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Welch, A.R. (2002) The effect o f anthropogenic nutrient addition on the growth and 

competitive abilities of Parmelia caperata, P. reddenda, P. saxatilis and Xanthoria 

parietina in Cornwall. Ph.D Thesis, The Open University, U.K.

Abstract'. The effects of anthropogenic nutrient addition and species combination on the 

growth and competitive abilities of four widespread foliose lichens was investigated using 

two replicated factorial nutrient addition experiments conducted in conjunction with field 

studies.

The first was carried out on thallus fragments o f P. caperata (Pc), P. saxatilis (Ps) 

and X. parietina (Xp) transplanted onto a saxicolous substrate (roofing slate). Thallus 

growth rates were dependent on lichen species (F=12.76; P<0.001) and application 

frequency (F=59.31; P<0.001) with low (x l) to medium (x2 & x4) applications 

significantly increasing growth (increase in final thallus diameter), compared with control 

treatments (no nutrients). At higher (x8 & x l6) applications a significant reduction in 

growth occurred compared with controls.

Competition (number of thallus overlaps) was also dependent on both lichen 

species (F=5.62; P<0.001) and application frequency (F=5.16; P<0.001). All three species 

exhibited symmetrical competition under experimentally elevated nutrient conditions.

In the second transplant experiment using P. caperata and P. reddenda (Pr), growth 

rates were again dependent on lichen species (F=8.31; P<0.001) and application frequency 

(F=l 12.17; f <0.001). Both species exhibited symmetrical competition under 

experimentally elevated nutrient conditions.

Field studies suggest asymmetrical competition occurs between P. caperata & X. 

parietina (Pc—>Xp) where no experimentally elevated nutrient conditions exist. However,



competition between P. caperata & P. saxatilis and P. saxatilis & X. parietina remains 

symmetrical (Pc<^Ps; Ps<-»Xp).

On beech, under conditions of no experimentally elevated nutrients, competition 

between P. reddenda and P. caperata was symmetrical (Pr—>Pc). Furthermore there is 

evidence to suggest niche separation occurs between these two species and that this 

becomes less important under conditions of nutrient enhancement. These results suggest 

elevated nutrient levels alter growth rate and competition which affect lichen community 

structure.
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Chapter One 

Introduction

L I  Introduction

Anthropogenic nutrient addition arising from the doubling o f  agricultural food production within 

the last 40 years has seen a 6.87-fold increase in nitrogen (N) addition and a 3.48-fold increase in 

phosphorus (P) addition (Tilman, 1999). Furthermore it is estimated that the next 50 years will see the final 

period o f  rapid agricultural expansion, accompanied by 2.4 to 2.7-fold increases in N  and P-driven 

eutrophication (Tilman fl/., 2001).

Such high levels o f N  deposition can lead to hypertrophication where nutrient levels are greatly 

elevated above those found naturally. Freshwater and marine ecosystems suffer as a result due to run-off 

from agricultural fields which may ultimately lead to a decrease in species diversity, an increase in plant and 

animal biomass, increased water turbidity, increased rate o f sedimentation and the promotion o f  anoxic 

conditions (Mason, 1991).

In addition, the aerial redistribution o f various forms o f N  puts many terrestrial ecosystems at risk 

from the effects o f eutrophication (Tilman, 1999). This is observed in environments where the nutrient 

supply is suboptimal. Here any increase in nutrient supply from the deficiency range causes an increase in 

plant growth rate and ultimately a reduction in species diversity (Tilman, 1982; Marschner, 1995).

Such changes in community composition may be easily recognised in the case o f  larger plant 

species like grasses where numerous experiments have been established to look specifically at the effects o f  

nutrient addition on growth and changes in community composition (Austin & Austin, 1980). However, 

smaller plant species exhibit similar effects when placed under eutrophic or hypertrophic conditions but 

their changes in community composition may be easily overlooked. This is almost certainly the case with 

lichen communities despite being found on a wide variety o f  substrata across a broad range o f ecological 

amplitudes.



Although lichens are often regarded as lower plants they are in fact ‘composite organisms’ 

consisting o f a fungal (mycobiont) and an algal (photobiont) component living in symbiotic association. 

Such an association usually results in the formation o f a stable body or thallus within which the fungal and 

algal components can be easily distinguished (Hale, 1967),

Studies o f the impact o f nutrient addition on lichen communities have revealed that some species 

show increased radial growth rates (Sanchez-Hoyos & Manrique, 1995; Miller & Brown, 1999; Armstrong, 

2000) while other (acidophytic) species, like Parmelia saxatilis, show significantly reduced growth 

(Armstrong, 1984; Vagts & Kinder, 1999; Armstrong, 2000). This reduction in groAvth rate may be the 

direct result o f nutrient toxicity which may ultimately affect a breakdown in the symbiosis (Nash, 1996) 

between algae and fungi. Furthermore, there is evidence to suggest that in ‘stress’ situations, arising 

through exposure to hypertrophic conditions, some foliose species like Hypogymnia physodes concentrate a 

higher proportion o f the photosynthate within the fungal component, rather than expend it in thallus growth 

(Farrar, 1976).

The consequences o f these changes in lichen growth may be a determining factor in community 

composition which is itself determined by competition intensity. Under oligotrophic or mildly eutrophic 

conditions the individual effects o f all neighbouring lichen thalli may be similar with no single species 

being dominant. In such a situation diffuse competition is said to occur (Keddy, 2001). However, as 

nutrient status increases there tends to be a shift towards monopolistic competition where one o f the 

neighbouring species is the primary contributor to competition intensity while the other species have a 

relatively minor effect (Keddy, 2001).

To this end the extent to which nutrient addition affects thallus growth in large foliose species like 

Parmelia caperata (L.) Ach., P. reddenda (Stirton), P. saxatilis (L.) Ach., and Xanthoria parietina  (L.) Th. 

Fr., is examined in this thesis along with effects on their competitive abilities when placed in monospecific 

and multispecific mixtures. Nitrophilous species like X. parietina would be expected to demonstrate 

increased growth rates under enhanced nutrient conditions, quickly making contact with neighbouring thalli. 

Whether thalli are successful at overgrowing those o f their neighbours may depend on the differences 

between the morphological characteristics o f the competing thalli o f these species.



1.2 Nutrient acquisition by lichens

Lacking the conventional root systems o f vascular plants, most species depend on atmospheric 

sources o f nutrients which are taken up across the whole surface o f the thallus. The rates o f absorption and 

loss o f these nutrients are determined by the anatomical and morphological characteristics o f individual 

thalli along with the prevailing environmental conditions.

Dissolved nutrients may contact the thallus through precipitation, sedimentation and impaction. 

Alternatively they may be taken up by gaseous absorption which, due to a lack o f  stomata, occurs across the 

entire thallus surface. Many species colonise soil and rock substrata and nutrient uptake from soil pools can 

occur in some species as demonstrated by Pe/rigera canina (Goyal & Seaward, 1982).

Lichens exposed to lithic nutrient sources are able to break down the substrate mechanically i f  they 

possess rhizines (root-like fungal outgrowths from the lower cortex which serve to provide attachment), and 

chemically, using secondary compounds to dissolve nutrients which, once solubilised, may be absorbed.

On trees nutrient streaks may be exploited by some epiphytic species while other lignicolous 

species obtain nutrients directly from the bark. Furthermore terricolous and saxicolous species collect dust 

particles in their intracellular spaces resulting in the accumulation o f high concentrations o f nutrients within 

the thallus. The efficiency o f this accumulation is related to thallus morphology and shows much variation 

between species. However, some species like Xanthoria parietina  contain large intracellular spaces which 

can make up 18% o f the thallus. These may serve as very efficient nutrient stores (Nash, 1996).



1.2 The effect o f  nutrient addition on plant growth and competition

The importance o f nutrients for plant growth has long been recognized. In environments where N  

is limited, increases in N  availability result in a significant increase in photosynthetic rate and leaf biomass 

(Shangguan et al., 2000; Kao et al., 2001). Such increases occur until another factor becomes limiting or 

until N  concentrations become toxic, whereupon reductions in growth are observed.

Different concentrations o f N  application promote different growth responses within plants. For 

example, experiments with the growth o f Whitegrass (Cortaderia pilosa) indicate that root growth occurs 

preferentially at low N  levels (1-3 mg T̂ ) while green shoot material grows more at higher levels (10 mg T*) 

(Wilson et ah, 2001). Such information has been used in intensive farming practices in order to maintain 

and increase crop yields through the application o f N.

Increased use o f N  based fertiliser has led to the suggestion that European ecosystems may be at 

serious risk from eutrophication (Emmett et al., 1995; Eugster et al., 1998). This is particularly evident in 

the Netherlands which has high levels o f  N  deposition estimated to be 40 Kg N  ha'̂  yr'* (Van Der Eerden et 

a/., 1998).

There is much evidence to suggest that nutrient addition causes changes in the floristic composition 

(Wilson & Tilman, 1991; Schellberg et al., 1999) and species diversity o f  plant communities. Furthermore, 

fertiliser addition experiments have shown that the competitive balance between plants can be altered by 

increasing the competition between species which may become more intense as soil nutrient levels increase 

(Gerdol et ah, 2000).

In heathland ecosystems Nardus stricta is being replaced by Calluna vulgaris in areas where 

nutrient inputs have increased significantly (Hartley & Amos, 1999). Similar effects have been found in salt 

marshes where a nutrient-induced reversal in the competitive dynamics among salt marsh perennials was 

observed (Levine et al., 1998) which could ultimately change the patterns o f plant zonation in these 

habitats. Furthermore, changes in the rankings o f relative competitive performance have been shown to 

exist between shoreline plant species when different concentrations o f a modified Hoagland’s Solution were 

applied (Keddy et al., 2000). Intertidal community structure may also be affected by nutrient addition from 

seabird guano which may result in the elevated vertical distribution o f the lichens Caloplaca marina and



Xanthoria elegans at the expense o f Physcia species, which in the supralittoral fringe, may be completely 

removed (Wootton, 1991).

Such eutrophic conditions promote algal growth (O’Dare, 1990) and in the supralittoral fringe 

seabird guano appears to increase the abundance o f the green alga Prasiola meridionalis and Mastocarpus 

papillatus, which in turn reduces the abundance o f the lichen Verrucaria mucosa as a direct result o f  

increased competition with Prasiola meridionalis in the splash zone (Wootton, 1991).

Resource enrichment can also lead to habitat invasion by non-native plant species, thereby 

changing community composition (Davis et al., 2000). Such changes in competitive dynamics between 

plants have also been observed for lichens and it is proposed that nutrient addition alters the competitive 

balance between species which in turn determines their relative abundance (Armstrong, 2000). This may 

ultimately result in the competitive exclusion o f some lichen species (Lawrey, 1981; Vagts & Kinder, 1999) 

therefore leading to a reduction in diversity.

Early models o f competition made the assumption that two or more competing species could not 

coexist on a single resource without the species forming a competitive hierarchy which resulted in poor 

competitors being replaced by superior ones (Tilman, 1982). When two species do compete for the same 

resource that is in short supply they may evolve differences that could reduce competition. For example, 

lichen thalli that are less adpressed are able to overgrow more adpressed neighbouring thalli.

The concept o f r- and K-selection (MacArthur & Wilson, 1967) allows species to be characterised 

by the relative importance o f r (rate o f increase) and K (saturation density) in their life cycles. During the 

initial colonisation o f  a habitat r-selection predominates followed ultimately by K-selection. Species that 

are r-selected rarely suffer much pressure from interspecific competition (although this is dependent upon 

where they grow) and tend to evolve few, if  any, mechanisms for strong competitive ability. This arises 

from the fact that ruderals under stresses such as those that develop under competition tend to reduce 

growth and invest in reproduction (Grime -  personal communication). Alternatively, K-selected species are 

able to exist under great interspecific competitive pressures that operate within, as well as between, the 

species (Krebs, 1994).

According to Grime (1979) three primary plant strategies exist along the r-K continuum with 

ruderals (R) and stress-tolerant (S) strategies corresponding respectively to the extremes o f  r- and K- 

selection, while competitors (C) occupy an intermediate position.
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Lichens demonstrate the main characteristics o f stress tolerance (S) by having a slow rate of  

growth, being long-lived and, in some cases, responding well to physiological change (fluctuations in the 

environment due to seasonality). Grime (1979) characterises lichens as being stress-tolerant organisms 

which are adapted to relatively undisturbed conditions experiencing moderate intensities o f stress. 

However, it is not realistic to categorise all lichens in the same way since their rates o f  growth and 

competitive abilities are extremely variable.

Furthermore, it is difficult to predict the outcome o f competition due to competition coefficients 

(Krebs, 1994) which describe the ability o f a species to prevent a competitor from gaining access to limited 

resources. The competition coefficients are represented for the two species as a  and p in the Lotka-Volterra 

equations. An example o f such interference competition would be the use o f allelopathic chemicals by 

plants to keep competing species from gaining access to resources (Krebs, 1994).

Gill (1974) argues that a species can evolve competitive ability through a-selection. Therefore any 

mechanism that successfrilly prevents a competitor from gaining access to limiting resources will increase 

a-selection (or P-selection) and improve the competitive ability o f that species. Such a mechanism o f  

interference competition may be used by some lichens since many species are able to produce a wide 

variety o f allelopathic compounds. This would act to increase a-selection in some species and increase their 

competitive ability.

As previously mentioned some species may show a reduction in thallus growth rate due to 

concentrating photosynthate within the fungal component (Farrar, 1976) when placed under stress 

conditions. This may allow the synthesis o f secondary allelopathic compounds thus increasing their 

competitive ability through a-selection. In this way some species are able to tolerate prolonged periods o f  

stress therefore justifying Grime’s characterisation o f lichens as being stress-tolerant organisms.

Competitive interactions can be complex and an understanding o f the mechanisms underlying the 

survival o f one species at the expense o f the other or the ability o f two species to coexist is essential 

(Tilman, 1987) particularly since the impact o f nutrient-driven competitive change is becoming increasingly 

widespread. Therefore careful monitoring o f nutrient additions and the assessment o f the effects these have 

on the growth and competition o f species is o f much importance.



1.4 The effect o f  nutrient addition on lichen community structure

It is proposed that nutrient addition will increase lichen growth rates at certain concentrations and 

decrease them at others. Where increased growth rates are observed there will be a reduction in the time 

taken for neighbouring thalli to make contact. The resulting overlaps may provide relevant information 

through changes in the competitive dynamics between species which could be subsequently used to make 

predictions on the effect o f nutrient addition on lichen community composition. Whether species in these 

experiments are removed through nutrient toxicity or directly through competition from neighbouring thalli 

is fundamental to our understanding o f  the way in which anthropogenic nutrient addition affects community 

composition and species diversity.

Therefore, in situations where N  is limiting, any disturbance in the N  cycle, which ultimately 

increases the availability o f mineral N, will result in an increase in growth followed by changes to 

community structure brought about by intra- and interspecific competition. Careful observation o f  the 

growth and competition o f indicator species may, as in SO2 pollution monitoring, prove to be a useful tool 

in recognising ecosystems that are being subjected to a slowly increasing nutrient status. Although this 

would be regarded by some as having limited use, due to lichens having slow growth rates (Table 1) and 

therefore a correspondingly slow response to change, it could nevertheless prove valuable in long-term 

pollution studies and could perhaps be used in conjunction with diffusion tubes as a means o f monitoring N  

pollution.

Hale (1967) reviewed work on thallus growth rates and observed that data for some species like 

Parmelia conspersa and P. sulcata had widely ranging values. Armstrong and Smith (1992) looked at the 

variation in the growth o f  individual lobes o f P. conspersa and reported similar results. This may well 

reflect inaccuracies incumbent in the various methods by which growth rates were measured, for example, 

tracing thallus outlines onto acetate sheets or taking measurements from photographed thalli, or 

alternatively these changes in thallus growth may be a product o f the environment in which these species 

are growing. If the latter is the case then it suggests, as with all plants, that these species are able to grow at 

different rates when placed under different environmental constraints.



Mean growth rate (mm')

Species with SE in parentheses

Parmelia caperata 4.5 (0.68)

P. conspersa 4.19(1.39)

P. reddenda 3.72 (0.64)

P. saxatilis 2.25(1.75)

P. sulcata 1.71(0.29)

Xanthoriaparietina 2.5 (0.43)

Table 1. Average annual radial thallus growth rates o f  some common foliose lichens.

There are many important questions regarding the effect o f nutrient addition on lichen growth rates 

and intra- and interspecific competition. For example, do growth rates increase and if  so do they increase 

uniformly? Evidence put forward by Armstrong and Smith (1992) suggests that thallus growth is 

influenced by several causes, namely the genetic origin o f lobes comprising the thallus, lobe width (wide 

lobes growing faster than narrower ones), differences in behaviour o f the photobiont or mycobiont and 

variations in the levels o f secondary compounds within thallus lobes.

Whether some species utilise nutrients better than others is a fundamental consideration when 

attempting to rationalise the impact anthropogenic nutrient addition may have on the competitive dynamics 

between large foliose species. This is important since it has been shown that nutrient addition can alter the 

competitive balance between species and that this in turn determines their relative abundance (Armstrong, 

2000). Therefore increasing our awareness o f  the impact that anthropogenic nutrient addition has on lichen 

growth and competition may allow a better understanding o f the underlying causes that determine lichen 

community structure.



1.5 Format o f  the thesis

In order to address the issues previously outlined species surveys were carried out on saxicolous 

(Chapter Two) and corticolous (Chapter Four) substrata in order to determine the abundance and 

competitive interactions that occur naturally (without any anthropogenic nutrient addition from dilute 

Hoagland’s Solution). The influence o f aspect on abundance and competitive ability was also noted. 

Furthermore, the effect o f height (between 1.0m -  2.0m) on corticolous substrata was recorded to determine 

any vertical zonation.

Two field experiments were also set up to determine the effect o f nutrient addition using dilute 

Hoagland’s Solution on growth rate and competitive ability (intra- and interspecific competitive 

interactions). Hoagland’s Solution was chosen as it closely approximates to organic fertilisers in mineral 

nutrient composition (Appendix-Table 4). Therefore, lichens may be exposed to these nutrients under 

conditions o f fertilisation near farms and fi-om seabirds near coastal locations.

It could be argued that since lichens consist o f a fungal component (95%) and an algal component 

(5%) it would have been appropriate to use a specialised fungal nutrient media. However, fungal nutrient 

media are rarely used outside the laboratory and lichens would not normally become exposed to them.

In addition, Hoagland’s Solution, or modified forms o f it (Keddy, 2001), has been used by many 

previous authors therefore allowing comparative studies with other work to be made.

Chapter Two

A survey o f three large foliose lichens, Parmelia caperata, P. saxatilis dnà Xanthoria parietina  was 

carried out on north, south, east and west facing saxicolous substrata (granite and slate) to determine their 

natural abundance. This was represented using three measurements o f thallus area (dominant, subordinate 

and overlap) taken fi-om photographs o f these species in pair-wise interactions.

Competition between Parmelia caperata, P. saxatilis and Xanthoria parietina  at each aspect was 

determined by observing the fi-equency o f thallus overlaps made by each species during pair-wise 

interactions. This provided an insight into whether any dominance hierarchy existed between them and to 

what extent this might change with addition o f nutrient solution in Chapter Three.
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Chapter Three

A field experiment was established to look specifically at the effect o f nutrient addition (dilute 

Hoagland’s Solution) administered at six different concentrations on the growth and competitive abilities o f  

P. caperata, P. saxatilis andX, parietina, using thalli transplanted to a slate substrate.

Growth rates were represented as a change in thallus diameter while competitive ability was 

determined by comparing the actual number of overlaps made with the total number o f potential overlaps 

that could have been made. This provided an indication o f the effect nutrient addition might have on 

changing the competitive dynamics between these three species.

