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Transposable Data with Kronecker Product Dependence Structure

Anestis Touloumis, John C. Marioni and Simon Tavaré

University of Brighton, University of Cambridge and EMBL-EBI, and Columbia University

Abstract: The matrix-variate normal distribution is a popular model for high-

dimensional transposable data because it decomposes the dependence structure

of the random matrix into the Kronecker product of two covariance matrices, one

for each of the row and column variables. However, there is a lack of hypothesis

testing procedures for the row or column covariance matrix in high-dimensional

settings. Tests for assessing the sphericity, identity and diagonality hypothesis for

the row (column) covariance matrix in high-dimensional settings while treating

the column (row) dependence structure as a ‘nuisance’ parameter are introduced.

The proposed tests are robust to normality departures provided that the Kro-

necker product dependence structure holds. In simulations, the proposed tests

appear to maintain the nominal level and they tended to be powerful against the

alternative hypotheses tested. The utility of the proposed tests is demonstrated

by analyzing a microarray and an electroencephalogram study. The proposed

testing methodology has been implemented in the R package HDTD.

Key words and phrases: Covariance matrix, high-dimensional settings, hypothesis

testing, matrix-valued random variables, transposable data.
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1. Introduction

Transposable data (Allen and Tibshirani, 2010) refer to matrix-valued

random variables that treat the rows and columns as two distinct sets of

variables of interest. To illustrate the term, consider the mouse aging atlas

project (Zahn et al., 2007), where gene expression levels were measured in

different tissue samples collected from multiple mice. For each mouse, the

data can be organized in a 9 × 8, 932 matrix where the rows index nine

different tissues and the columns index 8, 932 genes under study. Biolog-

ical questions will involve at least one of the two sets of variables, tissues

and genes. For instance, one might want to infer the dependence struc-

ture among genes and/or among tissues or study the overall mean gene

expression relationship across the nine tissues. Besides studies in genetics

(Allen and Tibshirani, 2010, 2012; Efron, 2009; Teng and Huang, 2009; Yin

and Li, 2012; Ning and Liu, 2013; Touloumis, Tavaré and Marioni, 2015),

transposable data arise in electroencephalogram EEG studies (Zhang et

al., 1995; Leng and Tang, 2012; Xia and Li, 2017), spatio-temporal stud-

ies (Genton, 2007; Mardia and Goodall, 1993), cross-classified multivariate

data (Galecki, 1994; Naik and Rao, 2001), functional MRI (Allen and Tib-

shirani, 2010; Zhu and Li, 2018), financial market targeting (Leng and Tang,

2012) and in time-series (Carvalho and West, 2007; Lee, Daniels and Joo,
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2013) among others.

To introduce the notation, consider N independent and identically dis-

tributed (i.i.d.) r × c random matrices X1, . . . ,XN such that in each

matrix there are r row variables and c column variables. To reflect a

high-dimensional setting or equivalently the ‘small sample size, large num-

ber of parameters’ paradigm, assume that the sample size N is smaller

than the number of observations r × c in a single matrix. The challenge

with high-dimensional transposable data is to model parsimoniously the

covariance structure of X1, . . . ,XN while respecting the structural infor-

mation provided by presenting the data in matrix form. For this reason,

the matrix-variate normal distribution (Dawid, 1981; Gupta and Nagar,

2000) is a popular choice to model high-dimensional transposable data

(Allen and Tibshirani, 2010, 2012; Efron, 2009; Teng and Huang, 2009; Car-

valho and West, 2007; Leng and Tang, 2012; Yin and Li, 2012; Tsiligkaridis

and Hero, 2013; Zhou, 2014; Zhu and Li, 2018). It is defined by three

matrix parameters, the mean matrix M and two positive-definite matri-

ces ΣR and ΣC. These matrices satisfy the relations E(Xi) = M and

Cov [vec(Xi)] = Σ = ΣC ⊗ ΣR, where vec(A) vectorizes matrix A by

its columns and A ⊗ B denotes the Kronecker product of the matrices

A and B. In simple terms, the matrix-variate normal distribution allows
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researchers to decompose the high-dimensional dependence structure into

the Kronecker product of two lower-dimensional covariance matrices ΣC

and ΣR, recognized as the covariance matrices of the column and row vari-

ables respectively. Consequently, the covariance between two elements of

Xi, say Xir1c1 and Xir2c2 , is given by

Cov(Xir1c1 , Xir2c2) = (ΣR)r1r2 (ΣC)c1c2

for all i = 1, . . . , N , r1, r2 = 1, . . . , r and c1, c2 = 1, . . . , c and where (A)a1a2

denotes the (a1, a2) element of the matrix A. To exemplify this relation,

consider again the mouse aging project. Therein, ΣR will describe the de-

pendence structure among tissues and ΣC the dependence structure among

genes. Hence, the covariance between the expression levels of gene r1 in

tissue c1 and of gene r2 in tissue c2 will be the product of the covariance

between the two genes and of the covariance between the two tissues.

