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ABSTRACT

Neurite extension requires the concerted action of a number of events 

including actin polymerization at the growth cone, formation of new adhesive sites to 

the substrate, and membrane addition, to extend the surface of the elongating neurite. 

The small GTPase Rac IB, identified from developing chicken retina, is specifically 

expressed during neural development, and overexpression of Rac IB in embryonic 

retinal neurons specifically stimulates neurite extension and branching (Albertinazzi 

et al., 1998). Very little is known about the molecular mechanisms which coordinate 

Rac IB-mediated neurite extension. In order to study in detail this mechanism in an in 

vivo system, recombinant embryonic stem cells (ES) for the deletion of mouse 

Rac IB gene were produced. ES cells from four independent clones that resulted 

positive for the deletion of mouse Rac IB gene were microinjected in blastocysts, and 

chimeric mice were generated to be used for the generation of Rac IB-null mice.

Recently, p95-APPl was identified as a protein able to interact with Rac IB 

in a GTP-dependent manner (Di Cesare et al. 2000). P95-APP1 is an ArfGAP of the 

GIT family, highly expressed in the developing nervous system. Expression of p95- 

APPl with a mutated or deleted ArfGAP domain in retinal neurons prevented 

Rac IB-induced neuritogenesis, leading to PIX-mediated accumulation of mutant 

p95-APPl and associated proteins at large Rab 11-positive endocytic vesicles. 

Analysis of neurons expressing different p95-derived constructs together with wild- 

type or mutant Arf6 GTPases revealed the requirement of both p95-APPl and a 

cycling Arf6 for a normal Rac IB-mediated neuritogenesis.

The data obtained in this thesis show a functional connection between the 

localization of the p95-APPl complex at recycling endosomes and Rac IB-dependent



neuritogenesis, and suggest a role of this complex in the regulation of membrane 

recycling to/from the neuronal surface during neuritogenesis.
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Chapter 1 

INTRODUCTION

1.1 MECHANISMS OF ADHESION AND MIGRATION

Many metazoan cell types, for example fibroblasts or epithelial cells, can 

become polarized in response to an extracellular stimulus and migrate in a 

unidirectional fashion. This ability is essential for cells to function in their natural 

environment. For example, the development of the nervous system in vertebrates 

requires many complex patterns of cellular migration. Epithelial cells need to migrate in 

order to close wounds in the epithelial layer, whereas motile fibroblasts are crucial for 

tissue remodeling. Conversely, improper regulation of cell migration is the basis of 

many abnormal processes, resulting, for example, in the invasiveness of tumor cells. 

Not surprisingly, there is considerable interest in understanding the molecular basis of 

cell migration, since this could lead to new therapeutic strategies for various 

pathological processes. Cell migration requires the integration and temporal 

coordination of many different processes that occur in spatially distinct locations in the 

cell. Migration can be viewed as a multistep cycle. The basic migratory cycle includes 

extension of a protrusion, the formation of stable attachments near the leading edge of 

the protrusion, the translocation of the cell body forward, release of adhesions and 

retraction at the cell rear (Fig. 1.1). Polymerization of the actin cytoskeletal network 

drives the initial extension of the plasma membrane at the leading edge, and promotes 

extension of lamellipodia. Then it is important to link the growing actin filaments at the 

leading edge to the substratum with the formation of adhesion sites by the recruitment 

of adhesion components. The interaction of the integrin family of transmembrane



receptors with the extracellular matrix stabilizes the adhesions by recruiting signaling 

and cytoskeletal proteins. These small, nascent adhesions may transmit strong forces, 

and serve as traction points for the propulsive forces that move the cell body forward.
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F ig .l.l: A model for the steps of cell migration.

A migrating cell extends a lamellipodium at the front. This extension is stabilized 

through the formation of new adhesions to the extracellular matrix. The cell body is 

moved forward by actomyosin-mediated contraction. Finally, the tail of the cell 

detaches from the substratum and retracts. Migrating cells also secrete proteases that 

cleave extracellular matrix proteins, and this is important for cell movement through 

three-dimensional matrices. (From Ridley, A.J., 2001).



Release of adhesions and retraction at the rear completes the migratory cycle, thus 

allowing the net translocation of the cell in the direction of movement. The formation 

and disassembly of adhesive complexes are complicated processes and require a 

coordinated interaction of actin and actin-binding proteins, signaling molecules, 

structural proteins, integrins, adaptor molecules and microtubules. It is also important 

the activation of proteases that cleave extracellular matrix proteins.

1.1.1 The Rho family GTP-binding proteins in the process of cell 

migration.

1.1.1.1 The Rho family of small GTPases

Rho GTPases are members of the Ras superfamily of monomeric 20-30 kDa 

GTP-binding proteins. At least 20 different Rho GTPases have been identified in 

human, including multiple isoforms: Rho (A, B, C isoforms), Rac (1, 2, 3/lB isoforms), 

Cdc42 (Cdc42Hs, G25K, TCIO isoforms), Rndl/Rho6, Rnd2/Rho7, Rnd3/RhoE, RhoD, 

RhoG, and TTF. The most extensively characterized members are RhoA, R a d  and 

Cdc42 (Table 1.1, from Ridley, A.J. 2001).
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These three GTPases are well conserved across a wide range of species. In many cases 

there has been expansion into a number of closely related isoforms (Table 1.1) that bind 

to an overlapping set of effectors.

Each of these GTPases act as a molecular switch, cycling between an active GTP-
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bound, and an inactive GDP-bound state that have different conformations (Fig. 1.2). In 

the GTP-bound form they are able to interact with effector or target molecules to initiate 

a downstream response, while an intrinsic GTPase activity returns the proteins to the 

GDP-bound state, to complete the cycle and terminate signal transduction. Rho proteins 

hydrolyze GTP at slow rates in vitro, and this reaction is catalyzed by GTPase- 

activating proteins (GAPs). At least 53 GTPase-activating proteins (GAPs), which 

increase the intrinsic rate of GTP hydrolysis of Rho GTPases, have been identified to 

date (Peck, J et al., 2002). A comparison of the crystal structures of a groundstate 

complex between RhoGAP and Cdc42 and a transition-state-mimicking complex of 

Rho- GAP with RhoA-GDP-AIF4-, along with NMR analysis of a Cdc42-RhoGAP 

complex, has suggested the details of GAP-induced GTP hydrolysis (Rittinger et al., 

1997a and b; Nassar et al. 1998). A 20° rotation between GTPase and GAP allows an 

arginine residue in the GAP protein, the “arginine finger”, to enter the GTPase active 

site and participate in the stabilization of the transition state.

Other regulators of the cycle are guanine nucleotide exchange factors (GEFs) that help 

the proteins to be reloaded with the GTP. Over 60 guanosine nucleotide exchange 

factors (GEFs) have been identified that facilitate the exchange of GDP for GTP 

(Schmidt and Hall, 2002). All Rho GEFs contain a Dbl homology (DH) domain which 

encodes the catalytic activity (Cherfils et al., 1999; Hart et al., 1996) and most an 

adjacent pleckstrin homology (PH) domain. The PH domain is thought to mediate 

membrane localization through lipid binding but, in addition, structural and biochemical 

evidence suggests that it might directly affect the activity of the DH domain (Rameh et 

al., 1997). A specific component of the GEF is DOCK180, which contains a novel 

identified domain. Docker, that specifically recognizes nucleotide-free Rac and can 

mediate GTP loading of Rac in vitro (Brugnera et al., 2002). Additional domains 

specific to each GEF
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Fig. 1.2. The GTPase cycle: Rho GTPases act as molecular switches. Upstream signals 

transduce signals to Rho GTPases through regulation of the activities of guanine 

nucleotide exchange factors (GEF) or GTPase-activating proteins (GAP), which 

facilitate switching on or switching off Rho GTPases. In their GTP-bound state, Rho 

GTPases bind to and activate their effectors to transduce the signal downstream, and 

they can associate to the plasma membrane or membrane of internal organelles.



may provide variations in subcellular localization and activation mechanisms. Most Rho 

proteins are post-translationally modified at their C-termini by prénylation of a 

conserved cysteine, which is required for their interaction with membranes (Seabra, 

1998). In addition, Rho proteins can bind to proteins known

as GDIs (guanine nucleotide dissociation inhibitors) which prevent their interaction 

with the plasma membrane (but not necessarily with downstream targets) (Carpenter et 

al., 1999; Hansen and Nelson, 2001).

The major function of Rho GTPases is to regulate the assembly and organization of the 

actin cytoskeleton (Hall, A., 1998). The effects of Rho, Rac and Cdc42 were initially 

described using Swiss3T3 fibroblasts, a cell line in which serum starvation creates a low 

background of organized F-actin structures. Addition of lysophosphatidic acid induces 

the formation of contractile actin-myosin stress fibres and associated focal adhesions, 

which can be blocked by C3 transferase which ribosylates and inactivates Rho proteins 

(Ridley, A. J. and Hall, A. 1992).

Growth factors, such as platelet-derived growth factor (PDGF), insulin or epidermal 

growth factor (EGF) induce the formation of actin-rich lamellipodia and membrane 

ruffles associated with focal contacts. The dominant-negative NlTRac specifically 

inhibits this response (Ridley et al., 1992). Finally bradykinin induces the formation of 

peripheral microspikes or filopodia, which are also associated with focal contacts. These 

effects can be inhibited by expression of dominant negative N17Cdc42 (Kozma et al.,

1995). These types of experiment have lead to the conclusion that Rho, Rac and Cdc42 

regulate three signal transduction pathways linking various membrane receptors to the 

assembly of actin-myosin filaments, lamellipodia and filopodia respectively. It is not 

surprising, therefore, that Rho GTPases have been found to play a role in a variety of 

cellular processes that are dependent on the actin cytoskeleton, such as cytokinesis 

(Prokopengo et al., 2000), phagocytosis (Caron et al., 1998), pinocytosis (Ridley et al.



1992), ceil migration (Nobes and Hall, 1999), morphogenesis (Settleman, J. 1999) and 

axon guidance (Luo et a l, 1997),

One of the most interesting aspects of this family of regulatory proteins is that, in 

addition to their effects on the actin cytoskeleton, they also regulate a variety of other 

biochemical pathways including those linked to the c-jun N-terminal kinase (JNK) and 

p38 mitogen activated protein kinase regulation, the phagocytic NADPH oxidase 

complex activity, the G1 cell-cycle progression, the assembly of cadherin containing 

cell-cell contacts, the secretion in mast cells and cell transformation. Therefore, 

although Rho GTPases are best characterized for their effects on the actin cytoskeleton, 

there is now much interest in their ability to affect cell proliferation and gene 

transcription, and the contribution of all of these activities to malignant transformation 

is an important field of study.

1.1.1.2 Rho GTPases effectors

A great deal of effort has been put into identifying their cellular targets or 

effector proteins. To date at least 30 potential effectors for Rho, Rac and Cdc42 have 

been identified, primarily using affinity chromatography and the yeast two-hybrid 

system. These proteins interact specifically with the GTP-bound form of the GTPase. 

The conformational differences between the GTP- and GDP-bound forms are restricted 

primarily to two surface loops, named switch regions I and II (Cdc42/Rac amino acids 

26-45 and 59-74 respectively) (Ihara et al., 1998; Wei et al, 1997). Effector proteins 

must, therefore, utilize these differences to discriminate between the GTP and GDP 

bound forms, though they also interact with other regions of the GTPase.

Numerous point mutations have been introduced into Switch I of Rho, Rac and Cdc42, 

often referred to as the “effector region”, and have rather interesting effects preventing 

the binding of some, but not all, target proteins (Lamarche et al., 1996; Joneson et al., 

1996; Sahai et al., 1998), suggesting that different effectors interact with different



residues within the switch I region. Further studies using GTPase mutants and 

chimaeras have implicated regions outside of switch I in the binding of effectors. For 

instance, an a-helical region present in all Rho-family GTPases, but not in Ras, referred 

to as the “insert region” (Rac amino acids 123-135), is required for Racl activation of 

the NADPH oxidase complex and for binding to an effector protein called IQGAP, but 

not for its interaction with PAK. These data indicate that distinct regions of Rac, Cdc42 

and Rho outside of switch I are required to make contacts with effector proteins.

The data obtained from the many mutational studies show a complex, and 

sometimes contradictory, picture of the mechanisms of Rho GTPase effector 

interactions. However, the recently reported NMR structures of Cdc42 bound to 

activated Cdc42-associated tyrosine kinase ACK (amino acids 504-545) and WASP 

(amino acids 230-288) have provided some informations (Mott et al., 1999; Abdul- 

Manan et al., 1999). ACK and WASP both contain the conserved GTPase-binding 

consensus site, the CRIB (Cdc42/Rac-interactive binding) motif, which is present in 

many, though not all, Rac- and Cdc42-binding proteins. This motif is necessary, but not 

sufficient, for strong binding to the GTPase. These NMR studies show that Asp38 in 

Switch I interacts with the two His residues conserved in all CRIB proteins. 

Interestingly Switch I and II are almost identical in Rho, Rac and Cdc42, except for 

position 38 which is Asp in Rac/Cdc42 and Glu in Rho, and it seems that all CRIB 

proteins may use Asp38 to distinguish Rac/Cdc42 from Rho.

However, not all Rac/Cdc42 effector proteins contain a CRIB domain (for example 

IQGAP 1), so probably the binding to the GTPase is different in these cases.

Rho binding to its effector proteins also appears, from mutational studies, to 

require quite different GTPase regions compared with Rac and Cdc42. Some Rho 

effectors such as protein kinase N (PKN)/PRK1 and PRK2, rhophilin and rhotekin, bind



to Rho via an N-terminal Rho effector homology (REM) region which contains three 

repeats of a leucine-zipper-like motif named HRl (Flynn et a l, 1998).

The most common mechanism of effector activation by Rho GTPases appears to be the 

disruption of intramolecular autoinhibitory interactions, to expose functional domains 

within the effector protein. For example the Rac/Cdc42 targets PAK Ser/Thr kinases, 

have an intramolecular regulatory domain that inhibits kinase activity. Upon GTPase 

binding, the inhibitory sequence is displaced, leaving the kinase domain free to bind to 

and phosphoiylate substrates (Bagrodia, S. and Cerione, R. A., 1999; Tu, H. and 

Wigler, M. 1999). Two kinases that are Rho effectors have also been reported to 

contain autoinhibitory domains, ROK and PKN. A similar principal may also apply to 

activation of the many scaffold-like targets of GTPases. Dia is thought to act as a 

scaffold protein that can be activated by Rho and then interacts with profrlin/actin. 

Recent work has revealed that the N-terminal 389 amino acids interact with a region at 

the C-terminus which makes Dia inactive. Binding of Rho to the N-terminal sequence 

relieves this inhibition. WASP and N-WASP, two related Cdc42 targets, also appear to 

be regulated by an intramolecular interaction. The regions of WASP that bind to each 

other have recently been identified, as the N-terminal GTPase-binding domain and a 

cofrlin-homology region at the C-terminus (Kim et al., 2000). Cdc42-GTP competes 

with WASP C-terminus for binding to the N-terminus and induces a conformational 

change in the WASP N-terminus. Owing to autoinhibitory interactions, full-length N- 

WASP has decreased ability to activate the Arp2/3 complex compared with the 

functionally important C-terminal acidic region alone, and Cdc42-GTP can activate N- 

WASP by releasing intramolecular interactions (Rohatgi et al., 1999). A variation on 

this mode of effector activation has been suggested for the Cdc42-binding protein 

IQGAP. In this case a separate protein, calmodulin-Ca^\ binds to IQGAP (via its IQ 

motif) and inhibits its binding to actin and Cdc42 (Joyal et al., 1997). This might



provide a calcium-sensitive regulatory mechanism for controlling the activation of 

IQGAP.

Almost all Rho GTPase effectors have multiple domains, and some of these might 

regulate their activity. Protein-protein interactions can regulate the subcellular 

localization of GTPase effectors. For example, WASP and PAK contain classic proline- 

rich SH3-binding motifs which have been reported to bind to the adaptor Nek (Rivero- 

Lezcano et al., 1995; Bokoch et al., 1996). It is noteworthy that many of the Rho 

GTPase effector proteins contain coiled-coil regions (ROK, citron, IQGAP, Dia), which 

in some proteins have been shown to facilitate oligomerization. Effector 

oligomerization could represent another level of complexity to target activation by Rho 

GTPases.

1.1.1.3 Rac effectors implicated in actin reorganization

Rho family GTPases are a key regulators of adhesion dynamics. To date there 

are few examples of unique Rac effectors that have been implicated in actin 

reorganization. POR-1 (Partner of Rac) has been implicated in Rac-induced 

lamellipodium formation, since truncations act as dominant negative constructs (Van 

Aelst et al. 1996; D'Souza Schorey et al., 1997), and pl40Sra-l (Specific Raci- 

associated protein) cosediments with F-actin, implying a role in Racl-induced actin 

reorganization (Kobayashi et al., 1998). However, little more is known about the 

cellular functions of these two proteins. A better characterized target of Racl is 

PI(4)P5K. Racl interacts directly with PI-4-P5K, though this interaction is not GTP- 

dependent. It has been established, using permeabilized platelets, that thrombin-induced 

actin-filament assembly requires actin-filament uncapping, which is absolutely 

dependent upon an increase in PIP2 levels, and that this is mediated by Racl activation 

of a type IPI-4-P5K (Hartwig et al., 1998; Tolias et al., 2000).
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Interestingly, WASP-like Verprolin-homologous proteins (WAVEl, 2 and 3) can be 

precipitated with Racl, though this is not through a direct interaction. WAVE localizes 

to membrane ruffles, and its overexpression causes actin clusters, an activity which 

requires the profilin binding and verprolin-homology (actin-binding) domains. A 

verprolin-homology-domain mutant of WAVE inhibits Racl induced ruffling, further 

suggesting an in vivo link between Racl and WAVE (Miki et al., 1998). It was shown 

that activated Rac binds to IRSp53, a substrate for insulin receptor with unknown 

function, and carboxy-terminal domain of IRSp53 binds to WAVE to form a 

trimolecular complex. From studies of ectopic expression, it was found that IRSp53 is 

essential for Rac to induce membrane ruffling, probably because it recruits WAVE, 

which stimulates actin polymerization mediated by the Arp2/3 complex (Miki et al., 

2000). Another mechanism by which Rac WAVE seem to be involved in actin 

reorganization is through the adapter protein Nek. WAVEl exists in a heterotetrameric 

complex that is inactive. Racl and Nek cause dissociation of the WAVEl complex, 

which releases the active WAVEl and leads to actin nucléation (Eden et al., 2002).

Some common target proteins appear to be utilized by both Racl and Cdc42 in the 

induction of lamellipodia and filopodia respectively. PAKs are Ser/Thr kinases, related 

to yeast Ste20 (Manser et al., 1994; Manser et al., 1995; Bagrodia et al., 1995). There 

have been conflicting reports linking PAKs to actin changes. Activated mutants of 

PAKl have been reported to induce both filopodia and membrane ruffles in Swiss3T3 

cells, similar to the effects of constitutively active Cdc42 and Racl (Sells et al., 1997). 

PAKl has been seen to localize to membrane ruffles, as well as phagocytic actin- 

containing cups, in V-formylmethionyl-leucylphenylalanine-stimulated neutrophils 

(Dharmawardhane et al., 1997). Interestingly, PAK-induced cytoskeletal changes are 

independent of its kinase activity, but require membrane targeting (Daniels et al., 1998; 

Lu et al., 1997). Other groups, however, have failed to find any effects of PAK
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overexpression on the actin cytoskeleton (Lamarche et a l, 1996), and, taken together, 

these results suggest that PAKs could be capable of affecting the actin cytoskeleton but 

only in cooperation with other signals that may or may not be present in the cells tested. 