Chapter Four

A species survey carried out within the Lanhydrock Estate detailed the epiphytic lichen cover found 

on beech trees (Fagus sylvaticd) at each o f four aspects (N, S, E and W). Particular emphasis was placed on 

the abundance and intra- and interspecific competitive abilities o f P. caperata and P. reddenda. Abundance 

was represented as the number o f thalli o f both species present at each aspect. Competitive interactions 

were represented as either a scaled or unsealed (1:1) ratio o f the number o f overlaps made to those not made 

between thalli in pair-wise interactions.

This provided an insight into whether any dominance hierarchy might exist between P. caperata 

and P. reddenda and whether any vertical zonation could be determined between 1 .Om -  2.0m on the boles. 

Furthermore, an indication o f how competition might change under experimental nutrient addition in 

Chapter Five could be established.

Chapter Five

Chapter Five considers the effect o f four nutrient solution applications on the growth (change in 

thallus diameter) and competitive abilities (fi-equency o f thallus overlaps) o f P. caperata and P. reddenda, 

using a reciprocal transplant experiment conducted on the boles o f beech trees. This provided an indication 

o f how nutrient addition might alter the competitive dynamics between these two species and in turn 

determine lichen community structure.
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Chapter Six

The final chapter summarises the findings o f this thesis with respect to the effects o f anthropogenic 

nutrient addition on lichen growth rates and competitive ability. In addition the wider implications o f how 

changes in growth rate and competitive behaviour may affect lichen community structure are also discussed.

Nutrient levels within the environment continue to rise steadily and this has led to eutrophic and 

hypertrophic conditions being reported. Such increases have resulted in the publication o f the 1991 Nitrates 

Directive (91/676/EEC) which aimed to reduce water pollution fi-om nitrates and to prevent further 

increases in nitrate pollution by setting maximum nitrate levels at 210 Kg N  ha'  ̂ from 1998 with a further 

reduction to 170 Kg N  ha'̂  fi-om 2002 (European Report, 1998).

It is hoped that this thesis will provide some insight into the impact nutrient addition has on lichen 

growth and competition and how this in turn may determine lichen community structure.

1.6 Ecology o f  the species

Four species o f common and widely distributed lichens were used in this study; Parmelia caperata, 

P. reddenda, P. saxatilis m dXanthoria parietina all o f which colonise a wide range o f  substrata (Figure 1).

On nutrient-rich and enriched substrata X. parietina is often abundant and grows well under near 

neutral pH conditions while P. caperata and P. saxatilis prefer neutral and slightly acidic substrata 

respectively. P. reddenda is a rather local ancient woodland indicator species occurring mainly in the South 

and West o f the British Isles, Southern Scandinavia, France, North and South America and East and South 

Africa (Purvis 1992).

In well lit unpolluted environments each species is capable o f forming large rosettes with thallus 

diameters up to 20 cm for P. caperata and P. saxatilis, 10 cm for P. reddenda and 15 cm forX  parietina.
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In S02-polluted environments P. caperata survives SO2 levels o f  approximately 70 pm m'̂  while P. 

reddenda, P. saxatilis and X. parietina are only able to tolerate SO2 levels below 70 pm m"̂  (Purvis et a l ,  

1992).
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(d). Xanthoria parietina

Figure 1. The four lichen species used in this thesis photographed at field sites in Cornwall between 1992 and 2002.
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Chapter Two

Competitive interactions of Parmelia caperata., P. saxatilis and Xanthoria parietina on saxicolous

substrata

2.1 Introduction

It has been suggested that lichens are likely to compete for space and light (Oksanen, 1984) on a 

variety o f substrata. Species with large thallus areas are able to absorb more light and available nutrients 

than their neighbours, possibly giving them a competitive advantage.

Other factors such as substrate pH, the water retentive capacity o f both substrate and thalli and 

substrate stability are also important in determining competition, since the requirement for specific 

microenvironmental factors may be critical in determining the outcome o f  a particular competitive 

interaction and therefore the position and abundance o f thalli on a particular substrate.

O f the many factors that affect the wetting and drying cycles o f  individual lichen thalli aspect is 

perhaps the most important. In northern temperate latitudes experiments have shown that north facing thalli 

dry out more slowly than south facing thalli (Armstrong, 1975). The net carbon assimilation rate (NCAR) 

o f the thallus increases as thallus water content increases until an optimum is reached, usually between 65- 

90% thallus saturation depending on individual thallus morphology. The NCAR then declines when thallus 

saturation is reached resulting in a reduction in thallus growth.

Differences in the rate o f thallus drying on north and south facing aspects results in the latter being 

able to achieve an optimum thallus water content for longer periods than the former since thalli on north 

facing aspects may have a thallus water content in excess o f the optimum. The consequence o f  this is that 

efficient photosynthetic activity is maintained for longer periods while thallus saturation is at or near the 

optimum (Armstrong, 1976a). Furthermore there is evidence to suggest that wetting and drying o f  the 

thallus facilitates nutrient flow from the mycobiont to the phycobiont (Smith, 1975).

The rate o f thallus growth determines the frequency with which neighbouring thalli make contact. 

When contact between two thalli occurs one may out-compete the other by overgrowth or by the production
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of allelochemicals (Dale, 1985). Alternatively, a ‘truce’ may develop in which radial growth o f both 

species is terminated at the points o f contact along the thalline margins (Pentecost, 1980). This is 

particularly evident during intra- and interspecific competitive interactions between saxicolous crustose 

species. The competitive interactions o f  foliose species result in a ‘truce’ situation occurring less fi*equently 

since the thalline margins are not restrained by the substrate and are therefore fi*ee to overlap neighbouring 

thalli (Pentecost, 1980).

The morphological differences between thalli o f neighbouring species may be very different, with 

one species being less adpressed than the other. This may provide a competitive advantage allowing one 

thallus to grow over the top o f another. The study o f competitive interactions between species provides an 

indication o f how lichen community composition may change over time. Such studies are particularly 

important for saxicolous lichen communities, whether foliose or crustose, since the predominantly greater 

substrate stability o f undisturbed rock may result in higher frequencies o f observed thallus overgrowth 

(Lawrey, 1991) compared with terricolous and epiphytic lichen communities where there is a greater chance 

of abiotic and biotic disturbance. Therefore, competition would be predicted to have a large role in 

organising the community.

By recording observations o f thallus overlaps this study aims to determine whether a competitive 

hierarchy exists between P. caperata, P. saxatilis and X. parietina as they compete with themselves and 

each other for space on the substrate. The extent to which this competition is affected by aspect will also be 

investigated.

Where neighbouring thalli make contact and an overlap is observed, the surface areas o f the 

overlapping (dominant thallus area) and overlapped (subordinate thallus area) thalli may be calculated and 

related to aspect. Similarly, the area o f the subordinate thallus that is actually being covered by the 

dominant thallus may be estimated (overlap area), assuming radially symmetrical growth fi-om a central 

point on the subordinate thallus.

For example X. parietina may be expected to grow faster in areas o f eutrophication since it is a 

nitrophilous species. Therefore it should cover large areas o f the substrate under eutrophic conditions than 

neighbouring thalli o f another species. This would be reflected by large thallus areas. Whether it overlaps 

neighbouring thalli would largely depend on the morphological differences between thalli o f the two 

species.
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Here the following hypotheses will be tested:

(i). Dominant, subordinate and overlap thallus areas are dependent on the competing species 

(P. caperata, P. saxatilis andX. parietina) and aspect (N, S, E and W).

(ii). The frequency o f thallus overlaps is assumed to be independent o f lichen species and 

aspect. All foliose species are therefore expected to make similar numbers o f overlaps 

under heterospecific pair-wise species combinations on neighbouring thalli.
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2.2 Materials and Methods

Study area

Cornwall occupies the South West peninsula o f the British Isles. Lanhydrock Estate, owned by the 

National Trust, is situated approximately three miles south-east o f Bodmin (SX085636). The Lanhydrock 

Estate is divided into several parkland areas containing a diverse lichen flora on predominantly oak, 

sycamore, ash, lime and beech substrata (Figure 2). In addition there are numerous natural and man-made 

saxicolous substrata composed mainly o f granite and slate.

Figure 2. Map o f  the Lanhydrock Estate showing the location o f parkland and buildings. Scale: 1 cm : 50 m.
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Sampling locations

Saxicolous substrata were examined for the presence o f P. caperata, P. saxatilis and X. parietina  

between December 2000 and October 2001. Photographs were taken at locations (dry stone walls, gate 

posts, ornamental walls and buildings etc.,) within randomly chosen areas obtained from grid squares 

superimposed onto a large scale map (1 : 1250) o f the Lanhydrock Estate. Individual grid squares were 

selected using the random number function on a scientific calculator (Sharp™ EL-9600). Photographs were 

taken at each location where thalli o f these species contacted themselves or each other. Only thalli not 

shaded by vegetation (grasses, shrubs and bushes) or considered susceptible to adverse abiotic and/or biotic 

disturbance were selected. Photographs o f competitive interactions were also taken at locations within 

randomly selected areas outside the estate, but within a 20 mile radius o f it, and used for comparison.

Nine photographs (five within the estate and four outside) were taken for each o f the nine species 

combinations (three intraspecific and six interspecific) at each o f the four aspects (N, S, E and W). Aspect 

was recorded to within an accuracy o f ±  20 degrees. Measurements o f thallus area were taken from a total 

o f 324 photographs (180 inside and 144 outside the estate).
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Analysis o f  competitive interactions

Intra- and interspecific competition was evident where neighbouring thalli were observed to 

overlap at a point where they made contact (Figure 3).

Subordinate 
thallus area(b+c)

Dominant thallus area(a+b)
Overlap area(b)
estimated for subordinate thalli - see text

Figure 3. Diagram representing thallus ‘A ’ (dominant) overlapping thallus ‘B ’ (subordinate). The area o f the subordinate thallus 

covered by the dominant thallus is represented as the overlap area.

Thallus overlaps were counted from photographs and then photocopied onto 2 x 2  mm^ graph 

paper. Areas were calculated either using an image analyser or by counting whole squares covered by thalli 

and then summing partly covered squares. The accuracy o f both procedures was checked using the paired 

samples t-test on thallus areas calculated from 50 photographs (25 using an image analyser and 25 by 

counting whole and part squares on graph paper) and found not to be significantly different (t4 g = 0.106; P  = 

0.916) (Appendix-Table 1). Non-visible thallus areas were estimated based upon radially symmetrical 

growth of the thallus from a single point (Pentecost, 1980; Dale, 1985) with the assumption that growth rate 

of the thallus is uniform at all unimpeded points on the circumference. Data from subordinate thalli that had 

radial growth impeded by biotic sources (another neighbouring species not being studied) or abiotic sources 

(interference from chemicals (paint), rust (hinges on large granite gate posts) or chaffing from wire fences 

were not used. In addition the frequency with which overlaps were made between competing thalli was
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recorded in order to determine whether a dominance hierarchy might exist. Due to low numbers, data from 

inside and outside the estate were combined (Table 8).

It is possible to have a situation where one thallus overlaps a neighbouring thallus while being 

simultaneously overlapped by the same neighbouring thallus. This was not observed in any o f  the 

photographs taken.

Statistical analysis

A nested design was used with three-way analysis o f variance (ANOVA) (Zar, 1996) to determine 

the effect o f site, aspect and species combination on dominant and subordinate thallus areas. An aspect 

factor with four levels (north, south, east and west) and a species combination factor with nine levels (three 

intraspecific and six interspecific) were nested with a site factor containing two levels (inside the estate and 

outside the estate). The area o f subordinate thalli overgrown by dominant thalli (overlap area) was 

determined by the same method (Table 2). Tukey (Honestly Significant Difference) multiple means test 

(Zar, 1996) was used to determine significant difference between means. The frequency with which thallus 

overlaps were made by P. caperata, P. saxatilis and X. parietina was assumed to be independent o f aspect 

and lichen species. This assumption was assessed using G-analysis for goodness o f fit testing against the 

ratio o f overlapped to non-overlapped thalli. The test was applied using the Yates correction since DF = 1 

throughout (Table 9). All calculations were performed using Statistica™ 5.5 (StatSoft Inc., Tulsa, USA).

19



Factor Levels

Site: 1 (Inside estate); 2 (Outside estate)

Aspect: 1 (North); 2 (South); 3 (East); 4 (West)

Sp. Comb.: 1 (Pc^Pc); 2 (Ps-^Ps); 3 (Xp^Xp)

4 (Pc—>Ps); 5 (Ps—>Pc); 6 (Pc^X p)

7(X p^Pc); 8(Ps->Xp); 9(Xp->Ps)

Table 2. Three-way ANOVA layout for the effect o f site, aspect and species combination (Sp. Comb.) on thallus area. The following 

notation is used throughout: P. caperata (Pc); P. saxatilis (Ps); X. parietina (Xp). The symbol is used to represent a competitive 

interaction eg: Pc—»Ps represents thalli o f  P. caperata overgrowing thalli o f  P. saxatilis.
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2.3 Results -  thallus areas

Dominant thalli

A three-way nested ANOVA (aspect and species combination nested within site) indicated that site 

and aspect did not significantly affect the dominant thallus areas (DTA) o f P. caperata, P. saxatilis and X. 

parietina. However, species combination was observed to have a significant effect. In addition, the effect 

o f factor two (aspect) was modified by the effect o f factor three (species combination) (Table 3).

Effect DF MS F P

(1) Site: 1 67938.9 1.57 0.210

(2) Aspect: 6 82174.4 1.91 0.080

(3) Sp. Comb.: 16 79606.8 1.85 0.026

Interaction 12: - - - -

Interaction 12: - - - -

Interaction 23: 48 64599.6 1.50 0.026

Interaction 123: - - - -

Error: 252 43112.24

Table 3. Three-way nested ANOVA for the effect o f site (factor one), aspect (factor two) and species combination (Sp. Comb.) 

(factor three) on dominant thallus area (DTA).

Since site and aspect had no effect on DTA a one-way ANOVA was used to determine more 

precisely the effect o f lichen species on DTA. The results o f this analysis indicated that the individual 

species significantly effected DTA (Table 4).
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Effect

(1) Sp. Comb.: 

Error:

DF

315

MS

115843.6

47215.9

F

2.45

P

0.014

Table 4. One-way ANOVA for the effect o f species combination (Sp. Comb.) on dominant thallus area (DTA).

However, Tukey HSD analysis indicated that significant differences in DTA only occurred between 

two non-pair-wise species combinations (Ps—>Pc & Pc—>Xp P  =  0.035; Pc—>Xp & Xp—>Ps P  =  0.02) 

(Figure 4).
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Pc—»Pc Ps->Ps X p^X p Pc—»Ps Ps—>Pc Pc—»Xp Xp-^Pc Ps—»Xp Xp—>Ps 

Species combination

Figure 4. The effect o f  species combination on dominant thallus area (DTA) for all aspects. Data not sharing a common letter differ 

significantly (Tukey HSD test P  = 0.05). Bars are SEM, n = 36.
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Subordinate thalli

Three-way nested ANOVA indicated that site and aspect did not significantly affect the subordinate 

thallus areas (STA) o f P. caperata, P. saxatilis and X. parietina. However, species combination did 

produce a significant effect (Table 5). Although all conspecific and heterospecific pair-wise combinations 

had similar subordinate thallus areas some significant differences were observed between non-pair-wise 

species combinations (Figure 5).

Effect DF MS F P

(1) Site: 1 77708.9 1.58 0.210

(2) Aspect: 6 97723.3 1.99 0.068

(3) Sp. Comb.: 16 128528.0 2.62 <0.001

Interaction 12: - - - -

Interaction 12: - - - -

Interaction 23: 48 41597.8 0.85 0.752

Interaction 123: - - - -

Error: 252 49119.8

Table 5. Three-way nested ANOVA for the effect o f site (factor one), aspect (factor two) and species combination (Sp. Comb.) 

(factor three) on subordinate thallus area (STA).

Since site and aspect had no effect on STA a one-way ANOVA was used to determine more 

accurately the effect o f lichen species. The results o f  this analysis indicated that species combination had a 

significant effect on the area o f  the subordinate thalli o f P. caperata, P. saxatilis ondX. parietina  (Table 6).
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Effect DF

(1) Sp. Comb.: 8

Error: 315

MS

212368.3

48877.6

F

4.34

P

<0.001

Table 6. One-way ANOVA for the effect o f species combination (Sp. Comb.) on subordinate thallus area (STA).

Tukey HSD analysis indicated that subordinate thallus areas o f  X. parietina  were significantly 

larger when competing intraspecifically (Xp—>Xp) than when competing interspecifically with neighbouring 

thalli o f  P. caperata (Xp—>Pc) {P = 0.005) and P. saxatilis (Xp-^Ps) {P = 0.009).

Significant differences occurred between two non-pair-wise species combinations (Ps—>Pc & 

X p ^ X p  f  = 0.001 and Ps—>Xp & Xp-^Xp P  = 0.002) (Figure 5).
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abc ab

Pc—>Pc Ps—>Ps Xp—»Xp Pc—»Ps Ps-»Pc P c^X p Xp—>Pc Ps—>Xp Xp-»Ps 

Species combination

Figure 5. The effect o f  species combination on subordinate thallus area (STA) for all aspects. Data not sharing a common letter 

differ significantly (Tukey HSD test P  = 0.05). Bars are SEM, n = 36.
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Overlap area

The estimated area o f overlap on subordinate thalli was not significantly affected by site, aspect or 

species combination (Table 7).

Effect DF MS F P

(1) Site: 1. 429.9 0.10 0.746

(2) Aspect: 6 6006.8 1.47 0.188

(3) Sp. Comb.: 16 5367.9 1.31 0.188

Interaction 12: - - - -

Interaction 12: - - - -

Interaction 23: 48 3253.2 0.80 0.826

Interaction 123: - - - -

Error: 252 4081.3

Table 7. Three-way nested ANOVA for the effect o f site (factor one), aspect (factor two) and species combination (Sp. Comb.) 

(factor three) against estimated overlap area on subordinate thallus area for all intra- and interspecific competitive interactions.

2.4 Results -  thallus competition 

Frequency o f  thallus overlaps

It was predicted that all three species would have similar overlap frequencies. Combined data from 

both inside and outside the estate (Table 8) were tested using G-analysis testing against the ratio o f  

overlapped to non-overlapped thalli at each aspect.

This indicated that competition between P. caperata and P. saxatilis was similar at all aspects 

except east (G = 4.12; P  =  0.04) (Table 9). However, to reduce the possibility o f  obtaining a Type I error 

only P  <  0.05 were accepted.
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p. caperata made significantly more overlaps on thalli o f X. parietina on north (G = 14,45; P  < 

0.01), south (G = 4.97; P  =  0.02) and east (G = 12.31; P  <  0.01) facing aspects compared with the reciprocal 

(Table 9 and Figure 6).

No significant differences in the number o f thallus overlaps were observed when P. saxatilis was 

competing w ithX  parietina under any aspect (Table 9).

Substrate effect

Granite and slate have considerably different microtopographies. The rougher surface o f granite 

allows water to be retained for longer periods than would be expected for the smoother slate. This could 

affect the rate o f thallus drying and consequently the NCAR o f thalli.