The Kronecker product covariance matrix decomposition is not neces-

sarily an over-simplifying and convenient assumption. In fact, Hafner, Lin-

ton and Tang (2016) showed that it can approximate (in the least squares

sense) the true high-dimensional covariance matrix well.

This result provides some theoretical justification on the use of the

matrix-variate normal distribution (or more precisely of any distribution

with a Kronecker product covariance matrix) in high-dimensional settings
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with transposable data. In addition, hypothesis testing procedures (Aston,

Pigoli and Tavakoli, 2017) and diagnostic plots (Ning and Liu, 2013; Yin and

Li, 2012) are also available to evaluate the Kronecker product assumption

for a given dataset.

To the best of our knowledge, no formal procedure exists for performing

hypothesis testing for ΣR (or ΣC) in high-dimensional transposable data

under the matrix-variate normal distribution, while treating M and ΣC (or

ΣR) as matrix-valued nuisance parameters. To fill this gap, we consider the

following three hypothesis tests: the sphericity hypothesis test

H0 : ΣR = σ2Ir vs. H1 : ΣR 6= σ2Ir (1.1)

where σ2 > 0 is an unknown constant and Ip is the identity matrix of size

p, the identity hypothesis test

H0 : ΣR = Ir vs. H1 : ΣR 6= Ir (1.2)

and the diagonality hypothesis test

H0 : ΣR = ∆ΣR
vs. H1 : ΣR 6= ∆ΣR

(1.3)

where ∆A denotes the diagonal matrix with diagonal elements the corre-

sponding elements of A. This suggests that the diagonality hypothesis test

can also be written as:

H0 : (ΣR)r1r2 = 0 for all r1 6= r2 vs. H1 : not H0 . (1.4)
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To illustrate the practical importance of testing these three hypotheses,

consider first the diagonality test. The null hypothesis implies independence

of the row variables in such a way that the transposable data can be written

in terms of r independent populations, one for each row. In particular, the

r1-th population consists of N c-variate random vectors with mean vector

the r1-th row of M and covariance matrix (ΣR)−1r1r1 ΣC. Therefore, the diag-

onality hypothesis test under the matrix-variate normal model is equivalent

to testing whether the r row random vectors are independently distributed

with proportional covariance matrices but not necessarily a common mean

vector.

Next, consider the sphericity test. The null hypothesis is more re-

strictive since it requires the r independent populations to have identical

covariance matrix (equal to σ−2ΣC) and thus, it can be utilized to explore

whether the r rows are independently distributed with common covariance

matrix but varying mean vectors. Another use of the sphericity hypothe-

sis test is to assess indirectly whether a known row covariance matrix ΣR0

equals the row-wise covariance structure ΣR, that is testing

H0 : ΣR = ΣR0 vs. H1 : ΣR 6= ΣR0 .

To accomplish this, one must apply the transformation Xi 7−→ Σ
−1/2
R0 Xi

and then test the sphericity hypothesis on the transformed random matri-
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ces. In this case, the constant σ2 is the normalizing constant that makes

the ΣR and ΣC identifiable (see also Section 2).

To this end, consider now the identity test. The null hypothesis implies

that all row variances are equal to 1. This test is useful only in studies

where transposable data for each subject have been preprocessed in such

a way that the measurements across column and/or row variables have

sample mean zero and unit variance. Examples of column- and/or doubly

standardized data can be found in microarray studies (Efron, 2009).

It is not straightforward to assess hypothesis tests (1.1), (1.2) or (1.3)

by applying existing testing procedures for high-dimensional covariance ma-

trices of random vectors such as the testing procedures of Chen, Zhang and

Zhong (2010) and Srivastava, Yanagihara and Kubokawa (2014) among oth-

ers. For more detailed literature on testing the covariance structure with

high-dimensional random vectors see, for example, Ahmad and von Rosen

(2015). Unfortunately, these methods do not account for the presence of

a column-wise dependence structure and/or an unrestricted mean matrix

M. In preliminary simulations (see Section 10 in the Supplementary Ma-

terials), we have found such tests approximate the nominal size only when

the column variables were indeed independent (ΣC = Ic) and a constant

r-variate mean µ vector holds for the row variables. Otherwise, they led
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to inflated sizes, for example always falsely rejecting the null hypothesis in

the presence of moderate to strong column-wise correlation pattern and/or

more complicated forms of the mean matrix.

