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Abstract

The work presents a numerical investigation of gasoline direct injection and the resulting early development of
spray plumes from an 8-hole injector (ECN Spray G). The objective is to evaluate the impact on the droplet size
distribution statistics from the assumed model physics, particularly for the small scales. Two modelling approaches
are compared: Eulerian-Lagrangian Spray Atomisation with Adaptive Mesh Refinement (ELSA-AMR) and a stochastic
fields transported-PDF method (ELSA-PDF). The two models simulate the small scales and sub-grid droplet physics
with different approaches, but based on the same concept of transport of liquid surface density. Both approaches predict
similar liquid distributions in the near-field comparable to experimental measurements. The spray breakup patterns
are very similar and both models reproduce quasi log-normal droplet distributions, with same overall Sauter Mean
Diameters. The ELSA-PDF approach shows a different break-up behaviour in droplets originating from the dilute region
and those originating from the dense core region. The transition from Eulerian to Lagrangian can be observed in the
ELSA-AMR predicted distribution with an abrupt change in the droplet size distribution. Both methods are able to

produce similar droplet size distributions below filter width/grid size resolution.
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Introduction

The challenges of characterising sprays in internal Combus-
tion (IC) engines has resulted in a technological bottleneck
in the development of a new generation of, low carbon and
low soot, efficient engines. In the year 2017, more than
half of all new cars and approximately half of light truck
sales feature Gasoline Direct Injection (GDI) systems' and
this market share will continue to increase as manufacturers
introduce more advanced engines into the market. The suc-
cessful implementation of a GDI system requires a thorough
understanding of the fuels behaviour in-cylinder. The fuel
distribution has a significant impact on the subsequent com-
bustion and the emissions outputs of the engine. Modelling
the complete spray atomisation process is challenging, as
different liquid-gas break mechanisms occur in different
parts of the spray system. Recent developments in break-up
models recently have focused on droplet fragmentation and
”secondary” break-up models. Such approaches assume the
droplets are isolated, subject to either capillary or shear flow
instabilities.

In GDI injectors, the large jet exit velocity combined
with the presence of bore holes can create compressible
effects (cavitation, hydraulic flip). These effects, in turn, can
affect the flow near the nozzle and the subsequent liquid
break-up. GDI injectors combine dense liquid regions, where
break-up is produced by ligament forming processes, and
dilute regions where liquid break-up occurs at a different
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scale. Computational models that accurately solve the inter-
phase boundary, such as Volume-of-Fluid (VOF), Level-
Set or similar methods, are very expensive in the range
of Weber numbers that GDI injectors operate. Unpractical
meshes of several billion grid points are required if the
near-field breakup is to be resolved accurately. The cost
of the simulation will also increase if phase-change and
compressible effects are also to be included.

A new intermediate class of methods have been growing
in popularity based on the concept of modelling the liquid
surface density. These methods, often called Eulerian-
Lagrangian Spray Atomization (ELSA) models”, or ¥ —
Y, solve equations for the liquid volume and the surface
density. These variables provide local information on the
size of liquid fragments, in scales that are smaller than the
computational cells. The ELSA equations can be solved
in a Reynolds Average Navier-Stokes (RANS) context, or
Large Eddy Simulations (LES) where the better description
of turbulence may improve the predictions. The information
at the small scales can provide the initial condition to
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“inject” droplets when the spray becomes diluted. A new
Lagrangian description framework is then established and
droplets are tracked as points in a turbulent flow. Different
ELSA approaches model the generation and destruction
of the liquid surface slightly differently. This can lead to
discrepancies in the production on the smaller droplet sizes
and consequently the droplet size distribution.

The original RANS-based formulations>* the destruction
and generation terms have empirical coefficients, in
particular if droplet collisions are considered. In more recent
formulations in LES context*>, there is less uncertainty in
the surface generated by turbulence the destruction term , but
still in the small-scale effects of surface tension.

In this work, two ELSA approaches are compared: con-
ventional ELSA? and ELSA-PDF°. These are implemented
within two popular software packages, CONVERGE, from®
and OpenFOAM, see for example’. CONVERGE imple-
ments Adaptive Mesh Refinement (AMR) to reduce the
mesh and improves the resolution (hereafter ELSA-AMR).
ELSA-PDF uses a stochastic approach to solve the joint
surface/volume distribution at sub-cell (or sub-grid) scales.