One-way ANOVA for the effect o f substrate (granite and slate) on thallus areas o f P. caperata, P. 

saxatilis andX  parietina indicated that substrate did not significantly effect DTA (F = 3.33; P  = 0.07); STA 

(F = 0.21; P  = 0.65) or OA (F = 0.25; P  = 0.62).
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North

South

East

West

Sp. Comb Inside Outside Total

Pc—*Ps 3 4 7

Ps—»Pc 3 2 5

Pc-»Xp 6 5 11

Xp-*Pc 1 I 2

Ps->Xp 3 3 6

Xp-»Ps 2 3 5

Sp. Comb Inside Outside Total

Pc-^Ps 4 2 6

Ps-»Pc 2 3 5

Pc-»Xp 4 4 8

Xp—»Pc 1 2 3

Ps—*Xp 4 2 6

Xp->Ps 5 2 7

Sp. Comb Inside Outside Total

Pc-^Ps 4 5 9

Ps—>Pc 3 1 4

Pc—»Xp 5 5 10

Xp->Pc 1 1 2

Ps-»Xp 2 3 5

Xp-^Ps 3 4 7

Sp. Comb Inside Outside Total

Pc-^Ps 5 3 8

Ps—»Pc 3 2 5

P c^X p 3 4 7

Xp—>Pc 2 4 6

Ps->Xp 3 1 4

Xp—>Ps 5 3 8

Table 8. The frequency o f thallus overlaps by P. caperata (Pc), P. saxatilis (Ps) and X. parietina (Xp) in heterospecific species 

combinations (Sp. Comb.) for each aspect. Data for both inside and outside the estate are shown.
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p . caperata overlapping P. saxatilis

G P

North 0.70 0.40

South 0.19 0.66

East 4.02 0.05

West 1.46 0.23

P. caperata overlapping X. parietina

G P

North 14.45 <0.01

South 4.97 0.02

East 12.31 <0.01

West 0.16 0.69

P. saxatilis ovQvldL^^mgX. parietina

G P

North 0.19 0.66

South 0.16 0.69

East 0.70 0.40

West 2.85 0.09

Table 9. G-analysis summary table showing the frequency o f  thallus overlaps made by P. caperata, P. saxatilis and X. parietina in 

pair-wise competition. P  = 0.05, DF = 1 throughout. To allow for the possibility o f  a Type I error when making multiple tests only 

significant differences below P  -  0.05 were accepted.
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North South East West
Aspect

Figure 6. The frequency o f thallus overlaps as a percentage o f the total number made by P. caperata (shaded) and X. parietina 

(unshaded) on each others thalli at each aspect (Table 8). Bars not sharing the same letter differ significantly within an aspect (P <  

0.05) (Table 9).
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2.5 Discussion

Growth rate and competitive interactions

During the process o f substrate colonisation neighbouring lichen thalli may make contact and a 

competitive interaction may result. The time taken for thalli to make contact is determined by the radial 

growth rate o f the thallus which can show much variation between species (Table 1).

Thallus growth rates are also affected by the amount o f light and precipitation since these factors 

determine photosynthetic and respiratory activity within the thallus which in turn affect the net carbon 

assimilation rate (NCAR) o f a species, culminating in reduced or increased radial growth rates. This 

ultimately determines the time taken for neighbouring thalli to make contact and initiate competitive 

interactions.

Are dominant, subordinate and overlap thallus areas dependent on the competing species and aspect?

Results indicated that P. caperata, P. saxatilis and X. parietina had similar dominant, subordinate 

and overlap areas. Furthermore aspect had no effect on thallus areas (Tables 3, 5 and 7). Despite small 

variations in structure individuals o f the same species have similar thallus morphologies. As a result, 

competing conspecific thalli should have similar lobe adpression, lobe mass and thickness and a similar 

resistance to dessication. This could explain why competition between conspecific thalli o f  these three 

species were similar (Figures 4 and 5).

Although it is regularly assumed that intraspecific competition is more intense than interspecific 

competition (Keddy, 2001) it would appear that for lichens where thalli are morphologically similar, as in 

conspecifics, single individual thalli are competitively equivalent. The fact that conspecific thalli do 

overlap each other suggests that some competitive advantage over neighbouring thalli has been gained.
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This could be due to small variations in genotype which might result in a less adpressed thalline margin, 

random grazing by microarthropods, the presence o f other competing lichen species and vegetation or 

numerous other biotic and abiotic factors acting individually or collectively.

Is the frequency o f  thallus overlaps independent o f  lichen species and aspect?

Competition between P. caperata, P. saxatilis and X. parietina appears to be similar and unrelated 

to aspect when looking only at areas occupied on the substrate. Such competitive equivalence would not 

have been predicted since P. caperata has visibly thicker thalline lobes than either P. saxatilis or X. 

parietina. Furthermore, P. caperata may be expected to out-compete X. parietina due to the latter 

possessing a more adpressed thallus than the former.

However, examination o f the frequency o f thallus overlaps made by these three species indicates 

that a dominance hierarchy exists. X. parietina was overlapped on north, south and east facing aspects 

significantly more frequently by P. caperata compared with the reciprocal (Figure 6). Although such 

competitive dominance by P. caperata over X. parietina is not consistent across all aspects the assumption 

that P. caperata is above X. parietina in a dominance hierarchy would appear to be correct (Figure 7).
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Pc

^  XpPs <

Figure 7. A proposed competitive hierarchical pyramid for P. caperata (Pc), P. saxatilis (Ps) and X. parietina (Xp) based on the 

frequency o f  thallus overlaps made by each species.

P. caperata and P. appear to be competitively equivalent. Such symmetrical competition

was not predicted due to the superior thallus morphology o f  P. caperata which possesses larger, less 

adpressed lobes than P. saxatilis. The symmetrical competition observed between these two species may be 

a consequence o f  diffuse competition (MacArthur, 1972), afforded by other neighbouring species competing 

with P. caperata. This would be advantageous to P. saxatilis since it would allow it to remain for longer 

periods on the substrate thus affording it a greater chance o f reproductive success. However, diffuse 

competition could only be seen as an advantage if  the other neighbouring thalli did not out-compete 

individual thalli o f P. saxatilis.

Such species interactions have been observed between other lichens, namely P. glabratula  and 

Physcia orbicularis, which tended to grow better in the presence o f two competitors rather than one. In 

addition, the growth o f  the competitively dominant Parmelia conspersa was observed to be reduced in the 

presence o f two species (Armstrong, 1986). Such competitive interactions may allow lichen species to 

coexist on the same substrate.

Armstrong (1974b) reported that P. saxatilis was frequently found on northwest facing saxicolous 

substrata, indicating that it competed well with other lichens at this aspect, but declined in abundance on 

southeast facing substrata due to competition with P. conspersa. This would place P. saxatilis below P. 

conspersa in a dominance hierarchy (Armstrong, 1982). The asymmetrical competition between P.
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conspersa and P. saxatilis is confirmed by transplant experiments which indicated that thalli o f P. saxatilis 

were able to grow similarly at both northwest and southeast facing aspects (Armstrong, 1977).

Competition between P. saxatilis and X. parietina however appears to be symmetrical which is 

somewhat surprising since P. saxatilis has a visibly superior thallus morphology than X. parietina whose 

thalli are considerably more adpressed. The symmetrical competition may be a consequence o f pH. The 

abundance o f seabirds in coastal regions (Lanhydrock Estate is situated 15 miles from the coast) increases 

pH levels through the deposition o f excreta which may compromise the competitive ability o f acidophytics 

like P. saxatilis competing with nitrophilous species. This could explain why thalli o f X. parietina 

compete symmetrically with neighbouring thalli o f P. saxatilis. Alternatively X. parietina  may be a 

calcicole and require an elevated pH in order to survive (Armstrong -  personal communication). However, 

this is only speculative since it would have been impossible to accurately determine the amount o f  seabird 

excreta to which each thallus was exposed. Therefore, in this context, any measurement o f  pH would have 

been meaningless. Consequently, further experiments are necessary in order to confirm the effect o f seabird 

guano and pH on lichen growth and competition.

A clearer picture could be obtained if  the ages o f individual thalli were known. Thallus age has 

been shown to determine radial growth rate in the lichen P. conspersa. Juvenile thalli with a diameter less 

than 1.0 cm had significantly slower growth rates than older thalli o f larger diameter (Hale, 1967). 

Furthermore, as the thallus matures the centre begins to fragment resulting in a reduction in the relative 

radial growth rate (Armstrong, 1973). However, radial extension at the lobe margins remains relatively 

constant and does not change significantly with fragmentation o f the centre (Armstrong, 1974a).

It may be that these species are still in the process o f establishing a dominance hierarchy, which, 

given their slow growth rates, is perhaps more likely. The need to pay particular consideration to the time 

taken for competitive interactions to occur has been stressed by Keddy (2001) since far too many 

competitive interactions are incorrectly predicted to react instantaneously (as assumed by the Lotka-Volterra 

model).

In addition it is important to remember that at the distributional limits o f the dominant species a 

transition to the subordinate species may occur. This is based on the assumption that the dominant species 

may become so weakened by environmental effects (Keddy, 2001) that it becomes excluded by the 

subordinate lichen species. P. caperata, P. saxatilis and X. parietina are not near their respective
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distributional limits in the areas o f study, although it is clear that P. caperata and P. saxatilis do not thrive 

particularly well in eutrophic environments where an elevated pH is not uncommon.

Interference mechanisms in competition have been well documented (Krebs, 1994). The 

possession o f a less adpressed thallus is an example o f how one species might gain a competitive advantage 

over another. The use o f allelochemicals provides a further example. Although this was not observed 

during the course o f this study for P. caperata, P. saxatilis or X. parietina it is feasible that secondary 

compounds might be used to gain an advantage over neighbouring species (Armstrong, 1982) and so form a 

dominance hierarchy.

It is clear that several factors dictate the ability o f a species to compete. Radial growth rate, thallus 

age and thallus morphology are clearly very important. Interference competition may also play a significant 

part since the ability to reduce herbivore grazing by the production of allelochemicals could be significant in 

determining the competitiveness o f a species (Armstrong, 1979; Rogers, 1990).
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Chapter Three

The effect of nutrient application on the growth rate and competitive abilities of lichens

3.1 Introduction

There is much evidence to suggest provision o f additional nutrients increases the radial growth rate 

o f nitrophilous lichen species (i\rmstrong, 1984; Crittenden et al., 1994; Sanchez-Hoyos & Manrique, 1995; 

Miller & Brown, 1999), by as much as 15 -  32 % per year (Lewis Smith, 1995), while inhibiting growth in 

acidophytic species (Vagts & Kinder, 1999).

However, when Armstrong (1984) applied bird droppings to lichen thalli and observed their growth 

rates he concluded that P. saxatilis, an acidophyte, grew well in the presence or absence o f nutrients and 

was observed to be frequent on and off bird perching stones. The presence o f P. saxatilis at locations where 

there is an elevated nutrient status could reflect differences in the nutrient composition between bird 

droppings and anthropogenic nutrient addition. In a later experiment, Armstrong (2000) states that nutrient 

enrichment reduced thallus areas o f P. saxatilis which he claims could explain the low frequency o f  this 

species on nutrient enriched rocks. It is feasible that the chemical composition o f fecal deposits may vary 

quite widely between birds, reflecting species, age and more particularly, individual dietary preferences 

(personal observation).

Although N  supplementation in the form o f nitrate and nitrite can acidify the substrate in an 

untreated non-chelated form (Bull et ah, 1995), the use o f ammonium (NH^^ salts results in elevated 

(alkaline) pH levels, and there is evidence to suggest this has resulted in the removal o f acidophytes like P.

(van Herk, 1999) from effected substrata.

Such elevated pH levels may occur, albeit patchily, in coastal regions where large gatherings o f  

seabirds increase substrate pH through urine and fecal depositions. The pH o f  bird droppings ranges from 

5.0 -  8.0 (Armstrong, 1984) and this may be sufficiently high to reduce the colonisation, growth and 

subsequent competition o f acidophytics. In addition, an elevated nutrient status can cause excessive algal 

growth over the lichen thallus (Scott, 1960; O’Dare, 1990), resulting in a reduction o f thallus photosynthetic
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ability. Alternatively, there is evidence to suggest that eutrophic conditions may cause a breakdown in the 

symbiosis (Scott, 1960; Nash, 1996).

Lichens may become exposed to anthropogenically elevated nutrient levels from a variety o f  

sources including waste (brewing, food processing etc.,), sewage, forest management, vehicle exhaust 

emissions and intensive agricultural practices.

Intensive farming dictates the use o f additional N-based fertilisers (organic and inorganic) in order 

to maximise crop yields (Hoglind & Frankow-Lindberg, 1998; Stoll et a l ,  1998) and as a result may lead to 

areas o f the environment receiving elevated nutrient levels.

Nitrophilous species like X. parietina thrive in nutrient-rich environments as seen near bird 

perching sites and farms. When transplanted away from areas of nutrient enrichment poor growth is 

frequently observed (Armstrong, 1984). This suggests a negative correlation exists between distance from 

livestock farms and the abundance o f nitrophilous lichen species (Crittenden et al., 1994; Sanchez-Hoyos & 

Manrique, 1995; Pitcairn eta l., 1998; van Herk, 1999; Ruoss, 1999).

The ability o f a lichen to tolerate elevated nutrient levels could allow it to occupy environments 

where species have been removed through nutrient toxicity. Nitrophilous species that are capable o f  

tolerating fluctuations in substrate pH would appear to have an advantage in such situations. Therefore, X. 

parietina may be expected to out-compete P. saxatilis, an acidophytic species and P. caperata, a 

predominantly neutrophytic species, where elevated pH levels arise under conditions o f  nutrient enrichment.

During interspecific competition the morphological characteristics o f the two competing thalli 

become an important issue (Pentecost, 1980; Harris, 1996) since species that possess a raised thalline 

margin, enabling them to rise above the substrate, are more likely to overgrow more adpressed neighbouring 

thalli. Furthermore, heavier thalli appear to have a distinct advantage when attempting to overgrow lighter 

thalli (Armstrong, 1982; John, 1992). Since light, moisture and nutrients fail to reach an overgrown thallus, 

its ability to photosynthesise would be compromised, therefore leading to a reduction or termination o f  

growth in the region o f overlap (John, 1992; Harris, 1996).

Other factors which could ultimately determine the success o f a competitive interaction between 

two thalli include a faster rate o f lobe regeneration (particularly important in this experiment where thallus 

fragments are used), faster radial growth rate and the presence o f allelochemicals (Armstrong, 1986).
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Furthermore, there is evidence to suggest that the provision o f additional nutrients may reverse 

competitive dynamics and therefore alter the competitive balance between plants (Hartley & Amos, 1999) 

and consequently modify their zonation patterns (Levine et ah, 1998). Similar alterations to zonation have 

been observed for lichens and it is thought that nutrient application could result in the competitive exclusion 

o f some species (Lawrey, 1981; Vagts & Kinder, 1999) therefore leading to a reduction in species diversity.

It is proposed that anthropogenic nutrient enrichment will increase lichen growth rates and in turn 

reduce the time for neighbouring thalli to contact each other. This will lead to increased competition for 

space, thus supporting Grime’s theory that competition becomes more important as nutrient resource levels 

increase (Grime, 1979).

This chapter assesses the impact o f nutrient addition on lichen growth rates and competition by 

determining how P. caperata, P. saxatilis and X. parietina behave in two and three species mixtures. Such 

information could help determine how lichen community structure might change in response to 

anthropogenically-elevated nutrient levels. To this end the following hypotheses will be tested:

(i). The addition o f nutrients across a range o f application frequencies will increase lichen

growth rates, as measured by changes in their thallus diameters, up to an optimum 

frequency o f application. Such changes in thallus diameter may well be species specific

with nitrophilous species like X. parietina predicted to exhibit larger thallus diameters

(increased growth rate) under conditions o f nutrient enhancement than acidophytic species 

like P. saxatilis. Neutrophytic species like P. caperata are predicted to exhibit 

intermediate responses to nutrient application.

(ii). Nutrient addition across a range o f application frequencies will increase thallus growth and

reduce the time taken for neighbouring thalli to make contact therefore leading to an 

increased number o f thallus overlaps compared with controls receiving no added nutrients. 

Competitively successful species would be expected to make significantly more overlaps 

than other species in pair-wise combinations.
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(iii), Conspecific thalli will show fewer thallus overlaps than heterospecific thalli since 

differences in thallus morphology will dictate the competitive success o f a species and 

consequently determine its position in a dominance hierarchy.
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3.2 Materials and Methods

Lichen material

Lobes o f lichen thalli were collected for each o f the three species from specimens having a 

diameter greater than 5 cm. This ensured that transplants were taken from individuals whose radial growth 

rate was constant or linear (Hale, 1967; Armstrong, 1973). All species were collected within Cornwall from 

saxicolous substrata (granite, slate and granitic schists) located in areas with mean winter SO2 levels less 

than 30 pm m'  ̂ (Dobson, 1992). Transplants were transported in specimen bags and glued to the substrate 

with Bostik™ all purpose clear adhesive (Armstrong, 1981) within 24 hours o f  collection.

Substrata

In order to reduce the influence o f microtopography and to simplify thallus measurements, smooth 

uncolonised roofing slate was used as the substrate. Upon each slate an area o f  20 x 15 cm was clearly 

etched and sub-divided into eight equal areas (sub-plots) o f 7 x 5 cm (Plate 1 and Figure 8).
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Plate 1. One o f the 40 slates used in the transplant experiment (not to scale). Each o f the seven sub-plots contains one species 

combination (see Figure 8 for detail).
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Ps/Xp/Pc
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_____________

Figure 8. A typical arrangement for the three lichen species under investigation, P. caperata (Pc); P. saxatilis (Ps) and X. parietina 

(Xp), after transplanting to a slate substrate. Sub-plots provide one conspecific and three heterospecific thallus combinations for each 

species. Vacant sub-plot provides space for any natural colonisation. Slate dimensions are approximately 21 cm (W) by 17 cm (H), 

with sub-plots o f  5 cm (W) by 7 cm (H).
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Experimental design

Since the rate o f thallus growth is a function o f the original size o f the thallus (Hale, 1967) all thalli 

were cut into 0.5 x 0.5 cm  ̂ (±1 mm) fragments and glued in specific arrangements approximately 5 mm 

apart (Figure 8) within seven o f the eight sub-plots on each slate. The remaining sub-plot was left vacant 

for observation o f any natural colonisation that might occur.

Two factors were tested in this experiment, a nutrient addition (diluted Hoagland’s Solution) factor 

with six levels (xO; x l;  x2; x4; x8 and x l6  frequencies o f application) and a lichen interaction factor 

(species combination) with four levels (one conspecific and three heterospecific). The treatments were laid 

out in a randomised block (Appendix -  Figure 1) split-plot design where frequency o f  application was 

assigned to the main plots and lichen interaction to sub-plots.

Ten replicates for the control treatment (xO frequency o f  application o f Hoagland’s Solution) and 

six replicates for the remaining treatments (xl; x2; x4; x8 and x l6 )  were established. The 40 slates were 

placed on a horizontal flat roof o f a garden shed (2 m (W) by 3 m (L) by 2.5 m (H) approximately) in an 

unshaded location (Appendix -  Plate 1). Garden netting was suspended 15 cm above the slates to reduce 

animal disturbance. Using the layout in Figure 8 it was possible to investigate all infra- and interspecific 

interactions at each application frequency o f Hoagland’s Solution.

All slates were completed by mid June 1994. One month was allowed before spraying with 

Hoagland’s Solution in order for species to acclimatise to the new environmental conditions and 

furthermore to reduce physiological stress (increased respiration) arising from transplantation and 

fragmentation (Seaward -  personal communication).
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Experimental site

The site for the experiment was located at Trenance (928709. SW 87/97; Alt: 60 m), an undisturbed 

location (situated at the far end o f a large garden away from pedestrian access) in zones 9 and 10 o f the 

‘Hawksworth and Rose’ scale where mean winter SO] levels were less than 30 pm m"̂  (Hawksworth & 

Rose, 1976).