A variety of substrates for PAKs have been identified that could affect the actin 

cytoskeleton. Racl, like RhoA, induces phosphorylation of LIMK (Arber et al., 1998), 

and PAKl has been shown to phosphorylate LIMK in vitro, which in turn 

phosphoiylates cofilin (Edwards et al., 1999). Moreover, an inactive form of LIMK has 

been shown to inhibit both Cdc42 and Rac induced actin changes, suggesting that 

cofilin phosphorylation may be a general requirement in Rho GTPase pathways. PAK 

has been reported to phosphoiylate and inactivate MLC kinase, decreasing MLC 

phosphorylation and reducing actomyosin assembly (Sanders et al., 1999).

1.2 NEURITOGENESIS: A PARTICULAR FORM OF MIGRATION

The integrity of the nervous system depends on highly specific connections 

between neurons during development in order to form the correct neuronal circuits that 

characterize the adult nervous system. This specificity requires neurite extension 

towards specific directions, a process that is mediated by the growth cone, a specialized 

structure located at the distal tip of growing neurites. Neurite extension during 

development can be considered as a particular form of cell migration. It is an important 

event that requires a significant metabolic effort to sustain the increase in molecular 

synthesis necessary for plasma membrane expansion. In addition, neurite extension 

involves changes in the subset of expressed proteins and the reorganization of the 

cytoskeleton. These events are driven by environmental cues which activate signal 

transduction pathways inside the cells. In the context of the developing embryo, 

extracellular guiding cues, cell-cell interactions and soluble factors create a network of 

interactions that are responsible for neurite outgrowth, polarization, axon guidance to
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and from choice points, axonal fasciculation and target selection. The balance between 

positive and negative signals that produce growth or collapse, attraction or repulsion of 

the growth cone, is important. In addition, the dynamic regulation of the receptors for 

the extracellular cues contributes to modify the possible responses of single neurites.

13



a Fibroblast b Neuron grow th co n e

X,

X "  #

Fig. 1.3. Actin-based structures in a fibroblast and a neuronal growth cone.

Prominent F-actin based structures in (a) a migrating fibroblast and (b) a neuronal 

growth cone.

Lamellipodia are structures at the edge of cells composed of a crosslinked F-actin 

meshwork. Filopodia are long, thin protrusions at the periphery of cells and growth 

cones. They are composed of F-actin bundles. (From Luo L., 2000)
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1.2.1 The growth cone

Elongating axons terminate in a protuberance called growth cone (fig. 3). This 

specialized structure is able to explore the environment and to transduce positive and 

negative signals that regulate intracellular events as the basis of neurite navigation. The 

structure of the growth cone can be divided into three major parts. First, there is a 

central core rich in microtubules, mitochondria, and a variety of organelles. Projecting 

from the core are long membrane extension called filopodia, and between the filopodia, 

membrane veils

called lamellipodia. Filopodia and lamellipodia are motile structures, and the sensory 

capability of the growth cone depends in large part on its filopodia. They are thin (0,2- 

0,4 pm) actin rich spike-like projections up to 40 pm long, that present on their surface 

membrane receptors for the molecules that serve as directional cues for the axon. Their 

length allows them to explore the environment far ahead of the central core, and their 

flexibility allows them to navigate between cells or other obstacles. The shape of 

filopodia and lamellipodia is determined by the organization of the actin cytoskeleton. 

At the core of each filopodium is a dense, cross-linked bundle of actin filaments, while 

the lamellipodium includes long crossed actin filaments. The dynamic properties of 

these membrane structures are thought to be determined by three main processes: the 

assembly of actin filaments at the cell membrane, the disassembly of actin filaments at 

sites in the growth cone centre, and the translocation of the F-actin network from the 

leading edge toward the centre in a process called retrograde flow (Forscher and Smith, 

1988). It has been proposed that when cell surface receptors bind extracellular matrix 

ligands, they recruit a multiprotein complex that links the receptor to the actin 

cytoskeleton. This retards the retrograde flow of F-actin relative to the substrate, 

allowing the continued assembly of F-actin at the leading edge, and the action of actin-
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based motors to cause protrusion of the lamella, and consequently cell movement in that 

direction. Probably, a myosin-type motor is responsible for retrograde flux. Many forms 

of myosins was found in growth cones (Ruppert et al., 1993).

The final step involves the microtubules: they are also prominent cytoskeletal 

components in the neurites. They elongate and provide support for the extending neurite 

and are substrate for axonal organelle transport. At the level of the growth cone they 

remain in the central core of this structure, but they are also characterized by assembly 

and disassembly in the actin-rich peripheral domain. Pharmacological studies using 

drugs that inhibit dynamic instability of microtubules reveal that both axonal advance 

and growth cone guidance depend on dynamic microtubules (Yamada et al., 1970; 

Tanaka et al., 1995).

1.2.2 Substrate-cytoskeleton coupling in growth cones

It is established that growth cone motility involves cytoskeleton dynamics and 

cell-substrate adhesion. Growth cones can move forward if they are capable of coupling 

intracellular actomyosin-based motility to an extracellular substrate via cell surface 

receptors. These receptors must form a strong linkage between the substrate and the 

actin cytoskeleton allowing actomyosin contractions to pull the growth cone forward. 

The classical neuronal cell adhesion molecules belong to three distinct structural 

families: integrins, cadherins and IgCAMs.

Integrins are important heterodimeric receptors that interact with extracellular matrix 

molecules. They are widely expressed in the nervous system and play a role in 

different processes such as neuronal migration, axonal growth and guidance by 

attaching to matrix proteins such as laminin, fibronectin and tenascin. Informations 

about the proteins that link integrins to the actin cytoskeleton come largely from studies 

on focal adhesions formed by nonneuronal cells in culture. Several cytoskeletal 

associated components, such as vinculin, talin, and paxillin, and signalling molecules
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(Fak, Src and Rho) participate in this process. Many of these proteins have been 

detected in growth cones, in support of a role for integrin-cytoskeletal coupling in 

growth cone motility.

Cadherins are Ca^^-dependent molecules involved in homophilic interactions that play 

important roles in morphogenesis both in neuronal and nonneuronal cells. The linkage 

between cadherins and the actin cyoskeleton is described. The general structure of the 

linkage involves either p-catenin or y-catenin binding to the cytoplasmic domain of 

cadherin as well as to a-catenin, which is thought to link the cadherin/catenin complex 

to the actin cytoskeleton (Aberle et al., 1996). Several studies in vitro have 

demonstrated the function of N-cadherin in promoting neurite outgrowth, either when 

presented as purified protein substrate or when expressed on the surface of cells 

(Neugebauer et al., 1988; Payne et al. 1992).

The Ig superfamily is the largest family of structurally related proteins all characterized 

by the presence of at least one Ig domain. The first neuronal member identified as a 

mediator of cell adhesion of retina cells is NCAM (Hoffman et a l, 1982). Several 

neuronal IgCAMs have been demonstrated to undergo multiple homophilic and 

heterophilic interactions, but the details of their interaction with the cytoskeleton are 

less known. Most is known about ankyrin and its role in linking LI family members to 

spectrin/actin cytoskeleton (Davis and Bennet, 1994).

1.2.3 Families of attractive and repulsive guidance molecules

Genetic, biochemical and molecular approaches have identified four conserved 

families of neuronal guidance cues with prominent developmental effects: the netrins. 

Slits, semaphorins and ephrins (Table 1.2). Netrins, Slits and some semaphorins are 

secreted molecules that associate with cells or extracellular matrix, whereas ephrins and 

other semaphorins are expressed at the cell surface.
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The signaling pathways in axon guidance are not fully understood, but it is likely that 

they act locally and they are converted into local changes in the actin cytoskeleton of 

the growth cone, which modulate the stability of the growth cone.

Netrins

Slits

Semaphorins

Ephrins

UNC40, UNC5 

Robos

Neuropilin, Plexins 

Eph receptors

Table 1.2. Families of guidance molecules and receptors for neurite navigation.
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The activity of guidance pathways is regulated both by transcriptional modulation and 

by post-transcriptional mechanisms that influence the availability of receptors and 

ligands. These include receptor downregulation, ligand-induced inactivation of 

receptors, alternative splicing, and regulated proteolysis.

1.2.4 Role of Rho GTPases in the process of neuritogenesis

Neurons are terminally differentiated cells with specialized cytoskeletal 

extensions. Therefore, the role of Rho GTPases in neuronal function is expected to be 

more complicated than in fibroblasts. Over the past several years, Rho GTPases have 

been implicated in many different aspects of neuronal development, ranging from the 

initiation of neurite, to neurite elongation, establishment of axon dendrites (cell 

polarity), and growth cone in response to guidance molecules.

1.2.4.1 Neurite extension

The first investigations of Rho GTPases in neurons identified their function in 

regulating outgrowth and retraction of neurites (Luo et al., 1994; Jalink et al. 1994).

In Drosophila melanogaster embryonic sensory neurons, expression of either 

constitutively active or dominant negative Dracl results in selective defects in axonal 

outgrowth (both initiation and elongation), without notably affecting dendrite growth. 

Similar mutations in Dcdc42 affected both axons and dendrites (Luo et al., 1994). 

Expression of constitutively active Racl had a similar selective effect on the growth of 

axons (but not dendrites) in cerebellar Purkinje cells in transgenic mice (Luo et al.,

1996). RhoA is thought to mediate neurite retraction, because activation of RhoA in 

neuronal cell lines led to neurite retraction, whereas expression of dominant negative 

RhoA prevented neurite retraction in response to extracellular stimuli (Jalink et al^f 

1994). Later studies in systems from neuron-like cell lines and primary n eu ro ;iC ^  in
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vivo systems, support the following general scheme. Racl and Cdc42 seem to be 

positive regulators (Kozma et al., 1997; Lamoureux et al., 1997; Albertinazzi et al. 

1998; Ruchhoeft et al., 1999; Brown et al., 2000), whereas RhoA seems to be a negative 

regulator (Jalink et al., 1994; Kozma et al., 1997; van Leeuwen et al., 1997; Kalman et 

al., 1999; Yamashita et al., 1999) of process outgrowth, although there are exceptions 

(Jin and Strittmatter, 1997; Vastrik et al., 1999). These distinct effects of different Rho 

GTPases, as well as the differential effects of each Rho GTPase in different neuronal 

compartments, indicate that the function of Rho GTPases may be more complex in 

neurons than in fibroblasts. Often, the expression of constitutively active and dominant- 

negative GTPase mutants produce similar, rather than opposite, phenotypes (Luo et al, 

1994; Ruchhoeft et al., 1999; Zipkin et al., 1997). This might mean that the Rho 

GTPase signalling pathway has a cyclic mode of action. For example, if filopodia are 

required to cycle between extension and retraction during axonal growth for the growth 

cone to advance, then blocking filopodia in either state (with either constitutively active 

or dominant negative GTPase mutants) would have the same net outcome of decreased 

neurite outgrowth.

Rho GTPases are also involved in guiding growing axons. As axons grow, their growth 

cones encounter many cues that guide them towards or away from specific cells or 

pathways. Guidance cues act by causing the selective stabilization or destabilization of 

actin-based filopodia and lamellipodia. Accumulating evidence indicates that Rho 

GTPases participate in mediating these actions. In Caenorhabditis elegans, mutations in 

a Rho-like GTPase mig-2 {migration 2) caused both outgrowth defects and guidance 

defects (Zipkin et al., 1997). Similarly, in Drosophila, expression of dominant-negative 

Racl caused motor axon guidance errors at specific choice points (Kaufmann et al., 

1998). In addition, overexpression of dominant-negative Rho or wild-type Cdc42
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caused axon guidance defects in Xenopus laevis retinal ganglion neurons in vivo 

(Ruchhoeft et al., 1999).

Genetic loss-of-function mutants in GEFs for Rho GTPases or in downstream effectors 

have also been shown to result in axon guidance defects (Steven et al., 1998; Awasaki et 

al., 2000; Bateman et al., 2000; Liebl et al., 2000, Newsome et al., 2000), further 

supporting the role of Rho GTPases in axon guidance.

1.2.4.2 Dendrites growth and remodeling

Dendrites and dendritic branches are highly dynamic and they might contribute 

to the structural basis of neural plasticity.

The functions of Rho GTPases have been examined by expressing dominant-negative 

and constitutively active mutants in several systems, including Purkinje cells of 

transgenic mice (Luo et al., 1996), rat cortical neurons (Threadgil et al., 1997), Xenopus 

retinal ganglion cells (Wong et al., 2000) and tectal neurons in vivo (Li et al., 2000), and 

pyramidal neurons in hippocampus slices (Nakayama et al., 2000). The role of Rho was 

further supported by genetic analysis of RhoA using null mutations in mosaic 

Drosophila brains, in which RhoA mutant neurons overextended their dendrites (Lee et 

al., 2000)). As for the regulation of axonal outgrowth, the results identify Racl and 

Cdc42 as positive regulators of dendrite growth and dynamics, whereas RhoA is a 

negative regulator.

Another special feature of dendrites that might contribute to neural plasticity is dendritic 

spines, which are special protrusions that are the primary sites of excitatory synapses 

and might be the basic unit of synaptic integration. Perturbation of Rac activity in 

cerebellar Purkinje cells or hippocampal pyramidal neurons resulted in an increase in 

the formation of dendritic spines, smaller than in normal mice, with minimal effect on 

dendrite growth and branching (Luo et al., 1996). This indicates that regulation of Racl
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activity might be crucial for the morphological development and plasticity of dendritic 

spines.

1.2.4.3 Neuronal polarity

There is evidence for a possible involvement of Rho GTPases in establishing 

neuronal polarity. Hippocampal pyramidal neurons in primary culture have long been a 

model system of the initial events leading to the establishment of neuronal polarity 

(Bradke, F. and Dotti, C.G., 2000). Shortly before axon formation, the actin 

cytoskeleton in the growth cone of future axons becomes selectively dynamic and 

unstable compared with growth cones of future dendrites. Treatment of cultured 

hippocampal neurons with the Rho GTPase inhibitor toxin B mimicked the actin 

destabilization in growth cones to generate several axon-like processes (Bradke, F. and 

Dotti, C.G., 1999). However, because toxin B inactivates several Rho GTPases, it is not 

clear which of the GTPases is/are involved in this process. Some evidence indicates that 

Racl might be involved in establishing polarity, since perturbation of Racl function 

preferentially affects the outgrowth of axons in vivo (Luo et al., 1994; Luo et al., 1996). 

The formation of highly specialized presynaptic terminals and postsynaptic 

specializations is another example of the highly specialized morphology of neurons that 

seem to be regulated by Rho GTPases. One important step in the formation of the 

neuromuscular synapse is the clustering of acetylcholine receptors in the muscle fibre, 

which is induced by neuronal expression of agrin (Weston et al., 2000). Recent 

evidence shows that agrin induces the expression of Rac and Cdc42 in myotubes, and 

that these two proteins are necessary to cause acetylcholine receptor clustering in 

response to agrin (Weston et al., 2000). Other evidence pointing to the involvement of 

Rho GTPases in synapse development includes the concentration of RhoGEFs in pre- 

and postsynaptic terminals (Awasaki et al., 2000; Sone et al., 1997), and the reduction
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of the postsynaptic density marker 95 (PSD-95) in dominant negative Rac-expressing 

hippocampal pyramidal neurons (Nakayama et al., 2000).

1.2.4.4 GEFs and GAPs involved in neuronal development

The common view is that Rho GTPases are regulated by upstream signals 

through the regulation of GEFs and GAPs. The best-studied RhoGEF in the nervous 

system is the triple functional domain protein Trio. Originally identified in mammals as 

a binding partner of the receptor tyrosine phosphatase Ear (Debant et al., 1996), Trio 

contains two GEF domains that probably act on Rac and Rho. Recent evidence indicates 

that the Drosophila Trio homologue is genetically required for the growth and guidance 

of sensory, motor and central nervous system neurons (Awasaki et al., 2000; Bateman et 

al., 2000; Newsome et al., 2000). The C  elegans homologue, uncoordinated-73 (UNC- 

73), is also required for cell migration and axon guidance (Steven et al., 1998). 

Although the physical interaction with Ear might not be conserved in worms or flies, the 

amino-terminal SH3 domain and the ankyrin repeats are conserved in mammals, flies 

and worms, and might allow Trio to be linked to conserved axon guidance receptors.

So far, the only RhoGAP studied extensively in the context of neuronal morphogenesis 

is N-chimaerin. This was shown to co-operate with Rac and Cdc42 to induce the 

formation of lamellipodia and filopodia in neuronal cell lines (Kozma et al., 1996). 

GAPs, like GEFs, might transduce signals from receptors to the Rho GTPases. The 

tissue distribution and subcellular location of different GEFs and GAPs might well be 

responsible for fine regulation of the Rho GTPases in different neurons at different 

developmental stages and in specific cellular compartments. It is also possible that 

different GEFs and GAPs in the same growth cone integrate signals from different 

receptors, which converge for the regulation of Rho GTPases. These possibilities might, 

in turn, explain why Rho GTPases are so versatile, regulating seemingly different
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processes of neuronal development, in different developmental contexts. Although 

GEFs and GAPs are important regulators of GTPases, not all upstream signals must 

proceed through GEFs and GAPs. The low-affinity neurotrophin receptor p75 has been 

shown to bind directly to Rho and to activate its activity. This binding and activation is 

abolished when neurotrophin binds to the receptor, inactivating Rho and so permitting 

process outgrowth (Yamashita et al., 1999). Plexin-Bl, a receptor for Semaphorin4D, 

can bind directly Rac. This interaction seems to be bidirectional, Rac modulates 

plexin-Bl activity and plexin-Bl modulates Rac function (Vikis et al., 2002).

1.2.4.5 Other Rho family members in neuronal development.

In neurons, the less well studied members of the Rho family, such as RhoG, 

Rndl and TCIO, have also been implicated in regulating neurite formation. 

Overexpression of RhoG in PCI2 cells induces neurite outgrowth (Katoh et al., 2000). 

It is thought that RhoG may function upstream of Rac and Cdc42 because dominant 

negative mutants of these proteins can block the cytoskeletal rearrangements induced by 

RhoG (Gauthier-Rouviere et al., 1998). Whether or not RhoG acts immediately 

downstream of guidance receptors in regulating Rac and Cdc42 activity in the growth 

cone remains to be determined.

TCIO, another ubiquitously expressed member of the Rho family, was recently 

implicated in nerve regeneration. It has been found that upon severing peripheral nerves, 

the expression of TCIO was preferentially induced compared with that of RhoA, Racl 

and Cdc42 (Tanabe, K., et al., 2000). Expression of a constitutively active form of 

TCIO induces neurite extension in rat DRGs. TCIO shares greater sequence similarity 

with Cdc42 than with Racl and RhoA. Consistent with this is the observation that in 

fibroblasts TCIO stimulates filopodial extensions similar to those generated by activated 

Cdc42 (Murphy et al., 1999; Neudauer et al., 1998). It is not known whether TCIO is
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necessary and sufficient for nerve regeneration or whether it functions as a redundant 

molecule in nerve cells.

Rndl is a constitutively GTP-bound protein that induces loss of stress fibers and cell 

rounding in fibroblasts (Nobes et al., 1998). Like RhoG, overexpression of Rndl 

promotes neurite process formation (Aoki et al., 2000), and the GTPase has also been 

implicated in Semaphorin signaling (Rhom et al., 2000).