The capabilities of these approaches are compared for
a GDI injector (Spray G) from the Engine Combustion
Network(ECN). Spray G is a suitable validation test case for
models that represent the key physics. Despite the geometric
complexity, the Spray G condition is non-flashing and mildly
cavitating. Key aspects of the modelling of this injector
have been previously explored,®'?, such as the impact of
in-nozzle geometry and transient needle lift. Flash-boiling
effects have also be investigated numerically in the Spray
G2 condition'® (with lower ambient temperature) in the
same injector. However, the characterisation of the near-field
droplet distribution has not been reported nor the application
of ELSA-PDF in a GDI.

In the next section, a brief description of the methodolo-
gies used is presented, follow by description of the experi-
mental and numerical set-up, followed by the results.

Methodology

The multiphase dynamics are described in ELSA-approaches
using two variables: the liquid volume fraction (or VOF),
a(x,t), and the surface density ¥ (x, t), which represents the
amount of liquid/gas interface per unit volume. o in some
texts (and the default in CONVERGE )is often referred as
void fraction. Through the remainder of this text o = afye;
will be the liquid fraction and the output of converge will
be re-defined to reflect this. The VOF transport equation can
be obtained directly from the continuity equation as « is
transported by the flow field. The ¥ transport equation can
be derived from surface dynamics within the flow; additional
terms appear in to describe the generation/destruction of the
surface, due to capillary effects, phase change and droplet
collision.

These terms can be grouped with a general source/sink
term: S = Sgen, — Sqes, Where S, describes the generation
of the surface due to flow field motions, and Sgcs
corresponds to surface destruction from collision and
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capillary effects. The source term can be written as a non-
linear restoration to equilibrium term*:

S, %) = = (1 = ) ()

T Yeg

where ., is an equilibrium surface density and 7 is an
associated relaxation time-scale” related to the flow>. At
high Weber numbers typical of spray atomization, the time
scale can be an LES-scale based on the filtered strain rate,
7 o< |Si;]| 71, or proportional to a turbulent time scale (as in
RANYS).

Capillary effects are restricted to Y., and a local
equilibrium surface can be characterised by a critical Weber
number following'*: Wepir = pksgsa/oEe, where kg is
the local sub-grid turbulent kinetic energy. Critical number
values of We.,;; = 1 are often used, but higher values also
are reported in the literature>'*. In RANS context, the value
Yeq 1s obtained assuming that droplet collision is the main
break-up mechanism '°. In ELSA-LES formulations, there is
no a-priori assumptions regarding the break-up mechanism,
and closures are based on sub-grid equilibrium between
surface and kinetic energy.

ELSA-AMR in CONVERGE

The ELSA-AMR approach used with CONVERGE is based
on the solution of the Eulerian LES transport equations for
liquid volume and surface density:
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where D, and Dy are sub-grid diffusivities, which are
assumed to be proportional to the sub-grid viscosity with
Dy = Ds; = Dygs = Vsgs/Scsgs, Where Scggs is a turbulent
Schmidt number taken as 0.9. The S* represent the sink of
liquid volume/surface due to transition to Lagrangian and
mass change effects following Pandal Blanco’s approach '
(see CONVERGE manual® for details). To account for
the phase/change due to cavitation, and Homogeneous
Relaxation Model (HRM) is employed .

The transition from the Eulerian to the Lagrangian field is
produced when the local liquid volume fraction is smaller
than an imposed transition value & < a4, and surface is
still present, > > 3,,,;,. Using a large transition value, the
potential for transition from the Eulerian-to-Lagrangian field
increases as well as the number of parcels. In this work o, =
0.9, following Saha et. al.'>. The diameter of the spherical
droplet introduced is d = o/ and the corresponding liquid
mass is remove from the Eulerian phase. Several droplets
with the same diameters and properties can be grouped in
“parcels” to save computational time.