Chemical treatment

Freshly prepared Hoagland’s Solution (Hoagland, 1948; Keddy et a l ,  2000) o f pH 6.5 (Appendix -  

Table 4) diluted to 10% original strength was used to saturate the transplanted thalli. This provided a N  

concentration o f 9.80 g dm"̂  (Appendix -  Table 5).

At regular intervals (approximately one month apart) 25 cm  ̂ o f solution was administered to each 

isolated slate using a plastic spray bottle, with the nozzle set to cover a spray area o f approximately 10 cm  ̂

from a height o f 50 cm above the slate. This produced a range o f spray-droplet sizes which, according to 

Larson (1984), increases the efficiency o f  thallus water imbibition and wetting. Nutrient solution was 

applied once, twice, four, eight and sixteen times in 16 days. The control slates and slates not receiving 

nutrient solution on a particular day were sprayed with an equal volume o f distilled water to ensure similar 

states o f hydration in all thalli. This was particularly important since evidence suggests that desiccated 

thalli fail to grow, even under conditions o f nutrient enhancement, until sufficient thallus re-hydration 

occurs (Badacsonyi et a l ,  2000) perhaps as a result o f dehydrated thalli concentrating nutrient solutions 

near the upper surface which culminates in nutrient toxicity (Nash, 1996). In order to prevent dilution or 

spread o f  the nutrient solution, treatments were not applied during periods o f  strong wind which could result 

in chemical drift, or wet weather which would result in a dilution effect.
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Analysis o f  growth rates

Photographs o f each slate were taken in July 1994, December 1994, April 1995 and May 1995. A  

specially constructed camera stand was used to ensure a constant focal length when photographing each 

slate. The maximum diameter o f each thallus was measured on the photograph using a digital vernier 

gauge.

Representative measurements were taken from the photographs for all thallus fragments within 

each sub-plot on four occasions. This provided an indication o f growth rate throughout the experiment for 

each species under different application frequencies and species combinations.

Variations in thallus diameter at the beginning o f the experiment (July 1994) were overcome by 

subtracting the initial thallus diameters from the final thallus diameters collected in May 1995. This 

provided an indication o f the change in thallus diameter under each treatment and species combination.

The changes in thallus diameter for each species combination were summed for each o f the six 

application frequencies. This provided six single values for each species {P. caperata, P. saxatilis and X. 

parietina) which represented the changes in thallus diameter, regardless o f species combination, at each 

application frequency. The mean o f  the three values at each application frequency was used to represent the 

mean total change in thallus diameter (n = 72).

Where conspecific and heterospecific species combinations are compared the sum o f  the change in 

thallus diameter from the six replicates at each o f the six application frequencies is used to represent the 

total change in thallus diameter (n = 36).

Analysis o f  competitive interactions

Competition between species was evident when thalli overgrew each other. The numbers o f  thallus 

overlaps were counted for each species combination at each application frequency. Where the species 

overlapped neighbouring thalli each overlap was counted (actual number o f overlaps) for each species 

combination at each application frequency. The total number o f overlaps a species could make at a
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particular species combination was determined by the number o f neighbouring thalli (possible number o f  

overlaps).

The ratio o f actual overlaps to possible overlaps provided a means o f analysing competitiveness 

between P. caperata, P. saxatilis andX  parietina. This provided six ratios (one per species combination) 

for each species.

Summing the ratio of actual overlaps made to possible overlaps that could be made for each species 

across all species combinations provided a single value for each application frequency (n = 72). This gave 

an indication o f how application frequency effected competitive ability -  primarily as a function o f thallus 

growth rate.

Statistical analysis

Two-way ANOVA was used to investigate whether application frequency and lichen interaction 

(species combination) affected thallus growth rates and the number o f thallus overlaps made by P. caperata, 

P. saxatilis andX  parietina. Tukey (HSD) multiple means test (Zar, 1996) was used to determine which 

means differed significantly. All calculations were performed using Statistica™ 5.5 (StatSoft Inc., Tulsa, 

USA).
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Missing thalli

During the course o f the experiment thalli were lost from individual slates under each application 

frequency (Appendix -  Tables 2 and 3). Missing thalli were ignored completely and not used in any 

calculations.

Student’s t test indicated that thalli o f P. caperata suffered significantly fewer losses than those o f  

P. saxatilis (tio = 9.51; P  < 0.001) and X  parietina (tio = 8.58; P  <  0.001). There was no significant 

difference in the number o f lost thalli between f . saxatilis andX. parietina (tio = 0.96; P  = 0.36).
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3.3 Results -  thallus growth rate

Growth rates

Two-way ANOVA indicated that growth (thallus diameter) was affected by both application 

frequency and lichen species combination (Table 10). In addition the effect o f application frequency (factor 

one) was modified by the effect o f species combination (factor two).

Effect DF MS F P

(1)App. Freq.: 5 0.285 59.31 <0.001

(2) Sp. Comb.: 11 0.061 12.76 <0.001

Interaction: 55 0.012 2.60 <0.001

Error: 360 0.005

Table 10. Two-way ANOVA for the effect o f  application frequency (App. Freq.) (factor one) and species combination (Sp. Comb.) 

(factor two) on change in thallus diameter.

Application frequency

Regardless o f the individual species combination effects, Tukey (HSD) analysis indicated that 

application frequency significantly affected thallus growth with xO (control -  no nutrient addition) being 

significantly different from all other application frequencies (Figure 9). Most thallus growth occurred up to 

x4 with decreased growth, compared with controls, occurring at higher application frequencies (x8 and 

xl6). Individual species responses are shown in Appendix-Figure 2.
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Figure 9. The effect o f application frequency on the mean total change in thallus diameter for P. caperata, P. saxatilis and X. 

parietina. Data not sharing a common letter differ significantly (Tukey HSD test P  = 0.05); ( x O & x l , f <  0.01); (xO & x2,

P < 0.01); (xO & x 4 , P <  0.01); (xO & x8, P  = 0.035); (xO & x l6 , P < 0.01). Bars are SEM, n = 72.

Species combinations

Thallus growth was affected significantly by lichen species combination regardless o f application 

fi-equency (Table 10). When thalli were placed in conspecific species combinations Tukey (HSD) analysis 

indicated that P. saxatilis grew less than both P. caperata {P <  0.01) and X  parietina (JP <  0.01) (Figure 

10).

In two-species mixtures thallus growth o f  all three species was similar. However, when placed in 

three-species mixtures thalli o f  P. caperata grew significantly more than those o f P. saxatilis 

(P <  0.01) (Figure 11).
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Figure 10. Total change in thallus diameter for conspecific species combinations o f P. caperata (Pc—»Pc), P. saxatilis (Ps—>Ps) and 

X. parietina (Xp—»Xp) for ail six application fi-equencies. Data not sharing a common letter differ significantly (Tukey HSD test P  =  

0.05). Bars are SEM, n = 36. -
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Figure 11. Total change in thallus diameter for all three-species combinations o f P. caperata (Pc—»Ps/Xp), P. saxatilis (Ps—»Pc/Xp) 

and X. parietina (Xp^Pc/Ps) for all six application frequencies. Data not sharing a common letter differ significantly (Tukey HSD 

test P  = 0.05). Bars are SEM, n = 36.
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3.4 Results-th a llu s  competition

Two-way ANOVA indicated that the number o f thallus overlaps made by P. caperata, P. saxatilis 

and % parietina were affected by both application frequency and lichen species combination (Table 11). 

There was no interaction between the two factors.

Effect DF MS F P

(1) App. Freq.: 5 0.36 5.16 <0.001

(2) Sp. Comb.: 11 0.40 5.62 <0.001

Interaction: 55 0.06 0.89 0.693

Error: 360 0.07

Table 11. Two-way ANOVA for the effect o f application frequency (App. Freq.) (factor one) and species combination (Sp. Comb.) 

(factor two) on the number o f  thallus overlaps.

Application frequency

Regardless o f species combination, Tukey (HSD) analysis indicated that application frequency 

significantly affected the number o f thallus overlaps, with xO (control -  no nutrients) being significantly 

different to x l,  x2 and x4 application frequencies (Figure 12).
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Species combinations

The number o f thallus overlaps made during the course o f this experiment were affected 

significantly by lichen species combination, regardless o f application frequency (Table 11). Tukey (HSD) 

analysis indicated that when thalli were placed in conspecific species combinations similar numbers o f  

thallus overlaps were made by all three species.

However, some heterospecific species combinations showed significant differences between the 

number o f thallus overlaps being made on neighbouring thalli. P. caperata overlapped its own thalli 

significantly less than it overlapped neighbouring thalli o f X. parietina {P <  0.001). This was also true 

when grown in three-species combinations (P < 0.001). Also P. caperata made significantly fewer overlaps 

when grown with P. saxatilis as a neighbour compared with the number it made in three-species 

combinations (P < 0.001) (Figure 13).

P. saxatilis made significantly fewer overlaps on its own thalli than on neighbouring thalli in three- 

species combinations (P = 0.05) (Figure 14). No significant differences in the number o f thallus overlaps 

were observed for X a t  any species combination.
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Figure 12. The effect o f application frequency on number o f  thallus overlaps (all species combinations). Data not sharing a common 

letter differ significantly (Tukey HSD test P  = 0.05); (xO & x l, P < 0.01); (xO & x2, P  < 0.01); (xO & x4, P  = 0.036). Bars are SEM, 

n = 72.
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Figure 13. The mean number o f thallus overlaps made, regardless o f  application frequency, for P. caperata at each species 

combination. Data not sharing a common letter differ significantly (Tukey HSD test P  = 0.05). Bars are SEM, n = 36. Arrow (—♦) 

indicates the direction o f competition, eg. Pe—»Ps indicates P. caperata overlapping P. saxatilis.
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Figure 14. The mean number o f thallus overlaps made, regardless o f application frequency, for P. saxatilis at each species 

combination. Data not sharing a common letter differ significantly (Tukey FISD test P  =  0.05). Bars are SEM, n = 36. For notation 

see Figure 13.
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3.5 Discussion

Nutrient addition to an ecosystem has wide ranging effects which depend upon the concentration, 

type o f nutrient and duration o f  addition. One o f the main effects on lichens observed here is the increase in 

thallus growth rate compared with control applications where no nutrients were supplied. This, in theory, 

could allow nutrient tolerant species to colonise areas o f the substrate rapidly, perhaps at the expense o f  

other species which may be removed through nutrient toxicity or as a direct result o f  competition. 

However, this was not observed during the course o f the experiment for the nitrophilous species X. 

parietina.

Does the addition o f  nutrients across a range o f  application frequencies increase lichen growth rates up to 

an optimum frequency o f  application? Furthermore, are changes in growth rate species specific?

It would appear that nutrient application and growth rate o f the lichen thallus are positively 

correlated up to moderate (x l, x2 and x4) application frequencies. However, when nutrient concentrations 

become too high (x8 and x l6 )  reduced thallus growth was observed, perhaps as a direct result o f nutrient 

toxicity (Nash, 1996) (Figure 9).

It was predicted that under nutrient enrichment P. saxatilis, an acidophytic species, would grow 

less than both P. caperata, a neutrophytic species, andX  parietina, a. nitrophilous species. This would be 

due to the nutrient solution having a pH o f 6.5 therefore sufficiently increasing substrate pH and resulting in 

the promotion o f slower thallus growth in acidophytics. This was only true in conspecific species 

combinations (Figure 10). In heterospecific pair-wise species combinations growth o f  P. saxatilis was 

similar to that observed for P. caperata andX. parietina. This suggests that P. saxatilis may well be able to 

tolerate elevations in pH and grow as well as neutrophytic and nitrophilous species, at least in the short term 

(one year).

An equally surprising result was observed with the thallus growth o f X. parietina  which was 

predicted to out-grow both P. caperata and P. saxatilis in nutrient enriched situations since it is a
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nitrophilous species and thrives in situations where nutrient enhancement occurs. One explanation may be 

due to the nutrient composition o f Hoagland’s Solution which contains N  compounds as potassium nitrate, 

ammonium hydrogen phosphate and ammonium molybdenum oxide (Appendix-Tables 4 and 5). Since X. 

parietina is abundant near bird perching sites and in areas where eutrophication from animals occurs, it may 

follow that nitrogenous compounds associated with fecal deposits are necessary to increase thallus growth 

in this species. An alternative explanation is that the calcareous nature o f X. parietina (Armstrong -  

personal communication) dictates a requirement for an elevated pH in order to survive. Such an elevation 

may be obtained from the fecal deposits o f birds which can fall between the pH range o f 5.0 -  8.0 

(Armstrong, 1984). At high nutrient application frequencies (x8 and x l6 )  thallus growth rates o f  all three 

species were significantly lower than controls, x l ,  x2 and x4 (Figure 9). This may suggest that nutrient 

toxicity reduces thallus growth, perhaps as a result o f effecting a breakdown in the symbiosis (Nash, 1996).

When these three species were placed in conspecific species combinations fewer overlaps were 

observed than when in two and three-species mixtures as initially predicted. Also conspecific thalli o f P. 

saxatilis grew significantly less than conspecific thalli o f both P. caperata and X  parietina  (Figure 10). 

The reason why this should occur significantly more in this species than in either P. caperata or X. 

parietina may be a consequence o f an elevation in pH which compromised the growth o f this particular 

acidophyte. Furthermore, the reduction o f growth along the points o f contact between neighbouring thalline 

margins may result in a ‘truce’ situation. This is common among crustose species (Pentecost, 1980) but 

observed on fewer occasions in foliose species since the less adpressed thalli are not restrained by the 

substrate and are therefore able to make overlaps more easily. Instead the leading edges o f foliose thalli 

tend to make contact and the resultant compressional forces serve to raise both thalli further above the 

substrate (personal observation).

All pair-wise combinations o f P. caperata, P. saxatilis and X. parietina produced similar thallus 

growth at all application frequencies. However, in three-species combinations P. caperata grew 

significantly more than P. saxatilis (Figure 11). This suggests that the growth rates o f thalli in three-species 

mixtures cannot be predicted from growth in two-species mixtures. Again, one explanation may be due to 

thallus morphology. Since all three species have thalli that rise above the substrate it is possible that contact 

between neighbouring thalli results in a reduction in thallus growth rate and that this is simply more 

pronounced in P. saxatilis.
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If morphological differences between lichen thalli are to account partially for the differences 

between growth rates it should follow that thallus growth o f P. saxatilis would be larger in the presence o f  

X. parietina than in the presence o f P. caperata since X. parietina has more adpressed thalli than P. 

caperata. This was not supported by the results o f this experiment.

Thallus growth o f X. parietina, regardless o f application frequency, was similar when grown with 

either P. caperata or P. saxatilis. This would appear to indicate that morphological differences between 

thalli o f these three species did not compromise the growth o f X. parietina  at any application frequency. 

Alternatively, if  thalli o f X. parietina  were being compromised by less adpressed neighbouring thalli o f P. 

caperata and P. saxatilis, the ability to tolerate an elevated nutrient status may be one method by which this 

species could compensate, particularly if  the growth o f P. saxatilis is being compromised by an elevated 

pH.

Does nutrient addition lead to an increased number o f  thallus overlaps and do competitively successful 

species make significantly more overlaps than other species in pair-wise combinations? Do conspecific 

thalli show few er thallus overlaps than heterospecific thalli?

At the start o f the experiment thalli within each sub-plot were approximately the same distance 

apart (5 mm) so any change in the growth rate o f a species ultimately determined the time taken for 

neighbouring thalli to make contact. Application frequency had a significant effect on the number o f thallus 

overlaps made during the course o f the experiment (Table 11).

Nutrient application at x l,  x2 and x4 resulted in significantly more thallus overlaps being made on 

neighbouring thalli than those observed under control (xO) application frequencies (Figure 12). This could 

have been predicted from the thallus diameter measurements which indicated that nutrient applications x l ,  

x2 and x4 produced significantly larger thallus growth than controls (Figure 9).

This increased growth rate resulted in a reduction in the time taken for neighbouring thalli to make 

contact. Whether one thallus successfully overgrew another appeared to be determined by differences in 

thallus morphology, with the less adpressed thallus usually overgrowing the more adpressed one. This was
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seen to occur with P. caperata which overgrew thalli o f X. parietina significantly more often than it 

overgrew its own thalli (Figure 13). Since the degree o f thallus adpression among conspecifics would be 

similar, no two competing individuals would necessarily have a competitive moiphological advantage. 

However, this would not always be the case in heterospecific species combinations. This could explain why 

P. caperata made significantly more overlaps on thalli o f X. parietina than on its own thalli.

Therefore it may be expected that in a heterospecific species combination where competing 

neighbours have similar thallus adpression the number o f overlaps would be similar to the number made 

when these species were placed in conspecific species combinations. This is supported by P. caperata 

which does not overgrow neighbouring thalli o f P. saxatilis more than its own thalli (Figure 13). 

Furthermore, P. saxatilis overgrows its own thalli and those o f P. caperata on a similar number o f  

occasions (Figure 14). As a result it could be suggested that these two species are conipetitively equivalent. 

This is somewhat surprising since the visibly thicker thalline lobes o f P. caperata should provide it with a 

competitive advantage when competing with the comparatively thinner lobes o f P. saxatilis.

However, when P. caperata and P. saxatilis are placed in three-species mixtures with X. parietina  

significantly more overlaps are observed than in conspecific combinations (Figures 13 and 14). This may 

be attributed to both species overgrowing the more adpressed thalli o f X. parietina  in preference to their 

own or each others thalli. However, when P. saxatilis was placed in heterospecific species combination 

with X. parietina similar numbers o f thallus overlaps to those made under conspecific combinations were 

observed (Figure 14). This may suggest that thalli o f P. saxatilis andX. parietina  are similar competitively 

speaking, and a competitive advantage is only seen when a third species (P. caperata) is present. However, 

this is unlikely since the thalline margin o f P. saxatilis is considerably less adpressed than that o f  X. 

parietina.

Alternatively it may be more realistic to assume that the ability o f  X. parietina  to tolerate elevated 

nutrient levels and/or its calcicolous nature (Armstrong -  personal communication) may have provided a 

small competitive advantage when placed in heterospecific species combination with thalli o f  P. saxatilis. 

It is also possible that an elevated pH compromised the growth o f P. saxatilis and therefore reduced its 

competitive ability. This could account for the similarity between the number o f thallus overlaps made by 

P. saxatilis o n X  parietina and on its own thalli (Figure 14).
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Although nitrophilous species like X. parietina  have the ability to utilise additional nutrients to 

promote growth rates, this can only be seen to provide a competitive advantage if  their thallus morphology 

permits sufficient overlaps o f neighbouring thalli.

The results o f this chapter are in broad agreement with the work o f Armstrong (1984; 1986 & 

2000). Furthermore it is clear that anthropogenic nutrient addition changes the competitive dynamics 

between species which may alter lichen community composition in the long term. This is illustrated by the 

findings o f Chapter Two which indicated that asymmetrical competition occurred between thalli o f  P. 

caperata and X. parietina. The competition between these two species becomes symmetrical following 

anthropogenic nutrient addition (Figure 15).

Pc Pc

P s < >  Xp

a

Figure 15. A competitive hierarchical pyramid for P. caperata (Pc), P. saxatilis (Ps) and X. parietina (Xp) under (a) no 

anthropogenic nutrient addition and (b) anthropogenic nutrient addition.
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It is clear that several factors dictate the ability o f a species to compete. Furthermore, any naturally 

selected advantage, such as the ability to reduce herbivore grazing by the production o f allelochemicals, 

could be significant in determining the competitiveness o f  a species (Armstrong, 1979; 1986; Rogers, 1990) 

since grazing by microarthropods reduces the thallus area and consequently decreases photosynthetic 

ability. In addition a thallus could become increasingly more adpressed as grazing from the lobe margin 

continues inwards towards the centre.
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Chapter Four

The intra- and interspecific competitive interactions of Parmelia caperata and P. reddenda growing on

beech (Fagus sylvatica).