1.3 CRAC1B/RAC3

We have identified a novel member of the Rho family of small GTPases from 

chicken E6 developing retinal neurons called cRaclB, which is highly and specifically 

expressed in the neural tissue of developing chick embryos (Malosio et a l, 1997). 

cRaclB is highly homologous to Racl, and is the orthologue of mammalian Rac3 

(fig. 1.4) Comparison of the polypeptide sequences derived from the chick clones with 

the human sequences confirmed that the cRaclB polypeptide is 93.7% identical to 

human Racl whereas the chicken Racl polypeptide (cRaclA) is 100% identical to the 

human Racl protein.

The mammalian Rac3 was isolated from the human cell line k562 cDNA libraiy 

(Haataja et a l, 1997). The gene is located on human chromosome 17q23-25, which is a 

region frequently deleted in breast cancer (Haataja et a l, 1997). Rac3 is expressed at 

mRNA level in a variety of different cell lines: it is relatively abundant in the chronic 

myeloid leukemia cell line K562 and also expressed, albeit at a lower level, in the 

Ewing sarcoma cell line 5838, the promyelocytic cell line HL60, and the breast cancer 

cell line DU4475. Among human tissues, the highest Rac3 expression levels have been 

found in brain, although it has also been detected in heart, placenta, and pancreas. 

Constitutively active V12Rac3 is able to induce the activation of JNK in COSl cells 

(Haataja et a l, 1997), indicating that Rac3 is involved in the stress activation pathway.
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By using a GST-PBD pull-down assay (Mira et al., 1999) from cell lysates it has been 

revealed the presence of hyperactive Rac3 in highly proliferative cell lines (MDA-MB 

435, T47D, and MCF 7), but not in normal breast cell lines or in less proliferative breast 

cancer epithelial cells. Additionally, as indicated by the absence of Rac3 in the 

supernatant of the PBD pull-down, all the Rac3 protein present in these cell lines was 

active. Mira et al. have also shown that endogenous, active Rac3 is essential for breast 

cancer cell proliferation via a Pak-dependent pathway. Since cDNA cloning and 

sequence analysis of full-length Rac3 did not reveal any mutations in the breast cell 

lines studied and did not explain the observed Rac3 activation, they suggest that a Rac3 

regulatory protein could be altered or deleted in highly proliferating cancer cells, and 

that its specificity toward Rac3 could results from the adjacent location of both proteins 

at the membrane, given the distribution of Rac3 only at the plasma membrane in the cell 

lines used.

1 0  2 0  3 0  40  SO
 I  I  I  I  I  I  I  I  I  I

R a c lB  1  MQAIKCVVVGDGAVGKTCLLISYa?TNAFPGEYIPa?VFDNySAWVMVDGKP 5 0
R a c lA  1  MQAIKCVVVGDGAVGKTCLLISYTO?NAFPGEYIPTVFDNYSANVMVDGKP 5 0

60 10070  8 0  90
I  1  I  I  I  I  I  I

RaclB 5 1  VNLGLWDTAGQEDYDRLRPLSYPQTDVFlICFSLVSPASFENVRAKXiflYPE 1 0 0
RaclA 5 1  VNLGIWDTAGQEDYDRLRPLSYPQTDVFLICFSLVSPASFENVRAKWYPE 1 0 0

1 1 0  1 2 0  1 3 0  1 4 0  1 5 0
I . . . .  I . . . .  I . . . .  I . . . .  I . , . . .  I . . . .  I . . . .  I . . I

RaclB 1 0 1  VRHHCPWTPIILVGTK1D1RDDKDTIERLRDKKLAPITYPQG1AMAREIG 1 5 0
RaclA 1 0 1  VRHHCPNTPIILVGTKLDlRDDKDTIEkLKEKKLTPITYPQGLAM AKEIG 1 5 0

1 6 0 1 7 0  
. I .

1 8 0  
.  I .

1 9 0  
. I . ,

RaclB 1 5 1  [SVKYLECSAITQRGIKTVFDEAIRAVLCPPPVKKPGKKCTVP 1 9 2  
RaclA 1 5 1  kvKYLECSALO?QRGLKTVFDEAIRAVLCPPPVKKRKRKCLIL 1 9 2

Fig 1.4. Aminoacid sequence comparisons of cRaclA and cRaclB. In green are 

indicated the residues that distinguish the two GTPases.
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In normal Chicken Embryo Fibroblasts (GEFs), while cRaclA transcripts is abundant, 

cRaclB mRNA is almost not detectable. The actin cytoskeleton of CEFs is 

characterised by the presence of abundant stress fibers. As previously reported by us 

(Albertinazzi et al., 1998), expression of either the wild-type cRaclA or wild-type 

cRaclB has similar effects on actin reorganization in CEFs. The majority of the cells 

transfected with either of the wild-type cRac GTPases showed a dramatic change in cell 

shape one day after transfection, which was accompanied by a radical reorganization of 

the cytoskeleton. Several transfected cells showed numerous, highly branched 

membrane protrusions rich in F-actin. The distribution of microtubules was also 

affected by Rac expression. Microtubules were found in the membrane protrusions and 

their major branches. (Albertinazzi et al., 1999). Also the distribution of both wild-type 

Rac proteins is similar. Ventral plasma membrane (VPMs) from CEFs transfected with 

wild type cRaclA or cRaclB were used. VPMs contain well preserved focal adhesions 

and stress fibers, as defined both by morphological and biochemical criteria (Cattelino 

et al., 1997). This system is particularly useful because the distribution of antigens on 

the membrane appears much clearer in VPM preparations as compared to intact cells, 

due to the elimination of the fluorescent signal from the dorsal cell membrane, and from 

the cytoplasm. Analysis of VPMs from transfected CEFs has shown association of both 

RaclA and RaclB GTPases with the ventral portion of the plasma membrane, and in 

particular along VPM-associated stress fibers. (Albertinazzi et al., 1999).

1.3.1 The role of cRaclB in neuronal development

Northern blot analysis and in situ hybridization experiments have shown that 

cRaclB expression is restricted to the nervous system of the chicken embiyo (Malosio 

et al., 1997). We have also shown that it is regulated during the development of the 

chicken brain (Albertinazzi et al., 1998). While the related cRaclA is highly expressed
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throughout the development, the amount of cRaclB transcript increases between E4 and 

E l5, and decreases thereafter, to be only weakly expressed in the adult brain. At E6, the 

endogenous level of RaclB is low. One major finding from our study is that 

overexpression of cRaclB in E6 retinal neurons, specifically affects the morphology of 

transfected cells, by inducing the formation of an increased number of neurites, and by 

dramatically increasing neurite branching (Albertinazzi et al., 1998). These effects are 

specific for RaclB, since Racl A-transfected neurons show a morphology similar to that 

of non-transfected neurons, characterized by the presence of one long, poorly branched 

neurite.

A second major finding is the strong inhibition of neuritogenesis upon expression of the 

inactive mutant NlTRaclB. A large fraction (about 60%) of the NlTRaclB transfected 

neurons had no, or very short neurites, suggesting that not only is the inactive GTPase 

unable to induce the dramatic morphological modifications caused by the wild-type 

GTPase, but also that it has a negative effect on neuritogenesis. A significantly different 

effect was obtained by expressing the dominant-negative form of the cRaclA GTPase 

(Albertinazzi et al., 1998). More than two-thirds of the transfected neurons had a 

morphology similar to that of nontransfected cells, with one or two long neurites, 

indicating a specific dominant negative effect of the NlTRaclB on neuritogenesis 

induced by the endogenous protein.

At the protein level, cRaclA and cRaclB differ in 12 aminoacid residues, concentrated 

in the rho insert region (4 residues), in the effector loop (2 residues) and in the carboxy 

terminal region containing the CAAX box (6 residues). By expressing chimeric 

cRaclA/cRaclB constructs, the region containing the last eight COOH-terminal amino 

acid residues of RaclB was shown to be necessary for Rac IB-mediated enhancement of 

neuritogenesis and neurite branching. Neurons expressing chimeras including the 

carboxyterminal eight residues from cRaclB show enhanced neuritogenesis and
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branching while the substitution of this region with the corresponding region of cRacl 

abolishes these effects.

In contrast to CEFs (Albertinazzi et al., 1999), in retinal neurons cRaclB shows a 

specific effect, not detectable with the highly homologous cRaclA. This implicates a 

cell type-dependent specificity of Rac protein action. It has been found that the activity 

of Rac3 can be regulated in vitro by Bcr (Haataja et al., 1997), a GTPase-activating 

protein highly expressed in the brain (Heisterkamp et al., 1993). These data, together 

with the finding that Tiaml, a guanine nucleotide exchange factor highly expressed in 

the brain (Habets et al., 1995), affects neurite outgrowth in neuroblastoma cells in a 

Rac-dependent fashion, suggest that neuritogenesis may be modulated by specific Rac 

regulators during development (van Leeuwen et al., 1997).

Moreover, the differences existing between the cRaclA and cRaclB polypeptides may 

be sufficient to allow their interaction with distinct sets of neuronal effectors and/or 

regulators, which may be responsible for the different effects observed on the neuronal 

cytoskeleton.

1.3.2 Specific Rac3/cRaclB interacting proteins

Regarding molecules specifically interacting with Rac3, it has been shown, by 

the yeast two-hybrid system, that mammalian Rac3 can bind CIB (Calcium and Integrin 

Binding Protein). CIB is a protein that interacts with the allbp3 fibrinogen receptor, and 

it has been shown to bind exclusively with activated V12Rac3 but not Racl or Rac2 

(Haataja et al., 2002). Binding of V12Rac3 to CIB is mediated by the C-terminal end of 

Rac3 and by Rac3 membrane localization. Adhesion of CHO cells on fibrinogen is 

accompanied by a specific increase in the levels of Rac3 in the cytoskeleton-bound 

fraction of the cell. Expression of V12Rac3 and CIB stimulated allbp3 -mediated 

adhesion and spreading on fibrinogen. Moreover, it has been shown that adhesion
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through allbpS causes a marked increase in the levels of endogenous GTP-bound Rac3. 

The results implicate Rac3 and CIB in integrin-associated cytoskeletal reorganization 

during allbp3 -mediated adhesion.

Using the yeast two-hybrid system, another Rac3-interacting protein has been isolated 

from a human placenta cDNA library. Sequence analysis revealed that this protein is 

CID, the human homologue of the murine SUN-CoR protein which acts as a 

corepressor for the thyroid hormone receptor (Hataaja et al., 1998). In yeast cells, CID 

binds to constitutively activated but not to GDP-bound Rac3. The CID gene was 

mapped to human chromosome 2, which frequently shows deletions in human follicular 

thyroid carcinomas.

Another component that has been shown to interact with activated V12Rac3 is human 

NRBP, a protein containing a kinase-homology domain and that exhibits an associated 

kinase activity. The overexpression of NRBP in COSl cells causes a dramatic 

redistribution of the Golgi-associated marker p58 to more peripheral locations within 

the cell, consistent with an impairment of the ER to Golgi transport (De Langhe et al., 

2002). The authors also showed that NRBP and activated Rac3 colocalize to 

endomembranes and at the cell periphery in lamellipodia, suggesting that NRBP 

functions in subcellular trafficking and may be directed to specific subcellular locations 

through interaction with small GTPases Rac3.

By affinity chromatography of cRaclA and cRaclB GTPases, using brain lysates from 

chicken embryos, p95-APPl (p95-ArfGAP, Paxillin interacting, Pix interacting 

Proteinl), was identified as a protein interacting indirectly with the GTP-bound (and not 

with the GDP-bound) form of both cRac proteins (Di Cesare et al., 2000). P95-APP1 is 

a member of a recently discovered family of proteins that are characterized by a GAP 

domain for the Arf GTPases (table 1.3).
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1.4 THE ARF GTP ASES AND THE ARFGAP PROTEINS.

During cell migration, it has been hypothesized that membrane internalized from 

the cell surface is recycled to the front of migrating cells to contribute to the extension 

of the cell border. The molecular mechanisms underlying this process are not known. 

Recent findings have shown that a number of multi-domain proteins containing an 

ArfGAP domain interact with both actin-regulating and integrin-binding proteins, and 

affects Rac-mediated protrusive activity and cell migration (de Curtis I., 2001). Some of 

these proteins have been shown to localize to endocytic compartments and have a role 

in regulating endocytosis (de Curtis et al., 2001). Given the participation of Arf (ADP- 

ribosylation factor) proteins in regulating membrane traffic, one hypothesis is that the 

ArfGAPs act as molecular devices that coordinate membrane traffic and cytoskeletal 

reorganization during cell motility.

Like Rho proteins, Arf small GTPases cycle between the GTP- and GDP- bound form 

under the control of specific GAPs and GEFs (Donaldson, J.G. and Jackson, C.L., 

2000). They are involved in the regulation of membrane traffic in cells, and they can be 

divided into three classes, depending on sequence homology: class I (Arfl, 2 and 3), 

class n (Arf4 and 5), and class in (Arf6). It is well known that class I Arfs are involved 

in the regulation of membrane traffic between endoplasmic reticulum and the Golgi 

apparatus, while the function of class H GTPases is still not clear. Regarding Arf6, its 

subcellular localization is quite different from that of class I and class H Arf proteins. 

Arf6 is localized to the plasma membrane, especially to membrane ruffles in spreading 

cells (Radhakrishna et al., 1996). Arf6 is involved in membrane recycling at the plasma 

membrane, and has been implicated in remodeling the actin cytoskeleton underlying the 

plasma membrane. Activation of Arf6 induces remodeling of the actin cytoskeleton and 

cell spreading, and expression of a dominant negative mutant of Arf6 blocks cell 

spreading (Radhakrishna, H.O. et al., 1999). Arf6 seems to be involved in the traffic
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between a recycling endosomal compartment and the plasma membrane because of the 

localization of Arf6 in these compartments and the effects of its overexpression on 

transferrin uptake and recycling to the cell surface (D’Souza-Schorey et al., 1995; Peters 

et al., 1995 ). Moreover, Arf6 colocalizes with transferrin receptor at the recycling 

compartment (D’Souza-Schorey et al., 1998).

Arf6 seems to be functionally linked to Racl: the two proteins colocalize at the plasma 

membrane and on recycling endosomes, and Racl-induced ruffling can be blocked by 

the inactive mutant N27Arf6. Recent studies indicate that Arf6 and Racl may also share 

effectors called Arfaptins (D’Souza-Schorey et al., 1997), including PORI (arfaptin 2) 

which has been implicated in the cytoskeletal rearrangements induced by either Racl 

(D’Souza-Schorey et al., 1997 ) or Arf6 (Van Aelst et al., 1996).

Considering these data, it has been proposed that Arf6 could be a good candidate for 

mediating membrane traffic toward the cell front during migration. The ArfGAP 

proteins could be required for the regulation of the activity of Arf6-mediated membrane 

recycling. The ArfGAP proteins identified can be divided in three groups (table 1.3). 

The first is the family of ASAPl/DEF-1 (differentiating enhancing factor) (Brown et al., 

1998; King et al, 1999), PAPa (Pyk2 carboxyl-terminus-associated protein)/PAG3 

(Paxillin-associated ARF GAP) (Kondo et al, 2000; Andreev et al, 1999), and PAPp. 

They have a centrally located ArfGAP and ankyrin repeats domain flanked by a PH 

domain. ASAPl and PAPa show in vitro GAP activity toward Arfl, Arf5 and Arf6. 

They interact with Src and Pyk2, respectively (Brown et al, 1998; Andreev et al, 

1999), two tyrosine kinases involved in the regulation of integrin-mediated adhesion. 

Asapl localizes into focal contacts and is implicated in actin remodeling during cell 

migrations. (Randazzo et al, 2000). PAPa can recruit paxillin to focal complexes by a 

GAP activity-dependent mechanism (Kondo et al, 2000). These data support the
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hypothesis that important molecules such as paxillin and tyrosine kinases are recruited 

to the leading edge through ArfGAPs.

AC API and ACAP2 (ArfGAP with coiled-coil, ANK repeat and PH domains) belong 

to the second group. Their molecular structure is very similar to the organization of the 

components of the first group. Both proteins belong to the centaurin family and they 

show strongest GAP activity towards Arf6 (Jackson et al., 2000). Their GAP activity is 

stimulated by the interaction of the PH domain with PIP2 and by phosphatidic acid. 

Overexpression of ACAPs blocks the formation of Arfb-mediated protrusions, and leads 

to redistribution of ACAPs and activated Arf6 to endosomes (Radhakrishna and 

Donaldson, 1997).

The Git (G-protein-coupled receptor kinase interacting protein) family is the third 

group. They are components of complexes that include the RhoGEF Pix (Oh et al., 

1997; Bagrodia et al., 1998; Manser et al., 1998), the Rac effector Pak (Daniels and 

Bokoch, 1999) and the adaptor Nek (McCarty, 1998; Turner et al., 1999). As well as 

other ArfGAPs, they are multidomain proteins characterized by an N-terminal ArfGAP 

domain followed by at least three ankyrin repeats. They can bind paxillin through a 

region that has been mapped in the C-terminal part, and the SHD domain of Gitl has 

also been shown to bind focal adhesion kinase (FAK) (Zhao et al., 2000). Their GAP 

activity seems to be regulated by phosphoinositides. Gitl and Git2 are regulated by PIP3 

(Vitale et al., 2000). These proteins seems to be involved in the regulation of adhesion 

and motility. Overexpression of Gitl causes a loss of paxillin from focal complexes and 

stimulates cell motility (Zhao et al., 2000) while inhibition of the interaction between 

PKL/Git2 and paxillin prevents lamellipodium formation. Recently, Gitl has been 

identified as a potential substrate for the receptor tyrosine phosphatase PTPi^ (Kawachi 

et al., 2001). This phosphatase has been implicated in the control of neurite outgrowth 

and neuronal cell migration.
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ASAP ÀSAP1 Centaurin|34 PH, ArfGAP, ankyrin 
repeats (3), SH3

PAPa CentaurinpS PH, ArfGAP, ankyrin 
repeats (3), SH3

ACAP ACAPl Centaurinp 1 PH, Arf GAP, ankyrin 
repeats (2)

ACAP2 Centaurin(32 PH, Arf GAP, ankyrin 
repeats (2)

ACAPS Centaurin (3 5 PH, Arf GAP, ankyrin 
repeats (2)

GIT GITl Gitl/Catl/p95APPl N-term. ArfGAP, ankyrin 
repeats (3)

GIT2 Git2/Cat2/p95APP2/
PKL

N-term. ArfGAP, ankyrin 
repeats (3)

Table 1.3. The families of Arf-GAP proteins.
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These data raise the possibility that PTP(^ activity may facilitate motility in these cells 

by reversing the integrin-mediated tyrosine phosphorylation of Gitl that occurs in 

response to cell adhesion (Bagrodia et a l, 1999).

P95-APP1 is the chicken homologue of GITl/Catl. In figure 1.5 is shown a 

schematic representation of the protein. The dissection of the multidomain p95-APPl 

has been useful to identify possible distinct functions for the different domains (Di 

Cesare et al, 2000). Both wild-type p95-APPl and the truncated p95C (the carboxy

terminal portion including the paxillin binding domain) shown on figure 4.4 induce 

actin-rich protrusions mediated by Rac and Arf6 (Di Cesare et al, 2000). By contrast, 

the aminoterminal portion of p95-APPl (including the ArfGAP domain and the three 

ankyrin repeats) colocalizes with the inactive mutant N27Arf6 in an endosomal 

compartment. By further dissection of this multi-domain protein, the truncated p95-C2 

(Fig. 4.4), including both PIX- and paxillin-binding domains, accumulates via PDC 

around large vesicles. Paxillin is recruited from the focal adhesions to these vesicles. 