ELSA-PDF in OpenFOAM

The ELSA-PDF approach employed in the present work
is based on solving the joint probability density function
(PDF) of scalar and surface density. From the PDF transport
equation (not shown, see Navarro-Martinez® for details)
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an equivalent system of Stochastic Partial Differential 201 /
Equations (SPDE) can be derived using N stochastic fields, = ELSA-AMR = ELSA-PDF
where each stochastic field has its own volume fraction and
surface density, o™ and X" respectively. o 151
Following the Ito formulation '8, the transport equations E -~
for the stochastic fields are:
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where D, , is the sub-grid diffusivity, proportional to the
sub-grid viscosity Dggs = Vsgs/SCsqs Obtained by the LES
solver (with Scgs = 0.9), dW* represent a Wiener process
with mean 0 and variance equal to v/dt. The solution for the
system of SPDEs represents an equivalent system to the PDF
equations. The first-moments (or filtered values) are obtained
directly by averaging the Stochastic Fields solution

=Y " 4

The averaged Equation (3) will be equivalent to the LES
counterpart 2 After the stochastic field equations have
been advanced, all relevant parameters can be obtained
directly. For example, the characteristic fragment length per
stochastic field is the Sauter Mean Diameter (SMD) defined

as
a™

where the corresponding filtered moments, dss, can be
obtained directly through Eqn. (4). Local Droplet Size
Distributions can be obtained directly from binning the
SMD. Although a transition to Lagrangian droplets could be
performed in a similar way as ELSA-AMR, no Lagrangian
transition is implemented in this work within ELSA-PDF.

diy = 6 5)

Spray G Set-up

The experimental set-up consists of an eight-hole counter-
bore GDI fuel injector, denoted as the Spray G nozzle in the
Engine Combustion Network '*. The nozzle geometry and
spray conditions were determined from the selected ECN
experimental test case. The spray system consists of an 8-
hole nozzle, with a fuel injection pressure of 200 bar and
a nozzle diameter of 170 microns (with an uncertainty of
1.8 micron). The internal geometry is not symmetric, and
differences in the flow patterns are expected across the holes,
that create different discharge coefficients. The fuel is taken
as iso-octane at a temperature of 363 K. The injected mass is
10 mg over 780 us. The computational domain is based on
the ECN setup of the in-nozzle geometry and a 3mm domain
extent, or cap. The needle is set at the fully open position
with a gap of 50 pum. The coordinate z = 0 corresponds to
the top. of the cylinder, with z > 0 inside the cylinder.
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Figure 1. Mass flow rate for ELSA-AMR and ELSA-PDF.

To represent the experimental needle lift, a mass flow
profile is used following the recommended mass flow profile
of the ECN Workshop on Spray G. This set-up has been
used previously to model Spray-G, with good agreement on
spray penetration'?. Both the ELSA-PDF and ELSA-AMR
approaches use the same inflow boundary conditions, and a
zero-gradient is used as the outflow boundary condition for
the cap. Baldwin et al. '* show that using moving meshes and
accounting for compressibility approaches could capture the
flow pattern in Spray G. Alternatively, Saha et al.'> use an
incompressible formulation approach and the latter approach
is followed.

Figure | shows the mass flow rate for ELSA-AMR and
ELSA-PDF. The time when the n > 0 defines the time 0, for
each simulation, for the definition of the liquid penetration.
The simulation time is approximately 30 us after the fluid
exits the nozzle. This time is short enough so effects of the
needle wobble and overshoot can be ignored. A summary of
the conditions can be found in Table 1.

Table 1. Spray G conditions '° and simulation parameters

OpenFOAM | CONVERGE

Upstream Pressure 200 bar 200 bar
Fuel Temperature 90° 90°
Ambient Temperature 300° 300°
Back pressure 6 bar 6 bar
Simulation time 30us 30us
Phase Change no yes
Compressible Flow no no

Grid structured AMR
Smaller cell-size dpum 4.7pm

Both CONVERGE and OpenFOAM use the finite volume
method to solve the conservation equations. CONVERGE
uses a second order flux blending scheme for spatial
discretisation® together with a PISO algorithm?’ to solve
the pressure-momentum coupling. The dynamic structure
model is implemented to model the sub-grid stress term?!.
OpenFOAM uses second order central flux schemes and
similar PISO pressure solver as CONVERGE. A correction
procedure is performed for a and 3, to avoid excessive
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Figure 2. Detail of the mesh generated by CONVERGE close
to the nozzle

Figure 3. Detail of the mesh generated by OpenFOAM close to
the nozzle

numerical diffusion and guarantee scalar bounds. A WALE
turbulence model** determines the sub-grid viscosity Vs,
required for the sub-grid stresses and turbulent transport.
N =16 stochastic fields are used to describe the sub-
grid PDF in line with previous works?’. The number of
samples is relatively low and the Monte-Carlo statistical
errors scale with o4,/ ﬂN ), where o4, is the sub-grid
variance. A sub-grid variance 044, ~ 5% will introduce a
local instantaneous sampling error of 1% with 16 stochastic
fields. However, time or spatially averaged results will have
a much larger sample and statistical errors will be small.
Increasing the number of fields to 64 can improve marginally
the sub-grid PDF description, however the larger cost offsets
the benefits.