4.1 Introduction

Lichens primarily compete on substrata for space and light and those species with larger, less 

adpressed, thalli will tend to overlap their neighbours more often during the process o f substrate 

colonisation. Field experiments have indicated that some epiphytic foliose species are more likely to 

overlap some neighbouring thalli than others giving rise to a competitive hierarchy (John, 1992).

The speed with which dominance hierarchies are formed may be related to aspect since this is 

clearly an important factor in determining thallus growth rates (Armstrong, 1975) and therefore determines 

the time taken for neighbouring thalli to make contact (Chapter Two).

The aim o f this study was to determine the intra- and interspecific competitive abilities between P. 

caperata and P. reddenda and to ascertain whether they occupy similar or different niches on the boles o f  

beech {Fagus sylvatica). How these species competed within lichen communities on the boles was also 

investigated using circumferential point sampling. This technique has been shown to be an effective 

method o f determining species distribution (Yarranton, 1972; John, 1992; John & Dale, 1995). To this end 

the following hypotheses were tested:

(i). Both P. caperata and P. reddenda are predicted to grow on boles in equal abundance 

within the sampling h e i^ t  (between 1.0 -  2.0 m) since field observations prior to the 

experiment suggested both o f these large foliose species were abundant on boles o f  beech.

(ii). The abundance o f these species should be related to aspect (N, S, E and W) since this has 

been shown to affect thallus growth rate.
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(iii). Competition between P. caperata and P. reddenda are predicted to be symmetrical 

(competitively equivalent). This assumption is based on the results obtained in Chapter 

Two where the thallus areas and the number o f thallus overlaps made between two large 

foliose species o f Parme/m were found to be similar (Table 7).

(iv). The morphological similarity between thalli o f P. caperata and P. reddenda may be 

reflected by similarities in thallus dry mass.

(v). The thallus morphologies o f P. caperata and P. reddenda should allow them to overlap 

smaller and more adpressed neighbouring thalli with ease. Therefore it is predicted that 

similar numbers o f overlaps will be made on thalli o f other lichen species by both P. 

caperata and P. reddenda.
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4.2 Materials and methods

Sampling

Twenty mature beech trees with a bole circumference greater than 50 cm at a height o f 1.0 m from 

the ground were randomly selected using the random number function on a scientific calculator (Sharp EL- 

9600) from a grid superimposed onto a map o f Lower Park at Lanhydrock Estate. This allowed grid squares 

to be selected at random. Trees nearest the selected grid squares were then sampled. Trees that had 

suffered lightening damage were not sampled.

The selected trees were point sampled at intervals o f 10 cm along circumferential line transects 

positioned 25 cm apart from 1.0 to 2.0 m. At each point lichens were identified to species and recorded 

together with aspect (± 20 degrees). The lowest transect was positioned 1.0 m from ground level in order to 

minimise animal disturbance, animal-induced eutrophication (Pirintsos et al., 1993) and vegetation around 

the base affecting lichen distribution.

Species that contacted either P. caperata or P. reddenda were noted along with the thallus being 

overlapped.

Analysis o f  competitive interactions

Intra- and interspecific competition was evident when neighbouring thalli overlapped each other. 

The number o f thallus overlaps made by P. caperata and P. reddenda at 10 cm intervals along five 

circumferential transects were counted at each o f four aspects (N, S, E and W). Only thalli that touched a 

sampling point were counted.

To compensate for the fact that more thalli o f P. caperata were present than P. reddenda the raw 

data were scaled for some G-analyses. This was achieved by summing the total number o f overlaps made at

61



a particular aspect and then dividing by the total number o f individuals o f P. caperata or P. reddenda 

present at that aspect (Figures 16, 17, 19, 20 and 21). In this way it was possible to make representative 

comparisons between these species and reduce the effect o f sample size in determining a significant 

relationship (John & Dale, 1995).

Statistical analysis

A three-way split-plot analysis o f variance (ANOVA) (Zar, 1996) was used to determine the effect 

of height (factor one with five levels), aspect (factor two with four levels) and licheri species (factor three 

with two levels) on the abundance o f P. caperata and P. reddenda on boles between 1.0 and 2.0 m (Table 

12). Tukey (HSD) multiple means test (Zar, 1996) was used to determine which means differed 

significantly.

Factor Levels

Height: 1 (1.00 m); 2 (1.25 m) 3 (1.50 m) 4 (1.75 m) 5 (2.00 m)

Aspect: 1 (North); 2 (South); 3 (East); 4 (West)

Species: 1 (P. caperata)', 2 (P. reddenda)

Table 12. Three-way split-plot ANOVA layout for the effect o f height, aspect and species on thallus abundance.

G-analyses were used to determine significant differences between the ratios o f  intra- and 

interspecific pair-wise combinations o f P. caperata and P. reddenda. For these analyses G was tested 

against the ratio o f overlapped thalli to non-overlapped thalli (Figures 1 6 ,17 ,19 , 20 and 21).

Where P. caperata and P. reddenda competed with neighbouring thalli o f other species significant 

differences between the number o f thallus overlaps made were tested against a 1:1 ratio (Figure 18) since it 

was proposed that P. caperata and P. reddenda would compete similarly with other lichen species. The 

Yates correction was used since DF = 1 throughout.
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Finally, two-way ANOVA was used to determine the effect o f  aspect and lichen species on the dry 

masses o f 1.5 cm diameter thallus discs. Tukey (HSD) multiple means test was used to determine which 

means differed significantly. All calculations were performed using Statistica™ 5.5 (StatSoft Inc., Tulsa, 

USA).
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4.3 Results -  thallus abundance

The effect o f  height, aspect and lichen species on the abundance o f  P. caperata and P. reddenda

Height and aspect had no effect on the abundance o f P. caperata or P. reddenda. However, there 

was a significant difference between the relative abundance o f these two species (Table 13). There was no 

interaction between height, aspect or lichen species.

Tukey (HSD) analysis indicated that there were significantly more thalli o f P. caperata than thalli 

o f P. reddenda {P <Q.OQ\).

Effect DF MS F P

(1) Site: 4 2.72 1.74 0.139

(2) Aspect: 3 2.08 1.33 0.264

(3) Sp. Comb.: 1 105.85 67.67 <0.001

Interaction 12: 12 0.55 0.35 0.978

Interaction 12: 4 2.07 1.32 0.259

Interaction 23: 3 0.63 0.40 0.750

Interaction 123: 12 1.23 0.78 0.665

Error: 760 1.56

Table 13. Three-way ANOVA for the effect o f height (factor one), aspect (factor two) and species (factor three) on the abundance o f  

P. caperata and P. reddenda on boles o f  20 beech trees between 1.0 and 2.0 m.
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4.4 Results -  thallus competition

Intraspecific competition

The number o f  overlaps made by P. caperata and P. reddenda on their own thalli was found to be 

similar on north, east and west facing aspects (Figure 16). Although on south facing aspects P. reddenda 

overlapped its own thalli significantly more often than P. caperata overlapped its own thalli (1 DF, G = 

8.35; P  <  0.01) (Figure 16), the total number o f intraspecific overlaps made by these two species was 

similar (1 DF, G = 3.54; P  =  0.06). All data for this analysis were scaled to reduce the effect o f  sample size.
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Figure 16. The number o f intraspecific overlaps for P. caperata (Pc) (shaded) and P. reddenda (Pr) (unshaded) represented as a % of  

the total overlaps made at each aspect by Pc and Pr taken from five circumferential transects on 20 beech trees. Data not sharing a 

common letter within an aspect differ significantly (P = 0.05). NS = not significant. The number o f intraspecific overlaps made at 

each aspect are shown next to the total number o f overlaps made at each aspect in parentheses: north: Pc; n = 37 (219), Pr; n = 6 (35); 

south: Pc; n = 10 (89), Pr; n = 23 (80); east: Pc; n = 24 (105), Pr; n = 10 (39); west: Pc; n = 22 (144), Pr; n =  6 (43).
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Interspecific competition

P. caperata competing with P. reddenda

The abundance o f  P. caperata and P. reddenda between 1.0 and 2.0 m resulted in many 

interthalline contacts being made between these two species. G-analysis using scaled data indicated that 

overall, regardless o f  aspect, thalli o f P. reddenda significantly overlapped more thalli o f  P. caperata than 

P. caperata did o f P. reddenda (1 DF, G = 4.37; P  = 0.04). This was particularly evident on north (1 DF, G 

= 11.03; P  <  0.01) and south (1 DF, G = 3.69; P  = 0.05) facing aspects (Figure 17).
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Figure 17. The number o f interspecific overlaps for P. caperata (Pc) (shaded) and P. reddenda (Pr) (unshaded) represented as a % o f  

the total overlaps made at each aspect by Pc and Pr taken from five circumferential transects on 20 beech trees. Data not sharing a 

common letter within an aspect differ significantly {P = 0.05). NS = not significant. The number o f interspecific overlaps made at 

each aspect are shown next to the total number o f overlaps made at each aspect in parentheses: north: Pc; n = 32 (219), Pr; n = 14 

(35); south: Pc; n = 2 (89), Pr; n = 7 (80); east: Pc; n = 10 (105), Pr; n = 5 (39); west: Pc; n = 5 (144), Pr; n = 2 (43).
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p. caperata and P. reddenda competing with other lichen species

Both P. caperata and P. reddenda competed with a variety o f  lichen species on boles between 1.0 

and 2.0 m (Table 14). However, P. caperata overlapped certain species that P. reddenda did not and vice 

versa.

Taking only those lichen species overlapped by both P. caperata and P. reddenda G-analysis 

(assuming a 1:1 ratio) indicated that regardless o f aspect, P. caperata made significantly more overlaps on 

neighbouring thalli o f other species than P. reddenda did (1 DF, G = 92.32; P  <  0.01). This was particularly 

evident on north (1 DF, G = 80.25; P  <  0.01), east (1 DF, G = 16.15; f <  0.01) and west (1 DF, G = 29.95; 

P <  0.01) facing aspects (Figure 18).
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Figure 18. The total number o f interspecific thallus overlaps made on 14 lichen species by P. caperata (Pc) (shaded) and P. 

reddenda (Pr) (unshaded) at each aspect. Data not sharing a common letter within an aspect differ significantly (P = 0.05). NS = not 

significant. North: Pc; n = 219, Pr; n = 35; south: Pc; n = 89, Pr; n = 80; east: Pc; n = 105, Pr; n = 39; west: Pc; n = 144, Pr; n = 43.
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Species N

P. caperata 

S E W N

P. reddenda 

S E W

Anisomeridium biforme 0 1 0 0 - - - -

Arthonia radiata 3 2 6 0 - - - -

Cladonia coniocraea 9 2 0 4 - - -

Enterographa crassa 29 20 6 14 1 7 0 0

Evemia prunastri 3 0 0 0 - - - -

Graphis scripta 9 0 0 0 0 1 2 0

Lecania cyrtella 5 0 0 4 - - - -

Lecanora chlarotera 0 2 0 0 0 3 0 0

L. conizaeoides 24 7 14 17 0 7 0 0

L jam esii 0 3 0 0 0 2 0 0

Lepraria incana - - - - 0 0 1 0

Opegrapha atra 0 6 10 0 0 0 2 0

Parmelia caperata 37 10 24 22 14 7 5 2

P. perlata 33 7 14 35 2 3 2 10

P. reddenda 32 2 10 5 6 23 10 6

P. saxatilis 5 0 0 2 - - - -

P. subaurifera - - - - 0 2 8 0

P. subrudecta - - - - 0 2 0 0

Pertusaria amara 17 0 0 6 - - - -

P. pertusa 10 2 3 14 0 2 2 0

Phaeographis dendritica 7 0 0 3 0 2 0 0

Phlyctis argena 5 2 1 4 0 5 4 5

Pyrenula macrospora 18 4 12 9 11 18 12 20

Pyrrhospora quemea - - - - 0 0 3 0

Usnea subfloridana 15 24 11 21 1 0 0 0

Total: 256 99 129 166 41 103 49 49

(-P. caperata): 219 89 105 144 = [557] - - - -

(-P. reddenda): - - - - 35 80 39 4343 = [197]

Table 14. Number o f overlaps made by P. caperata and P. reddenda on neighbouring thalli o f  other lichen species across five 

circumferential transects on the boles o f beech trees [Fagus sylvatica) related to aspect. The notation indicates no overlaps were 

observed.
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p. caperata and P. reddenda competing with Parmelia perlata

Parmelia perlata  was the only other large foliose species present that was observed to compete 

with P. caperata and P. reddenda. Scaling the data to reduce the effect o f  sample size indicated that 

regardless o f aspect, P. caperata overlapped P. perlata  significantly more often than P. reddenda did (1 DF, 

G = 7.10; P  < 0.01). However, there were no significant differences between the number o f overlaps made 

by this species on thalli o f P. perlata  at any individual aspect.

Overall, regardless o f aspect, P. perlata  made significantly more overlaps on thalli o f P. caperata 

than it did on P. reddenda (1 DF, G = 17.27; P <  0.01); This was particularly evident on north facing 

aspects (1 DF, G = 28.18; P  <  0.01). However, on south facing aspects the opposite was observed to occur 

(1 DF, G = 3.99; P  = 0.05) (Figure 19).
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Figure 19. The number o f interspecific overlaps for P. perlata  (Pp) on thalli o f P. caperata (Pc) (shaded) and P. reddenda (Pr) 

(unshaded) represented as a % of the total overlaps made at each aspect by Pp on Pc (north = 46; south = 12; east = 12 and west = 13. 

Total = 83) and Pp on Pr (north = 27; south = 7; east = 14 and west = 10. Total = 58). Data not sharing a common letter within an 

aspect differ signifieantly (P = 0.05). (Pp—>Pc: north = 9; south = 2; east = 4 and west = 3. Pp—»Pr: north =  1 ; south =  3; east = 3 and 

west = 2). Overlap data for P. perlata  on P. caperata and P. reddenda given in Appendix-Table 6.
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p. caperata and P. reddenda competing with Pyrenula macrospora

Pyrenula macrospora was overgrown significantly more often by Parmelia reddenda than by P. 

caperata (1 DF, G = 58.31; P <  0.01) on north (1 DF, G = 12.41; P  < 0.01), south (1 DF, G = 12.77; P  < 

0.01), east (1 DF, G = 6.99; P  <  0.01) and west (1 DF, G = 34.62; P  <  0.01) facing aspects (Figure 20). 

Data were scaled for this analysis to reduce the effect o f sample size.
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Figure 20. The number o f interspecific overlaps for P. caperata (Pc) (shaded) and P. reddenda (Pr) (unshaded) on Pyrenula 

macrospora (Pm) represented as a % of the total overlaps made at each aspect by Pc on Pm (north = 219; south = 89; east =1 0 5  and 

west = 144. Total = 557) and Pr on Pm (north = 35; south = 80; east = 39 and west = 43. Total = 197). Data not sharing a common 

letter within an aspect differ significantly (P = 0.05). (Pc—>Pm: north = 5; south = 2; east = 2 and west = 3. Pr—>Pm; north = 2; south 

= 5; east = 3 and west = 4).
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p. caperata and P. reddenda competing with Phlyctis argena

Thalli o f Phlyctis argena were overlapped significantly more by Parmelia reddenda than by P. 

caperata (1 DF, G = 9.33; P  <  0.01), with significantly larger number o f thalli being overlapped on east (1 

DF, G = 6.33; P  =  0.01) and west (1 DF, G = 4.70; P  = 0.03) facing aspects (Figure 21). Data were scaled 

for this analysis to reduce the effect o f  sample size.
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Figure 21. The numher o f interspecific overlaps for P. caperata (Pc) (shaded) and P. reddenda (Pr) (unshaded) on Phlyctis argena 

(Pa) represented as a % o f the total overlaps made at eaeh aspect by Pc on Pa (north = 219; south = 89; east = 105  and west = 144. 

Total = 557) and Pr on Pa (north = 35; south = 80; east = 39 and west = 43. Total = 197). Data not sharing a common letter 

within an aspect differ significantly (P=0.05). NS -  not significant. (Pc^Pa: north n=2; south n=l; east n=l and west 

n=l. Pr-^Pa: north n=0; south n=2; east n=2 and west n=l).

71



Thallus morphology has been shown to affect the competitive ability o f  a species and where a 

thallus is notably heavier a competitive advantage may be realised (Appendix-Table 7). However, two-way 

ANOVA indicated that there was no significant difference between the thallus dry masses o f P. caperata 

and P. reddenda and that dry mass was unrelated to aspect. There was no interaction between the two 

factors (Table 15).

Effect DF MS F P

(1) Aspect: 3 0.0001 0.57 0.64

(2) Species: 1 0.0001 0.46 0.50

Interaction: 3 0.0001 0.36 0.78

Error: 24 0.0002

Table 15. Two-way ANOVA for the effect o f  aspect and lichen species on thallus dry masses o f  32 x 1.5 cm discs (four per aspect) 

for P. coperato and P. reJrfewdifl taken from the boles o f  20 beech trees (Fagus .^'/vaft'ca) n = 16.
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4.5 Discussion

Do thalli o f  P. caperata and P. reddenda grow on boles in equal abundance within the sampling height? 

Furthermore, is abundance related to aspect?

The vertical zonation o f some epiphytic lichen species has been well documented (Hale, 1952; 

Harris, 1970; St. Clair et ah, 1986; John, 1992) and abundant species like P. caperata and P. reddenda 

show some vertical zonation patterns. There is evidence to suggest that P. caperata and P. reddenda have 

different patterns o f zonation on trees with the former having an optimum cover approximately one third o f  

the way up the tree while the latter occurs mainly in the middle regions o f the trunk (Harris, 1970). Such 

patterns may be explained in terms o f the individual thallus morphology o f the species and water 

availability (Harris, 1970) which varies according to the microtopography o f  the bark. Substrata with a high 

microtopography have a rougher surface than those with a lower microtopography and consequently remain 

damp for longer periods of time.

Despite the limited vertical distance (between 1.0 and 2.0 m) o f the circumferential sampling, P. 

caperata was significantly more abundant than P. reddenda (Table 13). Microenvironmental factors such 

as substrate pH, moisture levels and the microtopography o f the substrate would not be expected to change 

significantly over such a short vertical distance unless the boles were influenced by shading fi'om other 

vegetation or subject to sudden changes in directional growth resulting in a convoluted bole. All boles 

surveyed had vertical directional growth and were fi*ee firom shading by neighbouring vegetation. 

Therefore, the significantly greater abundance o f P. caperata on north, east and west facing aspects than P. 

reddenda (Table 13) may imply that P. caperata is zoned towards the lower third o f  the trunk as suggested 

by Harris (1970).

Alternatively, P. caperata may simply be able to overlap other species due to its thalli being large 

and less adpressed compared with the thalli o f its competitors, or it may just be a better disperser to trees 

and over time there may be larger numbers o f P. reddenda.

It has been claimed that P. caperata shows an optimum cover on oak trees aged 30 to 35 years. 

The decrease in cover after this time is said to reflect unfavourable growing conditions, thallus senescence

73



(Harris, 1970) or possibly succession. This was not evident on the 20 boles surveyed which contained 

significantly more thalli o f P. caperata than P. reddenda (Table 13). However, since the ages o f  the 20 

boles surveyed ranged between 75 and 90 years it is possible that P. caperata was previously more 

abundant than is evident today. Unfortunately there have been few lichen surveys conducted on the 

Lanhydrock Estate and none, to my knowledge, have recorded species abundance.