Consistent with this findings, the paxillin reduction observed at focal adhesion in 

response to Gitl overexpression is accompanied by the localization of paxillin to large 

perinuclear vesicles (Zhao et al, 2000). These vesicles are distinct from the smaller 

endocytic structures where the amino terminal truncated polypeptides including the 

ARF-GAP domain and the ankyrin repeats accumulate by a PIX-independent 

mechanism. The characterization of this membrane compartment has revealed that it is a 

Rab 11-positive recycling compartment, suggesting that p95-APPl could be involved in 

the regulation of membrane recycling to the cell surface (Matafora et al, 2001). In 

addition Rac activation induces the localization of p95-APPl complex at the periphery 

of the cell, with the formation of large lamellipodia where V12Rac colocalizes with the 

components of the p95-APPl complex.
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Fig 1.5. Schematic representation of the p95-APPl polypeptide.

P95-APP1 is a multidomain protein. Zn (zinc finger), GAP (ArfGAP domain), ANK 

(ankyrin repeats), SHD (Spa2 homology domain), COIL (coiled coil region), PBS 

(paxillin binding subdomain).
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1.5 AIM OF THE WORK

Most of the information that we have about neuritogenesis concerns the 

extracellular mechanisms driving growth cone migration and neurite elongation. Large 

gaps still exist in understanding the sequence of intracellular events leading to this 

process. Many attempts have been made in the last few years to investigate the role of 

Rho family GTPases in these processes, but still the information that we have is largely 

fragmentary. This is probably due to the complexity of the cross-talk between different 

signalling pathways occurring in the cell at the same time. The complexity is further 

increased by peculiarities that may be present in the different cell types studied.

In our laboratory, RaclB was identified as a Rac expressed during neural 

development (Malosio et al., 1997). In the first part of my thesis I will describe the 

preparation of recombinant mouse embryonic stem cells (ES cells) to generate RaclB 

knock-out mice. It was shown that avian RaclB plays an important role in the process 

of neuronal development (Albertinazzi et al., 1998), by overexpression experiments in 

primary retinal neurons. A better understanding of the role played by RaclB in this 

process could come from studies in an “in vivo” system. Today, transgenic animals 

provide one of the most potent research tools in the biological sciences, that allow us to 

explore the regulation of gene expression as well as the regulation of cellular and 

physiological processes. For these reasons, our purpose is to obtain knock-out mice for 

RaclB, in order to analyse possible defects in the development of the nervous system of 

mice lacking this neurospecific small GTPase.

Since RaclB is specifically expressed in the chicken developing nervous system 

(Albertinazzi et al., 1998), in the first part I describe the characterization of a polyclonal 

antibody used to investigate RaclB expression pattern also in mice during development.

The aim of the second part of my thesis was to analyze the role played by Arf6 

and the p95-APPl complex in Rac IB-induced neurite extension in primary neurons,
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and investigate the components required for the recruitment of p95-APPl complex at 

the membrane of the recycling compartment.
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Chapter 2 

MATERIALS AND METHODS

2.1 GENE TARGETING IN MOUSE EMBRYONIC STEM CELLS

2.1.1 Preparation of Mouse Embryo Fibroblasts as Feeder Layers

Embiyonic stem (ES) cells were grown on mitotically inactive mouse embryo 

fibroblasts. They provide a basal level of Leukemia Inhibitory Factor (LIF) and a 

number of yet unidentified factors that sustain ES cell growth in the totipotent state.

E l3,5 mouse embryos were dissected in PBS, and heads, livers and internal organs were 

removed. The embryos were minced into small pieces in 10 ml of Trypsin/EDTA 

(GIBCO, 0,5 mg/ml Trypsin, 0,2 mg/ml EDTA)with 1 mg/ml Dnase type I. The 

suspension was incubated for 10 min at 37°C, and the tissue pieces were triturated by 

pipetting up and down. After another incubation of 10 min at 37°C, the suspension was 

triturated by pipetting up and down with a smaller pipette, and the suspension above the 

debris was taken and split into two 50 ml tubes and 25 ml of complete medium (DMEM 

containing 10% PCS, 100 U/ml penicillin and streptomycin, 20 mM glutamine) was 

added. After a 5 min spin at 1500 rpm, the pellet containing cells was resuspended in 2 

ml of complete medium, and disaggregated by pipetting up and down with a pasteur, 

and cells were counted. About 80 millions cells were plated in one 15 cm diameters 

plate and cultured at 37°C, 5% C02. When confluent, cells were trypsinized and frozen. 

The plates were washed with 20 ml PBS and 7 ml of trypsin were added to each plate. 

The trypsin was removed and the plates were incubated at 37°C for 5 minutes. Cells 

were resuspended in 8 ml of medium, centrifugated for 5 min at 1500 rpm and
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resuspended in 1 ml per dish of 25% FCS, 65% complete medium and 10% DMSO and 

placed at -80°C for 2 days. Vials were then conserved in liquid nitrogen. When used, 

each aliquot was thawed and added to 8 ml of complete medium, and plated in a 100- 

mm diameter culture dish which reached confluence in 2 days. When cells were 

confluent, they were treated with mitomycin C, in order to block mitosis and mantain 

cells as a monolayer. 50 pi of 1 mg/ml mitomycin C were added to 5 ml of complete 

medium. After 2 h of incubation, cells were washed two times with PBS, and fresh 

medium was added to the plate. Mitomycin treated cells can be kept in culture for one 

week.

2.1.2 Culture and electroporation of ES cells.

Before transfection, ES cells must be expanded and kept growing minimizing 

passages. One vial of R1 ES cells was thawed at 37°C, and cells were dilute in 10 ml of 

complete medium (DMEM containing 15% FCS, 100 U/ml penicillin and streptomycin, 

20 mM glutamine, 0,1 mM non-essential aminoacids, ImM sodium pyruvate, 0,1 mM 

p-mercaptoethanol, 1000 U/ml LIF). After a 5 min spin at 1200 rpm, cells were 

resuspended in fresh medium and plated in a 6 cm diameter dish with a monolayer of 

mitomycin C treated fibroblasts. After the cells were thawed, they must be trypsinized 

every two days. Cells were expanded by washing them with trypsin-EDTA IX 

(GIBCO) and by incubating 15 min at 37°C with fresh trypsin-EDTA. To obtain single 

cell suspension, cells were separated by pipetting up and down, and an excess of fresh 

complete medium was added. After a spin of 5 min at 1200 rpm, cells were resuspended 

in fresh medium and plated at the appropriate dilution.

The plasmid for the transfection were linearized by digesting 300 pg of DNA 

with 150 Units of the restriction enzyme Xhol at 37°C for 5 h, and the linearized 

plasmid was purified with phenol-chlorophorm and precipitated with the addition of 3M
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Na acetate and two volumes of ethanol. The pellet was washed with 70% ethanol and 

resuspended under sterile hood in 150 pi of autoclaved H20.

For the electoporation, 7 millions of ES cells were centrifuged 5 min at 1200 

rpm, resuspended in 800 pi of PBS, and 20 pi of linearized plasmid were added. The 

suspension was transferred into the electroporation cuvette (BIORAD), and the cuvette 

was placed in the cuvette holder of the Bio Rad Gene Puiser. The electric pulse was 

delivered setting up the Gene puiser with 0,24 kV and 500 pF. The cuvette was 

incubated on ice for 20 min and the cell suspension was diluted in 20 ml of complete 

medium. Cells were plated on two 10 cm dishes pre-coated with sterile 0,1% gelatine. 

Twenty-four h after the electroporation the medium was replaced with fresh medium, 

and after two days the medium was replaced with complete medium supplemented with 

325 pg/ml of G418, and after 3 days with complete medium with 325 pg/ml G418 and 2 

pM gancyclovir.

G418 can be inactivated by the neomycin phosphotransferase which is one of the most 

used genes that confers antibiotic resistence in mammalian cells. This positive selection 

eliminates cells in which the construct was not integrated into the genomic DNA, since 

the enzyme is produced only when the construct is integrated. The presence of 

thymidine kinase in the construct downstream the long arm represents the negative 

selection. During targeted gene replacement events, this sequence is lost and degraded, 

whereas clones in which the vector has integrated at random will typically incorporate 

the sequence. For this reason this selection kills most clones of cells which have 

integrated the vector at random location, while targeted clones survive. Thymidine 

kinase phosphorylates gancyclovir, a nucleotide analogous that upon phosphorylation 

can be incorporated into the DNA during replication. Incorporation of the 

phosphorilated nucleotide analouge causes the block of DNA replication and cell death.
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The medium with the selection was changed every day, and the first resistant clones 

appeared after 8 days.

2.1.3 Picking the colonies

Starting 8-9 days after electroporation 300 colonies were picked over 4-5 days 

and transferred to 96-well-feeder plates containing complete ES cells medium without 

selection. After one day, the medium in the plates of the collected clones was sucked off 

and each well was washed with 150 pi PBS. 30 pi of trypsin were added to each well 

and the plate was incubated 10 min at 37°C, 5% C02. The cells of each clone were 

resuspended in the tiypsin by pipetting up and down to get single cells, and 150 pi of 

complete medium were added to each well.

2.1.4 Passage of 96-weII plates

For each original feeder plate containing the clones, two fresh feeder plates were 

prepared and one plate coated with 0,1% gelatine. Each well was washed with PBS and 

30 pi of trypsin were added. The plate was incubated for 15 min at 37°C, 5% C02 and 

cells were resuspended to obtain single cells. Trypsin action was blocked by the 

addition of 150 pi of complete medium, and 70 pi of cell suspension were distributed in 

the two feeder plates, and 40 pi in the gelatine plate. Each clone was treated 

individually, because the rate of the growth of the different clones was different.

2.1.5 Freezing of 96-well-feeder-plates

Once the clones have grown enough, the two copies are frozen in the two 96 

well plates. Each well was washed with PBS, and 30 pi of trypsin were added for 15 

min at 37°C. Cells were resuspended to obtain single cells, and 70 pi of complete cold
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medium were added. Subsequently, 100 pi of cold 2X concentrated freezing medium 

were added (for 10 ml; 6 ml of complete medium, 2 ml FCS and 2 ml DMSO). The 

plates were transferred on ice, the edges were wrapped with parafilm and the plates 

were transferred into a box at -80°C.

2.1.6 Genomic DNA extraction

Cells of each clone growing on gelatine were trypsinized with 30 pi of trypsin 

for 10 min at 37°C and transferred into 24 well plates. When confluent, cells were lysed 

with 500 pl/well of lysis buffer (100 mM Tris pH 8,5, 5 mM EDTA, 0,2% SDS, 200 

mM NaCl, 200 pg/ml proteinase K). The plates were transferred at 56°C o n., and then 

500 pl/well of isopropanol were added to precipitate DNA, and the plate was incubated 

for 15 min at room temperature on an orbital shaker. The precipitated genomic DNA of 

each clone was transferred to an eppendorf tube and centrifuged for 5 min at room 

temperature at 13000 rpm. In order to eliminate the excess of isopropanol, the 

eppendorf tubes were left opened for 1 h at 37°C. To resuspend DNA, 150 pi of TE 

were added and the eppendorf tubes were left at 65°C in waterbath. After one night, 

DNA was dissolved by pipetting up and down, and it has been stored at 4°C.

2.1.7 Southern blot analysis

30 pi of genomic DNA of each clone were digested overnight at 37°C with 20 U 

of EcoRI and 20 U of Xbal in a final volume of 40 pi. The DNA fragments were 

separated on a 0,8% agarose gel. The DNA was then denaturated by incubating the gel 

in 0,4 N NaOH, 0,6 M NaCl for 30 min, and neutralized by incubating it in 1,5 M NaCl, 

0,5MTris-HClpH7,5.

A nylon membrane (Genescreen Plus, NEN) was incubated it in deionized water and
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then in lOX SSC. The digested DNA was transferred on the membrane by capillary 

action in lOX SSC for one night. The filter was first denaturated by incubation in 0,4 N 

NaOH for 1 min, and then neutralized by incubation in 0,2 M Tris-HCl pH 7,5 and 2X 

SSC. DNA was fixed on the filter with UV crosslinker, and the membrane was 

prehybridized with 10 ml of the prehybridization solution (5 ml formamide, 2 ml H20, 

2 ml of 50% dextrane sulphate, 1 ml of 10% SDS and 0,58 g NaCl) at 42°C for at least 

2 h. The probe and salmon sperm DNA were denaturated for 10 min at 95°C, placed on 

ice for 10 min and added to the tube containing the filter and the prehybridization 

solution. After one night of incubation at 42°C, the filter was washed twice with 2X 

SSC at room temperature for 5 min, twice with 2X SSC, 1% SDS at 65°C for 30 min, 

and twice with 0,1X SSC at room temperature for 30 min. X-ray films were exposed to 

the hybridized filters.

2.1.8 Thawing the 96-well plate and expanding positive clones.

The 96 well plates containing the positive clones were immediatly thawed in 

37°C waterbath and centrifuged for 5 min at 1200 rpm. The medium containing DMSO 

was removed and new fresh medium was added to the wells of interest. The 

resuspended cells were transferred in new fresh 96well feeder plate. After two days cells 

were trypsinized and transferred to a 24 well plate, and after two more days they were 

trypsinized with 200 pi of trypsin and transferred into one well of a 6 well feeder plate. 

After two more days, cells were incubated with 500 pi of tiypsin, resuspended in 5 ml 

of complete medium and centrifuged for 5 min at 1200 rpm. Cells were resuspended in 

fresh medium and plated in one 10 cm feeder plate. When ready, cells were frozen by 

preparing 6 vials for one 10 cm plate.
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2.2 CELL CULTURES

2.2.1 Culture and transfection of primary neurons

Neural retinal cells were prepared from E6 chick neural retinas. After dissection, 

E6 retinas were incubated for 6 minutes at 37°C in 0,1% trypsin in 6 ml of phosphate- 

buffered saline (PBS). Digestion was stopped by adding 1 ml of fetal calf serum. After a 

3 min spin at 700 rpm, the pellet was washed in F12 nutrient mixture and triturated in 

F12 containing 125 pg/ml DNase I. Cells were cultured on coverlips covered with 0,2

mg ml’  ̂ poly-D-lysine and 40 pg ml"^ laminin-1 (Albertinazzi et al., 1998) in Retinal 

Growth Medium (RGM), composed of F12 with 20 mM glutamine, 100 U/ml penicillin 

and streptomycin, and Bott’s additives (5 pg/ml insulin, 0,1 mg/ml human transferrin 

and 3 pM selenic acid). For transfection by electroporation, retinal cells were 

resuspended in cytomix pH 7.6 (120 mM KCl, 0.15 mM CaC12, 10 mM 

K2HP04/KH2P04, 25 mM Hepes, 2 mM EGTA, 5 mM MgC12) to a final

concentration of 65 millions of cells ml"l. 200 pi of cell suspension wôre placed in a 

Gene Puiser Cuvette (Biorad) and 50 pg of plasmid were added (40 pg of each plasmid 

in cotransfection experiments). After an incubation on ice for 5 minutes, cuvettes were 

subjected to 2 sequential pulses at 0.4 KVolts and 125 pFarad, resuspended in 10 ml of 

RGM, and plated on coverlips. Cells were cultured for 20-24 h at 37°C, 5%C02 and 

fixed for immunofluorescence. Quantification of the effects of the overexpression of the 

constructs in retinal neurons were made by examining transfected, neurofilament- 

positive neurons, or cotransfected neurons. For each type of transfection, at least 50 

neurons were morphologically examined from at least two distinct experiments (total of 

100 neurons / experimental condition). Long neurites were equal or longer than 3 cell 

body diameters, short neurites were shorter than 3 cell body diameters. For measures of 

total neurite length and of number of neurite terminals, a total of 30 neurons from two 

independent experiments were examined by using the Image-Pro® Plus Program.
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2.2.2 CEFs culture and transfection

Chicken Embryo fibroblasts (CEFs) were isolated Jfrom 10-day-old embryos. 

The head, legs, wings and internal organs were removed and the embryo was squirted 

through a 10 ml syringe without a needle and trypsinized with 5 ml 0.1 trypsin in PBS 

for 15 min at room temperature. The suspension above the debris was taken and 10 ml 

of complete medium (DMEM containing 5% fetal calf serum (FCS), 1% chicken serum, 

100 U/ml penicillin and streptomycin, 20 mM glutamine) was added. After a 5 min 

spin at 800 rpm, the pellet containing cells was resuspended in 10 ml complete medium,

filtered through a nylon membrane and the cells were counted. 0.5-2.0 x 10^ cells were 

plated on each 100 mm diameter petri dish at 37°C, 5% CO2 . Each dish reached 

confluence in 2-3 days. A confluent dish of CEFs was washed twice with 10 ml of PBS 

and trypsinized by approximately 2 min with shaking in 1 ml trypsin-EDTA (Bio- 

Whittaker, 0,5 mg/ml Trypsin, 0,2 mg/ml EDTA) at room temperature. The trypsin 

digestion was blocked by addition of 9 ml of complete medium, cells were resuspended 

and plated at a dilution of 1:5-1:10. After the second passage, CEFs were frozen and

conserved in liquid nitrogen in 1 ml aliquots containing 0.5-2.0 x 10^ cells in 50% FCS,

40% complete medium and 10% DMSO. When used, each aliquot was thawed and

added to 10 ml of complete medium, and plated in a 100-mm diameter culture dish

which reached confluence in 2-3 days. CEFs up to the fifth passage were used for

experiments. For CEFs transfection, cells were plated in 6 cm diameter plates and

cultured 18 h. Subconfluent cells were transfected with the calcium phosphate method.

20 pg of plasmid DNA and 20 pi of 2,5 M CaC12 were diluted in TE to reach a final

volume of 200 pi (for cotransfection experiments, 10 pg of each plasmid were used).

The DNA/CaC12 solution was added dropwise to 200 pi of HBS 2X solution (280 mM

NaCl, 50 mM Hepes, 1,5 mM Na2HP04, pH 7,12) under the vortex. The precipitates
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were allowed to sit 30 min at room temperature, and the final solution was added to the 

plates containing 3 ml of fresh medium. After 20 hours from the transfection, cells were 

lysed.

2.2.3 COS7 cells culture and transfection

COS? cells were cultured in DMEM containing 10% fetal calf serum, 100 U/ml 

penicillin and streptomycin and 20 mM glutamine. For transfection experiments, cells 

were plated in 6 cm diameter dishes and cultured for 18 h. Subconfluent cells were 

transfected with the Fugene reagent (Roche). For each plate, 9 pi of Fugene were 

diluted in 300 pi of serum-free DMEM, and the solution was added drop by drop to 10 

pi of TE containing 6 pg of plasmid DNA (3 pg of each plasmid in the case of 

cotransfection). After 15 min incubation at room temperature, before the solution was 

added to the plate containing 3 ml of fresh complete medium. Cells were lysed 20 h 

after transfection.

2.3 ANTIBODIES

The pAbs against Fix (Manser et al., 1998), Arf6 (Gaschet and Hsu, 1999), 

R abll (Sonnichsen et al., 2000), and Early Endosomes Antigen 1 (EEAl; Simonsen et 

al., 1998) have been previously described. Other antibodies included: anti-neurofilament 

3A10 mAb (Serafini et al., 1996), obtained by the Developmental Studies Hybridoma 

Bank (The University of Iowa, lA). Mab anti-FLAG M5 (Kodak), pAb anti-FLAG 

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA), mAb anti Racl and anti-paxillin 

(Transduction Laboratories); anti-HA-Tag pAb (Babco); anti-Myc mAb 9E10 (Sigma- 

Aldrich, Milano, Italy). MAb against LEPlOO (Fambrough et al., 1988); anti-pCOP 

mAb (Sigma). The 64S pAb specific for p95-APPl was raised against the GST-P95-C
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fusion protein (including amino acid 347 to 740 of p95-APPl), prepared from bacteria 

transformed with the pGEX-p95-C construct (Di Cesare et al., 2000).

