at 30 mtorr it causes a density increase. In 

order to verify these trends it is worth analysing ion energy distribution function (lEDF) 

data from the energy and mass analysis probe.

lEDFs of hydrogen ions H3 '*', and H^, affected by electron injection and removal

at 30 mtorr, are presented on the Fig. 3.13. Areas under the lEDF curves of and

are in the ratio 19.76:5.71:1 in the unaffected plasma. This ratio reflects the balance of 

ionisation and loss for each ion species in the discharge. ions are produced by direct 

ionisation of hydrogen molecules. Low energy ions are transformed into ions in 

collisions with hydrogen molecule. This is a purely bulk plasma process, where ions have 

only thermal energy. It is obvious from the absence of any substantial tail of lEDF, 

which is normally associated with symmetric charge transfer reaction in plasma sheath. 

Such tails are well developed in and lEDFs. Ions, making up these tails, were 

“formed” within the plasma sheath and acquired less kinetic energy, when accelerating to 

the grounded substrate.
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In unperturbed discharges (i.e. without injection or removal of electrons) at 30 and 46 

mtorr lEDFs of all hydrogen species exhibit structure with two or more gentle peaks (Fig. 

3.13 and 3.14). Modulation of the lEDF is caused by RF components of the sheath 

potential. This process has been extensively studied in a number of works [83, 8 8 , 89].

3.8.3 Time of ion transition through the sheath

A saddle-like structure of the ion distribution is associated with the flux of ions into 

the sheath at the maximum and minimum of the sheath potential being higher than during 

its intermediate values. This situation arises, when ions cross the sheath in a fraction of an 

RF cycle, i.e. transition time of ion through the sheath is less than RF period:

Tion<TRF ( 3 .3 )

A strongly structured lEDF is characteristic of plasma discharges at lower base frequencies, 

for example, 300 kHz [8 8 ]. The fact, that it happens in 13.56 MHz discharge in this work 

is a consequence of the low mass of hydrogen ions, and consequently their fast transition 

through the sheath.

The time of ion transition through the time-variable sheath can be expressed as:

<»>

where s - time-averaged sheath thickness, u(x) -  ion velocity in the sheath. Ignoring initial 

ion velocity it is possible to express ion velocity in the sheath through the sheath potential

as: u(x) =
y

( 3 .5 )

where e -  electron charge, Vg(x) -  variable potential of the sheath and mi -  ion mass.

It is supposed that the conditions in the ion sheath are described by the Child-Langmuir law 

(3.2) and that the ion current density in the sheath is:

ji =G-n,  -Ug (3.6)



where =
V y

- Bohm velocity, rie -  electron density at the edge of the sheath and

Te -  electron temperature. Then by combining formulas (3.2) and (3.6) the sheath 

thickness could be expressed in terms of the sheath potential as:

(3.7)

1 1

where A = — • 
3

. The first derivative of the expression (3.7) is:

dx = .^ A V ,4  dV, (3.8)

Using formulas (3.5) and (3.8) it is possible to substitute the integrand variable x in

the expression (3.4) to Vg. Then with the integration limit s changed to a time-averaged

sheath potential Vs the solution of the integral (3.4) is:

^ion=2 ^ - V  •
vT. y

(3.9)

where co.
m,y

- ion plasma frequency. So, finally, it is possible to express time of

ion transition through the sheath normalised to the number of RF cycles:

(3.10)lion “
'̂ ion 1 ®RF

'RF 71 CO. \ 2 -T.y

where corf = 8.52T0^ the basic RF cyclic frequency. Taking the averaged sheath voltage to 

be equal to the plasma potential, the time of ion transition and the thickness of the sheath 

are calculated using density and temperature data from the probe measurements (Fig. 3.11 

and 3.12).

As can be seen from the table 3.2 it takes hydrogen ions between 1.4 to 2.5 RF

cycles, depending upon their mass, to pass through the sheath at 30 mtorr at the initial

plasma conditions. The degree of modulation of lEDF is in inverse proportion to the
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p (mtorr) V fi, ( V ) V d ca n  ( V )
tion

s (mm)
H / H g '

30

0 0 1.442 2.04 2 . 4 9 8 3 . 4 3 3

127.7 0 0 . 6 9 2 0.979 1.199 0.849

1 3 5 / 9 1 2 2 0 . 6 5 8 0.931 1.14 1.872

46

0 0 1.084 1 ^ 3 3 1.877 2 . 3 9 8

4 & 9 0 0 J 8 7 0.547 0 . 6 7 0.416

14 1 0 0 0.555 0 1 ^ 8 5 0.961 1.361

Table 3.2 Time of ion transition through the sheath (number of RF cycles) and 
thickness of the sheath at different discharge conditions

transition time. The lightest ion has the shortest transition time and the strongest 

modulation (four peaks) of its lEDF, while the heaviest ion has just two peaks on its 

lEDF.

The 4 V separation of peaks in the Hg  ̂lEDF (Fig 3.13, line 1) is relatively small, 

representing an intermediate case between a singly peaked lEDF and a pronounced saddle

like distribution. For comparison, Coburn and Kay [90] presented the energy distribution of 

residual Hg  ̂ ions with peak split of 105 V at the grounded electrode of 13.56 MHz 

discharge. The quoted disharge parameters were 100 W power and argon pressure 75 

mtorr. The triple and quadruple peaks of an original H]^ and H^ lEDFs (Fig. 3.12, line 1) 

can’t be explained just by a simple sinusoid of sheath potential variation. The presence of 

higher harmonic components in the sheath potential, which increases complexity of ion 

dynamic in the sheath, may be their cause.

With electron injection on and increasing, RE modulation of the lEDFs becomes

gradually smoothed (Fig. 3.13, lines 2-10), almost disappearing at 127.6 V filament bias.

But at this level of electron injection the time of transition through the sheath for all

hydrogen ions is decreased more than twice in comparison with the initial values (Table

3.2). This seeming contradiction is explained by a significant decline of the RE component
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of the sheath potential. Reduction of RF in plasma with electron injection is confirmed by 

the decrease of the maximum energy of the lEDFs in line with the decreased value of 

plasma potential (Fig. 3.13, line 10). At the initial conditions RF modulation spreads the 

maximum ion energy above plasma potential. The maximum energy of the lightest ions 

exceeds plasma potential approximately by 7 V, while for heaviest ions it is just 1 V 

(Fig. 3.13, line 1). At 127.6 V filament bias the maxima of the lEDFs (Fig. 3.13, line 10) 

practically coincide with plasma potential, with the a small 1 V excess still present on the 

lEDF. So, the sheath of the grounded electrode behaves more like in case of direct 

current discharge. Nevertheless, signs of RF in the plasma could be still detected from the 

spreading of the full width at half maximum (FWHM) of the lEDFs. As was demonstrated 

in [83] the FWHM of non-modulated argon lEDF is of the order of (0.3-l)-Te below 50 

mtorr. Above 50 mtorr rapid pressure-dependent spreading of the lEDF occurs. lEDFs of 

Hg  ̂and Hi^ have FWHM of 3.5 V and 5 V respectively at 127.6 V filament bias (Fig. 3.13, 

line 10), which is 1.75 and 2.5 times the electron temperature of 2 eV, measured at this 

plasma condition (Fig. 3.11). As for H^ lEDF, it still manifests RF modulation by having 

three very smooth peaks.

Subsequent activation of the DC anode (Fig. 3.13, lines 11-15) leads to recovery of 

modulation of the Hi^ and H^ lEDFs and broadening of the Hg  ̂ lEDFs. But this time RF 

modulation produces just two peaks at the H]^ and H^ lEDFs despite further reduction of 

transition time of ions through the sheath (Table 3.2). The additional decrease of ion dwell 

in the sheath is attributed to a twofold increase of plasma density (Fig. 3.11). At a DC 

anode potential 122 V the sheath size is almost twice as low in comparison with the 

original value (Table 3.2), which produces a higher electric field in the sheath. So, ions 

experience stronger acceleration, while falling through the sheath. As a result, their time of 

transit slightly decreases even though the sheath expands. The lessened modulation of 

lEDFs in comparison with a discharge without electron injection and removal is ascribed to



a change of the sheath voltage. It is supposed, that higher harmonics are either suppressed 

or diminished with the DC anode on in presence of injected electrons.

At 46 mtorr transition times of ions through the sheath are generally shorter than at 

30 mtorr: by 25% without eleetron injection or removal and by 45%, when electron 

injection is at maximum intensity (Table 3.2). This is linked with there being a denser 

plasma at 46 mtorr: almost double that in the original state and almost 6  times higher than 

that at maximum of electron injection (Fig. 3.11 and 3.12). A gradual decrease of plasma 

density with DC anode activation at 46 mtorr explains the almost threefold growth of the 

sheath thickness and increase of the ion transition times (Table 3.2).
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Fig. 3.15 Variation of lEDF area under the curve as a function of electron 
injection and removal at (a) -  30 mtorr and (b) -  46 mtorr. Area 
under the curve is normalised to its value at the original plasma condition 
(Vf,i = 0, Vdc an = 0 ) for each ion.

Without injection or removal of the electrons lEDFs (Fig 3.14, line 1) exhibit less 

modulation than at 30 mtorr, having just two well defined peaks. This can be ascribed to a
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reduction of higher harmonic components of the sheath voltage. In general, the effect of 

electron injection (Fig. 3.14, lines 1-7) and DC anode effect (Fig. 3.14, lines 8-12) on 

and lEDFs is qualitatively the same as at 30 mtorr.

The maximum energy of all lEDFs follows the variation of plasma potential, and 

electron injection causes reduction of modulation of lEDFs. A subtle difference between 

lEDFs at the two pressures could be traced, when areas under lEDF curves were calculated 

(Fig. 3.15).The area under the lEDF curve is proportional to the ion current reaching the 

surface of the grounded electrode. So, graphs in Fig. 3.15 demonstrate relative variations of 

those components of currents from the separate hydrogen ions, resulting from electron 

injection and removal.

The most obvious feature of the graphs is the maximum at 80 V DC anode bias, 

operating at 30 mtorr. So, the DC anode causes a stronger relative growth of the ion 

currents at 30 mtorr than at 46 mtorr. This supports the data of the electrostatic probe (Fig. 

3.11 and 3.12), which show the beneficial effect of the DC anode on plasma density at 30 

mtorr in contrast to 46 mtorr. It is suggested that at 30 mtorr the DC anode opens a “free 

way” for the injected electrons. Without the DC anode, injected electrons are slowed down 

and reflected back by a negative potential dip formed in front of the electron source (Fig. 

3.16).

3.8.4 Potential structures iu the RF discharge with electron injection-removal

The appearance of negative potential structures in front of an electron source was 

registered by Ando and co-workers [6 8 , 69] while studying pre-ignition conditions of DC 

discharges. A V-shaped potential dip was measured by an emissive probe ahead of the 

electron beam source, which was similar in its configuration to the source used in this 

work. Interestingly, the minimum of the dip potential corresponded to the energy of the 

electron beam, which was 30 V. The potential dip in front of the electron source existed 

only until ignition of the discharge; then it disappeared.
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Fig. 3.16 Schematic time-averaged plasma potential profile in front of the 

electron source in RF diseharge at 30 mtorr.

It is proposed that there is a similar potential structure formed ahead of the electron 

source in the discharge at 30 mtorr (Fig. 3.2). Having potential minimum equal or close to 

the accelerating voltage of the electron source acts as a potential barrier for the injected 

electrons. The electrons are deflected towards the grounded electrode surface, which 

surrounds the mesh of the electron source (Fig. 3.1(D)). In this way a substantial part of 

current of the electron source (Fig. 3.16) is closed in its vicinity without penetrating the 

main discharge. The potential well acts as a virtual cathode and draws ion current Zjon- 

According to Hershkowitz [91] energetic ions transversing the potential well may be 

converted into slow ions due to charge exchange. Eventually, they could eliminate the well 

by neutralising its negative charge. In our case this scenario is unlikely due to a difference 

in current densities from the electron source and from the plasma. At the maximum current 

of electron source at 30 mtorr (Fig. 3.5), which is 63 mA, the electron current density is 

315 A/m^. Ion current at this plasma condition (Fig. 3.11), calculated using the formula 

(3.5), is just 2.17 A/m^. Simply, the plasma is incapable of producing high enough ion 

current Z/o» to compensate negative charge in front of the electron source. Plasma electron 

current z’e3 (see Fig. 3.16) is reflected back from the downward potential slope. So, in other 

words the negative potential well forms a double layer structure near the eleetron source.
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Under the effect of RF variation of plasma potential it slightly expands and contracts. In 

this way some injected electrons, which appear to the right from the instantaneous potential 

minimum, are accelerated towards the main discharge, producing the current 1 ^ 2 . This time 

they gain higher energy than in the electron source due to the contribution from the plasma 

potential. It is this group of “hot” electrons, which increases threefold the plasma density 

by ionisation (Fig. 3.11). Activation of the DC anode changes the distribution of plasma 

potential across the plasma volume to the DC-like one (Fig. 3.17).

When the DC anode is not activated, the distribution of potential inside the 

discharge plasma is quite flat (graph 1 on the Fig. 3.17). The electron source creates a 

potential dip, which prevents most of injected electrons from entering the main discharge. 

When DC anode potential is rising, a DC-like potential distribution appeares in plasma 

(graph 2 on the Fig. 3.17). This explains the electrostatic probe data (Fig. 3.11 and 3.12), 

which show values of the time-averaged plasma potential to be lower than the potential of 

the DC anode. On the contrary, when a flat RF-type potential distribution is implied, the 

time-averaged plasma potential is always higher
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Fig. 3.17 Schematic variation of time-averaged potential in the discharge 

volume between the eleetron source and the DC anode at 30 mtorr.
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than the one of the large DC anode (Fig. 3.4(b)). The resulting electrical field causes an 

increase of ion current towards the double layer. The potential dip minimum starts to rise, 

releasing more injected electrons in the discharge. This is indirectly confirmed by growth 

of plasma density measured by the probe (Fig. 3.11), and by increase of the area under the 

lEDF curve (Fig. 3.15). The area under the curve reaches it maximum at 80 V DC anode 

potential, then drops. This is associated with complete fading of the negative potential 

structure in front of the electron source (graph 3 on the Fig. 3.17). As a result there should 

be change in the bulk potential structure of the discharge, causing variation of plasma 

density near electrode surfaces. A sharp decrease of plasma density near the top side of the 

grounded electrode is thought to be responsible for the decline of the lEDF signal above 

80 V DC anode potential.

Much smoother changes in area under the lEDF curve at 46 mtorr with DC anode 

operation are associated with the absence of any negative potential structures in front of 

the electron source. This is related to the internal discharge in the electron source, which 

prevents the formation of the double layer sheath ahead of the electron source. Electrons 

are injected in the discharge without obstruction. Hence, the increase of plasma density 

with electron injection at 46 mtorr is six time higher than at 30 mtorr (Fig. 3.6). With DC 

anode activation the distribution of plasma potential is qualitatively expressed by the graph 

3 on the Fig. 3.17. This implies that no surplus electrons could be drawn from the electron 

source in comparison with the 30 mtorr case. Consequently, with the DC anode acting as 

an electron sink, plasma density decreases ( Fig. 3.12).

Qualitative explanation of the effects of electron injection-removal and the 

appearance of the double layer sheath in front of the electron source are based on the time- 

averaged measurements of the elecrostatic probe and the energy and mass analysis probe. 

Although they provide a general insight into the processes of the discharge, a deeper 

understanding could be achieved by space- and time-resolved measurements of the
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discharge parameters. These could reveal more fine mechanisms behind the discharge 

phenomena. For example, studies of double layer in DC discharges revealed effects of their 

oscillations at frequencies at kHz [92] and MHz [93] range. Gyergyek [92] demonstrated 

that DC anode potential could strongly effect the frequency of double-layer oscillations. In 

our case it would be interesting to trace oscillations of the double layer sheath in front of 

the electron source and to relate them to the discharge frequency and the DC anode 

potential. But this kind of research lies beyond the framework of the current research 

program.
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Chapter IV. “Modeling”

4.1 Introduction

Probe measurements described in chapter III have demonstrated a clear division of 

plasma electrons into a “cold” major electron group and ’’hot” tail electrons. Such a 

distribution can be approximated by a two temperature Maxwellian one (Fig 3.8). 