The AMR algorithm embeds new cells in the mesh where
the sub-grid velocity fluctuations are above a threshold
(0.5m.s~ ! in this case), and cells are coarsened where the
sub-grid velocity fluctuations are below 1/5" of this value.
See Figure 2.

The base grid size at its coarsest level has cells of 0.15 mm
and the smallest cell size is approximately 4.7um. The grid
resolution is finer than the previous Spray G simulation of
Saha et al.”'?, where the finest mesh was 125 um (centred
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Figure 4. Vertical section of: time-averaged < o >; ELSA-PDF
OpenFOAM (left) and ELSA-AMR (right);

on the far field) and 15 um, while Baldwin et al. ' used a
refined mesh with minimum size of 7pm.

A variable time step is calculated based on the maximum
convection 0.3) and diffusion CFL number (2.0), and ranges
from 0.6 — 50ns. The maximum number of cells was limited
to ten million. However, the number of Lagrangian parcels
increases with time, reaching 38 million over the simulation,

The OpenFOAM simulation used a conventional curvilin-
ear structured mesh provided by the ECN Workshop '* and
generated with GridPro (see details in Fig. 3). The mesh
consists of 5.5 million cells, with a minimum size of 5 ym in
the needle tip and nozzle and an average size of 10 ym in the
counter-bore. The maximum cell size is 65 ym approaching
the domain exit. The Taylor length scale can be estimated
(for singe phase flow) \/D ~ /10Re'/2, which gives an
estimate at the nozzle exit of 1.2 um. Both approaches have
mesh-to-Taylor lengths scale ratios of 4-5, which suggests
that while the mesh is far from DNS resolution, the resolution
is adequate for LES of jet flows.

The meshes employed in both approaches have sufficient
resolution to capture the initial shear layer at the nozzle exit.
The response of the LES models between the approaches
may be different; The sub-grid viscosity in ELSA-AMR
will be smaller (due to local refinement) than ELSA-PDF.
Nevertheless, if the filtered gradients are well captured, the
turbulence response should be the same and differences
outside the nozzle can be attributed to the different ELSA
implementations.

Results

This section aims to understand the similarities and
differences between the two approaches. Through these
differences, the role of the small scales will be highlighted.
Figure 4 shows the time-averaged volume fraction, a,
between the two methods. Although, « is associated in
CONVERGE with the void-fraction, the output of converge
has been modified to provide the liquid volume fraction and
therefore provide a more meaningful comparison between
models. In the region where o > 0.25 the two approaches
present similar distributions: the fuel exits the nozzles, filling
only one side of the counter-bores. This was observed
previously in the literature®'?. Differences are observed
outside the nozzle: the side close to the wall presents
a small volume fraction for ELSA-PDF, while ELSA-
AMR in CONVERGE shows no liquid. In this part of
the counter-bore, a pressure lower than the saturation one
exits, and cavitation should be expected. Phase-change is not
considered in ELSA-PDF, however it is accounted in ELSA-
AMR. Figure 5 reports the iso-octane vapour distribution
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Figure 5. vertical section of iso-octane vapour mole fraction
distribution, ELSA-AMR.

obtained with ELSA-AMR, the vapour generated by cloud
cavitation, combined with the rapid generation of fine
droplets accounts for the sharp decay of liquid in the counter-
bore.

Once the liquid fuel exits the holes, o < ay,. and
the Eulerian liquid description transitions to Lagrangian
spherical droplets in CONVERGE. The amount of liquid in
the Eulerian phase reduces and a few diameters downstream
the concentration is very small. The ELSA-PDF is a full
Eulerian approach and does not transition to a Lagrangian
phase within the domain, therefore the liquid volume fraction
is more continuous.