2.4 CONSTRUCTS

The pBK-Arf6, pBK-N27Arf6, and pBK-L67Arf6 plasmids were obtained by 

subcloning the cDNAs corresponding to avian Arf6, Arf6(N27), and Arf6(L67) into the 

pBK-CMV vector (Stratagene). The cDNA for chicken Arfl and Arf5 were amplified 

by PCR from an E l5 chick brain cDNA library. The cDNAs were cloned into a pBK- 

CMV vector modified to include a sequence coding for a HA tag at the carboxyterminus 

of the Arf proteins. The obtained pBK-Arfl-HA and pBK-Arf5-HA plasmids were used 

to produce pBK-N31Arfl-HA, pBK-L71Arfl-HA, pBK-N31 Arf5-HA, and pBK- 

L71Arf5-HA, using degenerate oligonucleotides in combination with the

Q uickC hange^M  site-directed mutagenesis kit (Stratagene Gmbh). The pcDNA-I-HA- 

RaclB, pGEX-p95-C, pFLAG-p95, pFLAG-p95-C, pFLAG-p95-C2, pFLAG-p95-K39, 

pFLAG-p95-N, and pFLAG-LacZ plasmids were described elsewhere (Malosio et al., 

1997; Di Cesare et al., 2000; Matafora et al., 2001). The pGEX-cRaclB plasmid was 

obtained by cloning the cDNA coding for cRaclB into the pGEX-4T-l vector 

(Pharmacia Biotech). The resulting pGEX-cRaclB plasmid was used to obtain a GST 

fusion protein by expression into Escherichia coli BL21 cells. The pGEX-p95-C2 

plasmid was prepared by cloning the cDNA fragment corresponding to the C-terminal 

amino acids 229-740 of p95-APPl into the pGEX-4T-l vector (Amersham Pharmacia 

Biotech). The pFLAG-p95-LZ was obtained by site directed mutagenesis with the

Q u i c k C h a n g e T M  site-directed mutagenesis kit (Stratagene), starting from the pFLAG- 

p95 plasmid, and using the primers 5’

GTGAACAACAGCCCGAGCGATGAGCTGCGCCGGCCGCAGCGCGAGATC 3' 

and 5' GATCTCGCGCTGCGGCCGGCGCAGCTCATCGCTCGGGCTGTTGTTCAC
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3’. The pFLAG-p95-C2-LZ was obtained from the pFLAG-p95-LZ plasmid. The pBK- 

HA-p95 plasmid was obtained by cloning the fragment coding for the full length p95- 

APPl protein into the pBK-HA vector, derived from the pBK-CMV vector from 

Stratagene by removing the LacZ gene and inserting a sequence coding for an HA tag 

between the starting ATG codon and the multiple cloning site of pBK-CMV. The 

pCMV6m/PAKl plasmid coding for the Myc-tagged PAKl, and the pXJ40-HA-pPIX 

plasmid coding for the HA-tagged PPIX polypeptide were described elsewhere (Bernard 

et al., 1999; Manser et al., 1998).

The pXJ40-HA-pPrX-ALZ plasmid was prepared by digesting pXJ40-HA-pPIX 

with Hind III and Bgl II to remove the carboxyterminal coiled coil region, and by 

ligating the paired oligonucleotides ALZ

(AGCTTACTGCACAAGTGCAAAGACGAGGCAGACCCTGAACTCAAGTTCAC 

GCAAAGAGTCTGCTCCACAAGTGCCCGGGTAGA) and ALZ2 (GATCTC 

TACCCGGGCACTTGTGGAGCAGACTCTTTGCGTGAACTTGAGTTCAGGGTCT 

GCCTCGTCTTTGCACTTGTGCAGTA) to introduce a stop codon. The pXJ40-HA- 

pPIX-PG mutant (in which Trp-43 and Trp-44 have been changed into Pro-43 and Gly- 

44, respectively) was prepared by site-directed mutagenesis with the Q u i c k C h a n g e ^ M  

site-directed mutagenesis kit (Stratagene GmbH), starting from the pXJ40-HA-pPEX 

plasmid, and using the primers PIXBIS-5

(GGAAGGAGGCCCGGGGGAAGGCACAC) and PIXBIS-3

(GTGTGCCTTCCCCCGGGCCTCCTTCC). The pXJ40-HA-pPIX-APH plasmid was 

obtained by PCR on pXJ40-HA-pPEX with the oligonucleotides PIXAPH5 

(GGGGTACCTCTGTGAGCAACCCCACC) and PIXAPH3

(GGGGTACCACTGCCCAACGTCTTTATG). PXJ40-HA-PPIX-C was obtained by 

PCR with the PIX-C5 (TGGATCCTCTGTGAGCA ACCCCACCATC) and PFX-C3

(GAAGATCTGCGCCTATAGATTGGTCTCATCCC) oligonucleotides. The PCR
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fragment was then ligated into pXJ40-HA. The procedure to obtain plasmids pXJ40- 

HA-pPIX-PG-ALZ, pXJ40-HA-pPEX-APH-ALZ, and PXJ40-HA-PPIX-C-ALZ was the 

same as the one described to obtain pXJ40-HA-pPIX-ALZ, but starting from pXJ40- 

HA-PPIX-PG, pXJ40-HA-pPIX-APH, and PXJ40-HA-PPIX-C, respectively.

2.5 BIOCHEMICAL METHODS

2.5.1 Preparation of lysates from CEFs, COS7, embryonic chicken 

retinas and embryonic mouse brain.

Transfected CEFs and COS 7 cells were transferred on ice, washed twice with 

10 ml of ice-cold TBS (20 mM Tris-HCl, pH7.5,150 mM NaCl), and solubilised with 

lysis buffer (0,5% Triton X-100, 150 mM NaCl, 20 mM Tris-Cl, pH 7,5, 2 mM MgC12,

1 mM Na-orthovanadate, 10 mM NaF, 0,1 mM DTT, 20 pg ml"l each of antipain, 

chymostatin, leupeptin and pepstatin). Lysates were transferred to tubes, and rotated for 

15 min by end-over-end mixing at 4°C. The insoluble material was removed by 

centrifugation at 4°C for 15 min at 13000 rpm in a refrigerated centrifuge. For the 

preparation of lysates from embryonic chick retina, E6  retinas were dissected, cooled on 

ice, washed with ice-cold TBS, and solubilised with 9 volumes of lysis buffer 

containing 1% Triton X-100, 150 mM NaCl, 20 mM Tris-Cl, pH 7,5, 2 mM MgC12, 1 

mM Na-orthovanadate, 10 mM NaF, 0,1 mM DTT, 20 pg ml"l each of antipain, 

chymostatin, leupeptin and pepstatin. Lysates were then transferred to tubes, and 

rotated for 15 min at 4°C. The insoluble material was removed by centrifugation at 4°C 

for 15 min at 13000 rpm.

For the preparation of lysates from mouse brain, the brain of mouse embryos at different 

stages of development were dissected in PBS and solubilized in 9 volumes of lysis 

buffer containing 1% Triton X-100, 150 mM NaCl, 20 mM Tris-Cl, pH 7,5, 2 mM
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MgC12, 1 mM Na-orthovanadate, 10 mM NaF, 0,1 mM DTT, 20 pg ml"l each of 

antipain, chymostatin, leupeptin and pepstatin. Lysates were then transferred to tubes, 

and rotated for 30 min at 4°C. The insoluble material was removed by centrifugation at 

4°C for 15 min at 13000 rpm.

2.5.2 Immunoprécipitation

Lysates prepared from transfected CEFs and C0S7 were incubated for 2 h with 

40 pi of Protein-A Sepharose beads (Pharmacia) with or without preadsorbed 10 pg of 

anti-FLAG M5 mAb. The beads were washed twice with 0,5 ml of lysis buffer and 

resuspended in SDS-PAGE loading buffer for SDS-PAGE analysis.

Lysates prepared from embryonic mouse brain were incubated 2 h with 40 pi of 

Protein-A Sepharose beads with or without preadsorbed pAb anti-RaclB (10 pi) or pre- 

immune serum (20 pi). The beads were washed twice with 0,5 ml of lysis buffer and 

resuspended in SDS-PAGE loading buffer for SDS-PAGE analysis.

2.5.3 SDS-PAGE and immunoblotting

Immunoprecipitates, lysates and unbound fractions were used for SDS-PAGE, 

according to Laemmli (1970). Gels were electrophoretically transferred to 0.2 mm 

nitrocellulose filters and stained with Ponceau S (0.2% in 3% TCA, destain with dd- 

water) to visualise molecular weight standards and proteins. After blocking the 

nitrocellulose with 50 mM Tris-Cl, 150 mM NaCl , 5% BSA , pH 7.5, for Ih at room 

temperature, filters were incubated for 2  h in the same buffer containing the primary 

antibodies at the following dilutions: pAb anti-HA 1:1000; mAb anti-paxillin 1:250; 

mAb anti-Racl 1:2000; pAb anti-RaclB 1:500; pAb anti-Pix 1:400; pAb anti p95 64S 

1: 500; mAb anti-Flag 1 pg/ml.
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For the detection of primary antibodies, blots were incubated with horseradish 

peroxidase-conjugated secondary antibodies and revealed by enhanced 

chemiluminescence (Amersham Pharmacia Biotech). Alternatively, blots were

incubated 1 h at room temperature with 0.2 pCi m pl of either ^^^I-anti-mouse Ig, or 

12^1-protein A (Amersham Pharmacia Biotech), washed, and exposed to Amersham 

Hyperfilm-MP.

2.5.4 Affinity chromatography

The pGEX-cRaclB and pGEX-p95-C2 plasmids were used to obtain GST fusion 

protein by expression into Escherichia coli BL21 cells. After induction of the 

expression with isopropyl-P-D-thiogalactopyranoside (Sigma-Aldrich) for 18 h at 23°C, 

cells were resuspended in PBS, and then lysed by sonication. Lysates were centrifuged 

for 10 min at 11,000 g  and GST fusion proteins were purified from the supernatants on 

glutathione-agarose beads (Sigma-Aldrich). 0,5 mg GST-RaclB bound to 50 pi 

aliquots of glutatione-agarose beads (Sigma) were loaded for 10 minutes at 37°C with 

0,1 mM GTP-y-S or GDP-g-S in 20 mM Hepes-NaOH pH 7,5, 50 mM NaCl, 1 mM 

EDTA and 1 mM DTT. Loading was stopped by adding MgCl2  to 5 mM final 

concentration. Protein (3-3,5 mg) from E6  retinas extracts in lysis buffer were added to 

beads and incubated for 1 h at 4°C with rotation. Beads were washed 3 times with 0,5 

ml of lysis buffer, loaded onto 7,5% polyacrylamide gel for SDS-PAGE, and 

immunoblotted with the indicated antibodies. For affinity chromatography with GST- 

p95-C2, 25 pi of beads were loaded with the purified fusion protein, and incubated for 

1 h at 4°C with 2 mg of E6  chicken retina lysate. Beads were washed 3 times with 0,5 

ml of lysis buffer, loaded onto 7% polyacrilamide gel for SDS-PAGE and analysed by 

immunoblotting with the indicated antibodies.
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2.6 IMMUNOFLUORESCENCE

After transfection, cells were fixed for 15 min with 3% paraformaldehyde in 

PBS, at room temperature. After two washes with PBS, paraformaldehyde was blocked 

by 10 min incubation with 2.5 mg/ml NH4 CI. After two washes with PBS, cells were

permeabilised with 0.1% Triton X-100 in PBS for 4 min, washed again with 2xPBS, 

and incubated 10 min with 0.2% gelatine in PBS. Coverslips were then incubated for 

60 min at room temperature with the following primary antibodies diluted in 0 .2 % 

gelatine in PBS: mAb anti-Flag 1:300; mAb anti-Myc 1:300; pAb anti-Flag 1:300; anti- 

paxillin antibody, 40 pg/ml; pAb anti-HA 1:2000; mAb 3A10 1:5; pAb anti-Arf6  

1:2000; pAb anti R abll 1:100; mAb LEPlOO 1:100; pAb anti-EEAl 1:50; mAb anti- 

PCOP 1:50. After two washes with 0.2% gelatine in PBS, the samples were incubated 

for 40 min with FITC-conjugated sheep anti-rabbit IgG and TRITC-conjugated sheep 

anti-mouse IgG (Boehringer, Mannheim, Germany), or with FITC-conjugated donkey 

anti-mouse IgG and TRITC-conjugated donkey anti-rabbit IgG (Jackson 

Immunoresearch Laboratories, Inc., West Groove, PA). All coverslips were mounted 

with 1 drop of Gelvatol solution (20% polyvinyl alchool, 2% propylgallate, in PBS) and 

observed using a Zeiss-Axiophot microscope. Fluorescent images were collected using 

the Image-Pro® Plus software package (Media Cybernetics, L.P.), and processed using 

Adobe Photoshop 5.0.

2.7 NORTHERN BLOT ANALYSIS

Total RNA was prepared from different organs from ElO chicken embryos, and 

from ElO CEFs, by a single-step RNA isolation method (Chomczynski and Sacchi, 

1987). Northern blot analysis of total RNA (20 pg/lane) was performed as previously
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described (Lehrach et al., 1977). Blots were hybridised with a 1 kb probe corresponding 

to the 5' region of the cDNA for p95-APPl. Hybridisation took place in hybridisation

buffer supplemented with ^^P-labelled probes (1-2 x 10^ cpm ml“l) for 21 h at 65°C. 

Following high stringency washes at 65°C, X-ray films were exposed for 3-7 days to the 

hybridised filters.
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Chapter 3 

RESULTS I

3.1 RACIB KNOCK-OUT: THE GENERATION OF

RECOMBINANT EMBRYONIC STEM CELLS RaclB+/-

Transgenic animals represent an important tool in the biological sciences to 

investigate the regulation of gene expression and the of cellular and physiological 

processes.

The null mutants of mouse Racl and of mouse cdc42 have been shown to be lethal 

(Sugihara et al., 1998; Chen et al., 2000), because the development stops at the very 

early stages . But Racl and Cdc42 are ubiquitously expressed, and they play important 

roles in cell migration which is a central event during the first stages of development. 

Rac2 is a component of the family specifically expressed in the haematopoietic cells. 

The knock-out mice for Rac2 have been generated (Roberts et al., 1999) and they are 

viable, but with specific defects in the migration and functions of haematopoietic 

derived cells.

RaclB is specifically expressed in the developing nervous system, and it is possible that 

RaclB knock-out may results in mice with affected neural development. The analysis of 

the phenotype due to the absence of RaclB gene will be fundamental in order to 

understand the mechanisms mediated by the GTPase in the nervous system 

development.

3.1.1 Characterization of the polyclonal antibody for RaclB

In order to study the expression of mouse RaclB, a polyclonal antibody was 

produced by immunizing rabbits with a peptide specific for RaclB, corresponding to the
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carboxy terminal part of the protein: Cys Pro Pro Pro Val Lys Lys Pro Gly Lys Lys Cys 

Thr Val Phe.

The antibody was specific, since it was able to recognize only GST-RaclB 

fusion proteins, and not the highly homologous GST-Raci A (Fig. 3.1). The polyclonal 

antibody was also able to immunoprecipitate the endogenous protein from a lysate of 

E l3 chicken brain. The specific band was not recognized when the immunoprécipitation 

was performed with the pre-immune serum, or when the antibody was preincubated 

with the peptide that was used for the immunization of the rabbit (Fig. 3.2).

3.1.2 The expression of mouse RaclB protein is regulated during brain 

development.

In order to study the expression of RaclB in mouse brain development, the 

polyclonal antibody specific for this GTPase was used to immunoprecipitate 

endogenous protein from lysates prepared from mouse brain at different stages of 

development (Fig. 3.3). The level of RaclB protein was regulated during development: 

it started to increase at E l3.5, reached a maximum after birth at stage P7, and then it 

decreased, and was almost absent in the adult brain. These data support the hypothesis 

that RaclB plays a specific role during neural development.

56



45 -

3 1 -

GST-RaclB GST-RaclA

Fig. 3.1. The anti-RaclB pAb specifically recognizes the GST-RaclB fusion 

protein.

Equal amounts of GST-RaclA and GST-RaclB (2 pg) were loaded on a 12% SDS- 

PAGE, and immuno-blotted using the anti-RaclB pAb (1:500). The antibody was 

specific for RaclB, since it did not recognize GST-RaclA.
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31 -

RaclB

2 1 -

PI serum +pept

Fig. 3.2. The anti-RaclB pAb can immunoprecipitate the endogenous protein.

Preimmune serum (PI, 20 pi), anti-RaclB antibody (serum, 10 pi), and anti-RaclB 

preincubated with the peptide used for the immunization (+pept), were used to 

precipitate the endogenous RaclB from brain lysate of E l3 chicken embryos (2 

mg/lane). Proteins were resolved by SDS-PAGE and western blotting performed using 

anti-Racl mAb antibody (1:2000) (Transduction Laboratories) which recognizes both 

the GTPases Racl A and RaclB. A specific band was detected only when the serum 

without peptide was used.
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PI E13.5 E16 E18 PI P7 P15 P23 AD
31 -----------

21----

Fig. 3.3. The expression of mouse RaclB protein in the brain is regulated during 

development.

The anti-RaclB pAb was used to immunoprecipitate endogenous protein from equal 

amounts (2  mg/lane) of brain lysate prepared at different stages of development. 

Western blotting was performed using anti-Racl mAb (1:2000), which recognizes both 

Racl A and RaclB. RaclB protein is almost absent in the adult brain, and its expression 

peaks at P7. (AD: adult, PI: preimmune serum).
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3.1.3 Strategy used to generate RaclB knock-out mice.

Mouse RaclB is composed of 6  exons and 5 short introns. The region of the 

gene covering the translated sequence is very short: 2 kb from the initial ATG to the 

stop codon (Fig. 3.4). To generate a null mutation of RaclB, the strategy was to remove 

in R1 ES cells the entire translated sequence of mouse RaclB, from the first codon to 

the stop codon, and to replace it with the p-galactosidase sequence, and with a loxP- 

fianked PGK-Neo cassette to be used for the selection. The loxP sites ensure that the 

neomycine-resistance selection marker (Neo) can be deleted via Cre-mediated 

recombination to generate a ‘clean’ deletion (Lakso et al., 1996).

The neomycin phosphotransferase enzyme can inactivate the drug G418, that is added 

to the medium of the transfected ES cells. Only transfected cells that express the 

neomycin phosphotransferase can survive in the presence of G418.

In order to induce the homologous recombination to replace the sequence of RaclB, a 

construct was prepared where the sequence of the P-galactosidase and the neo cassette 

were flanked by two genomic sequences: the short arm of 1 ,6  kb, which is the region 

immediately upstream the ATG of the gene, and the long arm of 5 kb immediately 

downstream the stop codon.

The plasmid included the gene encoding thymidine kinase, which represents another 

way of selection for the transfected cells. The sequence of the enzyme was located 

downstream of the long arm, and it can be integrated in the genome only when the 

recombination is not homologous. In this case the enzyme is produced and it is able to 

phosphorylate and activate gancyclovir, a nucleotide analogue which is added to the 

selection medium. Once converted in the triphosphate form, this analogue can be 

incorporated in the DNA during cell division, causing a block of DNA replication. 

When the recombination is homologous, the sequence of the thymidine kinase is not 

integrated in the genome, and the enzyme is not produced.
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Fig. 3.4. The strategy used for the generation of Racl B knock-out mice.