Experiments on the effects of the DC electrode on RF plasma have established a growing 

divergence of temperatures of “cold” and “hot” electrons with the application of positive 

potential to the DC electrode (Fig 3.10). In order to understand this effect on the EEDF 

(Appendix E) it is necessary to retrace formation of the EEDF shape.

A bi-Maxwellian nature of EEDF in a low pressure RF discharge originates from 

interaction of electrons with the oscillating plasma-sheath boundary. Previously it has been 

studied both experimentally [94, 95] and theoretically [96, 97]. A term “stochastic heating” 

is commonly used to describe the interaction of electrons with an RF sheath. This reflects 

only part of the process, namely, the ascending part of the sheath cycle, when electrons 

gain energy from the sheath. During the descending part of the sheath cycle electrons lose 

energy. So, strictly speaking, the overall electron-sheath interaction could be called a 

heating-and-cooling cycle.

Typical models, calculating electron distribution in the vicinity of the sheath, use 

particle-in-cell or fluid approaches. In order to investigate the effect of a DC electrode on 

an EEDF a simple method of solving electron motion equation in the oscillating sheath 

field will be used. It will be demonstrated that a time-dependent shape of the sheath 

determines an extent of heating-cooling of electrons. The effect of ohmic heating will not 

be considered due to its minor role. In the low-pressure capacitive RF discharge its power 

constitutes less than 10% in comparison with stochastic heating [98]. A model, based on 

balance of currents to electrode surfaces, will be employed for investigation of the 

variation of the plasma potential with electron injection and removal.
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4.2 Modeling of electron interaction with an RF sheath

4.2.1 Model

A basic case of an RF sheath acting on a single temperature Maxwellian electrons coming 

from plasma is considered. Figure 4.1 shows a schematic potential distribution between the 

powered and the grounded electrodes during a single RF cycle.

F p e l ( 0  S p s h ( f )

2 0 0

- 1 0 0

- 1 0 0

dc bias
h - 2 0 0

- 3 0 0

- 4 0 0

- 5 0 0

-6 0 0

Grounded

D istan ce  b etw een  e lec tro d es

P h ase  (tt)
Powered el.

Fig. 4.1 Space- and time-dependent potentials of the discharge, where:

Vdis -  distribution of potential between the electrodes, Fp ei ( 0  and V p  ( t )  -  

time-dependent potentials of the powered electrode and plasma, S p  sh ( 0  

S g  sh ( 0  -  time variation of the sheaths of the powered and grounded 

electrodes. Vac bias -  self-bias potential of the powered electrode.

It is considered that at each moment the plasma potential is uniform across the bulk of 

discharge. Hence, the plasma potential is equivalent to the sheath potential of the grounded 

electrode. The time averaged energy distribution functions of electrons reflected into the 

plasma from grounded and powered electrode sheaths are calculated for different potentials 

of the DC bias electrode. The model is built using the following assumptions:
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1. The sheath is one-dimensional and has a uniform ion density, i.e. it is a matrix 

sheath. So, the sheath thickness s ( t )  and potential V ( t )  are linked through by the

formula s ( t )  =
^ 2 -e „ -F (rp '

V e n .  /
(4.1)

2. The sheath potential of the grounded electrode, being equal to the plasma 

potential, is assumed to have a sinusoidal form as in [99] for the grounded 

electrode ( t )  = Vq • (l + sin(m T + cp)) (4.2a)

The powered electrode potential is set by the formula

(l) = Vrp • sin(fo • r + e ) + ( 4 . 2 b )  

where Vrf =340 V is an amplitude of a sinusoidal signal of RF generator, and

Vdcbias is a self-bias potential.

3. The electron motion in the sheath is described by the equation

where I  -  distance of the electron from the electrode surface, E { t )  -  sheath

à V
electric field determined as E  = ------ (4.4)

dy

4. It is supposed that at any moment of time electrons from the plasma are 

described by Maxwellian EEDF (Appendix E):

f ( r )  = .exp
J n

(4.5)

where f V  -  electron energy (V), Tg -  electron temperature (V).

5. The plasma is collisionless in the vicinity of the sheath.

6 . The initial plasma parameters are the same as in the real discharge (Fig. 3.10):

electron temperature Te=1.4 eV, electron density ng=2T0^^ m’̂ ; but they don’t 

change with variation of potential of the DC bias electrode.
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The effect of DC bias potential is introduced through the equating of time-averaged 

potentials of the grounded electrode sheath to the plasma potential values taken from the 

probe measurements (Fig. 3.10). In this way Vo values (formula 4.2a), are selected. The 

potential of the powered electrode sheath is calculated by subtracting the powered 

electrode potential equation (4.2) from the grounded sheath potential equation (4.2), given 

that they coincide at their maxima (Fig. 4.2).
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s

- 2 0 0  -

^ d c  bias
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P h a se  ( ti)

Fig. 4.2 Time-dependent potential settings, used in the model:

Fp sh ( 0  -  powered electrode sheath, Fg sh ( 0  -  grounded electrode sheath,

Fp el ( 0  -  powered electrode, Vp - time-averaged plasma potential.

Studies of RF discharges have demonstrated substantial gradients of plasma density, which

typically declines from discharge center towards electrode surfaces. To account for this

effect it is assumed that plasma density at the sheath boundary is approximately one

quarter of its value in the center, as predicted in the model of Graves and Jensen [100] for

hydrogen RF discharge.

In order to simplify solution of the electron motion equation (4.3) for the variable

Telectric field, the RF period is divided into intervals At = It is assumed that the
2  1 0 "

sheath electric field is constant during each interval, changing abruptly its value at the
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interval boundary. Then single and double integration of the equation (4.3) gives 

expressions for eleetron velocity (4.6) and position (4.7):

e-E. - At
(4.6)

U, • At -
e-E; - At 2 A

V 2  • m
(4.7)

e J

Subscript i designates a number of the considered RF cycle interval with values of 

the previous interval used as boundary conditions. A range of successive calculations using 

formulae (4.6) and (4.7) gives an eleetron trajectory within the sheath. The eleetron exit 

energy is calculated, when its distance from the electrode surface becomes equal or larger 

than the sheath thickness /j > Sj . Electrons reaching the electrode surface are not 

considered further. In order to trace the sheath effect on the whole spectrum of electrons 

(0-12 eV) the original EEDF is subdivided into 0.02 eV slots.

0.06 f(W)

P h a s e  (7t /8)

Fig. 4.3 Transformation of maxwellian electrons (Te = 1.4 eV) during 
interaction with the matrix grounded electrode sheath over the 
period of RF cycle. Vdc an = 0 V
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Electron number conservation before and after interaction with the sheath is maintained by 

equalizing areas under the original and exit EEDF curves. The whole RF cycle is divided 

into 16 phases. For each phase a transformation of one sixteenth the original EEDF 

equation (4.5) is calculated (Fig. 4.3). Transformed EEDFs are summed up to obtain a 

time-averaged distribution function.

The algorithm for calculation of the EEDF transformation by the sheath at a given 

phase was written using programming functions of “Mathcad Professional” software. Then 

data were transferred to “Microsoft Excel” for calculation of the time-averaged EEDF and 

graphical presentation of the results.

4.2.2 Results and discussion

The cooling-heating effect of the RF sheath is apparent from the graphs in Fig. 4.3. 

During the sheath expansion { a >  - t  =  0 - > n )  the EDFs of reflected electrons are elongated 

towards higher energies. The strongest heating occurs a t  c o  - t  =7i/8 , when electric field of 

the sheath is weak enough to allow deep penetration of electrons in the sheath without 

reaching electrode surface. At the point of maximum sheath expansion c o  - t  =ti the EDF of 

reflected electrons is changed very little compared with the original one. During the sheath 

recession { c o  - t  =  7c-^2 -ti) the EDFs are shrunk towards smaller energies. The step is formed

at the EEDF at <5; T = — • tt due to collision of tail electron with the electrode.
8

Time-averaged EEDF and EEPF (Appendix E) of electrons reflected from

grounded and powered sheaths are presented in Fig. 4.4. The model produces EEPF graphs

(Fig. 4.4, (b) and (d)) with the smoothly curved “cold” part, which makes it difficult to

assign it a certain value of electron temperature. As for the “hot” tail electrons, first, the

powered sheath produces a hotter tail: 2.8 eV versus 2.0 eV (Fig. 4.2, (d) and (b)). Second,

the DC electrode potential of 90 V affects the sheaths heating ability in the opposite ways.

The tail temperature of EEDF is increased by 20% up to 2.4 eV for the grounded sheath

(Fig. 4.2 (b)). At the same time, it is decreased by 14.3% down to 2.4 eV for the powered

101



shea th  (Fig. 4 .2 , (d)). The effee t o f  the D C  electrode on the po w ered  sh ea th  con trad ic ts  the 

p robe m easu rem en ts. T hey  ind icate  up to 50%  increase o f  the tail tem p era tu re  (Fig. 3.10).
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Fig. 4.4 EEDF and EEPF after interaction of Maxwellian electrons with the 
matrix grounded ((a) and (b)) and powered ((c) and (d)) electrode 
sheath affected by the positive DC electrode. The sheath voltage is set 
with the assumption of a single harmonic.

One of disadvantages of the basic matrix model is that it doesn’t take into account a 

multi-harmonic nature of RF sheath. The problems of passive probe measurements 

described in the chapters 2 and 3, especially at the higher values of the DC electrode 

potential (Fig. 3.10) clearly point out at presence of several harmonies. It is well known 

that the plasma potential of RF excited plasmas contains various harmonics at significant 

levels [101]. To include harmonic terms one can express the grounded sheath potential 

containing four harmonics by the formula below:

K (t) = Vq • [a  + sin(co • t + cp) + B • sin(2 • (œ • t + cp)) + C • sin(3 ■ (œ • t + (p)) + D • sin(4 • (to • t + cp))] (4  8)
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Values of coefficients are taken to be the following: A =l.3157732, B= -0.45, C-0.22, D -  

-0 . 1 , as an example.

1 0 0

4 harm onics1 harmonic

60

V =43 V
40

1612 140 2 4 6 8 10

Phase (7t/8)

Fig. 4.5 Single and four harmonic potential curves of the grounded electrode sheath.

The time-averaged sheath potential is 43 V; the DC bias electrode is grounded.

Of course, different values may apply across the range of conditions. In order to 

have zero phase of the potential curve (4.8) at its minimum (Fig. 4.5) the value of (p is 

chosen to be -0.764-71. Formula (4.8) has been used in place of (4.2a) in order to model the 

presence of potential harmonics across the sheath. The four harmonic sheath of the 

grounded electrode significantly reduces (below 0.5 eV on energy scale) a group of “cold” 

electrons in the resulting EVDF (Fig. 4.6 (b)). This could be expected since a larger part of 

oncoming electrons interacts with the sheath during its longer (3/4 of the cycle) ascending 

part (Fig. 4.5).

With the DC electrode at a potential of 90 V there is an increase of the “hot” tail 

temperature from 1.7 eV to 1.9 eV, which is just 12%. If the constraining assumption 5 of 

the model is partly eased, i.e. sheath boundary plasma density is allowed to vary with DC 

electrode potential, the resulting sheath effect on electrons can be quite the opposite. For 

example, variation of electron density at the sheath boundary from 0.25-ne at 0 V up to

0.5-Ue at 90V DC electrode potential reduces the tail temperature down to 1.514 eV or by 

10.8% (Fig. 4.6). This “net cooling” effect of the sheath is explained by a reduced sheath
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Fig. 4.6 EEDF (a) and EEPF (b) after interaction of maxwellian electrons with the 

matrix grounded electrode sheath affected by the positive DC electrode.

The sheath voltage is set with the assumption of four harmonics, 

thickness according to the formula (4.1). It leads to a stronger electric field in the sheath,

hence shorter residence time uf electrons in the sheath, hence weaker heating of reflected

electrons.

The effect of the four harmonic powered electrode sheath (Fig. 4.7(b)) is stronger 

in comparison with the single harmonic sheath (Fig. 4.4(d)). Without the DC bias electrode 

it heats the tail electrons up to 3 eV, compared with 2.55 eV by the single harmonic sheath.
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Fig. 4.7 EEDF (a) and EEPF (b) after interaction of the maxwellian electrons with 

the matrix powered electrode sheath affected by the positive DC 

electrode. The sheath voltage is set with the assumption of four harmonics. 

Double reflection of cooled electrons is taken into account.
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A t the D C  bias po ten tia l 90 V  the tail e lee trons are hea ted  up to 4 .26  eV: 42%  gain  in 

eo m p ariso n  w ith  8.2%  for the single harm onie . T his gain  o f  the ta il e lec tro n s tem pera tu re  

is c lose to  the one m easu red  by  the p robe (Fig. 3 .10).

T he o rig in  o f  the harm on ic  effect o f  the pow ered  e lec trode sh ea th  cou ld  be seen 

from  the v aria tio n  o f  the  shea th  po ten tia l and  e lec tric  fie ld  du rin g  R F  cycle (F ig. 4.8). 

B iasing  the D C  electrode up to 90 V causes the g row th  o f  the p o w ered  shea th  po ten tia l 

being  delayed  by  approx im ate ly  1/16 o f  the cycle perio d  (Fig. 4.8 (b)). It leads to 

fo rm ation  o f  a dent in the ascend ing  slope o f  the sheath  e lectric  fie ld  (F ig. 4.8 (c)).
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Fig. 4.8 Potential and electric field of the powered electrode in single and 

multiple harmonics cases. S ubscrip t symbols p  sh and  g sh stay  for 

powered and g rounded  electrode sheath.

T his featu re d o esn ’t ex ist in  the e lectric  fie ld  curve o f  the sing le  h arm o n ic  sheath . It is 

caused  by a substan tial increase o f  the m u lti-harm on ic  shea th  p o ten tia l o f  the  g rou n d ed
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electrode, when DC bias electrode is at 90 V. In this way the powered electrode sheath is 

affected. As a result, at the phase 7i/4 , electrons can penetrate into the powered electrode 

sheath deeper (Fig. 4.7) than with DC electrode off. They stay longer in the sheath area and 

at the end gain higher energy from the sharp rise of the sheath potential, which starts right 

after the phase tc/4 (Fig. 4.8 (b)).

The same reasons underlie advantage of the powered electrode sheath in 

eomparison with the sheath of the grounded electrode. Despite approximately the same 

maximum values of electric fields (Fig. 4.8 (c)), hence repelling forces, of both sheaths, a 

stronger heating effect of the powered electrode (Table 4.1) is caused by a delayed rise of 

its sheath. On the contrary, the electric field of the grounded sheath has a strongest rate of 

growth straight after the sheath collapse, limiting in this way its heating effect. Actually, 

for the grounded sheath even a single harmonic ascending potential slope, which is steeper 

than the four harmonic one, produces more electron heating (Table 4.1).
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Fig. 4 ,9 Trajectories of eleetrons after the interaction with the matrix sheath of 
the powered electrode a t ^ - n  of RF cycle. The sheath voltage is set with

the assumption of four harmonics and DC electrode voltage 90 V.
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Indeed, of the ascending part of RF sheath the first half is most important for electron 

heating. This can be seen in Fig. 4.3, where EEDFs of reflected electrons are most 

elongated along the energy axis at the first quarter of RF cycle. The later part of the 

ascending slope accelerates electrons to a lesser degree, because of the strong electric field 

reflects electrons much faster. The commonly accepted approximation of a “brick wall” 

sheath-electron interaction is more justified here. So, in the case of the powered electrode 

sheath affected by the DC bias electrode it is the natural harmonic optimization of its’ 

shape, that provides a stronger electron heating.

An interesting effect appears for colder electrons, if their trajectories are traced 

after interaction with the descending part of the sheath. Before departure from the sheath 

region some of the electrons, already being decelerated by the sheath, are caught again by 

the growing sheath boundary during the next RF cycle.
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Fig. 4.10 Trajectories of electrons after the initial interaction with the matrix 

sheath of the powered electrode at ^  jr of RF cycle.

The sheath voltage is set with the assumption of four harmonics and 
positive DC electrode voltage 90 V.
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As can be seen from the Fig. 4.8. a substantial fraction of electrons described by a 

Maxwellian EEDF, at least up to the initial energy 4 eV, has a double interaction with the 

powered electrode sheath. By taking into account this effect it is possible to build more 

accurate EEDFs and EEPFs for the part of colder electrons (Fig. 4.5 (a), (b)). It doesn’t 

lead to an EEPF with a clear straight line for the “cold” bulk electrons, associated with a 

bi-Maxwellian distribution, but it points out the important limitation of the current model. 