Figure 6 shows the distribution of (&) on a transverse
plane xz —y at two different distances: the first at z =
0, which corresponds to inside the counter-bored holes,
and the second is 2 mm downstream, once the spray is
formed. The asymmetry of the injector is clearly seen in
the flow, through the non-symmetric liquid pattern. This is
due to the asymmetric geometry of the Spray G nozzle,
which consists of eight holes and five dimples. ELSA-
PDF shows some of the holes “filled” with liquid, while
cavitation and Lagrangian transitions in ELSA-AMR shows
significant upstream penetration of gas in nearly all holes.
The effect of cavitation seems limited to the counter-bore,
and it does not significantly affect the spray, as evidenced
by the similar patterns in both simulations. The experimental
data of Duke?* is qualitatively similar, however its data is
averaged over 700us and cannot be quantitatively compared.

Figure 7 shows the liquid penetration in both approaches,
taken as the position where the liquid volume fraction o >
0.1. The time starts from the instant where the liquid exits
from the counter-bore. The liquid penetration follows the
same linear trend as the experimental data, with slightly
higher gradients. Over these early stages of injection, the
liquid penetration follows the injected mass flow rate profile.

Figure 8 shows the density field, p, on an & — y plane at
z =2 mm, as reported Duke et al.>*. In ELSA-AMR the
density observed is close to the one reported in literature,
while the ELSA-PDF model predicts a wider central core of
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Figure 6. Snapshot of time-averaged « across the injection
holes at: z = 0 top and z = 2 mm bottom. ELSA-PDF (left),
ELSA-AMR (right). Legend as in Fig. 4.
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Figure 7. Predicted liquid penetration compared with
experimental data, '°. Domain limit, z4., in both simulations is
3mm.

Figure 8. Density field (units ;g/mm?®) in = — y plane at
z = 2 mm : (left) ELSA-PDF and (right) ELSA-AMR.

density due to the absence of phase-change in the method.
As reported by Baldwin et al.'?, compressible effects are
required to correctly predict the density distribution within
the bores.
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Figure 9. Instantaneous distribution of the droplet Sauter Mean
Diameter (d32), ELSA-PDF at t = 150us.
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Figure 10. Instantaneous distribution of the Lagrangian
transported droplets, ELSA-AMR at t = 104us.

Figures 9 and 10 show instantaneous distributions of the
droplet Sauter Mean Diameter ( d32 in ELSA-PDF) and
Lagrangian droplets coloured by size (in ELSA-AMR). Both
figures show similar patterns, with a core of large droplets
of order 10-20 ym in ELSA-AMR and 20-40 pym in ELSA-
PDF. The droplets in the Lagrangian context show lower
dispersion due to the initial velocity provided to them at
“generation” close to the nozzle from their local gas velocity.
Particle dispersion and drag models can be inaccurate in
this region, where turbulence gradients may not be well
resolved and the assumption of spherical droplets. The
breakup model, Kelvin-Helmholtz Rayleigh-Taylor (KH-
RT)?, is also known to favour the creation of small droplets,
as every droplet breaks into half or a third on breakup.
Eulerian approaches do not have the restriction of spherical
droplets, but account for only one mixture velocity, and do
not permit liquid/gas slip velocities, all of which would affect
the droplet dispersion and turbulence modulation.

The major advantage of the ELSA methodology is the
prediction of the droplet-size distribution without the need
of an a-priori break-up model.

The predicted distribution is observed in Figure 11 for the
ELSA-PDF. Using fifty bins of constant size in the range
[0 — 50um], a histogram is computed from sampling droplets
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Figure 11. Normalised Droplet size distribution: (top) whole
domain, (centre) dense o > 0.1, (bottom) dilute o < 0.1. The
solid line indicates log-normal distribution with same mean and
variance of sampled distribution.

outside the counter-bores. A normalised droplets distribution
can be then extracted and log-normal fits (with same mean
and variance from the sampling data) are also shown for
comparison. A threshold value of o = 0.1 has been selected
to arbitrarily distinguish between dense and dilute regions.
The droplet size distribution over the whole domain has
a mode of approximately 4.5 pum, with a mean of 8.5 ym
and a standard deviation of 7.5 pm. The overall distribution
fits a log normal profile with the same mean and variance.
Nevertheless, when only the dense region is considered,
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Figure 12. Droplet size distribution from ELSA-AMR and
ELSA-PDF (top) o > 0.1 dense, (bottom) o < 0.1 dilute.