Scheme of the organization of the mouse RaclB gene (upper panel), and of the 

construct used for the transfection of ES cells (lower panel). LacZ (P-galactosidase 

sequence), neo (neomycin phosphotransferase), N (aminoterminal probe used for 

Southern blotting after digestion of genomic DNA with EcoRI and Xbal), C 

(carboxyterminal probe used for Southern blotting after digestion of genomic DNA with 

Sacl). Double arrows and numbers indicate the fragments and their size, obtained by 

enzymatic digestion of genomic DNA from wild-type (top) and recombinant (bottom) 

cells.
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3.1.4 Transfection and screening of recombinant ES clones

R1 ES cells were used for electroporation. Cells were thawed, amplified and 

transfected by electroporation using the linearized plasmid with the modified genomic 

DNA, as described in the chapter Materials and Methods. After 8  days of selection in 

the presence of G418 and gancyclovir, 320 clones were picked, amplified and frozen for 

screening by Southern Blotting. Two types of DNA digestion and two different probes 

were used. As shown in Fig. 3.5, by digesting the genomic DNA with EcoRI and Xbal, 

and using an aminoterminal probe (N), it was possible to detect a fragment of 4 kb if no 

homologous recombination occurred , and a fragment of 4 kb together with a fragment 

of 6  kb in the case of homologous recombination (Fig. 3.4, 3.5). The second type of 

digestion was with Sacl, using a carboxy terminal probe (C), which gave a band of 6,7 

kb in the clones where no homologous recombination had occurred, and a 6,7 kb 

together with one of 5,3 kb in the case of homologous recombination (Fig. 3.4, 3.5).

Four independent clones in which homologous recombination had occurred were 

identified: the clone numbers 215,239, 313 and 314.

The cells of each clone were microinjected in blastocysts, and the clones 215 and 314 

were able to colonize the embryos to give chimeric mice with good percentages of 

chimerism (from 30% to 95%) (Table 3.1). Chimeras were subjected to the breeding 

programme with C57-BL6/J in order to identify possible germ-line transmission of the 

mutation. The most used genetic marker is coat colour. Chimeric combinations of 

strains which differ at one coat colour locus allow a simple appreciation of the degree of 

tissue contribution in terms of the proportion of the coat that expresses the ES cell 

allele. In general, the degree of coat colour chimerism correlates with the degree of 

germline contribution. In these case, ES cells give an agouti color, but the progeny was
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composed of black mice, so until now no germ-line transmission was obtained (Table 

3.2).

As no germ-line tmsmission was obtained, a second transfection of ES cells was carried 

out using cells of an earlier number of passages. ES cells that are subjected to too many 

passages, start to loose their totipotency, and the probability to be involved in the germ- 

line colonization decreases. After the selection in the presence of the drugs G418 and 

gancyclovir, 300 clones had been picked, and the screening by Southern blot is now in 

progress.
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Fig. 3.5. Example of Southern Blot on recombinant and non recombinant ES 

clones.

Left panel: 6 clones were analysed by digesting the DNA with EcoRI and Xbal, 

followed by Southern using the aminoterminal probe (N). Two positive clones are 

present, with two bands of 4 and 6 kb. Right panel: two clones were analysed by 

digesting the DNA with Sacl, followed by Southern with the carboxyterminal probe 

(C). One positive clone is present, with two bands of 6,7 and 5.3 kb.
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CLONE NUMBER CHIMERAS % OF CHIMERISM

215A 70%
215 215B 30%

215C 30%

239 / /

313 / /

314A 95%

314 314B 95%

314C 95%

Table 3.1. Scheme of the chimeras obtained by the microinjection of the 

recombinant clones of ES.

The chimeras with the best percentage of chimerism were obtained by the 

microinjection of the clone number 314 (95%), while no chimeric mice were obtained 

with the clones number 239 and 314.
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CLONE NUMBER 1 CHIMERA NUMBER OF LITTERS COAT COLOUR

215 215A 3 Black (1 eaten)

215B 3 Black (1 eaten)

215C 4 Black (1 eaten)

314 314A 9 Black (2 eaten)

3I4B 9 Black (4 eaten)

314C 1 eaten

Table 3.2. Scheme of the litters obtained from the chimeras.

The chimeras 215A, B and C, and 314A, B, and C were crossed with C57- 

BL6 /J. In the table are indicated the numbers of littermates and the coat colour, that is 

an indication of the germline transmission. Several events of cannibalism made 

impossible to analyze the coat colour.
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3.2 DISCUSSION

In this chapter I have described the production of recombinant RaclB +/- ES 

cells in order to obtain mice null for the small GTPase RaclB. It has been shown that 

Racl-deficient embryos cannot survive because several defects of gastrulation induce 

death (Kazuhiro et al, 1998), suggesting that Racl is required for the formation of the 

three germ layers, which is the most prominent event during the early mouse 

embiyogenesis. During this period, the embryonic mesoderm and definitive endoderm 

are both generated from the epiblast by cell migration through the primitive streak, in 

which coordinated changes in cytoskeletal organization, cell adhesion and motility are 

critical. Thus, Racl-mediated cytoskeletal reorganization, cell adhesion and migration 

are essential for early development. Similar to Racl, Cdc42-null embryos also die at 

B7,5. The embryos were smaller than normal, disorganized in structure and largely 

lacking embryonic primary ectoderm, with defects in post-implantation development 

probably due to an inability to properly form and reorganize actin-based cellular 

structures crucial for further gastrulation (Chen et al., 2000).

RaclB, in contrast to Racl and Cdc42, shows a more restricted expression 

pattern and it is highly concentrated in the nervous system. For this reason RacIB-null 

mice could represent a very good model in order to study the mechanisms of neural 

development. Unfortunately, until now, 1 have not identified germ-line transmission 

from the chimeras obtained from the recombinant RaclB +/- ES cells. One possible 

explanation could be the R1 ES cells used in this experiment. 1 used a vial of cells that 

were at the passage number 13. Germ-line colonization of the embryos is a very 

important and delicate event, and cells that have been subjected to many passages start 

to loose their totipotency and they can differentiate. The state of ES cells is very critical 

for the colonization of the germ-line, and this could have been the reason why it was not 

possible to obtain the germ-line transmission. Another problem was cannibalism, in fact
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several litters were eaten by females immediately after birth (see Table 3.2). This 

problem, which is probably due to stressed conditions of females, prevented analysis of 

possible germ-line transmission. I transfected another vial of R1 ES cells at an earlier 

passage (number 1 0 ), that were used by other groups and that gave germ-line 

transmission and the generation of transgenic or knock-out mice, and the screening of 

the clones resistant to the selections is now in progress.

An important point is to characterize in details the expression pattern of 

RaclB in the nervous system of mice, in order to facilitate the analysis of the future 

null-RaclB mice. The polyclonal anti-RaclB was used in immunohistochemical 

analysis on brain sections of P7 mice, since at this stage the endogenous protein is 

highly expressed (Fig. 3.3), and the project is still in progress. The data has shown that 

RaclB is highly expressed in the layers 1 and 11/111 of the cortex, and also in the 

cerebellum, where it is concentrated in the granular layer, in Purkinjie cells, and also in 

the deep nuclei and in medulla oblungata (unpublished data). RaclB expression pattern 

indicates that it could be involved in nervous system development.
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Chapter 4 

RESULTS II

Actin dynamics during growth cone navigation evolve into stabilization of the 

cytoskeleton and neurite elongation. While a large amount of information exists about 

the extracellular mechanisms driving these processes, large gaps still exist in the 

comprehension of the corresponding intracellular events. With the aim of investigating 

the molecular mechanisms at the basis of Rac IB-mediated neurite extension, by affinity 

chromatography of GTP-bound RAC GTPases it was identified p95-APPl (Di Cesare et 

al., 2000), and the role of the protein was analysed in neurite extension of E6  chicken 

retinal neurons.

4.1 ANALYSIS OF THE EXPRESSION OF P95-APP1

4.1.1 P95-APP1 is expressed in neural tissue

P95-APP1 was isolated from E l5 brain lysates of chicken embryos. In order to 

investigate in detail the expression pattern of p95-APPl in chicken embryonic tissues 

during development, northern blot analysis was carried out. A 2,8 kb transcript was 

detected by hybridising filters with total RNA isolated from various tissues of 

embryonic day 10 (ElO) avian embryos (Fig.4.1) with a cDNA probe of 970 bp located 

in the 5’ end, immediately downstream the ATG. P95-APP1 was particularly abundant 

in neural tissues, including neural retina, and was present also in ElO CEFs. In 

embryonic day 6  (E6 ) neural retinas, the source of neurons utilized in this study, the 

level of the transcript was low, compared to the stage ElO, suggesting a regulation of 

the expression of the transcript during development (Fig.4.2).
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Fig. 4.1. Expression of p95-APPl in ElO chicken tissues

Northern blot analysis (upper panel) on total RNA (lower panel) prepared from different 

chick ElO tissues and from CEFs. The filter was incubated with a cDNA probe specific 

for p95-APPl. 20 pg of total RNA were loaded in each lane. P95-APP1 was highly 

expressed in neural tissues, including neural retina.
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Fig. 4.2. The expression of p95-APPl in the chicken retina is regulated.

Northern blot analysis on total RNA prepared from chicken retina at two different 

stages of development. The level of the transcript increases between E6 and ElO, 

indicating a regulation of the expression of p95-APPl during the development.
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4.1.2 Characterization of the p95-APPl complex in neural cells

Since p95-APPl has been shown to interact with PIX and paxillin (Di Cesare et 

a l, 2000), the presence of this complex in E6  neural retinas was investigated by 

immunoblotting after affinity chromatography on RaclB columns loaded with a lysate 

from E6  neural retinas. P95-APP1, pPIX, and paxillin were specifically detected after 

chromatography on Glutathione-S-transferase (GST)-Rac IB-GTPy-S, but not on GST- 

RaclB-GDPp-S protein (Fig.4.3), confirming the existence of an endogenous p95- 

APPl/PIX/paxillin complex in E6  neural retinal cells which binds RaclB in a GTP- 

dependent manner.

4.2 ANALYSIS OF THE EFFECTS OF OVER-EXPRESSION OF 

WILD-TYPE AND MUTANT P95-APP1 ON NEURITE EXTENSION

The molecular dissection of the function of this multidomain protein in non

neuronal cells has shown that, while the carboxy terminal portion of p95-APPl has a 

diffuse distribution and induces protrusive activity in fibroblasts (Di Cesare et al.,

2000), ArfGAP-deficient mutants specifically accumulate at large Rab 11-positive 

vesicles, suggesting a role for this ArfGAP in membrane recycling (Matafora et al.,

2001).

To look at the effects of p95-APPl on neurite extension, I transfected E6  retinal neurons 

with a number of p95-APPl-derived constructs (Fig. 4.4), in order to uncouple different 

domains of the protein, and to analyse the effects on cellular organization and 

subcellular distribution. The transfected cells were cultured for 20-24 h on laminin-1, a 

potent inducer of neurites in these neurons (Adler et al., 1985).
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Fig. 4.3. Analysis of the p95-APPl complex in E6 neural retina.

A lysate from E6 retinas was ineubated with agarose beads bound to GST-RaelB 

loaded with GDP-P-S (left lane) or GTP-y-S (right lane). Eluates were immunoblotted 

with anti-p95-APPl (upper), anti-PIX (centre) and anti-paxillin (lower) antibodies. The 

complex can be eluted only from RaclB bound to GTP.
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Fig. 4.4. Scheme of p95-APPl constructs used in the transfection experiments.

Zn (zinc finger), GAP (ArfGAP domain), ANK (ankyrin repeats), SHD (Spa2 

homology domain), COIL (coiled coil region), PBS (paxillin binding subdomain).
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4.2.1 Overexpression of full-length p95-APPl does not affect neuronal 

morphology

Non-transfected E6 retinal neurons, or neurons expressing a control protein (P- 

galactosidase), usually extend one long, poorly branched neurite after 24 h on laminin 

(identified by anti-neurofilament staining in Fig. 4.5b). Overexpression of the wild-type 

p95-APPl did not affect the overall morphology of retinal neurons (Fig. 4.5c). In Fig. 

4.6 is shown a quantitative analysis. The graph shows the percentage of transfected 

neurons lacking a neurite, with a short neurite (with length less than three cell body 

diameters), or with a long neurite. Quantification and comparison between neurons 

expressing the control protein confirmed the lack of effects of p95-APPl 

overexpression on neuritogenesis.

4.2.2 The truncated protein p95-C shows a mild effect on neuronal 

morphology

It has been previously shown that the expression of the carboxyterminal p95-C 

polypeptide, that includes the paxillin-binding domain, enhances the formation of 

membrane protrusions in CEFs (Di Cesare et al., 2000). The expression of p95-C did 

not have such a dramatic effect in neurons, although neurons with two neurites were 

more frequently observed (60%) when compared to neurons expressing the p- 

galactosidase (Fig. 4.7). The quantification showed that the percentage of transfected 

neurons characterized by a normal process of neuritogenesis was not affected (Fig. 4.8).
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Fig. 4.5. The overexpression of p95-APPl does not affect neuronal morphology.

Retinal neurons were transfected with pFLAG-LacZ (A) and pFLAG-p95-APPl (C) 

and cultured overnight on polylysine- and laminin-coated coverslips. One day after 

transfection, cells were processed for immunofluorescence using the anti-FLAG mAh 

(A, C) and the polyclonal antibody against the 200-kDa neurofilament protein (B, D). 

The same cells are shown in A and B; in C and D. P95-APP1 overexpression showed no 

effect on neuritogenesis (Bar, 10 pm).
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Fig. 4.6. Quantitative analysis of the effect of p95-APPl overexpression on 

neuritogenesis.

Data are expressed as percentage of transfected neurofilament-positive neurons with no, 

short (less than three cell body diameters in length), and long neurite. Values are means 

+/- s.d. from two experiments. As for neurons transfected with the (3-galactosidase, 

neurons expressing p95-APPl show normal neurite extension.
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Fig. 4.7. Analysis of the expression of p95-C.

Retinal neurons were transfected with pFLAG-p95-C and processed for 

immunofluorescence using the anti-FLAG mAb. Some transfected neurons had two 

neurites per cell. In the upper panel is shown a schematic representation of the deleted 

construct p95-C, containing the PBS (Paxillin Binding Subdomain) domain and the 

coiled-coil region (Bar, 10 pm).
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Fig. 4.8. Quantitative analysis of the effect of p95-C overexpression on 

neuritogenesis.

Data are expressed as percentage of transfected neurofilament positive neurons with no, 

short (less than three cell bodies diameters in length) and long neurite. Values are means 

+/- s.d. from two experiments. As for neurons transfected with the p-galactosidase, 

neurons expressing p95-C showed normal neurite extension.
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4.2.3 Mutants of p95 lacking a functional ArfGAP domain inhibit 

neuritogenesis

The process of neurite formation was strongly affected by the expression of p95- 

C2 (Fig. 4.9), a truncated mutant of p95-APPl which lacks the entire ArfGAP domain 

and the three ankyrin repeats. P95-C2 differs from p95-C in that it includes the Spa2 

homology domain (SHD), required for the binding to Pix (Fig. 4.4). About 60% of the 

p95-C2-transfected neurons showed complete inhibition of neurite extension (Fig. 

4.11).

In several ArfGAPs, mutation of a conserved arginine in the GAP domain, 

corresponding to arginine 39 in p95-APPl, is known to drastically reduce the GAP 

activity (Mandiyan et al., 1999; Randazzo et al., 2000; Szafer et al., 2000; Jackson et 

al., 2000). To test whether the effects observed upon p95-C2 expression could be 

attributed to the absence of the ArfGAP activity, the epitope-tagged p95-K39 protein, in 

which arginine 39 is substituted by a lysine (Fig. 4.10) was expressed. P95-K39 clearly 

inhibited neurite extension, leading to lack of neurites in about 50% of the transfected 

neurons (Fig. 4.11). These data indicate the requirement of an intact ArfGAP domain in 

p95-APPl for neurite outgrowth on laminin.

Both p95-C2 and p95-K39 mutants induced the formation of large vesicles in the cell 

body of transfected neurons (Fig. 4.9 and 4.10). These proteins are able to interact with 

PIX and paxillin in fibroblasts (Matafora et al., 2001). In retinal neurons endogenous 

paxillin redistributed from the diffuse punctate pattern observed in non-transfected 

neurons, to the large p95-C2/K39 positive vesicles (Fig. 4.12). Concentration at large 

vesicles was also observed in cells cotransfected with PIX or PAK (Fig. 4.12, 4.13). 

Therefore, mutations affecting the ArfGAP domain of p95-APPl induce the
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Fig. 4.9. Analysis of the expression of p95-C2.

Retinal neurons were transfected with pFLAG-p95-C2 and processed for 

immunofluorescence using the anti-FLAG mAb. Most of the transfected neurons did 

not extend neurites, and large vesicles were present in the cell bodies. In the upper panel 

is shown a schematic representation of the deleted construct p95-C2, containing the 

PBS domain, the coiled-coil region and the Spa2 homology domain required for the 

interaction vrith PIX. (Bar, 5 pm)
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Fig. 4.10. Analysis of the expression of p95-K39 mutant.

Retinal neurons were transfected with pFLAG-p95-K39 and processed for 

immunofluorescence using the anti-FLAG mAh. As for neurons expressing p95-C2, 

most of the transfected neurons did not extend neurites, and large vesicles were present 

in the cell bodies. In the upper panel is shown a schematic representation of construct 

p95-K39, characterized by a single aminoacid substitution in the GAP domain (Arg 39 

is substituted by Lys). (Bar, 5 pm).
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Fig. 4.11. Quantitative analysis of the effect of p95-C2 and p95-k39 overexpression 

on neuritogenesis.

Data are expressed as percentage of transfected neurofilament positive neurons with no, 

short (less than three cell body diameters in length) and long neurite. Values are means 

+/- s.d. from two experiments. The overexpression of the two constructs lacking a 

functional ArfGAP domain inhibited neurite extension.

83



P95-C2 p95-C2 p95-C2

pa^lNn

Fig. 4.12. Endogenous paxillin, and transfected PIX and Pak colocalize with p95- 

C2 at the large vesicles.

Retinal neurons were transfected with pFLAG-p95-C2 (left panels) or cotransfected 

with pFLAG-p95-C2 and pXJ40-HA-pPIX or pCMV6m/PAKl (middle and right 

panels, respectively), and processed for immunofluorescence using the anti-FLAG mAh 

(upper panels) and with the anti-paxillin (left), anti-HA (middle) and anti-Myc (right) 

antibodies. Endogenous paxillin and exogenously expressed PIX and Pak colocalized at 

the large vesicles induced by the expression of the mutant p95-C2. (Bar, 7 pm).
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P95-K39

Fig. 4.13. Transfected PIX colocalizes with p95-K39 at vesicles.

Retinal neurons were cotransfected with pFLAG-p95-K39 and pXJ40-HA-pPIX, and 

processed for immunofluorescence using the anti-FLAG mAh (upper panel) and with 

the anti-HA antibodies (lower panel). PIX and p95-K39 colocalize at the large vesicles. 

(Bar, 7 pm).
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accumulation of the entire p95 complex on large vesicles. These data indicate a 

correlation between the formation of the large vesicles and the inhibition of 

neuritogenesis. The different subcellular distribution of p95-C2 compared to p95-C 

suggests the requirement of the PDC-binding domain of p95-APPl for the accumulation 

of the p95 complex on the large vesicles.

4.3 P95-C2 SPECIFICALLY ACCUMULATES AT RECYCLING 

ENDOSOMES IN RETINAL NEURONS.