Assumption 6  stated that the electron density at the sheath boundary doesn’t vary with 

time. The double interaction electron-sheath effect breaks this assumption just after a 

single RF cycle. More sophisticated models [96, 97] account for a variable particle density 

at the sheath boundary by resolving in time the electron flux reflected from the opposite 

sheath. So, problems of the current model in verifying the “cold” part of EEDF are most 

likely caused by the constant boundary particle density.

The results of modeling of electron interaction with grounded and powered 

electrode sheath are summed up in the Table 4.1.

Grounded el. sheath 
(1 harmonic)

Powered el. sheath 
(1 harmonic)

Grounded el. sheath 
(4 harmonics)

Powered el. sheath 
(4 harmonics)

T e  (eV) at
V d c a n "  0  V

2 . 0 2.8 1.697 3
T e  (eV) at
V d c  an ^ 9 0  V

2.4 2.4 1.9 1.514* 426
T . ( 9 0 ) - T . ( 0 )

T , ( 0 ) + &2 -0.143 + 0 . 1 2 -10 .8* + 0.42

Table 4.1 Effect of the DC bias electrode on the temperature of the tail electrons 

after interaction with RF sheath of the powered and grounded electrodes.

* Sheath boundary plasma density is 0.5-ne ; otherwise 0.25-ne.

The most interesting part is highlighted by the thick boundary. First, the four harmonic

sheath of the powered electrode affected by the DC bias electrode produces an EEDF tail

heating of 42%, which is comparable with probe measurements. Second, the increase of

plasma density at the sheath boundary of the grounded electrode, when the DC electrode is

activated, causes cooling of EEDF by 10.8 %. It is again comparable with the actual probe

measurements of the “cold” EEDF part. Since the four harmonic grounded sheath produces
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a single Maxwellian EEDF, it is suggested that a combined net heating-cooling effect of 

both sheaths with four harmonics corresponds better for describing electron temperature 

variations, resulting from the DC electrode biasing. The preferential increase of plasma 

density near the grounded rather than near the powered electrode could be ascribed to the 

direction of closing of the DC current circuit. It happens only through the grounded 

electrode, since the circuit of the powered electrode has a blocking capacitor in the 

matching unit.

4.3 Modeling of plasma potential variation, caused by electron injection and 

removal.

It has been established in the previous section that the form of time-resolved 

plasma potential plays an important role in shaping electron EDF. The plasma potential, 

which was accepted to be equal to the sheath potential of the grounded electrode, was set 

using sinusoidal function by the formulas (4.2a) and (4.8) for the cases of single and 

multiple harmonics. In reality, the only sinusoidal signal in RF discharge, which could be 

verified reliably and easily, is the voltage of the powered electrode. Its reading is typically 

made by oscilloscope directly from the internal voltage probe of the matching unit. 

Consequently, it is important to trace formation and variation of the plasma potential, 

based on the initial experimental data: potential of the RF generator, self-bias potential of 

the powered electrode, potential of the DC bias electrode and injected electron current. The 

model is based on balancing net instantaneous currents to the discharge electrodes, 

described by Song, Field and Klemperer [102]. The similar approach was recently applied 

for investigation of the effect of electron injection in RF discharge by Haas and 

Braithwaite [103].

4.3.1 Model

It is considered that plasma electrons are described by a single temperature 

Maxwellian distribution. The electrode sheath is positively charged with no ionization or
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recombination. The electron temperature and density don’t vary during the RF cycle. The 

electrical circuit of the RF discharge is presented in Fig. 4.9. The powered electrode Ac is 

separated from the RF generator by a blocking capacitor. The biasing electrode Ay is 

maintained at a steady positive potential Vy by the DC generator. A simplified 

interpretation of electron injection is suggested. It is assumed that the electron beam 

doesn’t acquire sufficient energy to produce additional ionization in the plasma and to 

affect the Maxwellian distribution of plasma electrons. It is represented by a DC electron

Plasma

dc an

current Ig, entering the discharge plasma.

Fig. 4.11 Electrical circuit of the RF discharge with electron injection and 

removal

The model is built using the following mathematical definitions:

1. In general, the instantaneous conduction current at any plasma boundary is 

described using the Bohm sheath model. Ion and electron components are 

summarized to give a total current to an electrode of area A:

i  =  A -
1

n-e-Ug -  —-n-e-Ug e
M l
Tp (4.9)

where Ug =
'"e-T,

V “ i y
- Bohm speed, u = - mean electron speed, Tg

electron temperature in Volts, e - electron charge, mi and mg -  ion and electron
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mass, n = He plasma (or electron) density, P (̂f) -sheath potential.

The current of secondary electrons is desregarded.

2. Plasma density is non-uniform over the discharge volume. Near the powered 

electrode it is higher than in the rest of plasma: nc = K-n (4.10)

3. For convenience further calculations are conducted, using dimensionless

i  Vvariables: i  =   ; 0  =  —  ; ^ = mg T (4.11)
Ac-n-e-Ug T,

where Ac -  surface area of the powered electrode, coo-RF cyclic frequency.

Then normalized surface areas of the powered, grounded and bias electrodes are:

Ac=l  ; ; A g = ^  (4.12)
Ac A q

4. The powered electrode potential is set by the formula

^ p e i W  =  ^RF • s i n +  bias ( 4 - 1 3 )  

where Orf is an amplitude of a sinusoidal potential of RF generator, and Ode bias is 

a self-bias potential. The DC electrode has potential Ode an-

5. So, conduction currents to the powered, DC and earthed electrodes can be 

expressed in the following way:

?c =K - I (4.14a)

g =Ag ' ^ 1 - a - e  (4.14b)

'a =A a (4.14c)

where a  =

6 . From the condition of quasineutrality of the discharge plasma at any moment of 

time it follows, that sum of all instantaneous conduction currents to the electrodes 

and a value of the current of injected electrons should be zero:
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+  I in -  0 (4 .15)

where Ig -  normalized current of injected electrons.

7. The formula of instantaneous plasma potential is derived from substitution of the 

formulae (4.14) into (4.15);

ican

J

a K-e^P"' +Ag -e ĉan
Op =ln- V

K + Ag + A^ +Ij
(4.16)

Then the time-averaged plasma potential is:

0 .
2-71 

2 - n  J0 pd0 (4.17)

8 . Since there is a blocking capacitor in the circuit of the powered electrode, the net 

conduction current from plasma to the electrode over RF cycle should be zero:

2-71

I q  — 0 (4.18)

Then substitution of (4.13), (4.14a) and (4.16) into (4.18) results in:

2-7T|
I (K + A g + A a + I jn)-e

j^_^ORF-Sin0 +0 dcbias . Q ^ d c a n
d e  =  0  (4.19)

A y

Solution of the equation (4.19) provides the value of the self-bias potential of the 

powered electrode.

9 . For comparison with the real RF plasma parameters of the model were set using 

data from the real discharge in hydrogen. Electron temperature and density (Tg =

3.2 eV, ng = 1.210^^ m'^) were taken from the electrostatic probe measurements. 

Other discharge parameters, the amplitude of RF signal 440 V and the self-bias 

voltage of the powered electrode -195 V, were characteristic to the discharge at 30 

W power and 45 mtorr pressure. Electrode areas were: of the powered electrode 

8.332 10'  ̂ m^, of the DC electrode 5.125-10'^ m^ and of the grounded electrode 

6.53TO'  ̂m .̂ The main plasma ion was
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4.3.1 Results and discussion

Initially, a case of the discharge without electron injection or removal was 

considered. At these conditions coefficient K was calculated from the equation (4.19), 

using the real discharge parameters. The solution gave the value K=4.6. This value was 

used unchanged for further calculations.

(a)
■■■

A 0 a

Model E>qDeriment

I  -20 -*o
0

è  -40 - 
0

-60

-8 0

-100
150 5 10 20

(b)

■ " ^ 6

-2015
0
0

Model EjqDeriment

-40
O d e bi;

-60

-80  -

-100

430 1 2
O d e

Fig. 4.12 Variation of the averaged plasma potential and the self-bias voltage of the 

powered electrode for the cases of: (a) - DC electrode and (b) - electron 

injection. It is assumed that all electrons, produced in the electron source 

(section 3.4, chapter III), are injected in plasma without losses: Ijn = lemis •

The time-averaged potential of the discharge and the self-bias voltage of the 

powered electrode were calculated, using the formulas (4.17) and (4.19), with electron 

removal or injection. These discharge conditions were regarded separately: variation of the 

potential of the DC electrode without electron injection, and variation of the current of 

injected electrons, when the DC electrode was earthed. The results of the model are 

presented together with experimental measurements in Fig. 4.12.

In both cases, variations of the theoretical and the experimental data are 

qualitatively the same. In general, the modeled plasma potentials are always higher than
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the one, measured in RF plasma. Their excessive value, marked AOa and AOb, is 

associated with the ion nature of the sheath, set in the model. Following the assumption 

(4.9), the plasma potential should always be positive in respect to the potential of the 

powered electrode or of the DC electrode. In the real discharge, during a short interval of 

the RF cycle there can be a reversal of electric field in the sheath of the powered electrode. 

For a brief moment, the sheath becomes an electron one. This effect was detected 

experimentally by Sato and Lieberman [77]. During a private communication.

Prof N.Braithwaite has deduced a condition of the RF sheath changing its sign as

Vrp^ T . -  - 2 ^  (4.20)
y 2-71-m^

where V r f  -  amplitude of the RF signal of the powered electrode. T e  -  electron 

temperature in Volts, m, -  electron mass and me -  ion mass. In our case, for ions and 

Te = 3.2 eV, the right hand side of the condition (4.20) is equal 95 V, which is much less 

than 440 V RF amplitude of the powered electrode in the experiment. Therefore, in the real 

discharge the sheath of the powered electrode changes its sign at the experimental 

conditions, used for comparison with the model. Consequently, the time-averaged plasma 

potential, measured by the probe, is smaller than the potential, predicted by the model.

The difference between theoretical and experimental results for the self-bias 

potential (A0c, Fig. 4.12 (b)) increases with growth of injected electron current. This effect 

is ascribed to the fact that the model doesn’t account for a considerable increase of plasma 

density, arising from ionization by injected electrons. In the real discharge, injected 

electrons can increase plasma density up to an order of magnitude (Fig. 3.12).

Time-resolved plasma potential, calculated from the formula (4.16), is equal to the 

potential of the sheath of the earthed electrode. Subtraction from it of the powered 

electrode potential (4.13) and of the potential of the DC electrode produces time-resolved 

values of the corresponding sheath potentials. They are presented in Fig. 4.11 for the case 

of Ode an = 18.75.
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Fig. 4.13 Time resolved potentials in the discharge at Ode an = 18.75.

Op -  plasma potential, Op sh -  potential of the powered electrode sheath,

O de sh -  potential of the D C  electrode sheath. O p ei -  R F  potential of the 

powered electrode.

Apart from having all the time positive values, as discussed on the previous page, 

all sheath potentials have a high degree of symmetry. It contradicts to the asymmetrical 

forms of the sheath potential, considered in section 4.2.2 of this chapter. This result of 

modeling was ascribed to limitation of the conduction current approach of this model. It 

didn’t consider the whole RF circuit of the discharge. Therefore, displacement currents 

through plasma sheath and sheath capacitance were beyond the scope of analysis. These 

elements are crucial for investigation of the multi-harmonic asymmetrical sheath. The 

model, including both conduction and displacement currents through the RF sheath, was 

suggested by Dr P. Johnson. Its brief description is given in Appendix F.
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Chapter V. “Deposition of carbon films, using various configurations of RF 

discharge”

5.1 Introduction

As has been demonstrated in the section 3.7, electron injection and removal by 

means of the electron source and the DC bias anode strongly influences the main plasma 

parameters of an RF capacitive discharge: density, electron temperature, plasma potential. 

It was beyond the technical capabilities of this work to measure a complete EEDF in 

plasma with injected electrons. It is believed that this EEDF includes “cold” bulk electrons 

and “hot” injected electrons.

The reaction of dissociation of hydrogen molecules by electron impact has a 

threshold 8.5 eV (section 1.5). Consequently, presence of “hot” electrons with energies up 

to 120 eV in RF plasma is beneficial for the production of atomic hydrogen. In its turn, 

during deposition of carbon films atomic hydrogen is crucial for preferential etching from 

the surface of carbon atoms, linked by weak s p ^  bonds. In this way, carbon atoms with a 

strong s p ^  bond are left, forming a diamond lattice.

Although information from the energy and mass analysis probe (section 3.7.2 and 

3.73) has been solely about ionic components of hydrogen, it confirms indirectly the 

groAvth of atomic hydrogen density in a plasma with electron injection. Fig. 3.15 (a) 

reveals 3.7 times increase in density of species during simultaneous operation of the 

electron source and the DC bias anode. It has been demonstrated in section 2.9, that ionic 

hydrogen is produced mainly by electron impact of its atoms.

It is interesting to trace, how plasma conditions, modified by electron injection, 

affect coatings. So, deposition of carbon films from the RF discharge with electron 

injection will be described in this chapter. In addition, a hollow cathode configuration will 

be examined as an alternative scheme for bringing the RF discharge up to the conditions of 

diamond film deposition. Data on carbon coatings from the RF hollow cathode will also be 

presented.
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5.2 Deposition of carbon coatings from an RF discharge with electron injection

5.2.1 Experimental conditions

The basic experimental system was the same as depicted in Fig. 3.2 of chapter III. 

Plasma diagnostics (the electrostatic probe and the energy and mass analysis probe) were 

removed from the discharge volume to prevent their contamination by carbon coatings.

Discharge conditions were the following. A gas mixture of methane, hydrogen and 

argon was used with flow rates 6 , 20 and 20 seem accordingly. The overall pressure of 70 

mtorr was sustained in the discharge volume using a butterfly throttle valve. Incident RF 

power was lOOW. Total deposition time was approximately one hour. No substrate heating 

was used.

The filament in the electron source was of the first prototype: with an emissive 

layer, attached by a blue mineral wax. The heating power of the filament was 30 W. The 

bias voltage of the filament was -134 V, resulting in an emission current of 93 mA. The 

fact of injection of electrons into the main discharge was indirectly confirmed by the 

variation of self-bias potential of the powered electrode. It declined from - 482 V without 

injection down to -  511 V during operation of the electron source. The same effect was 

confirmed both experimentally and theoretically in sections 3.7.1 and 4.2.2.

It was demonstrated in section 3.7.1 that the time-averaged plasma potential could 

decline two to three times as the result of electron injection, while the potential of the 

powered electrode sheath changes insignificantly. So, silicon and titanium deposition 

substrates were attached to the grounded electrode, where the strongest variation of plasma 

conditions was expected. For comparison one set of samples has been prepared with 

electron injection, another -  without, keeping the other discharge conditions unchanged. 

The samples were analysed, using Raman spectroscopy (Appendix G).

5.2.2 Coating characterisation using Raman scattering

The Raman measurements of the samples from both experiments were conducted on a
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Renishaw apparatus, which uses 515 nm Ar laser light. Spectra were recorded in the range 

2 0 0 -3 2 0 0 cm '‘ (Fig, 5.1).

Titanium substrate Silicon substrateSil

Si2

1600 20001200400 800 32001200 2400 28002000 32002800400 24001600

Silicon substrate(c) Titanium substrate D

Sil

3200280024001600 2000400 800 1200

wave numbers (cm  ̂ )

3200400 2800800 1200

wave numbers (cm ̂  )

1600 24002000

Fig. 5.1 Raman spectra of carbon coatings from the grounded electrode 

without (a, b) and with (c, d) electron injection in the RF discharge.

(Courtesy of Dr D.Grant)

Specific peaks Sil and Si2 (Fig. 5.1, (b, d)) are associated with 520 and 950 cm’  ̂

peaks of Raman spectra of the silicon substrate [104]. The common features of all spectra 

are the two peaks, which are centred approximately at 1350 cm'^ (D peak) and 1590 cm'^ 

(G peak). Their labels suggest a state of carbon, producing a corresponding Raman 

scattering shift. G stands for graphite; and D stands for disordered, being associated with 

polycrystalline nature of graphite. More precise positions of these peaks, obtained from 

microcrystalline graphite sample, are 1355 cm"̂  and 1575 cm'^ accordingly, as quoted in 

[105]. The difference of the location of the peaks on the Fig. 5.1 could be attributed to a 

number of factors. First, a small scale of the “wave numbers” axis on the Fig. 5.1 doesn’t
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allow accuracy higher, than 10 cm '\ Second, the position of the G and D peaks could be 

affected by the hydrogen content of the film, by the presence of different carbon phases, 

such as graphite clusters and benzene ring clusters, and by stress in the film [105].