the distribution is markedly different: The predicted mode,
mean and the variance are larger (7.0pm, 10.5p4m and 9pm
respectively) and the shape of the distribution does not follow
a log-normal distribution. There is also sharp decay and a
long tail of large liquid fragments, up to 40um. When only
the droplets present in dilute regions are considered, o <
0.1, the distribution follows almost exactly a log-normal,
with mode, mean and standard deviation of 4.3um, 7.7um
and 6pm respectively. This suggests that the droplet break-
up is controlled by the dilute region, which surrounds the
dense core (see Fig. 4). The log-normal distribution appears
naturally in processes with constant fragmentation rates.
This will suggest that the rate of droplet formation in the
dilute region is quasi-homogeneous and controlled by the
local turbulence (or strain-rate). The dense region, o <
0.1, creates large non-spherical fragments which have non-
homogeneous fragmentation rates, creating the deviation
from log-normal distribution.

Figure 12 compares the droplet size predicted by sampling
(in ELSA-PDF) and the droplet sizes observed in the
Lagrangian approach in ELSA-AMR. It is not possible in the
ELSA-AMR results to distinguish between droplets in dilute
or dense regions, and only one set of results is reported.

The results predicted by CONVERGE present a narrow
distribution, with a sharp cut-off at 10pm and almost no
droplets are predicted larger than 20pm. The transition
criterion, «,, has an effect on the SMD'? and the number
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of parcels. Large o, produced larger initial droplets and
increase the parcel count. These differences will diminish
later as secondary Lagrangian Break-up models (such
Rayleigh-Taylor in CONVERGE) will quickly fragment
large droplets and reduce SMD. As previously noted, the
Rayleigh-Taylor break up model breaks the droplets into half
(or less), and thus creates a rapid reduction in droplet size.

Overall, distributions for both approaches are similar in
the small scales, and differences are observed in the largest
of the small-scales (10 — 20um ranges). This size is the most
difficult to predict as: a) droplet size are comparable to mesh
size and Lagrangian coupling approaches are less accurate b)
the assumption of spherical droplets inherent in Lagrangian
approaches may not be applicable so close to the injector,
where ligaments and non-spherical liquid fragments may be
expected.

Table 2 shows SMD comparison between both approaches
and exiting literature results ' after the initial transient. The
results show that overall both ELSA approaches show the
same SMD (and are close to previous ELSA-RANS 12y,

The mildy cavitating effects at the bore, do not seem
to have an effect in the produced droplets, and only low-
probability, large droplets seem to be affected. The smooth
DSD distribution of ELSA-PDF suggest that, a-priori, it
would be possible to delay the transition to a Lagrangian
formulation and reduce the number of parcels by sampling
from ELSA-PDF distributions.

Table 2. Most probable SMD at end of simulation.

ELSA-RANS 5um
ELSA-AMR 4.5um
ELSA-PDF 4.5um
ELSA-PDF,a > 0.1 | 7um
ELSA-PDF, a < 0.1 | 4.3um

Conclusions

In this work, two ELSA approaches have been tested in the
near field of a GDI injector (Spray G). Both approaches
predict an overall similar liquid distribution in the near
field of Spray G, with asymmetric liquid distribution as
well as hole-to-hole variation. The ELSA-AMR approach
predicts the appearance of iso-octane vapour within the
bores, which affect the flow patterns within the chamber. In
the present configuration, ELSA-AMR appears to have the
better agreement with the experimental measurements.

Outside the holes, both approaches reproduce the
experimentally observed penetration. The ELSA-AMR
approach transfers the Eulerian information to a set of
Lagrangian droplets, the subsequent dispersion produces a
smaller spray angle than the Eulerian solution.

Despite the near-field discrepancies, the break-up patterns
are similar, and both models reproduce a quasi log-normal
distribution of sub-grid droplets, predicting median droplets
sizes with less than 10 % difference. The ELSA-PDF
approach distinguish between the dilute spray regions which
follow a log-normal distribution, and the dense core where
larger fragments are formed and a log-normal distribution
cannot be observed. In the ELSA-AMR approach, the
Eulerian-to-Lagrangian transition can be observed in the
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drop in the distribution for droplets larger than 10 pm,
and droplets bigger than 20 pum are not found. Overall,
both methods are able to produce similar droplet size
distributions below filter width/grid size resolution. These
obtained distributions can be used delay the transition to the
Lagrangian treatment of the droplets and therefore reduce the
complexity and cost of the simulations.
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