In order to characterize the nature of the large vesicles induced by the 

overexpression of p95-C2, the transfected neurons were analysed by 

immunofluorescence using antibodies specific for various intracellular compartments. 

The data indicated that the large vesicles positive for p95-C2 are positive for Rab 11 

(Fig. 4.14), a functional marker of the endocytic recycling compartment (Ullrich et al.

1996). The accumulation of p95-C2 at this compartment is specific, since the 

subcellular distribution of both the early endocytic marker EEAl, of the Golgi marker 

pCOP and of the lysosomal marker LEPlOO did not show any overlap with the p95-C2 

positive vesicles (Fig. 4.15 and 4.16).

For comparison, in non-transfected neurons, Rab 11 was distributed in a cytoplasmic 

punctated pattern along neurites and at the growth cone (Fig. 4,17). This indicates that 

the overexpression of ArfGAP-defective p95 proteins induced a specific alteration of 

the morphology of the neuronal recycling compartment, and suggests a correlation 

between the recycling of vesicles and the process of neurite extension.
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Fig. 4.14. Specific localization of p95-C2 at large Rab 11-positive vesicles.

Neurons expressing p95-C2 were fixed after 24 h and costained with the anti-Flag 

antibody and the recycling endosomal marker R abll. There was a clear colocalization 

of p95-C2 with endogenous Rabl 1 at the vesicles. (Bar, 5 pm).
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Fig. 4.15. Early endosomal and Golgi markers do not colocalize with p95-C2.

Confocal microscopy analysis of retinal neurons transfected with pFLAG-p95-C2 and 

stained after 24 h with anti-FLAG (green) and for the Golgi marker pCOP (red) in the 

upper panel, and with anti-FLAG (green) and for the early endocytic marker EEAl (red) 

in the lower panel. The analysis does not show overlap of these markers at the large 

vesicles with the ArfGAP domain-deficient mutant. (Bar, 5 pm).
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Fig. 4.16. The large vesicles induced by p95-C2 are not lysosomes.

Retinal neurons were transfected with pFLAG-p95-C2 and stained with the anti-FLAG 

antibody and with the lysosomal marker LEPlOO. The arrow indicates a transfected 

neuron. The analysis shows no colocalization of LEPlOO with the large vesicles. (Bar, 5 

pm).
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Fig. 4.17. R abll distribution in non transfected neurons.

Retinal neurons were analysed by immunofluorescence with the anti-Rabll antibody. 

The recycling endosome marker is distributed in the soma, along the neurite and also in 

the growth cone (lower panel) of neurons, in a punctate pattern. (Bar, 7 pm in upper 

panel; 10 pm in lower panel).
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4.4 LOCALIZATION OF DISTINCT ARF GTP-ASES SUGGESTS A 

ROLE OF P95-APP1 AS REGULATOR OF ARF6 AND ARF5, BUT 

NOT ARFl.

GIT proteins have GAP activity for different Arf proteins in vitro, including 

Arf6 (Vitale et al., 2000). The Arf substrate for p95-APPl in vivo has not been 

identified yet. The truncated mutant p95-N including the ArfGAP domain (Fig. 4.4) 

colocalizes at endocytic vesicles with the inactive mutant N27Arf6 in CEFs (Matafora 

et al., 2001). These data were confirmed in retinal neurons, as shown by confocal 

microscopy analysis (Fig. 4.18). The expression of the truncated construct p95-N, which 

contains the GAP domain and the three ankyrin repeats, and an incomplete SHD 

domain, induced the formation of small vesicles in the cytoplasm that were different 

from the ones induced by p95-C2 or p95-K39. P95N and N27Arf6 colocalized at the 

small vesicles (Fig. 4.18a). Arf6 is the only known member of class 111 Arfs. For 

comparison the distribution of Arfl, a class 1 Arfs, and of Arf5, a class 11 Arf, was 

determined. The inactive mutant NSlArfl did not show colocalization with p95-N (Fig. 

4.18b), while the corresponding N31Arf5 mutant colocalized with the p95-N construct 

(Fig. 4.18c). These data suggest that p95-APPl may interact functionally with Arf6 and 

Arf5 in vivo.

When overexpressed, wild-type Arf6 and Arf5 showed a diffuse distribution in the cell 

body and neurites, and cell morphology was not affected (Fig. 4.19). In contrast, the 

transfected Arfl showed a perinuclear staining overlapping with the distribution of the 

Golgi marker pCOP (Fig. 4.19, 4.20). It has been shown that overexpression of G1T2, a 

GAP for Arfl, causes the redistribution of pCOP, whose distribution is regulated by 

Arfl and not by Arf6 (Mazaki et al., 2001). The overexpression of p95-APPl did not 

affect the distribution of pCOP in retinal neurons (Fig. 4.21), suggesting that Arfl is not 

a substrate for p95-APPl in these cells.
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Fig. 4.18. N27Arf6 and N31Arf5, but not N3IArfI, colocalize at p95-N small 

vesicles Confocal microscopy analisys of neurons cotransfected with pFLAG-p95-N 

and pBK-N27Arf6 (a), pBK-N31Arfl (b) and pBK-N31Arf5 (c). As shown in the 

overlays, p95-N (green) colocalizes with N27Arf6 and N31 Arf5, but not with N 31 A rfl. 

In the upper panel is shown a schematic representation of the aminoterminal construct 

p95-N. (Bar, 5 pm ).
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Fig. 4.19. Analysis of the distribution of w.t. Arfl, Arf5 and Arf6.

Retinal neurons were transfected with pBK-Arfl, -Arf5 or Arf6 -HA and analyzed by 

immunofluorescence with the anti-HA antibody. Arf5 and Arf6 show a diffuse 

distribution, while Arfl is mainly concentrated in the perinuclear region. (Bar, 5 pm)
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p-COP

Fig. 4.20. Localization of w.t. Arfl with the Golgi marker pCOP.

Retinal neurons were transfected with pBK-Arfl-HA and stained with the anti-HA 

(upper panel) and the anti-pCOP (lower panel) antibodies. The analysis shows 

colocalization of Arfl with the endogenous Golgi marker pCOP. (Bar, 5 p).

94



p95-APPl
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Fig. 4.21. Overexpression of p95-APPl does not affect the distribution of pCOP.

Neurons were transfected with pFLAG-p95-APPl and stained with the anti-Flag (upper 

panel) and anti-pCOP (lower panel) antibodies. The expression of p95-APPl did not 

modify the distribution of the Golgi marker pCOP, indicating that Arfl is not a 

substrate of p95-APPl in these cells. (Bar, 7 pm).
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Fig. 4.22. W.t. Arf6, but not Arfl, colocalizes with p95-C2 at the large vesicles.

Neurons cotransfected with pFLAG-p95-C2 and pBK-Arf6 (upper panel) or pBK-ArfI 

(lower panel) were analysed with the anti-Flag antibody and with anti-HA antibody. 

Arf6 and p95-C2 are localized at the large vesicles, while Arfl remains differently 

distributed in the cotransfected cells. (Bar, 7 pm).
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Moreover, in contrast to wild-type Arfl, wild-type Arf6 clearly colocalized with the 

truncated mutant p95-C2 at the large vesicles (Fig. 4.22), and Arf5 distribution partially 

overlapped with p95-C2 (not shown).

These data suggest that p95-APPl is not a regulator of Arfl in vivo, and point to a role 

of p95-APPl as a possible regulator of Arf5 and Arf6.

4.5 ART6 ACTIVITY IS NECESSARY FOR NEURITE EXTENSION

In order to investigate which Arf GTPases could be a substrate for p95-APPl in 

the process of neurite extension, the effects of overexpressing wild-type and mutant 

Arfl, Arf5 and Arf6 GTPases on neuritogenesis were analysed. Overexpression of the 

three wild-type proteins did not affect the percentage of neurons having a single long 

neurite (Fig. 4.19, 4.23). In contrast, the GTP-binding defective N27Arf6, when 

overexpressed, strongly inhibited the formation of neurites, with over 70% of the 

transfected cells lacking neurites (Fig. 4.24, 4.26). In comparison, weaker effects on 

neuritogenesis were observed in cells expressing the corresponding inactive mutants 

N31Arfl and N31Arf5 (Fig. 4.24, 4.26). A strong inhibition of neurite formation was 

observed also when constitutively active mutant L67Arf6 was expressed, while the 

corresponding active mutants L71Arfl and L71Arf5 showed weaker reduction in 

neurite elongation (Fig. 4.25, 4.26). This indicates that Arf6 plays an important role 

among the tested Arfs during neurite elongation.

The possible functional relationship between Arf6 and p95-APPl during neuritogenesis 

was investigated. Interestingly, coexpression of wild-type Arf6 with the truncated 

mutant p95-C resulted in a potentiation of neuritogenesis. The neurites extended by the 

cells were often much longer, often branched, and sometimes more than one per 

neurons. As a control, coexpression of p95-C with Arfl or Arf5 did not affect neurite 

length (Fig. 4.27). This effect was quantified by measuring the total neurite 

length/neuron in cotransfected neurons (Fig. 4.29). The quantification clearly shows that
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the potentiation of neuritogenesis observed by the overexpression of p95-C with wild- 

lype Arf6 was not observed by coexpression of p95-C with either wild-type Arfl or 

Arf5. As a control, coexpression of the inactive mutant N27Arf6 with p95-C not only 

prevented the potentiation, but also inhibited basal neurite extension when compared to 

control neurons (Fig. 4.28, 4.29). This functional analysis shows a predominant role of 

Arf6 on neurite extension in retinal neurons with respect to other Arfs, and indicates a 

specific functional connection between Arf6 and p95-APPl.
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Fig. 4.23. Quantitative analysis of the effect of the w.t. A rfl, Arf5 and Arf6 

overexpression on neuritogenesis.

Data are expressed as percentage of transfected neurofilament positive neurons with no, 

short (less than three cell body diameters in length), and long neurite. Values are means 

+/- s.d. from two experiments. As for neurons transfected with the p-galactosidase, 

neurons expressing the indicated w.t. Arf GTPases show normal neurite extension.
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N27Arf6

Fig. 4.24. The overexpression of the inactive mutant N27Arf6 inhibits 

neuritogenesis.

Neurons were transfected with pBK-N31Arf5, -N31Arfl and -N27Arf6 and stained 

with the anti-HA antibody. N27Arf6 overexpression reduced neurite extension. In the 

same conditions, N31Arf5 or N31Arfl overexpression did not show the same effect, 

implicating Arf6 in the process of neuritogenesis. (Bar, 5 pm).
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Fig. 4.25. The overexpression of the active mutant L67Arf6 inhibits neuritogenesis.

Neurons were transfected with pBK-L71 Arf5, -L71 Arfl and -L67Arf6, and stained with 

the anti-HA antibody. Overexpression of L67Arf6 reduced neurite extension. Under the 

same conditions, L71Arf5 or L71ArH overexpression did not show the same effect. 

These data suggest the requirement of Arf6 activity and cycling in the process of 

neuritogenesis. (Bar, 5 pm).
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Fig. 4.26. Quantitative analysis of the effect of the overexpression of the dominant 

negative and constitutively active mutants of A rfl, 5 and 6 on neuritogenesis.

Data are expressed as percentage of transfected neurofilament positive neurons with no, 

short and long neurite. Values are means +/- s.d. from two experiments with a total 100 

neurons. The overexpression of dominât negative N27Arf6 and constitutively active 

L67Arf6 inhibits neuritogenesis. The correspondent mutants of Arfl and Arf5 have 

limited effects on neurite extension.

102



A

f

A

Fig. 4.27. Arf6 specifically regulates p95-C-mediated neurite extension.

Neuritogenesis is enhanced in cell coexpressing p-95C and w.t. Arf6 (a,b), while no 

effects could be observed in neurons coexpressing p95-C with w.t. Arf5 (c,d) or p95-C 

with w.t. Arfl (e,f). Neurons were transfected with pFlag-p95C together with pBK-Arf6 

(a,b), pBK-Arf5 (c,d), and pBK-ArfI (e,f), respectively. Cells were stained with the 

anti-Flag antibody (a,c,e), with anti-Arf6 antibody (b) and with anti-HA antibody (d, f). 

(Bar in a, b, 10 pm; in c-f, 5 pm)
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Fig. 4.28. Specific inhibition of N27Arf6 on p95C-mediated neuritogenesis.

Neuritogenesis is reduced in cells coexpressing p-95C and N27Arf6 (a,b), while no 

effects could be observed in neurons coexpressing p95-C with NSlArfl (c,d) or 

NSlArfS (e, f). Neurons were transfected with pFlag-p95C and pBK-N27Arf6 (a,b), 

pBK-N31Arfl (c,d) and pBK-N31Arf5 (e,f) and stained with the anti-Flag antibody (b, 

d ,f), with anti-Arf6 antibody (a), and with anti-HA antibody (c, e). (Bar, 5 pm).
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Fig. 4.29. Arf6 specifically enhances p95-C-mediated neurite extension.

Quantification of neurite length in transfected and cotransfected neurons was performed 

by measuring the total neurite length/cell in 30 neurons from two experiments. Bars 

represent SEM.

Coexpression of N27Arf6 with p95-C inhibits total neurite length/cell, which was not 

affected in cells coexpressing p95-C with either NSlArfl or N31Arf5.

1: P-gal; 2: Arf6; 3: Arfi5+p95-C; 4: N27Arfb+p95-C; 5: Arfl+p95-C; 6: N31Arn+p95- 

C; 7: Arf5+p95-C; 8: N31Arf5+p95-C.
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4.6 WILD-TYPE ARF6 AND P95-APP1 ARE REQUIRED FOR RACIB- 

ENHANCED NEURITOGENESIS

E6 retinal neurons express Racl and RaclB/Rac3 GTPases (Malosio et al.,

1997). Low levels of endogenous RaclB are required for the basal neurite extension on 

laminin 1, while the overexpression of RaclB induces a potentiation of neuritogenesis 

and neurite branching (Albertinazzi et al., 1998). Cotransfection of wild-type RaclB 

with p95-APPl resulted in a small reduction of the percentage of neurons with branched 

neurites when compared to the cells transfected with RaclB alone (Fig. 4.30, 4.31). 

Quantitation of the average number of primary neuritic branches/neuron was similar in 

neurons transfected with RaclB alone (2,50+/- 0,19 (SEM), n=50), and in neurons 

coexpressing RaclB and p95-APPl (2,34+/- 0,18 (SEM), n=50).

The coexpression of the truncated construct p95-C2 strongly reduced Rac IB-potentiated 

neurite outgrowth (Fig. 4.31). It is interesting to note that wild-type RaclB localized at 

the large p95-C2-positive vesicles (Fig. 4.30).

RaclB induced neurite extension and branching was also reduced by the coexpression 

of the inactive N27Arf6 (Fig. 4.30), with a five-fold decrease in the percentage of 

neurons with branched neurites, and a 3.6-fold increase in neurons without neurites, 

compared to neurons expressing only RaclB (Fig. 4.31).

These results suggest that both N27Arf6 and ArfGAP-defective p95-C2 have dominant 

negative effects on Rac IB-mediated neurite extension, and indicate a functional 

connection between these proteins in the process of neuritogenesis.
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RaclB w.t. RaclB w.t.+p95-APPl

RaclB w.t.

RaclB w.t

t

p95-C2

N27Arf6

Fig. 4.30. p95-C2 and N27Arf6 inhibited RaclB induced neuritogenesis.

Neuritogenesis is reduced in cells coexpressing RaclB w.t. and p-95C2 (c,d), and in 

cells coexpressing RaclB w.t. and N27Arf6 (e, f), while no striking effects could be 

observed in neurons coexpressing RaclBw.t. with p95-APPl (a, b). Neurons transfected 

with pFlag-RaclB and pBK-HA-p95-APPl (a,b), pFlag-RaclB and pBK-HA-p95-C2 

(c,d), and pFlag-RaclB and pBK-N27Arf6 (e,f), were fixed after 24 h and stained with 

the anti-Flag antibody (a, c, e), with anti-HA antibody (b, d), and with anti-Arf6 

antibody (f). (Bar, 7 pm).
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X

X
□  RaclB
□  R ad  B+p95-APP1
□  Rac1B+p95-C2
□  Rac1B+N27Arf6

No neurite Linear neurite branched neurite/s

Fig. 4.31. Quantitative analysis of the inhibition of RaclB-mediated neurite 

branching by p95-C2 and N27Arf6.

Data are expressed as percentage of cotransfected neurons with no neurite, with linear 

neurite, and with one or more branched neurites. Branching was evaluated in a total of 

100 neurons from two independent experiments. Values are means +/- s.d. Dominant 

negative Arf6 and ArfGAP-deficient p95-C2 inhibit neurite branching induced by 

RaclB.
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4.7 THE PIX-SH3 DOMAIN AND DIMERIZATION ARE 

REQUIRED FOR NEURITE INHIBITION BY THE ARFGAP- 

DEFECTIVE P95-C2, AND FOR ACCUMULATION AT LARGE 

ENDOCYTIC VESICLES.

The data obtained suggest that PIX could be responsible for the recruitment of 

p95-C2 to the Rabl 1-positive compartment by binding to the SHD domain.

All the members of the PIX family have an SH3 domain highly specific for the binding 

of Pak, a DH domain (the GEF domain) and a PH domain, which could be involved in 

membrane targeting. The 85-kDa pPix, considered in this study, also contains an Arf

GAP binding domain and a leucine zipper domain at the C-terminal end, involved in 

dimerization (Kim et al., 2000) (Fig. 4.32).

P-Pix w.t.

:'.4K

ÎH 3 DH
(97-272j 1302^02 495-554] (586.538)

Fig. 4.32. Domain structure of pPix protein: schematic representation of pPix protein. 

It contains several domains; SH3 (Src Homology 3), DH (Dbl-homology), PH 

(Pleckstrin homology), ABD (the ArfGAP binding domain), and LZ (Leucine zipper).
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In order to study in detail the mechanism underlying the recruitment of the p95 complex 

to Rab 11-positive recycling vesicles, the involvement of pPix was analysed. The 

leucine-zipper in the C-terminal portion of pPix can mediate homodimerization (Kim et 

al., 2000), and p95-APPl also has a putative leucine-zipper domain in the coiled coil 

region (Fig. 1.5) which can form homodimers. A number of constructs were prepared 

including a monomeric form of p95-APPl, called p95-LZ, in which the leucine zipper 

was mutated (Fig. 4.33, upper panel). In particular, two central leucines of the leucine 

zipper were mutated into prolines (Leu 448 and 455). These substitutions abolished the 

ability of the protein to form dimers as shown in coimmunoprecipitation experiment 

(Fig. 4.33, lower panel) in which CEFs were cotransfected with pBK-HA-p95APPl and 

with pFlag-p95-APPl. In cotransfected fibroblasts HA-p95 could be co- 

immunoprecipitated with FLAG-p95. The disruption of the leucine zipper of p95-APPl 

abolished the ability of the resulting FLAG-p95-LZ protein to associate with the KLA- 

p95 protein. The monomeric form of p95-C2, called p95-C2-LZ, was constructed with 

the same substitutions in the leucine zipper domain (Fig. 4.33, upper panel), and a set of 

dimeric and monomeric PIX mutants, in which specific domains had been deleted or 

mutated were made (Fig. 4.34, upper panel). In particular, a dimeric PIX-PG mutant 

was made in which two amino acid residues of the SH3 domain, tryptophans 43 and 44, 

were changed into proline 43 and glycine 44. From this construct the monomeric Pix- 

PG-ALZ mutant was derived. The mutation in the SH3 domain inhibits PAK binding 

(Manser et al., 1998), as confirmed by coprecipitation experiments (Fig. 4.34, lower 

panel). Another construct was generated, was the monomeric Pix-APH-ALZ with a 

deletion of the Pleckstrin Homology domain (PH), that is involved in membrane 

interaction in several proteins. As a control, monomeric p95-C2-LZ protein was still
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able to heterodimerize with monomeric Pix constructs. Coprecipitation showed the 

interaction of p95-C2-LZ with the monomeric SH3 mutant Pix-PG-ALZ (Fig. 4.35). 