The effect of background signal on Raman spectra was attributed to luminescence. 

Yoshikawa and co-workers demonstrated Raman spectra of soft carbon coatings with 

superimposed luminescence signal [106]. They established, that luminescence intensified 

with increase of hydrogen content in the films. At 50-70% hydrogen content luminescence 

signal practically obscured Raman spectra [106]. This result was ascribed to large s p ^  

carbon clusters and polymeric structure of the films.

It is suggested, that in our case the carbon coatings also contain large amount of 

hydrogen, causing substantial luminescence on all Raman spectra (Fig. 5.1). Electron 

injection reduced plasma potential and ion bombardment energy at the earthed electrode 

(Chapter III, sections 3.8.1 and 3.8.2). It promoted further polymerisation of the coating 

and growth of its luminescence signal (Fig. 5.1, (d)). Contrary decline of the luminescence 

signal on the titanium sample (Fig. 5.1, (c)) could be ascribed to roughness of its surface. It 

absorbed well laser light, which could cause decomposition of soft carbon coatings at laser 

power less than 10 mW [106].

5.2.3 Technical limitations of the configuration with electron injection and 

removal for depositing carbon films

Deposition of carbon coatings in the configuration, including the electron source 

and the DC anode (Fig. 3.2), has revealed a number of technical problems, which forced a 

revision of the program.

First, the DC anode could not be used because of fast growth of insulating carbon 

coating on its surface. In principle, alternative designs of the electrode, such as a rotating 

electrode or a remote electrode [65], could significantly reduce the problem. However, it 

was difficult to implement them because of limited space inside the vacuum bell jar (Fig. 

2 .1).
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Second, at this time filaments of the electron source had the emissive layer, which 

was attached by a blue mineral wax. The design proved to be unreliable because of fast 

erosion of the emissive layer. For example, in order to conduct the experiment, described 

in the section 5.2.1 it was necessary to replace the filament three times. A more reliable 

design of the filament, described in the section 3.3, has been developed at the later stage of 

the project.

In addition, an interesting recommendation has been made by Dr B.Spitsyn, a 

discoverer of the CVD approach of diamond deposition (Section 1.2). During the the 4* 

International Conference on Diamond, Diamond-like and Related Materials (Portugal, 20- 

24/09/93) he has pointed out in private communication, that one of the process criteria of 

growing CVD diamond is discharge power densities at least 10 W/cm^. It is unlikely, that 

the discharge configuration with electron injection-removal (Fig. 3.2) will be able to 

approach this value.

Therefore, following the technical and physical arguments, it was decided to look 

for an alternative configuration of RF discharge, which could reliably operate in methane- 

hydrogen gas environment, producing plasma with high-energy electrons and high power 

density.

5.3 Deposition of carbon coatings from RF hollow cathode configuration

5.3.1 Hollow cathode effect

The hollow cathode effect is a well-known phenomenon, which consists in 

confinement of discharge electrons in a potential well [107]. This potential structure is 

typically formed in cavities of a plane electrode, which could have cylindrical or linear, 

slot-like shape, or between parallel plates.

In low-pressure plasma discharges, sustained by means of electrodes, electrons 

either originate from ionisation processes inside the plasma or from secondary emission 

from the electrode surface, caused predominantly by ion bombardment. Secondary
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electrons are accelerated through the electrode sheath, gaining energy equal to the sheath 

potential, sometimes, hundreds of Volts. Their role is important in DC discharges 

primarily, because they close the electron current circuit through the cathode sheath. In RF 

discharges they are a major source of ionisation at higher pressures, in the so-called y- 

mode of discharge.

In the case of the hollow cathode, the original secondary electrons and electrons, 

produced in the sheath, are effectively trapped between the two sheaths. They traverse the 

discharge space until they are deflected from this pass by a single or several collisions. The 

EEDF of hollow cathode plasma could be qualitatively described in terms of “cold” bulk 

electrons and “hot” trapped electrons, as in the case of plasma with injected electrons 

(section 3.7.1). Measurement results of EEDF of the hollow cathode were presented in 

[108]. They are reproduced on the Fig. 5.2.

The trapped “hot“ electrons produce multiple ionisations through collisions with 

neutrals, because their mean free path is much less than the total distance, they cover 

between the reflecting sheaths. Hence, hollow cathode plasma density could be

c-3
-dw
03

S

O;

1

0
V (Volts)

Fig 5.2 EEDF of the hollow cathode discharge in helium. Reproduction from the 

publication by Borodin and co-workers [108]. Hollow cathode diameter -  2 

cm; pressure -  0.5 torr; discharge current: (I) -  100 mA, (2) -  50 mA. The 

vertical lines mark the cathode fall of potential: (1 ) -  solid, and (2 ) - broken.

significantly higher, than in other types of low-pressure discharge. For example, in [109] 

there was measured 1.4T0^^m“̂  plasma density in RF hollow cathode discharge in argon 

at 45 mtorr, which was 20 times higher than in RF diode discharge at the same conditions.

121



In [110] there was reported 9T0^^ m"  ̂electron density for neon DC discharge in the copper 

hollow cathode. Practically, the density of hollow cathode plasma directly depends upon 

the power density of the discharge. From the data, published in [109] and [110] it is 

estimated that they correspond to power densities 0.42 W*cm'  ̂ and 135 W-cm"  ̂

accordingly.

High-density plasma of hollow cathodes was typically used for deposition or 

etching enhancement [111, 112] or as a light source, for example, in ion metal lasers [113]. 

Moreover, diamond films were successfully deposited from discharges, based on hollow 

cathodes of spiral [114] and tubular form [115, 116]. Interestingly, in [115] methane- 

hydrogen gas mixture was not supplied through the cathode. Nevertheless, the plasma 

plum between cathode and anode had sufficient plasma density to deposit diamond film. 

Another evidence of a very high power density in these discharges [114,115,116] was the 

absence of auxiliary heaters for deposition substrates. All of them were heated by energy 

transfer from hollow cathode and plasma.

5.3.2 Experimental configuration of RF hollow cathode discharge for carbon

film deposition

In order to transform the diode RF discharge configuration (Fig. 2.1) into the 

hollow cathode one in the most economical way the changes were made only to the 

powered electrode unit (Fig. 5.3). A special stainless steel superstructure is screwed on top 

of the original 110 mm diameter powered electrode, preserving 6  mm gap. This 

superstructure consists of a circular plate, equal in diameter to the original electrode, and a 

puck-like body 76 mm diameter and 18 mm height, centred on its top. The puck has 7 

orifices each of 18 mm diameter, passing also through the circular plate. The central orifice 

is blocked in the original experiments. The distance between the top of the powered 

electrode and the sample holder is 15 mm.
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Fig. 5.3 Schematic diagram of the RF hollow cathode experimental device

The 6 mm gap between the original electrode and the superstructure is covered 

from the side by a stainless steel mesh, which is spot-welded. The mesh has density of 400 

wires per inch with transparency of 69%. The whole electrode assembly is surrounded 

from the side by an earthed shield, with 2.5 mm separation approximately. The shield has 

orifices to allow gas in from the gas shower. After comparison of areas of the sheath 

separation and the meshed electrode side it is estimated, that 76% of the injected gas will 

pass through the hollowed structure of the powered electrode.

During the test runs of the system it was noticed that areas located at the bottom 

part of the hollowed structure were much lighter in colour. Hence, they were subject of
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aggressive sputtering. To exploit this process for carbon introduction in the discharge and 

to suppress simultaneously the unwanted introduction of impurities graphite targets were 

positioned at the base of the hollowed structure at specially machined recesses.

Overall, configuration of the RF hollow cathode (Fig. 5.3) has proved to be 

successful for deposition of carbon films. It operated reliably in a wide range of gas 

pressures, up to 4 torr, for prolonged time. Even complete insulating carbon deposit all 

over the powered and grounded electrode surfaces did not obstruct operation of the 

discharge (Appendix H).

5.3.3 Experimental conditions

The general target of the first experimental series was to test the hollow cathode 

configuration (Fig. 5.3) at the discharge conditions, suitable for deposition of diamond 

film. In order to maximise power density of the discharge the output power of RF 

generator was set at maximum or close to maximum: 280 -  300 W. The sample holder was 

preheated to a temperature about 600° C. Plasma discharge heated it further, up to 790-830° 

C. Silicon samples, pre-polished by diamond paste, were attached to the holder in the 

centre and closer to its edge (Appendix H).

The vacuum chamber was typically evacuated to 8T0'^ torr prior to admittance of 

gas mixture. Gas composition included hydrogen with a few percent of oxygen. In some 

experiments argon was added as well. Small amounts of oxygen lead to a decrease in the 

concentration of aromatics, oxidising hydrocarbon precursors in the gas phase. In addition, 

it promotes gasification (etching) of s p ^  surface carbon by OH radicals. Argon benefits the 

process by preventing polymerisation processes of carbon atoms in the gas phase. 

Hydrocarbon molecules are dissociated in collisions with argon ions and metastable atoms.

Deposition time lasted from 3 to 4.5 hours. Scanning electron microscope (SEM) 

micrographs of typical coatings are presented on the Fig. 5.4. Deposition parameters of 

these coatings are given in the Table 5.1.
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Experiment

label

Hiflow

(seem)

Add.
gasses

(%)

Power

(W)
Vdc bias

(V)

Pressure

(torr)

Number of 
holes in the 

electrode

(A) 25 0 2 -3 .5 300 -131->-127 &88 6

(B) 50 O2 - 3 . 3

A i- 2 1 6
300 -105->-98 1.05 6

(C) 50 O2 - 5 280 -86^-85 1.32 3

Table 5.1 Deposition conditions

5.3.4 Results and discussion

Hardness of deposited films was estimated qualitatively: by scratching. A small 

force, applied by screwdriver, typically produced a visible scratch down to silicon substrate 

of the sample. The reason of soft nature of the coatings was in their morphology.

As it could be seen from the micrograph (A) on the Fig. 5.4, the film is quite 

porous, consisting of separate grains. The shape of grains is mainly irregular, and the size 

is from less than 100 nm up to 500-600 nm. The largest grains on the micrograph (B) are 

about 200 nm, but predominantly they are around 50 nm or less (Fig. 5.4 (B-1)). Coating 

on the micrograph (C) has grain size around 150 nm or less.

Etching of graphite targets in the gas mixtures, used in the experiments (Table 

5.11), could originally produce various hydrocarbon molecules, radicals and ions [117] and 

carbon-oxide molecules and ions. By clustering and polymerisation they form large 

particles, creating an environment, which is known as dusty plasma [118]. Some typical 

phenomena of dusty plasma could explain deposition process in the RF hollow cathode. 

Conditions for dusty plasma are especially favourable in RF discharges because of trapping 

negative particles and ions between the positive time-averaged sheaths of the electrodes.

These conditions are practically ideal inside the hollow cathode with its centre- 

symmetrical distribution of potential. Dusty particles could acquire 10  ̂ to 10  ̂ negative 

elementary charges, growing to the sizes 0.01 to 1 pm accordingly. Diffusion of particles 

towards the deposition substrate occurs due to a combined effect of a directed flow of
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Fig. 5.4 SEM micrographs of carbon coatings
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hydrogen species and interaction with other negatively charged particles. When their 

fractional amount starts exceeding 10'^, the plasma potential is gradually depressed. This 

facilitates the arrival of negatively charged particles to the deposition substrate. Particles 

land on the substrate with little energy, which results in a porous, soft coating.

Interestingly, some of the particles on the micrograph (A) have a hexagon-like 

contour, which is clearly seen on the enlargements (A-1), (A-2) and (A-3) on the Fig. 5.4. 

Similar contour is characteristic to diamond microcrystals, grown from the gaseous phase 

(Chapter I, Fig. 1.3). It indicates the possibility of formation in the gas phase of sub-micron 

crystallites of diamond. In fact, such a process was described in [119] for laser heating of 

carbon vapours and for a high temperature flow of argon and acetylene.
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Fig. 5.5 Raman spectra of coatings from the RF hollow cathode configuration.

They correspond to the coatings on the Fig. 5.4 and conditions in the Table 5.1. 

(Courtesy of Renishaw Ltd)

Addition of argon in gas mixture together with increased hydrogen flow (Table 5.1,
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line (B)) suppresses formation of large particles in the gas phase. It could be concluded, 

when micrographs (B) and (A) (Fig. 5.4) are compared. The first one has just a few 

particles, larger than 100 nm. Most of the film (B) is composed of aggregates of particles, 

which are 50 nm or less (Fig. 5.4, (B-1)). Their darker colour may be linked with their 

graphitic nature.

Indeed, this assumption is confirmed by the Raman spectra (B) on the Fig. 5.5. It 

has a well-developed peak structures near the Raman modes D and G, which are associated 

with graphite. The fact, that all the peak structures are quite broad, points out at the 

multiphase nature of carbon in these films. Superposition of different Raman active modes, 

associated with each phase, leads to broader effective line width. Some of the Raman 

modes of carbon [105], which could be used for interpretation, are indicated by dashed 

lines on the Fig. 5.5: 1180 cm'^ -  s p ^  rich phase, 1486 cm'^ -  stretch vibrations in benzene, 

1355 and 1575 cm"̂  -  D and G modes of polycrystalline graphite.

Spectrum (C) (Fig. 5.5) also has a distinguished D and G peak structures. 

Graphitisation of this coating is caused by increase of the discharge power density, which 

was achieved by blocking three of six orifices in the electrode. In addition, concentration 

of oxygen was increased up to 5% (Table 5.1, line (C)). These conditions partly suppressed 

particle formation in the gas phase, resulting in deposition of particles no more than 150 

nm in size (Fig. 5.4, (C-1)).

Although the first series of experiments with RF hollow cathode has not achieved 

diamond deposition conditions, it has emphasized the problem of dusty plasma for this 

configuration. This property of the hollow cathode could be beneficial for some other 

purposes. For example, in [120, 121] there were described experimental set ups for 

production of carbon clusters, based on hollow cathode effect. Alternatively, this 

experimental series has demonstrated ways of controlling formation of particles in plasma: 

by gas flow, gas composition and power density. Further research of the hollow cathode 

configuration has been concentrated primarily on the power density option because of a
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particular drawback of the device, which had become clear after impedance measurements 

of its power line.

5.4 Deposition of carbon coatings from a single hollow cathode

5.4.1 Limitation of power in the discharge

During preparation of the first experimental series it was estimated, that the power 

density of the discharge inside the hollowed structure (Fig. 5.3) could be as high as 8-9 

W/cm^. One of the assumptions of this estimate was that most of RF power from the 

generator went into the plasma. RF power losses in the line were expected to be at the level 

10-15%. There has appeared an opportunity to check these assumptions by the time of 

completion of the first experiments with the hollow cathode.

An electrical impedance probe [122] was developed within the framework of a 

different project under the supervision of Prof N.Braithwaite. The impedance probe, 

inserted in the RF power line, provided simultaneous time-resolved measurements of RF 

current and voltage. RF power, going in the discharge, could be calculated, using these 

data. In order to examine scope of this novel diagnostic an arrangement has been made to 

conduct a test run with the hollow cathode configuration. Measurements and processing of 

the data of the impedance probe were performed by Dr C. Mahony.

The results have demonstrated that only about 30% of the set power of the 

generator reached the discharge. The rest was absorbed by the matching unit and the part 

of the power line, which connected the matching unit with the electrode. This substantial 

loss in the power line is associated with insufficient diameters of the core wires in the 

atmospheric and vacuum coaxial cables, which were of the order 2-3 mm (Section 2.4, 

Chapter II). Only RF vacuum feedthrough had a transmitting rod 6  mm in diameter. The 

whole arrangement of the power line was a compromise solution, allowing seven other 

vacuum inputs for diagnostics and DC power in the water-cooled base plate (Section 2.2, 

Chapter II). However, the line could not transmit enough power for the multiple hollow
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cathode structure of the electrode in order to achieve diamond deposition conditions.