The abundance o f P. caperata and P. reddenda on boles between 1.0 and 2.0 m appeared not to be 

effected by aspect (F = 1.33; P  =  0.264) (Table 13).

Competitive interactions

Is competition between P. caperata and P. reddenda symmetrical (competitively equivalent)?

Intraspecific competition

At some positions on the trunk P. caperata and P. reddenda overlapped their own thalli. G- 

analysis indicated that significantly more intraspecific overlaps were made by P. reddenda than by P. 

caperata on south facing aspects only (1 DF, G = 8.35; P  < 0.01) (Figure 16). This may be a consequence 

of differences in thallus morphology between these two species. The lobes o f P. caperata and P. reddenda 

rise conspicuously above the substrate (personal observation) which facilitates competition, whether intra- 

or interspecific. Due to both abiotic and biotic interference some lobes will be either more or less adpressed 

than their conspecific neighbours which may cause a reduced or enhanced ability to overlap their own thalli. 

However, this is only speculative and overall, regardless o f aspect, both species made similar numbers o f  

intraspecific overlaps (1 DF, G = 3.54; P  =  0.06).
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Are morphological similarities between thalli o f  P. caperata and P. reddenda reflected by similarities in 

thallus dry mass? Do the thallus morphologies o f  P. caperata and P. reddenda allow them to overlap 

smaller and more adpressed neighbouring thalli with ease on a similar number o f  occasions?

Interspecific competition

Thalli o f P. caperata and P. reddenda were abundant on boles between 1.0 and 2.0 m and 

inevitably came into contact. When such competition occurred thalli o f P. caperata were overlapped 

significantly more often by P. reddenda particularly on north and south facing aspects (Figure 17). This 

may suggest that P. reddenda has some competitive advantage over P. caperata.

Microenvironmental factors, resistance to herbivorous grazing by microarthropods and aspect all 

affect the competitive success o f a species, but clearly morphological differences between thalli are also 

important, with heavier thalli having a competitive advantage when overlapping species with lighter thalli. 

Since both P. caperata and P. reddenda have thalli o f similar dry masses (Table 15) it is reasonable to 

suggest that the competitive advantage o f P. reddenda over P. caperata was not established through 

differences in thallus mass.

Both species have large foliose thalli with prominently raised thalline margins. Perhaps the thalline 

margins o f P. reddenda are more inflexible and less susceptible to mechanical deformation during 

competition with other foliose thalli. Alternatively there may be some allelopathic effect which confers a 

competitive advantage over other thalli. Initially, the secondary compounds produced by these two species 

were thought to be similar (Culberson, 1969) so this is perhaps unlikely to be the case.

However, P. caperata synthesises the />ara-depside atranorin (CigHigOg) under certain conditions 

but P. reddenda synthesises and stores it permanently (White & James, 1985). This may dictate a 

competitive advantage in P. reddenda by facilitating growth rates since it has been shown that the 

fluorescence maximum o f atranorin corresponds almost exactly to that o f chlorophyll (Rao & LeBlanc, 

1965) thereby promoting photosynthesis. However, the precise mechanism by which any realistic 

competitive advantage could be achieved remains uncertain.

The only other large foliose species present was Parmelia perlata. G-analysis o f the number o f  

overlaps made on this species indicated that overall, regardless o f aspect, P. perlata  was overlapped
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significantly more often by P. caperata than by P. reddenda (1 DF, G = 7,10; P <  0.01). Aspect did not 

affect the number o f overlaps made on thalli o f P. perlata  by P. caperata or P. reddenda. This could 

suggest that P. caperata has a more competitively efficient thallus than P. perlata. However, since P. 

perlata  overlapped P. caperata significantly more than it overlapped P. reddenda (1 DF, G = 17.27; P  < 

0.01), it seems reasonable to assume that both P. caperata and P. perlata  are competitively equivalent.

However, P. caperata only overlapped thalli o f P. perlata  89 times out o f a total o f  557 overlaps 

(16%) (Table 14) while P. perlata  overlapped P. caperata 52 times out o f  a total o f  83 (63%). P. reddenda 

overlapped thalli o f  P. perlata  17 times out o f a total o f 197 overlaps (8 .6 %) while P. perlata  overlapped 

thalli o f  P. reddenda 16 times out o f a total o f 58 (28%).

Therefore, since P. perlata  overlapped thalli o f P. caperata more than it did P. reddenda in a 

competitive hierarchical pyramid, P. reddenda would be at the top due to it having overlapped P. caperata 

significantly more often than the reciprocal (Figure 22).

Pr

Figure 22. A proposed competitive hierarchical pyramid for P. caperata (Pc), P. perlata  (Pp) and P. reddenda (Pr) based on the 

number o f thallus overlaps made by each species.

This suggests that perhaps P. reddenda may have a more competitively efficient thallus 

morphology than the other two species.
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Competition with crustose species

A variety o f other lichen species were also identified on the boles between 1.0 and 2.0 m that were 

in competition with P. caperata and P. reddenda. Seven species were overlapped exclusively by P. 

caperata while four were overlapped exclusively by P. reddenda (Table 14).

G-analysis testing against a 1:1 ratio o f  thallus overlaps made on neighbouring thalli by P. caperata 

and P. reddenda indicated that 14 species were overlapped significantly more often by P. caperata than by 

P. reddenda (1 DF, G = 92.32; P  < 0.01), particularly on north, east and west facing aspects (Figure 18). 

This is simply a function o f the larger abundance o f P. caperata on the boles than P. reddenda which allow 

proportionally larger numbers o f overlaps to be made on neighbouring thalli o f other species.

However, thalli o f Pyrenula macrospora were overlapped significantly more often by P. reddenda 

than by P. caperata (1 DF, G = 58.31; P  < 0.01) at all aspects (Figure 20). This may be explained by the 

presence o f more thalli o f P. reddenda being adjacent to thalli o f Pyrenula macrospora. Similarly, Phlyctis 

argena was overlapped by Parmelia reddenda significantly more often than by P. caperata (1 DF, G = 

9.33; P  < 0.01) at east and west facing aspects (Figure 21). This may be a consequence o f reduced 

competition fi'om adpressed crustose species facilitating the colonisation and growth o f  P. reddenda at these 

locations on the boles. This could suggest that P. caperata and P. reddenda do not occupy the same niches 

on the boles o f beech between 1 . 0  and 2 . 0  m.

If P. reddenda shares a niche with crustose species which offer less interspecific competition than 

foliose species this may suggest an escape strategy (Skellam, 1951) since it appears to be avoiding 

competition with large foliose species like P. caperata. Alternatively, P. reddenda may be a more efficient 

disperser to corticolous substrata than P. caperata or P. perlata  and, over time, it could exclude these and 

other foliose species from locations on boles where there is predominantly crustose lichen cover.
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Chapter Five

The effect of nutrient treatments on the growth and competitive abilities of Parmelia caperata and P.

reddenda onhotchiYoos {Fagussylvatica).

5.1 Introduction

As farming practices become ever more intensive lichen species are increasingly exposed to 

elevated nutrient levels. There is evidence to suggest that anthropogenic N  deposition far exceeds the N  

critical load, resulting in many European ecosystems suffering eutrophication (Emmett et al., 1995; Eugster 

et a l ,  1998) with further deposition leading to hypertrophication, where nutrient levels are greatly increased 

above those found naturally.

Further evidence suggests that such conditions cause changes in species composition within higher 

plant populations (Jomsgard et al., 1996; Kuylenstiema et al., 1998; Boyer & Zedler, 1999). For instance, 

in Dutch forests it has been observed that species composition has changed from a lichen-dominated to 

grass-dominated vegetation as a direct result o f hypertrophic conditions (Van Der Eerden et al., 1998).

Other effects associated with excess N  deposition include defoliation and deterioration o f  foliage in 

forest ecosystems which may result in the removal o f suitable habitats for epiphytic lichen species (Van Der 

Eerden et al., 1998). Furthermore, the increased algal growth that is observed under eutrophic and 

hypertrophic conditions (O’Dare, 1990; Wootton, 1991) covers the thallus and restricts light to the 

photobiont. This may ultimately lead to the complete loss o f certain species from trees (Gilbert & Purvis, 

1996).

Elevated nutrient levels have also been seen to cause changes in species composition o f  lichen 

communities (Vagts & Kinder, 1999) by increasing the radial growth rate o f nitrophilous species 

(Armstrong, 1984; Crittenden et a l ,  1994; Sanchez-Hoyos & Manrique, 1995; Miller & Brown, 1999), in 

some instances by as much as 15 -  32% per year (Lewis Smith, 1995), while inhibiting growth in 

nitrophobous (acidophytic) species (Armstrong, 1984; Vagts & Kinder, 1999). In such situations it has
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been proposed that competitive exclusion o f some lichen species might occur (Lawrey, 1981; Vagts & 

Kinder, 1999) therefore leading to a reduction in species diversity.

It is unclear what impact nutrient addition will have on the growth and competitive abilities o f  

individual lichen species. Furthermore, the use o f  lichen transplants to maintain species richness and 

diversity in storm damaged areas (Kew Gardens and Lanhydrock Estate) requires careful monitoring since it 

is uncertain how transplants will respond to new environments where nutrient levels may be different from 

the species previous environment.

The aim o f this chapter is to determine the effect o f elevated nutrient levels on the growth rates o f  

P. caperata and P. reddenda using a reciprocal transplant experiment conducted on the boles o f beech trees 

{Fagus sylvatica) within the Lanhydrock Estate. The growth o f P. caperata and P. reddenda under four 

nutrient applications and four species combinations will be assessed. The effect o f aspect on growth and 

competitive ability will not be assessed since it was previously found not to significantly affect the 

abundance o f P. caperata or P. reddenda on the boles o f beech trees (Chapter Four).

In this experiment thalli o f P. caperata (Pc) were transplanted into neighbouring colonies o f  itself 

(P c^P c) and P. reddenda (Pc—>Pr). Similar transplants were established for P. reddenda (Pr) (Pr—>Pr and 

Pr-^Pc). Here the transplanted thalli were in direct contact with neighbouring thalli resulting in the 

possibility o f immediate competition.

In addition, thalli o f P. caperata were transplanted into cleared areas within neighbouring colonies 

of itself (Pc^C l.Pc) and P. reddenda (Pc—>Cl.Pr). Again, similar transplants were established for P. 

reddenda (Pr-^Cl.Pr and Pr-^Cl.Pc). The purpose o f the cleared area was to allow the transplants to 

become acclimatised to their new environmental conditions prior to any competitive interactions taking 

place and furthermore, to reduce the effect o f physiological stress arising from fragmentation and 

transplantation (Seaward -  personal communication).

How P. caperata and P. reddenda competed intra- and interspecifically under different levels o f  

nutrient application and species combination was further assessed by counting the frequency o f overlaps 

made by each species. The transplantation o f one species into a conspecific or heterospecific colony should 

result in the beginning o f a competitive interaction over time. The use o f a reciprocal experimental design 

should provide some insight into whether competition between P. caperata and P. reddenda is 

asymmetrical or symmetrical under conditions o f anthropogenic nutrient addition. This should provide
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some insight into whether a dominance hierarchy exists between them. To this end the following 

hypotheses were tested:

(i). It is proposed that nutrient addition will increase lichen growth rates, as measured by 

changes in thallus diameter, up to an optimum frequency o f nutrient application compared 

with control applications o f distilled water (no nutrients).

(ii). Thallus growth rates should be larger when transplants are placed into cleared areas o f  

their own or other neighbouring thalli (Pc—>Cl.Pc, Pc—>Cl.Pr and Pr-^Cl.Pr, Pr—̂ Cl.Pc). 

This is based on the assumption that unimpeded thalli grow faster than impeded thalli. 

This can be measured by comparing with the appropriate species combinations that did not 

have cleared areas (P c^P c, Pc—>Pr and Pr—>Pr, Pr—»Pc).

(iii). If nutrient addition increases thallus growth rates compared with control nutrient 

applications, the time taken for neighbouring thalli to make contact should be reduced. 

This should increase the amount o f competition between P. caperata and P. reddenda as 

measured by the frequency o f thallus overlaps.

(iv). Although it is assumed that intraspecific competition is more intense than interspecific 

competition (Keddy, 2001) it is predicted that conspecific species combinations will show  

a lower frequency o f overlaps than heterospecific combinations since differences in thallus 

morphology dictate the competitive success o f a species.

(v). P. reddenda should out compete P. caperata since it appears at the top o f  a competitive 

hierarchical pyramid (Chapter Four) under conditions o f no experimentally elevated 

nutrient conditions. This will be tested by observing the frequency o f  overlaps made 

between these two species at each species combination.
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5.2 Materials and Methods

Substrata

Beech {Fagus sylvatica) is common throughout the British Isles and is a native species on both 

chalk and limestone soils (Perkins, 1984).

Transplants, confined to beech substrata, were established in Lower Park at the Lanhydrock Estate 

which offers a landscape feature comprising mainly ancient trees in a parkland setting. However, this area 

has only been managed as a wood pasture since the early eighteenth century and consequently the lichen 

flora present may be expected to reflect changes in management over this period (O’Dare, 1990).

Sixteen beech trees with a bole girth greater than 50 cm at a height o f 1.0 m were randomly 

selected within Lower Park (Figure 23). Beech has a relatively low microtopography compared with other 

species due to its smooth bark. This helped reduce the influence o f microtopography on growth and 

competitive ability and in addition aided the removal and re-establishment o f thallus transplants.
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Figure 23. Map o f the Lanhydrock Estate showing location o f Lower Park, surrounding parkland and estate buildings. The 

reciprocal transplants were established on boles within stands 1 - 5 .  Scale: 1 cm : 50 m.

Lichen material

A 1.5 cm diameter cork borer was used to cut out circular thallus discs (transplants) along with a 

small plug o f bark. Transplants were only removed from established colonies o f P. caperata and P. 

reddenda with thallus material taken from regions as near to the lobe edges as possible since these are the 

locations where most growth occurs (Armstrong & Smith, 1998). The bark plugs were glued in place using 

Bostik™ No. 1 all purpose adhesive which has been shown not to affect the growth rates o f some lichen 

species (Armstrong, 1981).

Four transplants were established for each species (Table 16) on each o f sixteen boles positioned 

between 1.0 and 2.0 m from ground level. The spatial position o f each transplant was determined by the 

location of established colonies of suitable size. Within these colonies only thalli having a diameter greater 

than four centimeters were selected since these are shown to have a more constant growth rate (Hale, 1967; 

Armstrong, 1973).
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Intraspecific competition was assessed by transplanting thallus discs o f P. caperata (Pc) and P. 

reddenda (Pr) into established neighbouring colonies o f themselves (Pc-^Pc and Pr—»Pr). Prior to placing 

the transplant a 1.5 cm thallus disc had to be removed from the recipient colony. The removed disc was 

used later in another transplant on the same bole. Transplants were also placed into colonies where a 2.0 cm 

diameter cleared area had been made. This provided a gap between neighbouring thalli o f 0.25 cm and 

prevented thalli from touching immediately (Pc-^Cl.Pc and Pr^Cl.Pr).

Interspecific competition was assessed by transplanting thallus discs o f P. caperata and P. 

reddenda into established neighbouring colonies o f the other species (Pc—>Pr and Pr^Pc). Transplantation 

into 2.0 cm cleared areas was also set up (Pc—>Cl.Pr and Pr-^Cl.Pc).

The use o f such reciprocal transplantation may provide an insight into whether a dominance 

hierarchy exists between P. caperata and P. reddenda or alternatively whether there is some degree o f niche 

separation between them.

Analysis o f  growth rates

A digital vernier gauge was used to measure the largest diameter o f the thalli prior to nutrient 

application. Measurements were recorded in July 1997, and at six monthly intervals thereafter until August 

1999 which provided an indication o f thallus growth for P. caperata and P. reddenda under different 

frequencies o f nutrient application and species combination.

However, interpretation o f the results was based exclusively on thallus diameters after two years 

growth at the end o f the experimental period (August 1999). These were subtracted from the initial thallus 

diameter (1.5 cm) in order to determine the mean change in thallus diameter for each species.
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Analysis o f  competitive interactions

Competition within and between species was evident when thalli overgrew each other. This 

required one thallus to overlap another at a point where they met. The frequency o f  overlaps for P. 

caperata and P. reddenda were counted at the end o f the experimental period and expressed as a percentage 

o f the total number o f overlaps that could theoretically have been made under each application frequency 

and species combination.

Experimental design

Thallus plugs o f 1.5 cm diameter were placed into conspecific and heterospecific species 

combinations (Table 16). Two factors were tested in this experiment, a nutrient addition factor (Hoagland’s 

Solution) with four levels (xO; x2; x4 and x l 6  frequencies o f application) and a species combination factor 

with eight levels (four conspecific and four heterospecific -  Table 16).

Nutrient treatments were randomly assigned to each o f the 16 boles which provided four replicates 

for each o f the four nutrient levels. Each bole contained one complete set o f eight reciprocal thallus 

transplants positioned between 1 . 0  and 2 . 0  m from ground level.

All transplants had been completed by February 1997. A  period o f one month was allowed prior to 

initial treatment with Hoagland’s Solution so that the species could acclimatise to their new environmental 

conditions and to reduce physiological stress (increased respiration) arising from transplantation and 

fragmentation (Seaward -  personal communication).
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Conspecific species combinations

Pc—>Pc P. ca/jerato transplanted into itself

Pc—>Cl.Pc P. caperata transplanted into a 2.0 cm cleared area o f  itself

Pr—»Pr P. reddenda transplanted into itself

Pr—>Cl.Pr P. rerfrfencia transplanted into a 2.0 cm cleared area o f  itself

Heterospecific species combinations

Pc—>Pr P. caperata transplanted into P. reddenda

Pc—>Cl.Pr P. caperata transplanted into a 2.0 cm cleared area o f  P. reddenda

Pr—>Pc P. reddenda transplanted into P. caperata

Pr—>Cl.Pc P. reddenda transplanted into a 2.0 cm cleared area o f  P. caperata

Table 16. Reciprocal species combination transplants for P. caperata and P. reddenda used on the boles o f  16 beech trees in Lower 

Park at the Lanhydrock Estate.

Nutrient treatment

Freshly prepared Hoagland’s Solution o f pH 6.5 (Appendix - Table 4) diluted to 10% original 

strength was used to saturate the transplanted thalli. This dilution was thought to be representative o f N  

concentrations found naturally within soil-based environments (British Society o f  Soil Science, 1999) and 

provided a N  concentration of 9.80 g dm'  ̂ (Appendix - Table 5).

Applications were randomly assigned to each tree (one application treatment per tree) at the 

following application frequencies:

(i). xO (applied 0 times with 16 applications of distilled water in 16 days)

(ii). x2 (applied twice with 14 applications o f distilled water in 16 days)

(iii). x4 (applied four times with 12 applications o f distilled water in 16 days)

(iv). x l 6  (applied 16 times with 0  applications o f distilled water in 16 days)
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Distilled water was applied for the remainder o f the 16 days to ensure consistent thallus wetting. 

This prevents variations in thallus water content from affecting growth rate acting through changes in 

NCAR.

Nutrient treatments were applied only during dry weather conditions to reduce dilution. Small 

paint brushes were used to apply the solutions in order to prevent runoff problems encountered when 

applying solutions to thalli attached to vertical substrata. Epiphytic lichens dry out quickly and it has been 

estimated that 1 -  2 ml o f water per gram o f thallus is required to cause rehydration (Pike, 1978). 