The monomeric forms of Pix mutants and p95-C2 were used in order to eliminate the 

possible dimerization of the transfected proteins with the endogenous Pix and p95- 

APPl in retinal neurons.

Combinations of these mutants were used to investigate the effects on the subcellular 

distribution of the Pix-p95 complex and on neurite extension. Wild type Pix, and the 

PixSH3 mutant PixPG showed a diffuse distribution and did not affect neurite extension 

(Fig. 4.36). Coexpression of Pix-PG with p95-C2 resulted in a phenotype similar to that 

observed upon expression of p95-C2 alone: neurites were strongly inhibited (Fig. 4.36) 

and both proteins colocalized at large vesicles.

Interestingly, the coexpression of monomeric Pix-PG-ALZ with monomeric p95-C2-LZ 

showed a diffuse distribution of the two proteins in transfected neurons, and the 

neuronal morphology was not affected (Fig. 4.37). In contrast the complexes including 

either dimeric p95-C2 with monomeric Pix-PG-ALZ, or monomeric p95-C2-LZ with 

dimeric Pix-PG were still able to induce both accumulation of the complex at the large 

vesicles, as well as strong neurite inhibition (Fig. 4.38). Therefore, complexes including 

either one of the two mutants in a dimeric form preserved the ability to affect the 

neuronal morphology, while heterodimers of monomeric proteins 3vith a mutated Pix 

SH3 did not.

The specificity of the effects observed with the monomeric Pix SH3 mutant is supported 

by the finding that when monomeric Pix-APH-ALZ was coexpressed with monomeric 

p95-C2-LZ, the proteins were still able to accumulate the complex at vesicles and to 

inhibit neurite extension (Fig. 4.39). Altogether, these data implicate the SH3 domain of 

Pix in the recruitment of p95-APPl to the recycling compartment, and support a 

fundamental role of Pix and hetero-oligomerization in the regulation of p95-APPl

i l l



function during neuritogenesis. The quantitation of the effects of different combinations 

of mutants (Fig. 4.40) showed that there was an inverse relationship between the 

accumulation of the complexes at large vesicles and the ability of neurons to extend 

neurites.
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r  2 3 4 5 6
FLAG-P95 + HA-p95 FLAG-p95-LZ + HA-p95

Fig. 4.33. The leucine zipper of p95-APPl is required for dimerization.

Upper panel: constructs with mutated leucine zipper used in this study, in which two 

leucine residues in position 448 and 455 (asterisks) have been mutated into two 

prolines. Lower panel: CEFs were cotransfected with pFlag-p95-APPl and pBK-HA- 

p95-APPl (lanes 1-3), or with pFlag-p95-LZ and pBK-ELA-p95-APPl (lanes 4-6). 

Lysates were first incubated with beads only (IPc); the unbound fractions were loaded 

on beads coated with anti-Flag mAh (IP). After SDS-PAGE, one set (upper blot) was 

incubated with the anti-Flag mAb to detect the Flag-p95 (lanes 1-3) and Flag-p95-LZ 

(lanes 4-6) polypeptides. The second set (lower blot) was incubated with the anti-HA 

pAb to detect the HA-p95 polypeptide. LT (total lysate).
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1̂ SH3 DH
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t
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PIX-PG SH3
* *

DH

PIX-PG-ALZ rl SH3
i *

DH ABD H—564

PIX-APH-ALZ H SH3 DH ABD 564

Co IP Co IP

PIX

< - PAK 

PIX-wt PIX-PG 

Fig. 4.34. The SH3 domain of PPIX is required for Pak binding.

Upper panel: constructs of (3PIX used in this study. PIX-PG: two aminoacid residues of 

the SH3 domain, tryptophans 43 and 44 (asterisks), have been changed into proline 43 

and glycine 44, respectively. PIX-PG-ALZ is the monomeric form obtained from the 

PIX-PG mutant. PIX-APH-ALZ is the monomeric construct with a deletion of the PH 

domain. Lower panel: immunoprecipitates with anti-Myc antibody from lysate of CEFs 

cotransfected with HA-pPIX and Myc-Pakl (PIX wt), or with HA-pPIX-PG and Myc- 

PAK (PIX-PG), were blotted with anti-Myc (lower blot) and anti-HA (upper blot) 

antibodies to detect Pak and PIX, respectively. Lysates were incubated with control 

beads (Co), before incubation with beads coated with anti-Myc antibodies.
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IP Co
66K-#^ **** p95-C2-ALZ

6 6 K -^  PIX-PG-ALZ

IP: P95-C2-ALZ

Fig. 4.35. Monomeric mutants of p95-APPl and PIX can form heterodimers.

Immunoprecipitates with anti-Flag antibody from lysates of CEFs coexpressing 

monomeric p95-C2-LZ with monomeric PIX-PG-ALZ. Filters were blotted with anti- 

Flag mAb to detect Flag-p95-C2-LZ (upper blot), and with anti-HA pAb to detect the 

coprecipitating HA-PIX-derived construct (lower blot). The lysate was incubated with 

control beads (Co) before incubation with beads coated with specific antibody (IP).
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p95-C2PIX-PG

Fig. 4.36. Coexpression of dimeric p95-C2 and PIX-PG mutants results in 

localization at large vesicles and neurite inhibition.

Transfected neurons were fixed one day after transfection and stained with the anti-Flag 

mAh and anti-HA pAb to detect the indicated polypeptides. The expression of either 

HA-PIX, or HA-PIX-PG results in normal neuritogenesis. The coexpression of HA- 

PIX-PG and Flag-p95-C2 results in the inhibition of neurite extension. The two proteins 

localize at large vesicles. (Bar, 7 pm).
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PIX -PG -A LZ

s
P95-C 2-A L Z

Fig. 4.37. Coexpression of the p95-C2-LZ and PIX-PG-ALZ mutants prevents the 

formation of large vesicles and neurite inhibition.

Neurons cotransfected with Flag-p95-C2-LZ and HA-PEX-PG-ALZ were fixed one day 

after transfection and treated for immunofluorescence with the anti-Flag mAh and anti- 

HA pAb to detect the indicated polypeptides. Coexpression of the monomeric mutants 

results in diffuse localization of the expressed polypeptides and normal neurites. (Bar, 

10 pm).
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PIX-PG-ALZ
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PIX-PG

P95-G2

&

p95-C2-ALZ

Fig. 4.38. Complexes including either one of the two mutants in a dimeric form 

preserve the ability to affect the neuronal morphology.

Neurons cotransfected either with Flag-p95-C2 and HA-PEK-PG-ALZ or with Flag- 

p95C2-LZ and EEA PEX-PG were fixed one day after transfection and treated for 

immunofluorescence with the anti-Flag mAh and anti-EEA pAb to detect the indicated 

polypeptides. The coexpression of any combination including at least one dimeric 

mutant results in localization of the proteins at large vesicles, and in neurite inhibition. 

(Bar, 5 pm).

118



PIX-APH-ALZ

P95-C2-ALZ

Fig. 4.39. Coexpressed monomeric Fix-APH-ALZ and monomeric p95-C2-LZ are 

still able to accumulate at vesicles and to inhibit neurite extension.

Neurons cotransfected with the monomeric forms Flag-p95-C2-LZ and HA-PIX-APH- 

LZ were fixed one day after transfection and treated for immunofluorescence with the 

anti-Flag mAh and anti-HA pAb to detect the indicated polypeptides. The coexpression 

of the indicated monomeric constructs results in localization at the large vesicles and in 

neurite inhibition. (Bar, 5 pm).
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Fig. 4.40. Ail inversed relationship exists between the accumulation of p95 

complexes at large vesicles and the ability of neurons to extend neurites.

Neurons from experiments as those shown in Fig. 4.37, 4.38 were utilized to quantify 

the effects of different p95-Pix mutants on neurite extension and on the localization of 

the transfected proteins to large vesicles. Each bar represents the percentage obtained 

from the analysis of 100 neurons from two experiments.
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4.8 DISCUSSION

In the second part of my thesis I have analysed the intracellular mechanisms 

driving neurite extension in primary neurons, based on the previous observation that the 

neural-specific RaclB GTPase is required and specifically enhances neurite outgrowth 

from embryonic retinal neurons (Albertinazzi et ah, 1998). More recently, a protein 

complex was identified that specifically interacted with active GTP-bound Rac GTPases 

(Di Cesare et al., 2000), and included p95-APPl, a member of an ArfGAP family 

including the mammalian GITl protein (Donaldson and Jackson, 2000), corresponding 

to avian p95-APPl. The characterization of the complex in non-neuronal cells strongly 

suggests a role for this protein in connecting membrane traffic with actin dynamics 

during the process of cell motility (De Curtis, 2001).

Three major findings can be described from this work. First, mutation or deletion of the 

Arf-GAP domain of p95-APPl leads to the accumulation of the p95 complex at large 

Rab II-positive vesicles, and to the concomitant inhibition of neurite extension. Second, 

Arf6 activity is specifically required for Rac IB-mediated neurite elongation, and 

morphological and functional analysis with different Arf proteins has shown a specific 

functional connection between Arf6 and the Arf-GAP p95-APPl during neurite 

extension. Finally, the SH3 domain of PIX is required for the specific effects induced 

by the Arf-GAP mutants of p95-APPl.

4.8.1 The GAP activity is required for neurite extension

The complex structure of p95-APPl has made it essential to use deletion 

mutants to explore its function. In neurons, overexpression of the full-length protein and 

of the carboxy-terminal p95-C protein did not affect neuronal morphology. In contrast, 

mutation or deletion of the ArfGAP domain in the presence of the PIX-binding site 

drastically inhibits neurite extension. Such inhibition is accompanied by the specific
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accumulation of p95-complex at enlarged vesicles positive for Rab 11, a functional 

marker of the endocytic recycling compartment (Ullrich et al. 1996; Ren et al. 1998). 

This indicates a functional connection between membrane recycling and neurite 

extension in these neurons. It is known that growth cones are sites of intense 

endocytosis, and require an equivalent membrane flow back to the surface to maintain 

equilibrium. Recent work has shown the existence of dynamic recycling endosomes in 

axons and dendrites of developing hippocampal neurons (Prekeris et al., 1999). The 

endocytic/exocytic mechanism may represent a dynamic reservoir of mobile membrane 

to respond to extracellular stimuli leading to growth cone-mediated neurite extension or 

retraction (Craig et al., 1995). The net addition of membrane during neurite elongation 

may derive from both the distant cell body and the extending neurite (Shea and 

Sapirstein, 1988; Popov et al., 1993; Craig et al., 1995; Dai and Sheetz, 1995; Vance et 

al., 1991). A contribution to neurite progression may come from endocytosed, recycled 

membranes: accordingly, membrane recycling at the growth cone has been 

demonstrated (Diefenbach et al., 1999). In non-transfected retinal neurons the Rab 11 

compartment consists of small structures distributed along the neurites. Moreover, 

recent work has shown the existence of a dynamic tubulovesicular recycling endosomal 

network in axons and dendrites of developing hippocampal neurons (Prekeris et al. 

1999). These structures, which show bidirectional movement along the neurites, are 

regulated via the microtubule network. One possible interpretation of the results shown 

in this thesis is that the p95-APPl ArfGAP mutants (the truncated mutant p95-C2 and 

the construct with the point mutation p95-K39) interfere with the recycling of vesicles 

back to the cell surface along the neurite, leading to accumulation of membrane in the 

cell bodies and preventing the elongation of neurites.

In the future it would be interesting to use the RNAi tecnique in order to confirm this 

hypothesis and to investigate how the loss of p95-APPl could affect neurite extension.
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4.8.2. Arf6 activity is required for RaclB-mediated neurite elongation

Arf6 is implicated in membrane recycling at the plasma membrane (D’Souza- 

Schorey et al., 1995; Peters et al., 1995). Inhibition of both normal and Rac IB-enhanced 

neuritogenesis was observed by expressing mutants affecting the nucleotide cycle of 

Arf6. Corresponding mutants for Arfl and Arf5, representatives of class I and class II 

Arts respectively, showed weaker effects on the inhibition of neuritogenesis, indicating 

a prominent role of Arf6 in this process. The decrease in the percentage of neurons with 

a long neurite observed when the Arfl and Arf5 mutants were transfected (Fig. 4.26), 

could be explained by the fact that mutants of Arfl perturb the Golgi apparatus, leading 

to an indirect contribution in reduction of membrane addition to the membrane.

These data also show that a cycling GTPase is required for neurite extension, as already 

observed for other GTPases implicated in the regulation of neuritogenesis (see for a 

review Luo, 2000), including RaclB (Albertinazzi et al., 1998), and may reflect the 

need for a cyclic mode of signalling, appropriate to a highly dynamic process such as 

neurite extension.

As with other Arf proteins, Arf6 has a very slow rate of GTP hydrolysis and 

requires a GAP to be inactivated (Welsh, et al, 1994). The Arf-GAP activity of GITl on 

different Arf proteins, including Arf6, has recently been demonstrated in vitro (Vitale et 

al., 2000). The strong homology between avian p95-APPl and mammalian GITl, the 

colocalization of the p95-APPl mutants affecting neurite extension with Arf6 at 

endocytic vesicles in cotransfected neurons (Fig.4.18, 4.22), and the lack of 

colocalization of p95-APPl with Arfl, suggest p95-APPl as a candidate Arf6 regulator 

in retinal neurons. Accordingly, while GIT2 has recently been shown to specifically 

affect Arfl-mediated pCOP distribution (Mazaky et al., 2001), no effect on PCOP 

distribution by overexpressing p95-APPl was detected in retinal cells. A direct prove
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for the activity of p95-APPl on Arf6 would come from in vitro GAP assay, which is an 

important experiment to perform in the future.

A partial overlap in localizations between p95-N and Arf5 was also observed. 

Like Arfl, Arf5 has been implicated in traffic regulation in the Golgi (Liang and 

Komfeld, 1997), although Arf5 could also influence the same cellular pathways as Arf6 

through common effectors (Arfophilin ) (Shin et al., 2001).

Prove for the involvement of p95-APPl in the specific regulation of Arf6 comes from 

the potentiation of neuritogenesis in cells coexpressing wild-type Arf6 with p95-C. This 

potentiation is not observed in neurons cotransfected with either Arfl or Arf5 and p95- 

C. This cooperativity could be prevented by expressing either p95-C2 with wild-type 

Arf6, or the dominant negative N27Arf6 with p95-C. The data suggest that, for a 

dynamic morphogenetic process such as growth cone-driven neurite extension, an 

interplay is needed between a wild-type Arf6, able to dynamically cycle between the 

GTP- and GDP-bound form, and a p95-APPl protein that can be dynamically recruited 

at, and relocalised away from the recycling compartment. Considering these findings, 

one could speculate that, like Arfl in the Golgi (Roth, 1999), Arf6 regulates vesicle 

formation during recycling between endosomes and the plasma membrane, and that like 

the Arfl-specific ArfGAP protein in the Golgi (Goldberg, 1999), p95-APPl could play 

a role in the regulation of these events at recycling endosomes.

The localization of the endogenous p95-APPl is also fundamental. The preparation of a 

polyclonal antibody for the protein is in progress, and in the future subcellular 

localization analysis of the protein, and colocalization with the other components of the 

complex, will clarify the role of p95-APPl in recycling membrane events in developing 

retinal neurons.
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4.8.3 The Pix SH3 domain is required for neurite inhibition and vesicles formation 

by the ArfGAP defective mutant p95C2

By considering the differences between the p95-C and p95-C2 mutants in 

vesicle formation and neurite extension, the results show that both the lack of an active 

ArfGAP domain and the presence of the PIX-binding domain are necessary for the 

accumulation of the p95-complex on enlarged Rab 11-positive endosomes, and for the 

subsequent inhibition of neurite extension. Since the difference between p95-C and p95- 

C2 consists of the presence of the PIX-binding domain in p95-C2 (Fig. 4.4), it is 

therefore reasonable to implicate PIX in the recruitment of the p95-APPl complex at 

the Rab 11 compartment. Support for this hypothesis comes from the finding that 

mutation of the SH3 domain of PIX specifically prevents the accumulation of the 

ArfGAP-defective p95-C2 protein at endocytic vacuoles, with concomitant restoration 

of neurite extension.

It would be important, for the future, to confirm biochemically the association of 

R abll, and the other components of the complex, at the p95-C2 vesicles, with 

expreriments of cell fractionation after transfection of the ArfGAP-deficient mutant.

One complication in the analysis of the function of the PlX/p95 complex originates 

from the finding that both PIX (Kim et a i, 2001) and p95-APPl (Fig. 4.33) homo- 

dimerize. Moreover, the biochemical analysis presented here shows that in neural 

retinal cells p95-APPl forms stable endogenous complexes with PIX (and paxillin) 

(Fig.4.3). These observations may explain why inhibition of the association of the p95 

complex with endocytic vesicles could only be induced by coexpressing monomeric 

P1X-SH3 mutants together with monomeric ArfGAP-defective p95-APPl polypeptides, 

preventing dimerization with endogenous proteins. In fact, the two mutants can form 

heterodimers (as shown biochemically). According to the proposed model, the 

monomeric mutants would not be able to compete with the endogenous complexes, thus
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making it impossible for them to accumulate on the R abll compartment, and 

consequently inhibit neurite extension (Fig. 4.37). Any other combination of 

coexpressed polypeptides in which either the p95- or the PIX-derived mutant is able to 

form dimers with endogenous components, caused accumulation of ArfGAP-defective 

p95-C2 at the endocytic compartment, and therefore neurite inhibition (Fig. 4.36,4.38).

The SH3 domain of PIX is known to bind PAK with high affinity (Manser et al., 

1998). PAK is therefore a likely candidate responsible for the subcellular localization of 

the PlX/p95-APPl complex, and for the regulation of p95-APPl function in 

neuritogenesis. Interestingly, a kinase-independent, Rac/Cdc42 binding-independent 

role for PAK in both lamellipodium formation at grovyth cones and neurite-like 

structures in PC 12 cells has already been demonstrated. This function can be inhibited 

by interfering with the interaction of PAK with PIX (Obermeier et a i, 1998).

The analysis shown in this thesis identified a functional link between p95-APPl 

and Arf6, which is required for normal and Rac IB-enhanced neurite extension, and 

provides evidence for an important role of the p95-APPl complex in the regulation of 

membrane traffic during neuritogenesis. A model can be proposed in which p95-APPl, 

recruited at the recycling compartment by Pix, could contribute, by its GAP activity on 

Arf6, in the formation of membrane vesicles directed towards the growth cone of the 

elongating neurite (Fig. 4.41). At the growth cone, p95-APPl would also be involved in 

the mechanisms of actin cytoskeleton reorganization mediated by RaclB, and in the 

regulation of focal contacts formation, since p95 is able to directly interact with paxillin. 

If the GAP activity is blocked, with the overexpression of GAP-defective mutants of 

p95-APPl, the recycling event of membrane vesicles directed to the growth cone is not 

possible anymore, and the process of neurite extension is blocked (Fig. 4.41).
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This strongly supports a functional connection between membrane recycling and neurite 

extension, and provides evidences for an important role of the p95-APPl complex 

during the formation of a neurite.

Pok

ActinPix
reorganization

paxillin Focal complex

Arf6?
(Membrane
recycling)

Recycling
endosome

Arf6?

Fig 4.41 Model for p95-APPl function.
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