5.4.2 Experimental configuration and conditions

To bypass the shortage of power in the discharge it was decided to concentrate

plasma in a single hollow cathode structure of the electrode (Fig. 5.6). For this purpose, six

holes in the powered electrode were blocked, while the central hole was opened. During 

the course of experiments a special graphite insert was positioned in the hollow cathode, 

which further increased power density of the discharge (Fig. 5.6).

Blocked orifice Graphite insert

Bottom graphite target 

Fig. 5.6 RF powered electrode with a single hollow cathode structure

Experiment

label

H2  flow 

(seem)

O2

(%)

Power

(W)
Vdcbias

(V)

fsub

c

Pressure

(torr)

H/C diameter 

(mm)

(D) 40 3 290 -60—>-64 842 1.63-1.67 18

(E) 79 - 280 -20->-23 856 3.04 8

(F) 79 2 . 2 280 -26->-28 800 3.0-3.21 8

(G) 79 1.3 285 -6^-13 823 3.07-3.42 5

Table 5.2 Deposition conditions of the single hollow cathode discharge

A 2 mm thick graphite sputter target was placed at the bottom of the hollow cathode.

In order to increase efficiency of hydrogen dissociation by the fast electrons it was 

decided to raise operational pressure up to a few torr. After trial runs it was discovered that 

above the pressure 5 torr the configuration is prone to ignite a parasitic local discharge in 

the gap between the earthed shield and the powered electrode (Fig. 5.3). Furthermore, local
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discharge ignited, burning through the side mesh of the electrode, when hydrogen flow 

exceeded 100 seem. Afterwards, the hollow cathode configuration was run with a safety 

margin for pressure and gas flow.

Deposition conditions of the most interesting experiments of the second 

experimental series are given in the Table 5.2. Typical duration of deposition process was 

three hours. Silicon was used as a deposition substrate. Two samples were attached to the 

heating stage opposite to the hollow cathode (Appendix H).

Considerably reduced discharge space and higher operation pressure required a 

special ignition procedure in this series. After the initial pumping down of the chamber the 

turbo pump was shut down; and vacuum was sustained only by the mechanical pump. 

First, argon gas was let in the chamber, and pressure was raised. At approximately 2 torr 

RF power was supplied to the electrode. Straight after the discharge ignition argon was 

substituted by hydrogen; pressure and power were set to the operation level.

5.4.3 Discussion

5.4.3.1 Morphology of deposition

The second series was started from the experiment at the conditions (D) (Table 

5.2), using the single hollow cathode 18 mm in diameter. As it could be seen from the 

micrograph on the Fig. 5.7 the deposited film was qualitatively similar to the coatings from 

the first series (Fig. 5.4). It looked quite porous, and consisted of well-defined particles. 

The coating was easy to scratch.

It was assumed, that this film was deposited from dusty particles as described in the section 

5.3.4. Another deposition experiment with the 18 mm single hollow cathode was 

conducted at 3.1 torr. However, it produced qualitatively the same type of coating. In order 

to overcome the effect of dusty plasma it was decided to increase further power density of 

the discharge. For this purpose, a graphite insert, having orifice of diameter 8  mm, was 

placed in the hollow cathode.
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(D)

Fig. 5.7 SEM micrograph of coating for the conditions (D) in the table 5.2

Deposition experiments with graphite inserts (conditions (E), (F) and (G) in the 

Table 5.2) did not produce continuous coatings of silicon samples. Instead, results of 

deposition/nucleation process were noticeable mainly in the cavities, while the flat parts of 

substrate were kept pristine from deposition by plasma etching of carbon and even 

sputtering of silicon (Fig. 5.8 and 5.10). Discharge inside graphite inserts with internal 

diameters 8  and 5 mm had power density five and ten times higher, than inside the 18 mm 

hollow cathode. It is thought that the high power density resulted in production of 

sufficient amount of atomic hydrogen to suppress significantly particle formation in the gas 

phase. It led to a sufficiently high, of the order 130-140 V (Appendix I), plasma potential. 

Therefore, hydrogen ions, accelerated through the sheath, gained enough energy for 

sputtering and etching material from the deposition substrate.

Comparison of the masked and opened parts of the silicon substrate ((E-1) and 

(E-2) on the Fig. 5.8) demonstrates a significant transformation of the slopes of cavities. 

They became smoother and gentler after sputtering. This “opening” of cavities is thought 

to result from a substantial angular distribution of sputtering ions. Their sputtering effect 

decreases in the cavity from top to bottom due to a mutual “shading” of the opposite slopes 

(Fig. 5.9).
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Fig. 5.8 SEM micrographs of the sample substrate for the conditions (E) in the 

Table 5.2. (E-1) -  masked area, (E-2) and (E-3) -  open area.
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Fig. 5.9 Schematic of substrate transformation; where: solid line -  profile of the 

original substrate, dashed line -  profile of the sputtered substrate, small 

arrows -  velocities of ions, block arrows -  direction and intensity of 

sputtering, grey spikes -  deposition structures.

As it could be seen from the micrographs (E-2) and (E-3) on the Fig. 5.8 deposition 

was mainly confined to bottom and adjacent areas of the cavities, which is explained by a 

reduced intensity of sputtering and etching in these parts. Although it was considered, that 

dusty plasma conditions were suppressed in this experiment, some fine soot was 

discovered on the samples after opening the chamber. Prior to examination of the samples 

by electron microscope, they were wiped out by tissue with alcohol. This procedure 

resulted in breaking off of some spike-like filaments, grown in the cavities. Some of the 

broken spike tops, which were pushed below their stump-like bases, lay normal to the line 

of view in the cavities (Fig. 5.8, (E-3)). They have length up to 1 pm with stump-like base 

diameter up to 0 . 2  pm.

Addition of 2.2% of oxygen to the discharge (Fig. 5.10, (F-1)), apart from increased 

sputtering of silicon substrate, promoted spreading of nucléation inside the cavities up to 

their edges. Position of some micro-crystallites clearly marked cavity edges, were carbide 

formation and, hence, nucléation of diamond phase proceeded faster. Further increase of 

nucléation density was achieved in the experiment, using the graphite insert with internal 

diameter 5 mm (Fig. 5-10, (G-1)). It is thought, that a higher power density inside the 5 

mm hollow cathode elevated concentration of atomic hydrogen, which was a key factor in
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deposition of the crystalline phase.

(F-1)

(G-1)

Fig. 5.10 SEM micrographs of sample substrates for the conditions (F) and (G) 

in the Table 5.2.

It was difficult to resolve shape of microcrystallites, when a higher SEM 

magnification of the areas, presented on the Fig 5.10, was attempted. Images of crystallites 

were typically very bright and blurred due to their negative charging. This problem was 

largely neutralised on the SEM images of the tilted substrates (Fig. 5.11, (F-2) and (G-2)). 

Micrographs of the tilted samples revealed, that the shape of all well-developed crystallites 

was spike-like.
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(F-2)

(G-2)

Fig. 5.11 SEM micrographs of sample substrates with tilt 26® for the 

conditions (F) and (G) in the Table 5.2.

Usually, the large crystallites filled central, deepest parts of the cavities, and small 

one spread over the cavity slopes (Fig. 5.11, (G-2)). It confirmed the assumption, made 

earlier (Fig. 5.9), about the initial nucléation at the bottom part of the cavities. Fence-like 

formation (Fig. 5.11, (F-2)) of crystallites was associated with primary nucléation at the 

edge of the deeper crack-like part of the cavities (Fig. 5.12).
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Fig. 5.12 Suggested cross-section of a cavity with fence-like formation of crystallites

On the Fig. 5.10 these “fence” formations could be seen as chains of crystallites, sometime 

merging into white lines, aside of the black curves of the deeper narrow parts of the 

cavities.

(F-3)

(F-4)
Possible shapes of 
the spike crystallite

Fig. 5.13 SEM micrograph of the tilted (26®) sample for the conditions (F) in the Table 5.2
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On average, the largest microcrystallites had the height up to 1.7-2 pm. 

Nevertheless, some features on the SEM micrographs pointed out that even higher spikes 

had been deposited. For example, on the Fig. 5.13 there is a stump-like base of the broken 

crystallite, which has a larger axis of its nearly oval cross-section around 900 nm. It could 

be speculated, that, if previously it was a completed spike crystallite, its vertical size was

4.5 - 6.4 pm (Fig. 5.13, (F-4)).

5.4.3.2 Composition of deposited crystallites

The phenomenon of deposition of carbon filaments (whiskers, cones) from the gas 

phase is well known. For example, a catalytic pyrolysis of acetylene, using Ni powder as a 

catalyst, produced coiled carbon whiskers dozens micrometers in length [123]. Contrasting 

small height of carbon spikes in our case is the result of a strong etching effect by energetic 

ions. Similar results for other plasma discharges were reported. Biased deposition in 

methane/hydrogen microwave plasma, which lasted for 2 hours, formed 0.5 pm carbon 

cone-like structures [124]. They were called conic diamonds, and were very like the spike 

crystallites, deposited in our experiments. Three hour etching of glass-like carbon by DC 

biasing of hydrogen microwave discharge resulted in growth of 1 pm carbon fibres on the 

same substrate because of back scattering [125]. The last datum points out at the possible 

way of re-deposition of silicon in the experiments (E), (F) and (G). Back scattering of 

sputtered silicon could contribute to forming silicon carbide composition of the spikes.

Samples from the second experimental series were not examined by Raman 

spectroscopy. Nevertheless, it is suggested that the spike microcrystallites, deposited in the 

experiments (E), (F) and (G), may contain a diamond phase. This assumption could be 

made on the bases of comparison with available data from other sources.

First, similar looking conical diamonds, described in the publication by Y.T.Trong 

and co-workers [124], produced two Raman peaks at 1332.5 and 1580 cm'*. The first peak 

indicated presence of crystalline diamond; the second one was a slightly shifted G peak of
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graphitic phase (section 5.2.2). It was concluded, that the cone-shaped diamond contained 

graphite components, possibly, between diamond grain boundaries. Second, crystallites, 

grown in the masked areas of some of the samples (Fig. 5.14 and 5.15), also corresponded 

to known morphologies of CVD diamond.

(F-5)

(F-6)

ri

-4 pm.

Fig. 5.14 SEM micrographs of the masked area of the cavity-rich substrate

As it could be seen on the photograph of the deposition substrate in the Appendix F, silicon 

samples were fastened to the substrate by thin metal strips. It appeared that at least one of
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the strips did not adjoin tightly to the silicon surface. There was a gap, through which 

processing gas, containing hydrocarbon components, could flow freely under the strip and 

over the masked area of the sample. As a result, growth of crystallites occurred in the 

masked area without etching by plasma ions. Signs of the similar process could be seen on 

the micrograph (E-1) on the Fig. 5.8. Dark dots on the flat surface indicate primordial 

nucléation sites. Masked areas with crystallite growth were discovered on the samples 

from the experiments (F) and (G) (Table 5.2). Cauliflower-like crystallites formed 

practically continuous coating inside the cavities (Fig. 5.14, (F-6 )) of the sample from the 

experiment (F). The polished surface of the same masked area (Fig. 5.14, (F-5)) was 

covered only by separate ball shaped crystallites. A similar pattern of crystallite 

distribution could be seen on the masked area of the highly polished sample from the 

experiment (G) on the Fig. 5.15. A deep scratch was overfilled by a highly segmented and 

densely packed crystallite phase, consisting of multiple spheroid-like shapes from less than 

0.1 up to 0.4 pm in size. At the same time surrounding polished surface had only rare 

crystallites approximately 0.4 pm in diameter.

(G-3)

Fig. 5.15 SEM micrograph of the polished substrate
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Both morphologies were described earlier by Zhu and co-workers [25]. They 

established that morphologies of diamond films, deposited from microwave plasmas, 

depend upon substrate temperature, methane concentration and gas flow rate. 

“Cauliflower” and “ball” morphologies appeared, when concentration of methane 

exceeded 4%, but at the different substrate temperatures: 850°C and 1020°C respectively. 

Although this information confirms in general diamond origin of the crystallites in the 

experiments with the hollow cathode, it could not be applied directly. The deposition 

systems were quite different.

In our case, ball crystallites did not form a continuous coating and grew at the same 

temperature as the “cauliflower” phase. Most likely they were overdeveloped embryo 

crystallites, which grew to a relatively large spherical size in the absence of “competitive” 

adjacent growth sites. Development of the “cauliflower” morphology at substrate 

temperatures, lower by 30 - 50° C than quoted in [25], could be attributed to a lower 

temperature threshold in our experiments because of added oxygen.

5.5 Conclusion

A number of deposition experiments have been conducted, using RF plasmas with 

“hot” electrons. The concept of plasma with “hot” electrons was implemented by electron 

injection at the pressure 70 mtorr. At pressures close to 1 torr and higher this concept was 

realised in the hollow cathode discharge configuration.

Electron injection demonstrated its viability for controlling deposition process 

primarily through variation of plasma potential. Effective input of “hot” electrons in 

discharge chemistry was achieved in the hollow cathode configuration. It is associated with 

high degree of hydrogen dissociation, resulting from frequent collisions of “hot“ electrons 

with hydrogen molecules at elevated pressures, characteristic to the hollow cathode 

regime. The direct consequence of producing a large amount of atomic hydrogen in the 

plasma was etching of the silicon substrates and deposition of the micro-crystallites.
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An important parameter, which affected the deposited carbon coatings, was the 

power density of the discharge. Mixed phase, non-diamond carbon coatings were deposited 

from the configurations of the RF powered electrode, having six, three or one hollowed 

structures 18 mm in diameter. Sub-micron particle morphology of these coatings was 

related to the dusty plasma condition in the hollow cathode discharge. Deposition of the 

micro-crystallites was achieved only when the internal diameter of the single hollowed 

structure was reduced to 8  mm and below by means of the graphite inserts. It was 

associated with increase of discharge power density inside the hollowed structure of the 

powered electrode, resulting in more effective dissociation of hydrogen.

Conical, “cauliflower” and “ball” morphologies of carbon crystallites were 

deposited. The first one was linked with presence, others -  with absence, of etching effect 

from plasma energetic ions as well as with topography of silicon substrate and the 

concentration of hydrocarbon species in the gas phase more than 4%.
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General conclusion

The results of the work on this thesis are the following.

A special multi-purpose plasma rig has been designed and built. Its concept has 

been specifically aimed at combination of plasma diagnostic facilities (electrostatic probe 

and energy and mass analysis probe) and deposition of carbon films in the wide range of 

conditions. In the deposition configuration the rig has operated normally with heating of 

samples above 800° C.

A special electron source for injection of electron current in RF discharge has been 

designed and built. It was based on the electrically heated tungsten filament with “porous” 

molybdenum overlayer, filled with barium and strontium carbonate. The filament operated 

evenly in hydrogen environment for several hours with emission current up to 140 mA.

A range of experiments has been conducted on measurement of the basic 

characteristics and ionic and neutral composition of hydrogen and argon plasma, sustained 

by RF capacitive discharge. A considerable presence in plasma of water based ions has 

been detected, linked with water absorbed on the developed surface of the heat shield.

A range of experiments has been conducted on characterisation of the RF hydrogen 

plasma with injection and removal of electrons. Electron injection/removal has been found 

to control strongly plasma potential and maximum of ion energy at the grounded electrode, 

reducing them to less than 10 V or increasing above 90 V accordingly. Related changes of 

electron temperature and density have been measured, with plasma density being increased 

up to an order of magnitude by electron injection. This effect has been linked with a 

regime, when hot filament instigates discharge inside of an electron source.

Two models were suggested for investigation of the variations of plasma parameters. 

One was based on the analysis of electron movement in the RF matrix sheath. It was 

applied for analysis of origin of a non-Maxwellian electron energy distribution in RF 

plasma in cases of a single-harmonic and a multi-harmonic sheath. Another model 

considered an approach of conduction currents from the discharge plasma to the electrodes.
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It was used for studying time-averaged and time-dependent variations of plasma potentials 

with electron injection and removal.

Deposition experiments were conducted from both discharge configurations. Carbon 

coatings were analysed by means of Raman spectroscopy and scanning electron 

microscope (SEM). Raman spectra of coatings from the plasma with injected electrons 

revealed a polymeric-like nature of the coatings. SEM study of carbon films from the RF 

hollow cathode configuration demonstrated a wide variety of coating morphology: from 

porous films, consisting of separate particles, to nucléation of conical, spherical and 

cauliflower-like carbon phases.