To address this issue, we extend the work of Chen, Zhang and Zhong

(2010) to matrix-variate distributions. In all cases, we estimate a (scaled)

squared Frobenius norm that measures the distance between the corre-

sponding null and alternative hypotheses for ΣR while treating M and ΣC

as ‘nuisance’ matrix parameters. This is reasonable because the squared

Frobenius norm of the difference of the Kronecker product ΣC ⊗ ΣR un-

der the sphericity, identity or diagonality hypothesis and the corresponding

alternative hypothesis depends only on the squared Frobenius norm for

ΣR. Next, the unknown parameters in the squared Frobenius norms will

be replaced by unbiased and/or consistent estimators. This allows us to

derive the general asymptotic distributions of the proposed test statistics

and hence, to explore their asymptotic power. In addition, we show that

the proposed tests are nonparametric, meaning that under suitable condi-

tions they can account for some departures from the matrix-variate normal

distribution.

It is important to emphasize that the methods developed here can man-

age the high-dimensional setting in a very parsimonious and efficient way.
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The proposed test statistics are computationally cheap since their construc-

tion relies on estimating just four parameters: tr(ΣR), tr(Σ2
R), tr(∆2

ΣR
) and

tr(Σ2
C). Explicit estimation of r(r − 1)/2 + c(c − 1)/2 non-redundant ele-

ments in ΣR and ΣC is avoided, a cumbersome task for a large number of

rows and/or columns. To appreciate the computational gains, assume that

we want to test the dependence structure for the tissues in the mouse aging

example. Full estimation of the mean matrix and the gene covariance ma-

trix requires estimation of 1, 140 non-redundant nuisance parameters while

the proposed methods need to account only for the gene-covariance matrix

via a single parameter tr(Σ2
C), which can be consistently estimated.

We want to underline that the role of the row and column variables

can be interchanged, which implies that if the interest lies in applying the

sphericity, identity or diagonality hypothesis test to the column covariance

matrix, then the transformation Xi 7−→ X ′i should be performed prior to

carrying out the test on the transformed data. In other words, the proposed

tests can be applied to ΣC by simply transposing the data matrices.

This paper is organized as follows. In Section 2, we present the work-

ing framework that allows us to handle and develop test statistics with

high-dimensional transposable data under a Kronecker product patterned

covariance matrix in a nonparametric manner. In Section 3, we propose
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tests for assessing the sphericity, identity and diagonality hypotheses of the

row (or column) covariance matrix. For each of the tests proposed, we de-

rive the general asymptotic distribution, indicate the rejection region and

provide a lower bound for the asymptotic analysis. Further, we point to a

software implementation of our methods. In Section 4, we demonstrate the

good performance of the proposed tests in simulation studies. In Section 5,

we apply the test statistics to the mouse aging dataset and an EEG dataset.

We summarize our findings and discuss future research in Section 6. Tech-

nical details can be found in the Supplementary Materials.

2. Notation and Assumptions

Suppose there are r row variables and c column variables and assume that

r × c random matrices X1, . . . ,XN are generated by the matrix-valued

nonparametric model

Xi = Σ
1/2
R ZiΣ

1/2
C + M , (2.1)

where

• ΣR = Σ
1/2
R Σ

1/2
R is the r × r row covariance matrix.

• Z1, . . . ,ZN are r × c i.i.d. random matrices and Zir1c1 denotes the

(r1, c1) element of Zi for r1 = 1, . . . , r and c1 = 1, . . . , c.

• E (Zir1c1) = 0, Var (Zir1c1) = 1, E(Z4
ir1c1

) = 3+B for a finite constant
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B ≥ −2, E(Z8
ir1c1

) < ∞ and for any positive integers l1, . . . , lq with∑q
v=1 lv ≤ 8

E

(
q∏

k=1

Zirkck

)
=

q∏
k=1

E(Zirkck)

for (r1, c1) 6= . . . 6= (rq, cq). Thus, the elements of Zi can be viewed as

white noise that can also accommodate weak dependence patterns.

• ΣC = Σ
1/2
C Σ

1/2
C is the c × c column covariance matrix such that

tr(ΣC) = c, where tr(A) denotes the trace of the matrix A.

• M = E(Xi) is the r × c mean matrix.

Model (2.1) is a special case of the nonparametric matrix-valued model

for transposable data employed in Touloumis, Tavaré and Marioni (2015)

with Σ = ΣC⊗ΣR, where Σ is the covariance matrix of xi = vec(Xi), the

vectorized form of Xi. Hence, it contains the matrix-variate normal distri-

bution as a member (B = 0), preserves the interpretation of ΣR and ΣC as

row and column covariance matrices respectively, and allows consideration

of some non-normal distributions, such as the members of the elliptically

contoured family of distributions and of the independent component model

(Oja, 2010) subject to a Kronecker product covariance decomposition.