Therefore, application continued until saturation was visibly noted (a consistent darker colouration of  

previously drier thalli or drips forming on the leading edges o f already moist thalli).

Statistical analysis

Growth rate

Two-way ANOVA was used to determine which variable (application frequency or species 

combination) affected thallus growth rate. Tukey (HSD) multiple means test (Zar, 1996) was used to 

indicate which means differed significantly.
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Competition

Whether or not the ratio of intra- and interspecific overlaps to the total number o f overlaps made 

was independent o f application fi-equency and/or species combination was determined by G-analysis testing 

against a 1:1 ratio. Although competition between P. reddenda and P. caperata was predicted to be 

asymmetrical the use o f a 1 : 1  ratio is acceptable since both species are in equal abundance at the beginning 

o f the experiment. Yates correction was used throughout since DF = 1. All calculations were performed 

using Statistical^ 5.5 (StatSoft Inc., Tulsa, USA).

Missing thalli

Student’s t-test (Zar, 1996) was used to determine whether lichen thalli lost from each application 

frequency, regardless o f species combination, was significantly different from losses experienced by control 

applications (xO -  no nutrients).

87



5.3 Results -  thallus growth rate

Growth rates

Two-way ANOVA indicated that both application frequency and species combination had a 

significant effect on thallus growth rate. In addition the effect o f factor one was modified by the effect o f  

factor two (Table 17).

Effect DF MS F P

(1) App. Freq.: 3 1.02 112.17 <0.001

(2) Sp. Comb.: 7 0.07 8.31 <0.001

Interaction: 21 0.09 9.86 <0.001

Error: 50 0.01

Table 17. Two-way ANOVA for the effect o f application frequency (App. Freq.) (factor one) and lichen species combination (Sp. 

Comb.) (factor two) on the thallus diameters o f  P. caperata and P. reddenda.

Application frequency

Tukey (HSD) analysis indicated nutrient addition at x2 (P < 0 .01) and x4 (P < 0.01) frequencies o f  

application produced significantly larger thallus diameters than controls. The higher application at x l 6  

significantly reduced thallus growth compared with x2 (P < 0.01), x4 (P < 0.01) and controls (P < 0.01) 

(Figure 24).
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Figure 24. The effect o f application frequency on thallus diameters o f P. caperata and P. reddenda at all species combinations. Data 

not sharing a common letter differ significantly (Tukey HSD test P  = 0.05). Bars are SEM (xO n = 24; x2 n = 21; x4 n = 21 and x l6  n 

= 16).

Species combination

Thallus growth o f  P. caperata and P. reddenda was similar under most pair-wise combinations. 

However, when P. caperata was transplanted into a cleared area o f P. reddenda (Pc—>Cl.Pr) growth was 

significantly less than in other species combinations (Figure 25).
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Figure 25. The effect of species combination on the summed thallus diameters o f P. caperata (Pc) and P. reddenda (Pr) under each 

frequency o f nutrient application. Data not sharing a common letter differ significantly (Tukey HSD test P = 0.05). Bars are SEM 

(Pc^Pc n = 13; Pc-^Cl.Pc n = 10; Pc^Pr n = 8; Pc-^Cl.Pr n = 10; Pr-^Pr n = 13; Pr^Cl.Pr n = 10; Pr^Pc n = 9; Pr—>Cl.Pc n = 9).

5.4 Results -  thallus competition

Application frequency

G-analysis testing against a 1:1 ratio indicated that P. caperata and P. reddenda made similar 

numbers o f thallus overlaps at each application frequency. However, both species made significantly fewer 

overlaps at x l 6  than xO (1 DF, G = 7.76; P < 0.01), x2 (1 DF, G = 5.58; P  = 0.02) and x4 (1 DF, G = 4.56; P  

= 0.03).
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Species combinations

Individual scaled G-test results for all pair-wise and non-pair-wise intra- and interspecific 

competitive interactions between thalli o f P. caperata and P. reddenda are shown in Table 18. There were 

no significant differences between any species combinations.

Pc—»Pc versus: G P Pc—>Cl.Pr versus: G P

Pc-»Cl.Pc 0.65 0.42 Pr->Pr 1.82 0.18

Pc—>Pr 0.65 0.42 Pr-»Cl.Pr 0.04 0.85

Pc-»Cl.Pr 1.46 0.23 Pr—»Pc 0.04 0.85

Pr-^Pr 0.02 0.89 Pr^C lP c 0.04 0.85

Pr-»Cl.Pr 1.00 0.32

Pr-^Pc 1.00 0.32

Pr^C lP c 1.00 0.32 Pr—*Pr G P

Pr->Cl.Pr 1.30 0.25

Pc^Cl.Pc versus: G Pr—»Pc 1.30 0.25

Pc^Pr 0.00 1.00 Pr-»Cl.Pc 1.30 0.25

Pc-»Cl.Pr 0.16 0.69

Pr-*Pr 0.90 0.34

Pr->Cl.Pr 0.04 0.85 Pr—»Cl.Pr versus: G P

Pr—»Pc 0.04 0.85 Pr-^Pc 0.00 1.00

Pr-^Cl.Pc 0.04 0.85 Pr->Cl.Pc 0.00 1.00

Pc-^Pr versus: G P Pr^.Pc versus: G P

P c^C lP r 0.16 0.69 Pr->Cl.Pc 0.00 1.00

Pr—»Pr 0.90 0.34

Pr->Cl.Pr 0.04 0.85

Pr—»Pc 0.04 0.85

Pr-»Cl.Pc 0.04 0.85

T ablets. G-analysis summary table showing the frequency o f  thallus overlaps made by all species combinations o f  p. caperata and

P. reddenda in pair-wise competition,. P  = 0.05, DF = 1 throughout.
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During the course o f the experiment some transplanted thalli were lost (Table 19). Student’s paired 

samples t-test indicated that significantly larger numbers o f  thalli were lost fi'om application fi-equency x l 6  

than xO (ti4 = 2.366, P  = 0.03). Similar numbers o f thalli were lost from the remaining application 

frequencies.

Transplant Lost transplants at each application frequency

P c ^ P c  1 1 0  1

Pr-^Pr 1 0 1 1

Pc->Cl.Pc 1 1 2 2

Pr^C lPr 2 3 0 1

Pc^Pr 1 2 3 2

Pr->Pc 2 1 1 3

P c^ C lP r 0 1 2 3

Pr->Cl.Pc 0 2 2 3

Total: 8 11 11 16

Table 19. Number o f transplants lost for each apphcation frequency o f  nutrient solution at the end o f  the experimental period.
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5.5 Discussion

Does nutrient addition increase lichen growth rates, as measured by changes in thallus diameter, up to an 

optimum frequency o f  nutrient application compared with control applications o f  distilled water (no 

nutrients)? Are thallus growth rates larger when transplants are placed into cleared areas o f  their own or 

other neighbouring thalli?

The effect o f anthropogenic nutrient addition on lichen growth rates is o f great importance since the 

rate o f  thallus growth determines the rate at which neighbouring thalli make contact and this affects intra- 

and interspecific competition.

P. caperata and P. reddenda responded to nutrient addition in similar ways at all fi-equencies o f  

application. The findings o f this chapter suggest that nutrient addition at x2 and x4 application fi-equencies 

significantly increases thallus growth rates compared with controls (xO) and x l 6  (Figure 24). Further 

nutrient addition (x l 6 ) resulted in significantly reduced growth rates compared with controls and other 

application fi-equencies (Figure 24), perhaps as a direct result o f nutrient toxicity or a breakdown in the 

lichen symbiosis (Nash, 1996). These results are similar to those observed in Chapter Three (Figure 9).

Thallus growth o f P. caperata and P. reddenda was found to be similar under most species 

combinations and all application fi-equencies. Only when thallus growth in all species combinations were 

individually compared with growth observed when P. caperata was transplanted into a cleared area o f P. 

reddenda (Pc^Cl.Pr) were significant differences apparent. This could be attributed to only two replicates 

out o f four remaining at the end o f the experimental period combined with poor thallus growth under x l 6  

frequency o f nutrient application for this species combination.

This suggests that P. caperata and P. reddenda have similar rates o f thallus growth in both 

conspecific and heterospecific pair-wise combinations.
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Does nutrient addition increase the amount o f  competition between P. caperata and P. reddenda as 

measured by the frequency o f  thallus overlaps? D o conspecific species combinations show a lower 

frequency o f  overlaps than heterospecific combinations? Do thalli o f  P. reddenda compete asymmetrically 

with P. caperata?

Growth o f the lichen thallus is increased at x2 and x4 frequencies o f nutrient application compared 

with controls (xO) and x l 6  (Figure 24). Therefore the time taken for thalli to make contact under 

applications x2 and x4 should be reduced compared with control (xO) and x l 6  application frequencies. This 

rationale appears to be partially true since both species made similar numbers o f  overlaps at each 

application frequency. However, significantly more overlaps were made by both species at xO, x2 and x4 

application fr-equencies than at X16.

This confirms higher nutrient applications (x l 6 ) reduce thallus growth which in turn decreases thie 

number o f competitive interactions between neighbouring thalli. This is in broad agreement with the results 

o f Chapter Three.

The similar numbers o f overlaps at application frequencies xO, x2 and x4 may be a consequence o f  

interference competition whereby the production o f allelochemicals may inhibit a less adpressed thallus 

from overlapping a more adpressed one. Armstrong (1985) suggested that Parmelia conspersa may be an 

allelopathic species since it produces usnic acid. Interestingly, P. caperata produces usnic acid while P. 

reddenda does not. Under conditions o f nutrient enrichment the synthesis o f usnic acid might aid the 

competitive ability o f P. caperata when competing with P. reddenda. This may allow it to establish 

competitive equivalence with P. reddenda but only under conditions o f nutrient enrichment (Figure 26) 

since it was found that P. reddenda was at the top o f a competitive hierarchical pyramid when competing 

with P. caperata and P. perlata  where no nutrient solution had been added (Chapter Four).

Although the production o f allelopathic secondary compounds can reduce thallus growth and 

therefore compromise competitive success, both species synthesise the /?ara-depside atranorin which may 

increase growth rate by promoting photosynthesis since it has a fluorescence maximum corresponding 

almost exactly to that o f chlorophyll (Rao & LeBlanc, 1965). Atranorin synthesis may become more 

pronounced under conditions o f elevated nutrient status. Whether growth is increased uniformly in P. 

caperata and P. reddenda is uncertain.
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Figure 26. A proposed competitive hierarchical pyramid for P. caperata (Pc), P. perlata (Pp) and P. reddenda (Pr) under conditions 

o f nutrient enrichment based on the number o f thallus overlaps made by each species. Note that no overlap data were collected for Pp 

and its asymmetrical competition with Pc and Pr is based on data from Chapter Four.

It is feasible that the supply o f additional nutrients may allow usnic acid synthesis to occur without 

the trade off in thallus growth due to increased atranorin production. In addition, the presence o f  usnic acid 

in P. caperata may reduce thallus grazing by microarthropods which has been shown to cause substantial 

damage to thalli (Hilmo, 1994; Glenn et al., 1995). Although the use o f  allelochemicals is an appealing 

explanation it is only speculative since no measurements o f  secondary compounds were made.

Another possible explanation for the similarity in competition at xO, x2 and x4 frequencies o f  

nutrient application is that a ‘truce’ develops between neighbouring thalli and radial growth o f  both thalli 

stops at the point where the thalli make contact. This is most likely a consequence o f  the ability o f one 

thallus to overlap another which depends upon the morphology o f  the leading edge o f  individual thalli 

(Pentecost, 1980). During intraspecific competition the leading edges o f  conspecific thalli would have 

similar degrees o f  adpression and should produce similar numbers o f thallus overlaps between species. This 

was shown by P. caperata and P. reddenda when competing intraspecifically (Pc—»Pc and Pr-^Pr) (1 DF, 

G = 0.02; P  = 0.89) (Table 18).

During interspecific competition the leading edges o f foliose thalli may simply push against each 

other causing their lobes to be raised further from the substrate. This was observed on numerous occasions
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during the course o f this field experiment and may partially account for the similarity in competitive ability 

between P. caperata and P. reddenda (Pc^Pr and Pr^Pc) (1 DF, G = 0.03;

P  = 0.86) (Table 18) under conditions o f  nutrient treatment.

It would appear that competition between P. caperata and P. reddenda is symmetrical under 

conditions o f nutrient enhancement since both species make similar numbers o f thallus overlaps regardless 

o f application frequency and species combination. However, there is compelling evidence from the species 

survey carried out in Chapter Four that under conditions o f no experimentally added nutrients competition 

between P. caperata and P. reddenda is asymmetrical (Figures 17 and 22). This would tend to suggest that 

these species might occupy different niches on the boles o f  beech and that their degree o f niche separation 

may less important under conditions o f anthropogenic nutrient addition since P. caperata is able to compete 

symmetrically with thalli o f P. reddenda in areas where nutrient enrichment occurs.
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Chapter Six

Discussion

There are many abiotic and biotic factors which may act independently or indeed together to 

determine the growth and community structure o f  higher plant communities. The same factors may also be 

responsible for determining the growth rate o f a lichen thallus. Among the abiotic factors it appears that 

compounds o f  sulphur (80%) and nitrogen (NOy) are important since they contribute significantly towards 

environmental acidification, particularly at locally polluted sites where concentrations o f  these compounds 

are high. The National Expert Group on Transboundary Air Pollution have recently suggested that although 

the potential acidity due to S deposition has been reduced in the UK between 1989-1999, the relative 

contribution by N, particularly NO3 and has increased (NEGTAP, 2001).

The importance o f nutrient supplementation for increasing plant growth in environments where 

nutrients are limiting has long been recognised, as demonstrated by the Park Grass Experiments established 

in 1856 at Rothamsted by Lawes and Gilbert which are still in progress today (Tilman, 1982; 1987). 

Nutrient addition experiments have indicated almost all plants are nutrient limited in nature since their 

growth rate increases with supplementary fertilisation. However, these experiments also reveal that 

increased fertilisation causes a significant reduction in species diversity (Tilman, 1982). Such changes in 

community composition are easily recognised when experimenting with larger plant species like grasses. 

However, smaller plants demonstrate similar effects under conditions o f increased fertilisation but their 

changes in community composition may be easily overlooked. This is almost certainly the case with lichens 

despite growing on a wide variety o f substrata and covering a broad range o f ecological amplitudes.

Although there have been several attempts to reduce the rate o f N  deposition the total deposition in 

the UK is estimated to be 380 kt-N which approximates a mean deposition o f 17 kg N  ha'* (NEGTAP, 

2001). However, in certain areas o f the UK this mean value is exceeded. This is particularly the case in the 

south west o f England where N  deposition is estimated to lie within the range 17-25 kg N  ha'*. Therefore a 

better understanding o f how such eutrophic conditions may determine growth, competition and community 

structure is essential.
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To this end the nutrient addition experiments carried out in Chapter Three and Chapter Five 

suggested nutrient supplementation increased thallus growth up to an optimum application frequency. 

Application above the optimum resulted in a decline in growth rate presumably as a result o f nutrient 

toxicity. These results were in broad agreement with the nutrient addition experiments o f  Austin and Austin 

(1980) using grass grown in monoculture and in different species combinations across a nutrient gradient. 

The result that plants grew bigger when provided with supplementary nutrients is not in itself surprising. 

However, the grasses occupied different habitats in the field and therefore their response to nutrient 

supplementation was noteworthy (Keddy, 2001).

The species used in this thesis, Parmelia caperata, P. reddenda and P. saxatilis, occupy the same, 

or similar, substrata in the field but Xanthoria parietina is often abundant at eutrophic locations. In both 

transplant experiments (Chapters Three and Five) all four species demonstrated maximum thallus growth at 

nutrient application x4 and a reduction in growth at x l 6.

That all four species have similar rates o f growth under conditions o f nutrient supplementation is 

surprising since it was initially proposed that nitrophilous species like X. parietina would exhibit larger 

thallus diameters. Clearly X. parietina thrives in areas where nutrient enrichment occurs and this may 

simply indicate a mechanism for tolerating conditions o f nutrient toxicity which, above certain 

concentrations, are deleterious to other lichen species. This would allow it to colonise areas where lichen 

competition is perhaps less abundant. The idea that weak competitors might escape from superior 

competitors and therefore survive was proposed by Skellam (1951) and may be a factor worth considering 

with nitrophilous species like X. parietina. Escape strategies have been noted in higher plants that colonise 

salt marshes. Here Salicornia europa colonises the high salinity areas o f salt marshes in order to escape 

competition from (Keddy, 2001).

There have been many attempts to define the term competition (Milne, 1961) and correct its often 

misuse (Grime -  personal communication) where many authors have used it to represent the Darwinian 

struggle for existence (Grime, 2001). Confusion over a precise and accurate definition has led some authors 

to propose abandoning the term altogether (Harper, 1961). Grime (2001) claims the term competition is too 

important and far too useful to be allowed to suffer such a fate and proposes an extremely precise definition 

which considers competition as the tendency o f “neighbouring plants to utilise the same quantum o f  light, 

ion o f mineral nutrient, molecule o f water, or volume o f space” (Grime, 1979; 2001).
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However, this thesis considers competition in a less rigorous and mechanistic manner and therefore 

views it as the negative affects that one organism has upon another by consuming, or controlling access to a 

resource that is limited in availability (Keddy, 2001). The negative effect that one organism has upon 

another relates much more precisely to the negative effects arising from one lichen thallus overlapping 

another. In this case dominant thalli would directly control access to the resources o f  the subordinate thalli. 

This invariably occurs when lichen species possessing a less adpressed thalline margin overgrow their more 

adpressed neighbours as they compete for space and light on the substrate.

However, conspecific thalli have a similar morphology and intraspecific competition may result in 

a ‘truce’ with radial growth o f  both thalli being terminated at the points o f thallus contact (Pentecost, 1980). 

This is frequently observed in crustose species where the thalline margins are closely adpressed to the 

substrate. In foliose species the margins are not constrained by the substrate and are free to overgrow 

conspecific neighbours. Conspecific foliose thalli in dense populations make many intrathalline overlaps 

which suggest a competitive advantage must have been gained over neighbouring thalli. This may have 

been achieved through abiotic factors (wind and rain can flatten a raised thalline margin) and/or biotic 

factors (grazing by microarthropods, presence o f allelopathic compounds and small variations in genotype). 

In fact there is evidence to suggest that a diversity o f growth forms might evolve in conspecific populations. 

Such evidence arises from the identification o f different mycobionts within the same lobe, or different parts 

o f the lobe, o f two species o f Parmelia resulting in intrathalline differences (Armstrong & Smith, 1992). 

Furthermore, the concentration o f secondary compounds within the thallus differs significantly between 

lobes o f Parmelia conspersa (Nash, 1996) which could result in lobes that contain less secondary 

compounds being preferentially grazed.

The species surveys carried out in Chapter Two and Chapter Four suggested that conspecific thalli 

of P. caperata, P. reddenda, P. saxatilis andX. parietina  all made similar numbers o f intraspecific overlaps. 

Since the competitive effects o f conspecific neighbours are relatively equal it is likely that diffuse 

competition is partially responsible for determining conspecific community structure.

Where conspecific thalli overlap interference competition prevents the overgrown thallus from 

gaining further access to space and light. This usually results in the overgrown thalli initially becoming 

paler in colour (personal observation) as secondary compounds and thallus components are broken down 

arising from increased respiration in the overgrown portion. Prolonged overgrowth usually results in death
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o f  the subordinate thallus in the region o f overlap. However, there is evidence to suggest that marginal 

overlapping in some lichen species may be less detrimental since photosynthesis remains active for longer 

periods in the thicker centres o f  Lasallia pustulata thalli than the thinner margins during periods o f  thallus 

dehydration (Hestmark et al., 1997). Although this may be true for umbilicate lichens it is almost certainly 

not the case for species o f Parmelia and Xanthoria which would exhibit signs o f  deterioration due to their 

compressed habit and the fact that they grow primarily from the thallus margins (Hestmark -  personal 

communication).