The following prospective developments of the effects, highlighted in this thesis, 

could be suggested. It has been demonstrated that the cause of the problems with electron 

injection in hydrogen plasma at 30 mtorr was a negative potential well in front of the 

electron source, forming a plasma double layer. Activation of the positive DC anode has 

gradually suppressed this double layer, increasing plasma density over the discharge 

volume in the non-linear way. It is thought that a certain combination of parameters of the 

electron source and the DC anode could benefit more uniform spreading of injected 

electrons in plasma, than in the case of a single electron source. Further work in this 

direction could be conducted along the lines of mapping of a spatial distribution of the 

injected electrons by a portable energy analyser.

Modelling of electron interaction with RF sheath indicated that electron heating is 

most effective during the first quarter of the RF cycle. It is suggested that increasing 

frequency of the basic RF signal up to four times, together with changing its shape into 

trapeze or saw-like could increase effectiveness of RF heating of electrons.

Deposition experiments from the RF hollow cathode demonstrated that diamond 

growth conditions from the RF plasma could be achieved for a cost of a large deposition 

area. This limitation could be overcome by using a long, slot-like hollow cathode in 

combination with the deposition substrate moving above it.
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Appendix A. Electrostatic probe measurements

Langmuir introduced the technique of measuring plasma parameters by 

electrostatic probes in 1924. Since then electrostatic probes are quite often referred to as 

Langmuir probes. The experimental arrangement of this technique is quite simple. It 

consists of a bare wire probe, immersed into plasmas, and an external electrical circuit. A 

second connection to the plasma through, for instance, a large grounded surface completes 

the citcuit.

Most often the probe has cylindrical or flat geometry. Cylindrical probes are 

usually made of a tungsten, tantalum, platinum or molybdenum wire of diameter of the 

order from a few 10s to 100s pm. The size of the wire is dictated by a necessity to 

minimise disturbances of the plasma. Different analyses are available depending on the 

size of the probe compared with the Debye length Xd.

— (A.1)

where Go - permittivity of free space. Te - electron temperature (eV), Ue -electron density 

(m'^), e - electron charge. Debye length defines a distance of shielding disturbances in 

plasma. Probe measurements have an important advantage of being local and not averaged 

over a large volume of plasma.

The electrical circuit of the probe contains a power supply, biasing the probe 

negative or positive with respect to the plasma. Analysis of the resulting current-voltage 

characteristic provides information about plasma parameters. A typical probe characteristic 

is presented on the Fig.A.l. At the voltage, equal to plasma potential Vp, no electrical field 

is created around the probe. Charged particles move to the probes tip due to their thermal 

velocities. Since Te>Tj the probe collects at this point predominantly electron current. With 

the probe voltage, higher than Vp no ion current reaches the probe surface. An excess of 

negative charge is built up around the probe, causing electron current to saturate (area A).
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But it can still grow, depending on the probe geometry, due to increasing of range of 

influence as the probe potential rises. When the probe voltage becomes more negative

relative to Vp , the balance between

3.50E -03

2.50E -03 -

2 1.50E-03 -

5 .00E -04 -

-5.00E -04
2 5  V f 35  Vp 4 5 555 15

V p r(V )

Fig. A .l Current-voltage signal from the tantalum 0.25 mm diameter 5.6 mm 

length probe. RF discharge parameters: Ar gas flow -  40 seem, power - 

30 W, pressure - 30 mtorr.

electron and ion currents ehange in favour of ions owing to the repelling of electrons. 

Positive charge is built around the probe. This part of characteristic (area B) is known as 

electron retardation area. At the point V f, known as floating potential, electron and ion 

currents are equal, resulting in zero net current. With further decrease of the probe voltage 

virtually all electrons are repelled, and ion current saturates (area C).

A variety of theories have been developed for calculating plasma parameters from 

the probe characteristic. The most commonly used methods will be outlined here. All basic 

probe theories assume Maxwellian electron energy distribution in the plasma.

Plasma potential corresponds to the boundary between regions A and B of the 

probe eharacteristic, where there is a “knee”. Often the bending point is hard to recognise 

as on the Fig. A.I. The most reliable method in this case is the second differential of the 

probe signal, whieh gives a self-evident value of the plasma potential at the point of 

crossing zero.
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Orbital motion limited (OML) theory is used for deriving eleetron number density 

from the part A of the characteristic by the Langmuir formula:

T = 2 -e-n -r-I-
" 2 - e . V

m.
(A.2)

where e - eleetron charge, ng -electron density, mg -electron mass, r & 1 - probe radius and 

length, Vp & Vpr - plasma potential and probe voltage.

OML theory is valid on condition of thick, collisionless sheath A,g > s > r , where A,g - 

electron mean free path, s - probe sheath thickness, r - probe radius. It is easily seen that 

the square of the electron current versus probe sheath voltage gives a linear function. 

Electron number density is derived from its slope. OML theory cannot be reliably applied 

to the ion saturation region, because orbital ion motion is destroyed by collisions in the 

sheath.

Conventional Langmuir probe theory interprets the part B of the probe 

characteristic -  the retardation area. The area of it’s application covers also the case of 

collisionless thin sheath Ig > r > s. Electron current to the probe in the retardation area is 

described by the formula:

. 1 , -  f‘e = - ; e - n . - Ap - v e - e x p P pr (A.3)

where new symbols are Ap - probe surface area, Ve - electron mean speed, electron 

temperature Tg is in Volt units. Turning to the current density and taking the natural 

logarithm, the following formula is obtained:

(A4)
e

The formula (A.4) predicts that the natural logarithm of the electron current density is 

linearly dependent upon the difference of plasma and probe potential. So, electron 

temperature is derived from the slope of In j \ , then electron density is easily calculated 

from the expression (A.3).
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The ion saturation region C of the probe characteristic is used for calculation ion 

density. ABR theory, named after the authors Allen, Boyd and Reynolds, gives a graphical 

form of an ion current as a function of electron temperature and ion density. Appearance of 

the electron temperature in the ABR model arises from the effect of the presheath, that 

pulls ions into the probe due to the potential difference, determined by the electron 

temperature. Taking Tg from the retardation region leads to determination of ion density. 

Chen made extension of the ABR theory to the case of cylindrical probe. Description of 

other positive ion current theories can be found in [127].
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Appendix B. Energy and mass analysis probe

Analysis of the positive ions and neutral gas components, incident to the grounded 

electrode, is conducted by the commercial energy and mass analysis spectrometer EQP300, 

manufactured by Hiden Analytical Ltd (Fig. B.l).

The spectrometer is pumped differentially by a 60 1/s turbopump with the internal pressure 

maintained below (3-4)T0'^ torr while the plasma gas pressure is less than 100 mtorr. The 

EQP analyser has the energy range 0-100 eV and the mass range up to 300 amu. Energy 

resolution is 0.25 eV FWHM and mass resolution is 1 amu at 5% peak height throughout 

the mass range.

•E X TR AC TIO N  ION O P T I C S
E L EC TR O N  IMPACT TW IN FIL A M E N T  ION SOURCE

TURBOMOLECULAR PUMPE L E C T R O S T A T I C  ENERGY ANALYSER-

■ 3 F - Q U A 0 R U P 0 L E  MASS F I L T E R

• P U L S E  C O U N T I N G  D ET ECTOR

Fig. B .l Schematic of the EQP300 energy and mass analysis probe

(reproduced from the manual, supplied by Hiden Analytical Ltd)

Ions and neutrals are sampled through the 50 pm diameter sample orifice. The sampling

orifice is laser drilled in the metal plate and can be DC biased for ion extraction or be

earthed while sampling neutrals. Neutral species are ionised while passing through the

electron impact ionisation source, which is located behind the sampling orifice. This

procedure is necessary for their subsequent analysis in the quadrupole mass filter. First, all
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the ions enter the 45° sector field energy analyser. An energy scan is conducted by shifting 

the reference potential of the whole speetrometer against ground to accelerate/decelerate 

ions to the energy required for passing through the energy analyser. Prior to entering the 

quadrupole mass filter all ions are decelerated to the same energy in order to conduct mass 

analysis. The quadrupole mass filter has a mass dependent transmission, which added to a 

mass dependent sensitivity of the chaneltron signal detector results in up to two orders of 

magnitude signal loss for 300 amu. But for the masses below 50 amu this effect is not 

significant. The chaneltron detector operates in the high rate (up to 10  ̂ c/s) pulse counting 

mode. In addition, the EQP analyser includes several focusing and energy setting ion 

lenses which condition the ion flux for passing through each of the main parts. During the 

experimental program, the EQP analyser has been operated with the major electronic 

parameters set by the manufacture (Table B.l).

Table B.l Electronic parameters values of the EQP 300 analyser

EMISS O pA *
200 pA **

VERT 0% * 
20%  **

EXTRCT -240 V * 
OV **

CAGE OV * 
4.5 V **

ISTDYN -1200 V HORIZ 0%

E-ENERGY OV * 
70V **

LENS 1 -1 5 V  * 
0 V  **

M UTHT 1900 V AXIS -40 V

F0C Ü S2 - -2 0 0 V ENERGY “ 25 V *
0.5 **

PLATES 7.7 V QUAD 0 % *
10% **

LENS 2 -110 V * 
-90 V **

* - values set for the regime of plasma ions sampling 

**- values set for the regime of neutrals sampling
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Appendix C. Ionization and particle loss model

The idea of the approach, formulated below, is described in the monograph by 

Lieberman and Lichtenberg [51].

The plasma density n̂  is assumed uniform all over the discharge volume. Electron 

energy distribution is a Maxwellian one. In addition, it is considered that ionization 

happens only due collision of electron with a non-excited atom or molecule. Than, electron 

temperature Te could be derived from balancing the total volume ionization and total 

surface particle loss. In other words, the rate of production of charged particles in the 

discharge volume is equalised to the rate of their loss on the electrode surfaces:

Kj, H g - n , =n ,  (C.l)

where Kjz -  ionisation coefficient, ng -  density of background gas, n̂  -  electron dencity,

1^1 -  plasma volume (assumed equal to the discharge volume), ug -  Bohm velocity, Sioss -

area of particle loss (assumed equal to the electrode area).

The effective size of plasma could be defined as:

loss

(C.2)

Bohm velocity is expressed as:
( e-T

-mI /
(C.3)

Assuming Thomson cross-section for describing ionisation by electron-neutral collision, 

the ionization coefficient could be expressed as:

1 +
2-T
V..

•exp

where Omax -  maximum of ionisation cross section (m^), u^- mean electron speed, Vi -  

ionisation potential. The mean electron speed is:

(C.4)

^ l e T  2̂

V m, y
(C.5)
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For convenience of using the final formula, we substitute background gas density by gas

0.13332.ppressure:
k-T

(C.6 )

where p -  gas pressure (mtorr), k -  Boltzmann constant.

Than, after substituting formulas (C.2) - (C.6 ) into (C.l) and regrouping the factors we 

obtain:

a 1 (C.7)

where a = 0.13332 f  ^ T
k ImJ = 1 . 6 5 1 . 1 Mi -  ion mass (a.m.u.).

Taking natural logarithm of the formula (C.7) and rearranging the factors, the final 

expression is:

T, In 1.65110"'.
V

1 +
2 .T

V y.
Tg"' -p-d,^ - V ; = 0  (C.8 )

y1 y

This is a transcendental equation. It could be solved numerically to obtain a dependence 

Te = F(p), when values of Vi, Tg, Mi, (Jmax, deff are preset. In this work, the equation (C.8 ) 

has been solved, using the r o o t  function of the Mathcad software (section 2.8.1, chapter II).
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Appendix D. Chemical reactions, describing impact collision processes with 

hydrogen

A selection of graphs, representing cross section a  (dashed curve) and the 

corresponding reaction rate coefficient <av> (solid curve), are presented in this appendix 

for impact collision reactions with hydrogen. The graphs are reproduced from the 

publication [128].

In the reactions between electrons and heavy particles (Fig. C.l-C.5, C.8 , C.9) 

energy of heavy particle is taken to be zero. For the reactions between heavy particles (Fig. 

C . 6  and C.7) the target particle energy can be important. Therefore, curves of reaction rate 

coefficient are presented for several energies (in eV) of the target particle, specified by 

number above the graph.
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Fig. D.2
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Fig. D.4
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Fig. D.6
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Fig. D .8
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Appendix E. Electron energy distribution

Electron energy distribution describes dependence of electron density upon their 

velocity or energy. Maxwellian distribution is often used for describing velocity/energy 

spreading of electrons in low pressure plasma. Originally, it was derived by Robert 

Maxwell for ideal gas in state of thermal equilibrium:

dn = n •
m .

3

2  -Tc-k -Ty
•exp

2-k-T
4-%'U^du (E.l)

where dn -  number of atoms, which has velocity in the interval u to u + du, ma -  atom 

mass, T -  thermodynamical temperature, u  - atom velocity. A convenience of Maxwellian 

distribution is concluded in describing velocity/energy states of all considered particles by 

a single parameter T. The formula (E.l) could be re-written as:

dn
n

(E.2)

f(6 >) is known as velocity distribution function of atoms:

f(«)=
m.

2 -7r -k-T
exp •4-7c-u  ̂ (E.3)

.  2 -k-T^

Electron energy distribution function (EEDF) could be written down in the same way. It is 

quite convenient to use EEDF in terms of energy, expressed in Volts. Kinetic energy of

electron could be put down as: w [ w ] =
m^ ' V  

2 -e
(E.4)

where e -  elementary charge, me -  electron mass. Electron temperature, expressed in Volts,

k-Twill be: Te[V] (E.5)

Substituting (E.4) and (E.5) in (E.l) and conducting necessary transformations, we obtain:

dn
n

= f { w ) d W  (E.6 )

where EEDF is: / \ 2  - 3
{ ( w )  =  - j = - w ^ - X ' 2 - e x p  

Vtt v ' T y
(E.6 )
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Quite useful is another form of distribution function (E.6 ), which is known as electron

W )energy probability function (EEPF): gOr) = (E.7)
W -

Natural logarithm of g ( W )  is linearly dependent of W :

ln(g(fr))=ln
3 ^

T~
(E.8)

It is helpful to build a ln(g(IF)) graph to check the nature of a modelled EEDF. If the graph 

has a straight line form, EEDF is Maxwellian. It is not an equally good check during 

processing an electrostatic probe signal. It could contain RE components, resulting in a 

highly distorted EEPF graph. As a result, for probe data it is more practical to use graphs 

of natural logarithm of electron current (Fig. 3.8, (b) and (d)). The non-distorted part of the 

I n ( I e )  graphs (Fig. 3.8) has the shape, which could be approximated by a broken straight 

line, interpreted by a two temperature Maxwellian distribution. As an example, EEPF 

graph (Fig. E.l, (b)), consisting of straight lines with bending joint, could be built. 

Summing up two Maxwellian distributions, determined by different temperatures and 

electron densities, makes: dn = n ĵ • fj (iF) d W  + n ^2 • p2 (E. 10)

The general EEDF for the distribution (E.IO) is:

f 3 >

1 + ^ . ■'■el
2

•exp I F '

n.i V̂ el T"e2 /
V y

2  - 3
- j = - W ^  -T„ ' 2  -exp

v ’T y
(E .ll)

0.5

0.7

^  0 .6 Te = 2

- 1 0

0 2 6 84 0 2 4

Fig. E .l EEDF (a) and EEPF (b) of two temperature Maxwellian distribution
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Appendix F. Model of particle balance, including conduction and displacement 

currents.

Dr Peter Johnson has suggested the following approach, based on balancing of conduction 

and displacement currents to all discharge electrodes.

F.l Model assumptions

The model assumptions are the following:

1. The sheath is one-dimensional and has a uniform ion density, i.e. it is matrix 

sheath. Hence double integration of Poisson’s equation gives dependence of

sheath potential V from its size x: V  =  ^  (D.l)

where n = ne = nj is plasma density, e -  electron charge and so -  electrical 

constant.

2. Conduction current is described using Bohm sheath model. Ion and electron 

components are summarized to give total conduction current to the electrode

e • Vsurface A: =A n-e-Ug - n -  e-Ug exp
k - T , ,

(D.2)

k - Twhere vg =    " - Bohm speed, Ug =
k-Tg

- mean electron speed. Te

electron temperature, k -  Boltsman constant, mi and me -  ion and electron mass.

3. Displacement current is described regarding sheath as a capacitor with varying

plate separation x: Zg = A - (D.3)

where 2  = e • n • x -  surface charge density. Using formula (D.l) surface charge

,  ,1  1
density can be expressed as ^  = ( 2  • Sq • e • n) 2  • FU Substituting it in (D.3) gives:

2 A t
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4. Current i ,  potential V  and time t  are normalised as

e -F0   and 9  (D .5),
A-e-n-Ug  ̂ k-X

where cOq = 2 • tt • f  - basic RF frequency (f=13.56 MHz).

After substituting dimensionless units (D.5) the formula for conduction current (D.2) is 

transformed in: = 1 -  a • exp(- 0 )  (D.6 )

1

where a =
m;

2 -7r-m The same procedure for the displacement current (D.4) modifies
e y

the formula into: u
So -mil / 2 r 1 ^

I  -n J
(Or

d 0

~ d ë
(D.7)

In the expression (D.7) the second factor is reverse proportional to the plasma ion

frequency (O; = . Finally, the displacement current can be expressed as

, a s ,

© 0
where P -  . Than, the total current, consisting of the conduction and displacementCOj

components, is expressed as:

/ X 3 -- d0z = 1 — ct • expf—0)h—pr • 0   ̂ •—  (D.9)

F.2 Model

RF plasma discharge, having grounded electrode of an area Aa, powered electrode of an 

area Ac and DC bias electrode of an area Ab, is considered. Plasma boundary is assumed 

equipotential with potential F. Equivalent circuit of the discharge is presented in Fig. D.l.
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V

\ j )  F r f =  Vo'sin (coo O

Fig. F.l Equivalent circuit of RF discharge with DC bias electrode

where: V a,b ,c  -  potentials across plasma sheaths, V d c  -  potential across 

blocking capacitor C d c , V b o  -  DC bias potential at the bias electrode.

The circuit equations could be written as:

F= Fa = Fb + Fbo ~ he + Tdc + Frf (D.IO)

ZA+ZB + fc =0 (D.ll)

Furthermore, potential across the blocking capacitor varies in time:

dFoc 1

dr C
(D.12)

DC

Areas of the electrodes are normalised by the area of the powered electrode:

A.6
A.

A c = l ,  (D.13)

Than, after normalising equations (D.IO), (D.l 1) and (D.12) we obtain: 

C^=ĉ a = 0 b + ^ bo“ ^ c + ^ dc ' *"^rf (D.14) 

+ % + rc -0  (D.l 5)

d 0 DC ê  n A,
d0

(k.T, .m, )^
(D.l 6 )

Expression (D .l6 ) is re-written, using Debye length =
Sn - k -T  V

e -n
and ion plasma
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frequency ®i
 ̂ e ^ . n

Eo -111; as:

d 0 DC

d 6  Xq cOq *
(D.17)

The notion of characteristic capacitance of the powered electrode sheath is introduced as :

(D.l 8 )

Further, time derivative of potentials will be expressed as 0 '  in order to simplify formulas. 

After substituting (D.9) and (D. 18) into (D. 17) we obtain:

1 ^
^DC =7 1 — (X • exp(— 0 Q ) H— • 0 Q  2 • 0 Ç ,

v 2

(D.19)

C q  (Dj
where y = — ------

Ddc ®o

Derivatives of the sheath potentials (D.14) are written as:

0 a ' = 0 '  (D.20)

0 b ' =  0 (D.21)

0 q ' =  0 '  -  0 q q ' -  00 COŜ  (D.22)

Than, using expressions (D.9), (D.14), (D.20), (D.21) and (D.22), it is possible to write 

down formulas of total current to each of electrodes:
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The equations (D.28) and (D.29) could be changed into:

<-»>

" .'-M e #  '«■>
This system of equations could be solved numerically for a suitable initial conditions.

F.3 Solution

The system of the equations (D.28) and (D.29) has been solved, using a fourth 

order Runge-Kutta numerical method in Mathcad software. The program algorithm has 

been developed by Dr Peter Johnson.

The initial discharge conditions were the following: hydrogen molecular ion mass 

Mi = 3, Te = 2.62 eV, ne = 1.2T0^  ̂m'^, area of the powered electrode Ac = 7.854T0’̂  m ,̂ 

dimensionless areas of the electrodes Ac = 1, Aa = 7.84, Ab = 0.615, potential of the RF 

generator Oo = 70, potential of the DC bias electrode Obq = 0 and 3. These conditions have 

been set close to the real RF discharge. The only difference was in the value Oq, which in 

the real discharge was of the order 240. It has been impossible to find a solution of the 

equations (D.28) and (D.29) for the values

Oq » 7 0  and Obq » 3 .  Time-averaged potential values from the conduction currents 

model (Fig.4.12) have been used as initial conditions for the total currents model. Results 

of calculations are presented in Fig. D.2.

It could be seen that potentials during RF cycle have more realistic shape than the 

one from the conduction current model (Fig. 4.13). Plasma potential shapes (Fig. D.2 (a) 

and (b)) clearly indicate presence of higher harmonics. Nonetheless, the total currents 

model doesn’t allow increase of RF potential in plasma with growth of Obq. It contradicts 

experimental results. In particular, problems of compensation of RF signal at the 

electrostatic probe (Sections 3.5 and 3.7, chapter III) point out at the opposite effect.
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Fig. F.2 Variations of potentials and currents during RF cycle.

It is suggested that the purely electron sheath, set in the total currents model, limits its 

capability in describing the real plasma conditions. If electric field in electrode sheaths 

could be set to reverse during part of RF cycle, the model, most likely, will work with 

higher values of Oq and Obq as well as portray more realistic RF potentials in plasma. This 

could be the next stage in development of the model.
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Appendix G. Raman Spectroscopy

The Raman effect arises when the incident light excites molecules in the sample, which 

subsequently scatter the light. While most of this scattered light is at the same wavelength 

as the incident light, some is scattered at a different wavelength. This i n e l a s t i c a l l y  

scattered light is called Raman scatter. It results from the molecule changing its molecular 

motions.

The energy difference between the incident light (E;) and the Raman scattered light ( E g )  is 

equal to the energy involved in changing vibrational state of the molecule (i.e. getting the 

molecule to vibrate, E y ) .  This energy difference is called the Raman shift.

E y  =  E i  -  Eg

Several different Raman shifted signals will often be observed; each being associated with 

different vibrational or rotational motions of molecules in the sample. The particular 

molecule and its environment will determine what Raman signals will be observed.

A plot of Raman intensity versus Raman shift is called a Raman spectrum.
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Appendix H. Hollow cathode deposition chamber

In the first experiments there was used a hollow cathode with a holed structure, 

having nine orifices. In order to save time it has been manufactured from

(a)

(b)

fm
m

Fig. H.l Hollow cathode discharge chamber after trial deposition experiments 

(a) -  deposition substrate, (b) -  hollow cathode unit, surrounded by the 

heat shield

the outdated vacuum flange. Hence, it had nine holes instead of seven in the later model. 

Trial experiments, using nine-hole model, have revealed some features of hollow cathode
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discharge. First, it was discovered, that the stainless steel body of the cathode was actively 

etched. A light grey colour of the holes base and shining metal surface around the holes 

edges indicate the places of the most active etching (Fig. F.l). Second, hollow cathode 

glow was always brighter in the central hole. It indicates a higher discharge density in this 

part of the electrode. This non-uniform distribution of glow among the holes was linked 

with non-uniformity of gas flow plus, possible, difference in electrode structure heating. In 

the experiments with the seven-hole model the central hole was blocked. Alternatively, six 

outside holes were blocked and covered by the grounded shield, when it was necessary to 

work with a single hole structure.
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Appendix I. Plasma potential of the hollow cathode discharge

Plasma potential has been estimated, using the information of time resolved voltage of the 

powered electrode. Qualitative reading of the voltage was taken from the oscilloscope 

screen, displaying sample signal from the matching unit during the deposition experiment 

(F) (Chapter V, Table 5.2). The signal had a split peak structure, which was associated 

with high values of second and third harmonics (Fig. G.l). Maximums of the peaks were 

equal approximately 420 and 350 V; while the minimum between them was about 250 V. 

Coefficients in the formula (G.l) were selected to match approximately the maximums and 

the minimum of the RF signal.

= 400-sin(cû-/‘) + 30-sin(2-œ-0 + 150-sin(3-(jo-0 (G.l)

Than, potential of the powered electrode could be calculated using formula (G.2):

p̂ow el (0 — ^RF (0 +  ^dc  bias

The initial value of the self-bias potential of the powered electrode Vdc bias in the 

experiment (F) was -26 V.

500

400

300 -

200

> 100

-100 -

-200
Vdc bias

-300 -

-400

-500
0 1 2 43 65 7
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Fig. I.l Time-resolved potentials in the RF hollow cathode discharge
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The time-resolved plasma potential was approximated as

Vp(t) = <
Vpow el(0 , Vpow el(0 ^  ^

AV,
(G.3)

where aV = T • In
2 -TT-me /

(G.4)

The electron temperature Te of the “cold” electron group was assumed to be equal 1 eV. 

The dominant ion in plasma was accepted to be Therefore the ration Mj/mg was equal 

thrice the proton electron mass ratio 1836.2 .

Then, from the expression (G.3) the time-averaged plasma potential Vp was calculated to 

be 132 V.

172



References

1. O.I.Leipunski, “Synthetic diamonds”, Usp. Khim., 8  (1939), 1519-1534.

2. P.K.Bachmann, “Diamonds from vapour phase”, Phys. World, 4 (1991), 32-36.

3. J.Wilks and E.Wilks, “Properties and applications of diamond”, 1991, 

Butterworth-Heinemann, Oxford, 16.

4. L.S.Polak, “Electrochemistry in discharge plasmas”, in Proc. 10th Int. Conf. on 

Phenomena in Ionised Gases, Oxford, Donald Parsons, 1971, 113-191.

5. J.C.Angus, “Development of low-pressure diamond growth in the United 

States”, in “Synthetic diamond: emerging CVD science and technology”, ed. 

by K.E.Spear and J.P.Dismukes, 1994, John Wiley & Sons. Inc., New York, 

21-40.

6 . B.V.Deriagin and D.B.Fedoseev, “The synthesis of diamond at low pressure”, 

Sci. Amer., 233 (1975), 102-108.

7. B.V.Deriagin, B.V.Spitsyn, L.L.Bouilov, A.A.Klochkov, A.E.Gorodetski and 

A.V.Smolyaninov, “Synthesis of diamond on non-diamond substrates”, Dokl. 

Akad. Nauk SSSR, 231 (1976), 333-335.

8 . B.V.Spitsyn, L.L.Bouilov and B.V.Deriagin, “Vapour growth of diamond on 

diamond and other surfaces”, J. Cryst. Growth, 52 (1981), 219-226.

9. Ref. 5, p. 35.

10. S.Aisenberg and R.Chabot, J. Appl. Phys., 42 (1971), 2953.

11. D.S.Whitmell and R.Williamson, Thin. Sol. Films, 35 (1976), 253.

12. L.Holland and S.M.Ohja, Thin. Sol. Films 38 (1976), L17.

13. S.Matsumoto, Y.Sato, M.Kamo and N.Setaka, “Vapour deposition of diamond 

particles from methane”, Jpn. J. Appl. Phys., Part 2, 21 (1982), L183-L185.

14. S.Matsumoto, Y.Sato, M.Tsutsumi and N.Setaka, “Growth of diamond 

particles from methane-hydrogen gas”, J. Mater. Sci., 17 (1982), 3106-3112.

15. M.Kamo, Y.Sato, S.Matsumoto and N.Setaka, “Diamond synthesis from gas 

phase in microwave plasma”, J. Cryst. Growth, 62 (1983), 642-644.

16. Y.Matsui, S.Matsumoto and N.Setaka, “TEM-electron energy loss 

spectroscope study of the diamond particles prepared by chemical vapour

173



deposition from methane”, J. Mater. Sci. Lett., 2 (1983), 532-534.

17. P.K.Bachman, “Microwave plasma CVD and related techniques for low 

pressure diamond synthesis”, in Thin Film Diamond, ed. by A.H.Lettington, 

and J.W.Steeds, 1994, Chapman & Hall, London, 31-54.

18. K.E.Spear and M.Frenklach, “Mechanisms for CVD diamond growth”, in 

“Synthetic Diamond: Emerging CVD Science and Technology”, ed. by 

K.E.Spear and J.P.Dismukes, 1994, John Wiley & Sons. Inc., New York, 243- 

304.

19. A.H.Lettington, “Applications of diamond-like carbon thin films”, in “Thin 

Film Diamond”, ed. by A.H.Lettington and J.W.Steeds, 1994, Chapman & 

Hall, London, 117-126.

20. “Diamond and diamond-like films and coatings”, ed. by R.E.Clausing, 

L.L.Horton, J.C.Angus and P.Koidl, NATO ASI Series B: Physics, 1991, 

Plenum Press, New York, Vol. 226.

21. “Thin Film Diamond”, ed. by A.H.Lettington and J.W.Steeds, 1994, Chapman 

& Hall, London.

22. “Synthetic Diamond: Emerging CVD Science and Technology”, ed. by 

K.E.Spear and J.P.Dismukes, 1994, John Wiley & Sons. Inc., New York.

23. S.Matsumoto and Y.Matsui, “Electron microscopic observation of diamond 

particles grown from the vapour phase”, J. Mater. Sci., 18 (1983), 1785-1793.

24. A.van der Drift, Philips Res. Rep., 22 (1967), 267.

25. W.Zhu, A.R.Badzian and R.Messier, “Morphological phenomena of CVD 

diamond (Part 1)”, in Proc. SPIE Diamond Optics III, edit, by A.Feldman and

S.Holly, Bellingham, WA: SPIE -  The Int. Society for Optical Eng., vol. 

1325, 1990, 187-201.

26. B.V. Deryagin and D.V.Fedoseev, “Growth of Diamond and Graphite from the 

Gas Phase”, Nauka, Moscow (1977).

27. N.Setaka, in “Chemical Vapour Deposition”, Proc. 10th Int. Conf. on Chem. 

Vapour Deposition, ed. by G.W.Gullen and J.Brocher, The Electrochemical 

Society, Pennington, NJ, 1987, 1156-1163.

28. B.B.Pate, Surf. Sci., 165 (1986), 83.

174



29. K.E.Spear and M.Frenklach, in “Diamond and diamond-like films”, ed. by 

A.J.Purdes, J.C.Angus, R.F.Davis, B.M.Meerson, K.E.Spear and M.Yoder, 

The Electrochemical Society, Pennington, NJ, 1989, 122-138.

30. M.Frenklach, J. Appl. Phys., 65 (1989) 5142.

31. J.C.Angus, A.Argoitia, R.Gat, Z.Li, M.Sunkara, L.Wang and Y.Wang, 

“Chemical vapour deposition of diamond”, in ref. 21, 1-14.

32. M.Frenklach, “Theory and models for nucléation and growth of diamond 

films”, in ref. 20, 499-524.

33. B.Lux and R.Haubner, “Nucléation and growth of low pressure diamond”, in 

ref. 20, 579-610.

34. B.R.Stoner, G.H.M.Ma, S.D.Wolter and J.T.Glass, Phys. Rev. B, 45 (1992), 

11067.

35. D.P.Monaghan, K.C.Laing, P.A.Logan, P.Teer and D.G.Teer, Surf. Engin., 

(1993), 347.

36. J.Robertson, “Structure and electronic properties of diamond-like carbon”, in 

ref. 20, 331-356.

37. Y.Catherine, “Preparation techniques for diamond-like carbon”, in ref. 20, 

193-228.

38. A.Bubenzer, B.Dischler, G.Brandt and P.Koidl, “RF plasma deposited

amorphous hydrogenated hard carbon films: preparation, properties and 

applications”, J. Appl. Phys., 54 (1983), 4590.

39. D.R.McKenzie, D.Muller and B.A.Pailthorpe, Phys. Rev. Lett., 67 (1991), 773.

40. J.Robertson, “Deposition of diamond-like carbon”, in ref. 21, 107-116.

41. M.Weiler, R.Kleber, K.Jung and H.Ehrhardt, Diamond Related Mater., 1 

(1991), 121.

42. M.A.Tamor, W.C.Vassell and K.R.Carduner, Appl. Phys. Lett., 58 (1991), 

592.

43. J.C.Angus, Diamond Related Mater., 1 (1991), 61.

44. I.R.McColl, D.M. Grant, S. M. Green, J.V.Wood, T.L.Parker, K.Parker,

A.A.Goruppa and N.St.J.Braithwaite, “Low temperature plasma-assisted 

chemical vapour deposition of amorphous carbon films for biomedical

175



polymeric substrates”, Diamond Relat. Mater., 3 (1993), 83-87.