At the Other end o f the competition continuum monopolistic competition occurs where one o f  the 

neighbouring species is the primary contributor to competition intensity with other species having a 

relatively minor effect. This may occur through increased fertilisation which tends to result in a shift away 

from diffuse competition towards monopolistic competition within a community (Keddy, 2001). However, 

this was not demonstrated by either P. caperata, P. saxatilis or X. parietina. Thalli o f  P. caperata however, 

competed asymmetrically with thalli o f X. parietina. This produced a dominance hierarchy with P. 

caperata at the top o f  the hierarchical pyramid (Figure 27).

Where experimental nutrient supplementation occurs (Chapter Three) symmetrical competition is 

still evident between P. caperata and P. saxatilis and between P. saxatilis and X. parietina. However, P. 

and X n o w  also demonstrate symmetrical competition (Figure 27).

Pc Pc

Ps < >  Xp

Figure 27. A proposed competitive hierarchical pyramid for thalli o f  P. caperata (Pc), P. saxatilis (Ps) and X. parietina (Xp) under 

conditions o f (a) no experimentally added nutrients and (b) nutrient supplementation. The nutrient-driven change from asymmetrical 

(a) to symmetrical (b) is indicated using wider arrows.
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It would appear that nutrient supplementation has stimulated a change from transitive competition 

(Krebs, 1994) where a linear hierarchy existed between P. caperata and X. parietina  to intransitive 

competition where neither species is seen to exert a dominant effect over the other.

Changes in pH as a result o f  adding Hoagland’s Solution (pH 6.5) should not directly affect P. 

caperata since it is a neutrophytic species. Therefore it may be assumed that any compromise in 

competitive ability shown by P. caperata under conditions o f experimental nutrient supplementation may 

have arisen from either nutrient toxicity which can stimulate excessive algal growth over the thallus (Scott, 

1960; O’Dare, 1990) thereby reducing photosynthetic ability, or by a breakdown in the symbiosis (Scott, 

1960; Nash, 1996). It is also feasible than an osmotic effect could have been responsible but this would 

have been almost impossible to determine accurately during the course o f the experiment.

Since thalli o f P. caperata are considerably less adpressed than those o f  X. parietina it can 

potentially make larger numbers o f overlaps on this species than the reciprocal. Given that X. parietina can 

tolerate eutrophic and even hypertrophic conditions, as witnessed by its abundance near livestock farms and 

bird perching sites, this may be one strategy by which it may escape continuous competition pressure from 

P. caperata and other large foliose species. In these eutrophic locations, although foliose species with 

prominently raised margins are not particularly common (personal observation), there is usually an 

abundance o f  crustose species which may explain why X. parietina  is able to establish so successfully. This 

is primarily due to the fact that adpressed thalli will always lose when competing with thalli that have a 

superior ability to overlap neighbouring thalli (Hestmark -  personal communication). This may indicate 

that some degree o f niche separation exists between P. caperata andJf. parietina.

Dominant species are usually recognised by their numerical abundance (Krebs, 1994) and the 

species survey conducted on the boles o f  beech suggested that P. caperata was the dominant foliose lichen 

species (F = 67.67; P  <  0.001) (Chapter Four). However, P. reddenda made significantly more overlaps on 

thalli o f P. caperata on both north (1 DF, G = 11.03; P  < 0.01) and south (1 DF, G = 3.69; P  =  0.05) facing 

aspects than P. caperata made on P. reddenda (Figure 17). This may suggest that P. reddenda has a more 

competitively efficient thallus morphology than P. caperata and competes asymmetrically with it. On east 

and west facing aspects competition between these two species was symmetrical. This may have resulted 

from thalli pushing against each other without actually recording an overlap (personal observation).
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Under conditions o f experimental nutrient supplementation (Chapter Five) competition between P. 

reddenda and P. caperata became symmetrical rather than tending towards further monopolistic 

(asymmetrical) competition by P. reddenda which would further exclude other species by increasing its 

competitive effects upon neighbours (Keddy, 2001) (Figure 28).

Pr Pr

PpPc < Pp

Figure 28. A proposed competitive hierarchical pyramid for thalli o f  P. caperata (Pc), P. reddenda (Pr) and P. perlata  (Pp) under 

conditions o f (a) no experimentally added nutrients and (b) nutrient supplementation. The nutrient-driven change from asymmetrical 

(a) to symmetrical competition (b) is indicated using wider arrows. Note that in (b) no overlap data were collected for Pp and its 

asymmetrical competition with Pc and Pr is assumed to remain unchanged.

Symmetrical competition between thalli o f P. caperata and P. reddenda may be a consequence o f  

additional nutrients facilitating the production o f secondary compounds like usnic acid in P. caperata and 

not in P. reddenda. In this way thalli o f P. caperata may achieve symmetrical competition with those o f  P. 

reddenda through mechanisms o f interference competition. This allelopathic effect has been observed in 

thalli o f  Parmelia conspersa which also produce usnic acid (Armstrong, 1986).

Alternatively the leading edges o f competing thalli o f  P. caperata and P. reddenda may push 

against each other causing their margins to be raised further from the substrate without actually overlapping 

each other. This was observed on numerous occasions during competitive encounters between these two 

species during the course o f  the species survey (Chapter Four) and reciprocal transplant experiment 

(Chapter Five).
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Under conditions o f no experimental nutrient supplementation asymmetrical competition between 

P. reddenda and P. caperata will tend to eventually exclude P. caperata from niches occupied by P. 

reddenda and lead to the formation o f a dominance hierarchy (Keddy, 2001) with P. reddenda at the top. 

Symmetrical competition between P. reddenda and P. caperata allows both species to coexist.

That P. reddenda and P. caperata demonstrate symmetrical competition in the presence o f nutrient 

supplementation runs contrary to the predictions o f an equilibrium model o f resource competition. The 

model predicts that addition o f nutrients which are limiting the growth o f some species, and the subsequent 

competition for these nutrients, should result in changes to community structure whereupon decreases in 

species richness and evenness are observed (Tilman, 1982; Rajaniemi, 2002).

The apparent dominance o f P. caperata may be the result o f large numbers o f this species in the 

environment and may not be the result o f competition with P. reddenda or any other lichen species. The 

abundance o f P. caperata may be a consequence o f it having better dispersal and colonisation mechanisms 

than P. reddenda. Since coexistence requires a trade-off in competitive ability versus dispersal ability 

(Tilman & Kareiva, 1997) this may partially explain why P. caperata is more abundant yet P. reddenda is 

the better competitor. The use o f trade-offs in establishing coexistence has been demonstrated in two 

species o f fungi. Aspergillus is competitively dominant over Pénicillium. However, Pénicillium  is capable 

o f producing a greater number o f daughter colonies and is a better coloniser o f new sites than Aspergillus. 

This allows both species to coexist within the same local environment (Armstrong, 1976b).

Alternatively P. caperata and P. reddenda may be in the process o f establishing a dominance 

hierarchy which may change over time through succession and ultimately favour P. reddenda as the 

dominant species in terms o f greater abundance. That species take different periods o f time to respond and 

do not react instantaneously, as assumed by the Lotka-Volterra model, is an important consideration when 

looking at changes in community structure.

Multispecies coexistence occurs because the species at the top o f a competitive hierarchical 

pyramid cannot occupy all sites simultaneously. The empty sites not occupied by the dominant species 

provide ’homes’ for less efficient competitors if  they are sufficiently good dispersers. Coexistence therefore 

occurs because local displacement by the best competitor is never permanent. When the best competitor 

dies its site may become free for colonisation by the less efficient competitor (Tilman & Kareiva, 1997).
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This may go some way to describing the competitive interactions that occur between P. caperata and P. 

reddenda when no additional nutrient supplementation's provided.

Competition for nutrients is the major factor determining the species composition o f natural plant 

communities (Tilman, 1982). The mechanisms by which changes to community structure occur are 

certainly complex and there is evidence to suggest that species interactions along gradients o f resource 

availability may additionally depend on abiotic factors (Pugnaire & Luque, 2001). Interestingly maximal 

plant diversity can occur on soils o f intermediate fertility with low and high fertility soils supporting a much 

lower species richness (Grime, 1973). In fact two o f the most species-rich plant communities in the world 

occur on very nutrient poor soils located in the Fynbos o f South Africa and the heath scrublands o f  

Australia. Nearby communities on more nutrient rich soils are reported to have a much lower plant species 

richness (Tilman, 1982). Therefore, only the addition o f  one or more nutrients which are limiting the 

growth o f some species should result in changes to community structure. Where soil is sufficiently nutrient 

rich further fertilisation will result in a reduction in species diversity (Tilman, 1982).

Chapters Three and Five indicate that experimental nutrient supplementation results in a swing 

fi'om asymmetrical competition towards symmetrical competition. Therefore this would not result in a 

reduction in species diversity. That P. reddenda competes asymmetrically with P. caperata under 

conditions o f no experimental nutrient supplementation (Chapter Four) may indicate that these two species 

have some degree o f niche separation in order to coexist. This is further supported by P. reddenda making 

significantly more overlaps on Pyrenula macrospora (1 DF, G = 58.31; P  < 0.01) at all aspects (Figure 20) 

and Phlyctis argena on east (1 DF, G = 6.33; P  = 0.01) and west (1 DF,

G = 4.70; P  = 0.03) facing aspects (Figure 21) than P. caperata made on these crustose species (Chapter 

Four). This is simply a fimction o f more thalli o f P. reddenda situated next to crustose species therefore 

reinforcing the idea that P. reddenda and P. caperata occupy separate niches in order to coexist on the boles 

of beech.

The reciprocal transplant experiment (Chapter Five) indicated that experimental nutrient 

supplementation allowed P. reddenda and P. caperata to compete symmetrically (Figure 28). Therefore, if  

some degree o f niche separation does exist between P. reddenda and P. caperata it clearly becomes less 

important under conditions o f nutrient supplementation.
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Understandably the use o f anthropogenic nutrient addition to promote plant growth and improve 

crop yields is a sensitive environmental issue. From 1939 to 1981 the amount o f inorganic fertiliser used in 

the U.K increased by 550% (Hayward, 1992). It has recently been reported that addition o f  liquid manure 

on farm land may be restricted to applications during October only. This is planned to take effect from 

2003 in an attempt by the Government to reduce soil nitrate levels which cause contamination and also to 

reduce the numerous complaints relating to noxious smells during the tourist season. It has been suggested 

that three times the quantity will be spread during October on an estimated 15, 000 farms across Britain. 

This represents approximately 15% of the countryside. It is thought the increased slurry spread will be 

absorbed by plants during cultivation (Elliott, 2002).

Such large amounts o f N  based slurry deposited onto the land over such a short time period has the 

potential to create eutrophic or even hypertrophic conditions resulting in changes to higher plant community 

structure which in turn will effect the local lichen community structure. Any reduction in species diversity 

o f lichen communities or change in their competitive interactions may alter the interspecific competitive 

abilities o f higher plants (Newsham et al., 1995) and affect the interception o f rainfall and the deposition o f  

water and nutrients in woodlands (Knops et a l ,  1996). Therefore any change in lichen community structure 

resulting from anthropogenic nutrient addition may have ramifications within higher plant communities. 

This in itself is a strong argument for not overlooking the effect nutrient application has on lower plant 

communities.

Although there is compelling evidence for increased fertilisation causing significant reductions in 

species diversity (Tilman, 1982; Wilson & Tilman, 1991; Wootton, 1991; Marschner, 1995; Schellberg et 

al., 1999) it would appear that this may not always be the case with lichen species. That competition 

between P. caperata and X. parietina and between P. reddenda and P. caperata becomes symmetrical 

under conditions o f increased fertilisation suggests that although the competitive interactions between 

species have changed there is not necessarily a reduction in species diversity. Clearly it could be argued 

that since these species are now competing with one another symmetrically there will be increased 

competition pressures on other neighbouring thalli which could result in some species being excluded.

This is an area open to further research but such a swing towards monopolistic competition in both 

higher plant and lichen communities is a prediction o f the competitive hierarchy model which assumes that 

all species have the best performance in terms o f size and growth rate at the same end o f  the resource
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gradient. This is the commonest situation for plants -  and also perhaps for some lichens -  which all share a 

requirement for a few basic resources (light, water and mineral nutrients). A  second assumption is that the 

species vary in competitive ability in a predictable manner as a result o f resource acquisition or ability to 

interfere with neighbours. This is clearly demonstrated in some lichen communities with interference 

mechanisms such as prominently raised thalline margins and the production o f  secondary allelopathic 

compounds.

Therefore the competitive hierarchy model is predictive and may be used to determine the order in 

which species will be distributed along a resource gradient. Whether this model can satisfactorily predict 

the position o f foliose lichen species like P. caperata, P. reddenda, P. saxatilis and X. parietina in terms o f  

their competitive hierarchy is disputable since it predicts monopolistic competition arising through 

competitive asymmetry which may not always be true (Chapters Three and Five).

The model further assumes that competitive abilities are negatively correlated with fundamental 

niche width (a function o f  a species ability to efficiently disperse and colonise new sites) perhaps due to a 

trade off between ability for interference competition and ability to tolerate low resource levels. In a 

competitive hierarchy the dominant species occupies the preferred end o f the gradient and the subordinates 

are displaced down the gradient at a distance determined by their position in the hierarchy., This is almost 

certainly the case with P. caperata which appears above X. parietina  in a dominance hierarchy (Chapter 

Two) and P. reddenda which appears above P. caperata (Chapter Four).

Although during the course o f these experiments some transplants were subject to animal 

interference (Chapter Three) and some thalli were lost resulting in a smaller number o f replicates than 

anticipated (Chapter Five) there is nevertheless sufficient evidence to suggest that nutrient addition 

increases radial growth rate in lichens up to an optimum application and therefore reduces the time taken for 

neighbouring thalli to make contact. Furthermore there is evidence to suggest that under conditions o f  

nutrient supplementation the direction o f competition (symmetrical or asymmetrical) between two lichen 

species can change and such a change may not necessarily result in a monopolistic situation arising where 

one o f the species becomes dominant. Therefore there is a possibility that when asymmetrical competition 

changes to symmetrical competition under conditions o f nutrient supplementation a reduction in species 

diversity may not necessarily follow. This could partly explain why there is a lack o f compelling evidence
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to support competitive exclusion among lichens. In fact the replacement o f some species by others is 

thought to be simply a process o f succession (Lawrey, 1991).

The use o f fertilisation to increase crop yields therefore needs to be viewed in a much broader 

context that encompasses the impact elevated nutrient levels have on lower plant communities. Such 

considerations would certainly be worthwhile if  deleterious changes to lichen community structure, and in 

turn higher plant community structure, are to be avoided in the future.
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Appendix-Tables

Appendix

Image Analyser

288
193

473

258

353

634

617

490

229

548

121

325

760

442

406

109

123

512

206

117

811

367

181

203

178

Counting

281

183

466

252

349

625

609

483

226

541

119

319

753

436

396

104

119

505

201

113

799

358

177

200

177

Appendix-Table 1. Thallus areas taken from 50 photographs calculated using an image analyser and by counting whole squares and 

part squares on 2 x 2 mm  ̂ graph paper. Paired samples t-test indicated that the two data sets were not significantly different (t4g = 

0.106; P  = 0.916).
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Treatment Number of Number of %

(App. Freq.) thalli present thalli lost thalli lost

0 840 166 19.76

1 504 122 24.20

2 504 114 22.62

4 504 125 24.80

8 504 104 20.63

16 504 103 20.44

Appendix-Table 2. Lichen thalh lost from all slates for each treatment between July 1994 and May 1995.

Treatment % thalh lost for each species

(A p p . Freg.l P. caperata P. saxatilis X. parietina

0 9 49 41

1 11 35 53

2 7 36 56

4 7 46 46

8 13 38 48

16 20 47 32

Appendix-Table 3. Percentage o f  thalh lost from all slates for each treatment between July 1994 and May 1995.
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Concentration Use at

Solution Reagent fg dm'b (ml dm'b (mMl

1 KNO3 60.66 600 1 0 .1 1

2 NH4H2PO4 11.5 100 11.50

3 MgS04.7H20 49.29 200 24.64

4 CaCl2.2H20 73.51 500 14.70

5 H3BO3 0.57 9.25 6.16

MnCl2.4H20 0.36 1.83 19.67

ZnS04.7H20 0.045 0.153 29.41

CUSO4.5 H2O 0.016 0.064 25.00

(NHt)6M07024.4H20 0.087 0.07 124.29

6 FeNaEDTA 21.79 56.6 38.50

Appendix-Table 4. The composition o f Hoagland’s Solution used in each treatment.

Concentration

Nitrogen

Reagent %

KNO3 13.86

NH4H2PO4 12.18

(NH4)6M07024-4H20 10.03

(g dm' )

8.40

1.40 

0.009

Nitrate or ammonium

61.35

14.79

12.90

(g dm' ) 

37.20 

1.70 

0.01

Appendix-Table 5. The amount o f nitrogen, nitrate and ammonium as a percentage and in grams per litre (g dm'^) present in 

Hoagland’s Solution
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p. perlata —» P. caperata 

North: 31 (46)

South: 3 (12)

East: 7(12)

West: 11(13)

P. perlata —> P. reddenda 

2(27)

5 (7)

4(14)

5(10)

Appendix-Table 6. The frequency o f  thallus overlaps made by P. perlata  on thalli o f  P. caperata and P. reddenda at each o f four 

aspects. Number o f  thalli o f  P. perlata at each aspect are show in parentheses.

Thallus dry mass (g)

Parmelia caperata Parmelia reddenda 

North: 0.035 (0.0065) 0.035 (0.0065)

South: 0.020 (0.0041) 0.033 (0.0095)

East: 0.028 (0.0085) 0.025 (0.0050)

West: 0.028 (0.0103) 0.033 (0.0095)

Appendix-Table 7. The mean dry masses o f  1.5 cm diameter thallus discs o f Parmelia caperata (n=16) and P. saxatilis (n=16) at 

each o f four aspects with standard error in parentheses.
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Appendix-Figures

U V w X Y Z

A 0 16 4 4 2 1

B 1 0 8 2 8 16

C 8 1 2 1 0 0

D 16 4 4 0 2 16

E 8 0 1 8 8 0

F 16 0 4 2 2 1

G 0 0 4 16

Appendix-Figure 1. Random assignment o f  the six treatments as arranged at sites 1 and 2. The numbers represent the frequency o f 

each appUcation o f  Hoagland’s Solution per 16 days. The letters allow the coordinates o f each slate to be estabUshed for treatment at 

the correct frequency o f application.

0.15

tf) w

o 2 -0.05 -

-0.15 -J
Application frequency

p. caperata

P. saxatilis 

X. parietina

Appendix-Figure 2. Individual species responses o f  P. caperata, P. saxatilis and A", parietina to application o f  Hoagland’s Solution. 

Bars are SEM.
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Appendix-Figure 3. Individual species responses o f  P. caperata and P. reddenda to application o f Hoagland’s Solution. Bars are 

SEM.
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Appendix-Plates

Appendix-Plate 1. The 40 slates used in the transplant experiment in Chapter Three randomly positioned on the flat roof of a garden 

shed. The green netting used to reduce animal disturbance is just visible.

Appendix-Plate 2. The camera stand used to photograph individual slates for the transplant experiment in Chapter Three.
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