45. K.Donnely, D.P.Dowling, T.P.O’Brien, A. O’Leary, T.C.Kelly, R. Cheshire, 

K.F.Al-Assadi, W.C.Graham, T.Morrow, V.Komas, V.Schulz-von der Gathen 

and H.F.Dobele, “Quantitative measurements of atomic hydrogen during the 

deposition of diamond-like carbon films”. Diamond Related Mater., 4 (1995), 

324-327.

46. M.M.Millard and E.Kay, J. Electrochem. Soc., 129 (1982), 160.

47. A.Rousseau, A.Grainer, G.Gousset and P.Leprince, “Microwave dischage in 

H] -  influence of H atom density on the power balance”, J. Phys. D: Appl. 

Phys., 27 (1994), 1412-1422.

48. J.C. Ward and J.E. Allen, J. Phys. E: Scien. Instr., 3 (1970), 534.

49. B.M. Annaratone and N.St.J. Braithwaite, “A comparison of a passive 

(filtered) and an active (driven) probe for RF plasma diagnostic”, Meas. Sci. 

Technol., 2 (1991), 795-800.

50. J.D. Swift and M.J.R. Schwar, Electrical Probes for Plasma Diagnostics,

Iliffe Books Ltd, London (1970).

51. M.A. Lieberman and A.J. Lichtenberg, “Principles of Plasma Discharges and

Material Processing”, John Wiley & Sons, Inc., NY (1994), 79 and 306-308.

52. P.K.Janev, W.D.Langer, K.Evans,Jr. and D.E.Post, Jr., “Elementary processes 

in hydrogen-helium plasmas”. Springer-Verlag, Berlin, 1987.

53. J. Freisinger, M. Faufmann and W.Kraus, in Proc. 7th Int. Conf. on Plasma

Chemistry - ICPC 85, ed. by C.J.Timmermans, Eindhoven, 1985, 605.

54. D. Heim and H. Stori, J. Appl. Phys., 72 (1992), 3330.

55. Yu.P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin, 1991, 63.

56. L.I.Maissel and R.Glang, “Handbook of Thin Film Technology”, McGraw 

Book Co., New York, 1970, 1-24.

57. H.S.W. Massey, E.H.S. Burhop and H.B. Gilbody, “Electronic and Ionic 

Impact Phenomena”, vol. I and II, Clarendon Press, Oxford, 1969.

58. J.W. Sheldon and E.E. Muschlitz, J. Chem. Phys., 68 (1978), 5288.

59. Ref. 51, p. 63.

60. P.F.Little and A. von Engel, “The hollow cathode effect and the theory of glow

176



discharges”, Proc. Roy. Soc. A, 224 (1954), 209-227.

61. L.I.Maissel and R.Glang, Handbook of Thin Film Technology, McGraw-Hill 

Book Co., New York, 1970, 4-(7-8).

62. O.Christensen, “Sur quelques facteurs intervenant dans le bombardement de 

couches pulverisees”. Thin Sol. Films, 27 (1975), 63-81.

63. T.C.Tisone and P.D.Cruzan, “Low-voltage triode sputtering with a confined 

plasma. Part II: Plasma characteristics and energy transport”, J. Vac. Sci. 

Technol., 12 (1975), 1058-1066.

64. N.Heiman, Y.Minkiewicz and B.Chapman, “High rate reactive ion etching of 

AI2 O3 and Si”, J. Vac. Sci. Technol, 17 (1980), 731-734.

65. R.Limpaecher and K.MacKenzie, “Magnetic multipole containment of large 

uniform collisionlessquiescent plasmas”. Rev. Sci. Instrum., 44 (1973), 726- 

731.

66. T.Intrator, N.Hershkowitz and C.Chan, “Experimental observations of 

nonlinearly enhanced 2cuuh electromagnetic radiation excited by steady-state 

colliding electron beams”, Phys. Fluids, 27 (1984), 527-534.

67. A.Dehbi-Alaoui, A. S. James and A.Matthews, “A comparison of properties of 

hard carbon films produced by direct gas deposition and plasma-assisted 

evaporetion”. Surf. Coat. Technol, 43/44 (1990), 88-94.

68. K.Ando, T.Oshige, S.Yagura and H.Fujita, “Influence of electron-beam 

injection on pre-discharge state in low pressure gas”, Jpn. J. Appl. Phys., 25 

(1986), 299-300.

69. K.Ando, T.Oshige, S.Yagura and H.Fujita, “Temporal evolution of potential 

formation in a discharge created by pulsed electron beam injection in a low- 

pressure argon gas”, J. Phys. D: Appl. Phys., 20 (1987), 45-49.

70. A.H.Sato and M.A.Lieberman, “Electron beam probe measurements of electric 

fields in rf discharges”, J. Appl. Phys., 68 (1990), 6117-6124.

71. K.D.Schatz and D.N.Ruzic, “An electron-beam plasma source and geometry 

for plasma processing”. Plasma Sources Sci. Technol, 2 (1993) 100-105.

72. P.B.Legrand, J.P.Dauchot and M.Hecq, “Study of an electron cold cathode 

tube for soft x-ray spectrometry”. Rev. Sci. Instrum., 62 (1991), 1539-1541.

73. V.L.Galansky, V.A.Gruzdev, IV.Osipov and N.G.Rempe, “Physical processes 

in plasma electron emitters based on a hollow-cathode reflected discharge”,

J. Phys. D: Appl. Phys., 27 (1994), 953-961.

74. A.A.Goruppa, N.St.J. Braithwaite and D.M.Grant, “Direct electrical control of

177



diamond-like carbon growth by plasma-enhanced CVD”, Diamond and Rel. 

M at, 3 (1994), 1223-1226.

75. L.A.Schwager, W.L.Hsu and D.M.Tung, “Effects of cold electron emission on 

the plasma sheath”, Phys. Fluids B, 5 (1993), 621-630.

76. N.Sato, H.Kobayashi, T.Tanabe, T.Ikehata and H.Mase, “Control of ion energy 

for low-damage plasma processing in RF discharge”, Jpn. J. Appl. Phys., 34

(1995), 2158-2162.

77. M.J.Kushner, W.Z.Collison and D.N.Ruzic, “Electron-beam controlled radio 

frequency discharges for plasma processing”, J. Vac. Sci. Technol. A, 14

(1996), 2094-2101.

78. F.A.Haas, A.Goodyear and N.St.J.Braithwaite, “Tailoring of electron energy 

distribution in low temperature plasmas”. Plasma Sources Sci. Technol., 7 

(1998), 471-477.

79. J.P.Pierce, “Theory and design of electron beams”. Van Nostrand, Princeton, 

1954.

80. C.L.Hemenway, R.W.Henry and M.Caulton, “Physical electronics”, John 

Wiley & Son, Inc., New York, 1967, 64.

81. I.G.Herrmann and P.S.Wagener, "The oxide-coated cathode". Chapman & Hall 

Ltd., London, 1951, 41.

82. "Electronics encyclopaedia", Soviet Encyclopaedia, Moscow, 1991, (in 

Russian), 338.

83. S.G.Ingram and N.St.J.Braithwaite, “ Ion and electron energy analysis at 

asurface in an RF discharge”, J. Phys. D: Appl. Phys., 21 (1988) 1496-1503.

84. N.St.J.Braithwaite, J.P.Booth and G.Cunge, “A novel electrostatic probe 

method for ion flux measurements”. Plasma Sources Sci. Technol., 5 (1996) 

677-684.

85. R.Jayaraman and R.T.McGrath, “Ion and neutral species in C2 F6 and C H F 3 

dielectric etch discharges”, J. Vac. Sci. Technol. A, 17 (1999), 1545-1551.

86. J.K.Olthoff, R.J.Van Brant, S.B.Radovanov, J.A.Rees and R.Surowiec, 

“Kinetic-energy distributions of ions sampled from argon plasmas in a parallel- 

plate, radio-frequency reference cell”, J. Appl. Phys., 75 (1994), 115-125.

87. M.Zeuner and H.Neumann, “Ion energy distributions in a dc biased rf 

discharges”, J. Appl. Phys., 81 (1997), 2985-2994.

88. S.G.Ingram and N.St.J.Braithwaite, “RF modulation of positive ion energies in 

low pressure discharge”, J. Phys. D: Appl. Phys., 68 (1990), 5519-5527.

178



89. E. Kawamura, V.Vahedi, M.A.Lieberman and C.K.Birdsall, ‘Ton energy 

distribution in RF sheaths; review, analysis and simulation”. Plasma Souces 

Sci. Technol., 8 (1999), R45-R64.

90. J.W. Cobum and E.Kay, “Positive-ion bombardment of substrates in rf diode 

glow discharge sputtering”, J. Appl. Phys., 43 (1972), 4965.

91. N.Hershkowitz, “How does the potential gets from A to B in plasma?”, IEEE 

Trans. Plas. Science, 22 (1994), 11-21.

92. T.Gyergyek, “Experimental study of the nonlyner dynamics of a harmonically 

forced double layer”. Plasma Phys. Control. Fusion, 41 (1999) 175-190.

93. D.Diebold, C.E.Forest, N.Hershkowitz, M.-K.Hsieh, T.Intrator, D.Kaufman,

G.-H.Kim, S.-G.Lee and J.Menard, “Double-layer-relevant laboratory results”, 

IEEE Trans. Plasma Science, 20 (1992), 601-606.

94. G.Dilecce, M.Capitelli and S.De Benedictis, “Electron-energy distribution 

function in capacitively coupled RF discharge”, J Appl Phys, 69, 1991, 121- 

128.

95. V.A.Godyak, “Electron energy distribution in low pressure RF discharge” in 

Proc. of the XX Int. Conf. On Pheomena in Ionised Gases (Invited papers),

II Ciocco, Italy, July 1991, 162-171.

96. M.Serendra and D.B.Graves, “Particle simulation of radio frequency glow 

discharge”, IEEE Trans Plasma Science, 19, 1991, 141-157.

97. B.P.Wood, part of thesis reproduced in “Principles of plasma discharges and 

material processing” by M.A.Lieberman and A.J.Lichtenberg, J.Wiley &Sons, 

Inc,. New York, 1994, 362-363.

98. M.A.Lieberman and A.J.Lichtenberg, “Principles of plasma discharges and 

materials processing”, John Wiley & Sons, New York, 1994, 348.

99. A.F.Stekolnikov, N.St.J.Braithwaite, Proc of the 8̂  ̂ Int. Conf. On Gas 

Discharges and Their Application, Venice, 1988, 391.

100. D.B.Graves and K.F. Jensen, “A continuum model of DC and RF discharges”, 

IEEE Trans Plasma Science, 14, 1986, 78-91.

101. M.A.Sobolewski, “Electrical characteristics of argon radio frequency glow 

discharges in an asymmetric cell”, IEEE Trans Plasma Science, 23, 1995, 

1006-1022.

102. Y.P.Song, D.Field and D.F. Klemperer, “Electrical potentials in RF 

discharges”, J. Phys. D: Appl. Phys., 23 (1990), 673-681.

103. F.A.Haas and N.St.J.Braithwaitr, “Modelling the effects of an electron beam

179



on the potential distribution in a low pressure parallel electrode discharge”, J. 

Phys. D: Appl. Phys., 33 (2000), 1-8.

104. M.A.Tamor and W.C.Vassell, “Raman “fingerprints” of amorphous carbon 

films”, J. Appl. Phys., 76 (1994), 3823-3830.

105. J.Schwan, S.Ulrich, V.Batori, H.Ehrhardt and S.R.P.Silva, “Raman 

spectroscopy on amorphous carbon films”, J. Appl. Phys., 80 (1996), 440-447.

106. M.Yoshikawa, G.Katagiri, H.Ishida and A.Ishitani, “Raman spectra of 

diamondlike amorphous carbon films”, J. Appl. Phys., 64 (1988), 6464-6468.

107. M.E.Pillow, “A critical review of spectral and related physical properties of the 

hollow cathode discharge”, Spectrochimica Acta, 36B (1981), 821-843.

108. V.S.Borodin, Yu.M.Kagan and R.I.Lyagushchenko, “Investigation of a hollow 

cathode discharge. II.”, Sov. Phys. Tech. Phys. (In English), 11 (1967), 887- 

889.

109. D.Korzec, M.Schott and J.Engemann, “Radio-frequency hollow cathode 

discharge for large-area double-sided foil processing”, J. Vac. Sci. TechnoL, 

A13 (1995), 843-848.

110. E.M.van Veldhuisen and E.G. de Hoog, J. Phys. D: Appl. Phys., 17 (1984), 

953.

111. J.H. Coleman, US Patent No 4,741,801.

112. C.M.Horwitz, S.Boronkay, M.Gross and K.Davies, “Hollow cathode etching 

and deposition”, J. Vac. Sci. TechnoL, A6 (1988), 1837 -  1844.

113. D.C.Gerstenberger, R.Solanki and G.J.Collins, “Hollow cathode metal ion 

lasers”, IEEE J. Quant. Electronics, QE-16 (1980), 820 -  834.

114. P.J.Kung and Y.Tzeng, “Growth of diamond thin films by spiral hollow 

cathode plasma-assisted vapour deposition”, J. Appl. Phys., 66 (1989), 4676 -  

4684.

115. B.Singh, O.R.Mesker, A.W.Lewine and Y.Arie, “Hollow cathode plasma 

assisted chemical vapour deposition of diamond”, Appl. Phys. Lett., 52 (1988), 

1658- 1660.

116. J.Stiegler, S.Roth, K.Hammer, O.Stenzel, B.Mainz and W.Scharff, “Plasma- 

assisted CVD of diamond films by hollow cathode arc discharge”. Diamond 

and Rel. M at, 2 (1993), 413-416.

117. A.A.Haasz, J.W.Davis, O.Auciello, P.C.Stangeby, E.Vietzke, K.Flaskamp and 

V.Philipps, “Synergistic methane formation on pyrolytic graphite due to 

combined H^ ion and H  ̂atom impact”, J. Nuclear Mat., 145-147 (1987), 412-

180



416.

118. A.Garscadden, “Particles in plasmas”, in proceedings of XX International 

Conference on Phenomena in Ionised Gasses, 8-12 July, 1991, Pisa, Italy, 

Invited papers, 147- 154.

119. D.V.Fedoseev, “Summary of research on diamond growth from the gas phase 

in Russia”, in ’’Synthetic diamond: emerging CVD science and technology”, 

ed. by K.E.Spear and J.P.Dismukes, J.Wiley & Sons, Inc., New York, 1994, 

47-50.

120. H.-G.Busmann, H.Gaber, T.Müller and I.V.Hertel, “Production of carbon 

cluster beams and their characterisation by time-of-flight mass spectroscopy”, 

in “Diamond and diamond-like films and coatings”, Ed. by R.E.Clausing, 

L.L.Horton, J.C.Angus and P.Koidl, NATO ASI Series, Plenum Press, New 

York, 1990,289-296.

121. S.Ahmad, “Carbon cluster formation in regenerative sooting plasma”, Phys 

Let. A, 261 (1999), 327-331.

122. N.St.J.Braithwaite, “Internal and external electrical diagnostics of RF 

plasmas”. Plasma Sources Science & Tech., 6 (1997), 133-139.

123. H.Iwanaga, M.Kawaguchi and S.Motojima, “Growth mechanisms and 

properties of coiled whiskers of silicon-nitride and carbon”, Jap. J. Appl. Phys. 

(Part 1), 32 (1993), 105-115.

124. Y.T.Trong, H.C.Hsieh and C.F.Chen, “Fabrication of nano-size conic diamond 

arrays by bias assisted PCVD”, Diamond Relat. Mater., 8 (1999), 772 -  780.

126. K.Kobashi and T.Tachibana, “Formation of fibrous structures on glass-like 

carbon by hydrogen plasma treatment under DC bias”. Carbon, 39 (2001), 303 

-306 .

127. F.F.Chen, “Electric probes”, in “Plasma diagnostic techniques”, ed. by 

R.H.Huddlestone and S.L.Leonard, Academic Press, New York (1965). 113- 

200 .

128. P.K.Janev, W.D.Langer, K.Evans,Jr. and D.E.Post, Jr., “Elementary processes 

in hydrogen-helium plasmas”. Springer-Verlag, Berlin, 1987.

181

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.