The trace restriction on ΣC makes the two covariance matrices iden-

tifiable since otherwise we have Σ = (tΣC) ⊗ (ΣR/t) for any t > 0. In
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the context of the matrix-variate normal distribution, this issue has been

resolved by setting either tr(ΣC) = c (Mardia and Goodall, 1993; Theobald

and Wuttke, 2006) or a diagonal element of ΣC equal to 1 (Naik and Rao,

2001; Srivastava, von Rosen and von Rosen, 2008; Yin and Li, 2012). Al-

though none of these constraints affects the row and column correlation

patterns, we adopt the former because it eases the construction of unbiased

and/or consistent estimators of the parameters that we base the proposed

test statistics upon.

To manage high-dimensional settings, we assume that as N →∞,

rc = r(N)c(N)→∞ , N = O(rc) ,
tr(Σ4

m)

tr2(Σ2
m)
→ 0 for m ∈ {R,C} . (2.2)

Assumption (2.2) specifies neither the pairwise limiting ratios of the triplet

(N, r, c) nor the rate at which r → ∞ and c → ∞. Thus it covers ap-

plications in which: i) the sample size might not be expected to increase

proportionally to the dimension of the transposable data matrices and ii)

r and/or c tend to ∞ a lot faster than N . These situations were tested

in the simulation study, where the proposed tests appeared to behave well.

Assumption (2.2) does not seriously limit the scope of the row and col-

umn covariance structures under consideration. Covariance matrices with

eigenvalues bounded away from 0 and ∞ (Chen, Zhang and Zhong, 2010),

that satisfy a first-order autoregressive correlation pattern with bounded
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variances (Chen, Zhang and Zhong, 2010), or that have a few divergent

eigenvalues as long as they diverge slowly (Chen and Qin, 2010) all satisfy

the trace ratio restrictions in (2.2). Therefore, model (2.1) and assumption

(2.2) constitute a flexible working framework that allows us to handle a

wide range of studies with high-dimensional transposable data.

3. Test Statistics

To construct the proposed test statistics, we need to estimate tr(ΣR),

tr(Σ2
R), tr(∆2

ΣR
) = tr(ΣR ◦ΣR) and tr(Σ2

C), where A ◦B is the Hadamard

product of the matrices A and B. Before introducing the test statistics, we

present unbiased and/or consistent estimators of these parameters and we

discuss some computational aspects.

3.1 Parameter estimators

The parameters tr(ΣR), tr(Σ2
R) and tr(∆2

ΣR
) can be estimated by

T1N =Y1N − Y4N =
1

cN

N∑
i=1

tr(XiX
′
i)−

1

cPN
2

∗∑
i,j

tr(XiX
′
j) ,

T2N =Y2N − 2Y5N + Y6N

=
1

c2PN
2

∗∑
i,j

tr(XiX
′
iXjX

′
j)− 2

1

c2PN
3

∗∑
i,j,k

tr(XiX
′
iXjX

′
k)

+
1

c2PN
4

∗∑
i,j,k,l

tr(XiX
′
jXkX

′
l) ,
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and

T3N =Y6N − 2Y7N + Y8N

=
1

c2PN
2

∗∑
i,j

tr[(XiX
′
i) ◦ (XjX

′
j)]− 2

1

c2PN
3

∗∑
i,j,k

tr[(XiX
′
i) ◦ (XjX

′
k)]

+
1

c2PN
4

∗∑
i,j,k,l

tr[(XiX
′
j) ◦ (XkX

′
l)]

respectively, where P s
t =

∏t
k=0(s − k) and

∑∗ denotes summation over

mutually distinct indices. The terms Y1N , Y2N , Y3N in T1N , T2N and T3N

are the unbiased estimators of the targeted parameters when M = 0 while

the terms Y4N , Y5N , Y6N , Y7N and Y8N are U -statistics of order two, three

and four that are subtracted so that T1N , T2N and T3N remain unbiased even

when M 6= 0. To the best of our knowledge, Chen, Zhang and Zhong (2010)

first exploited this usage of U -statistics for constructing test statistics.

To estimate tr(Σ2
C), we utilize the vectorized form of model (2.1) and

write tr(Σ2
C) = tr(Σ2)/tr(Σ2

R). To estimate tr(Σ2
C) we will use T5N =

T4N/T2N , that is the ratio of an unbiased estimator of tr(Σ2)

T4N =
1

PN
2

∗∑
i,j

(x′ixj)
2 − 2

1

PN
3

∗∑
i,j,k

x′ixjx
′
ixk +

1

PN
4

∗∑
i,j,k,l

x′ixjx
′
kxl ,

to T2N , an unbiased estimator of tr(Σ2). Theorem 1 establishes that T1N ,

T2N , T4N and T5N are all ratio-consistent estimators of the targeted param-

eters (a general statistic θ̂N is a ratio-consistent estimator to the parameter
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θ if θ̂N/θ converges in probability to one) and that T3N is a ratio-consistent

estimator of tr(∆2
ΣR

) under H0 in the diagonality hypothesis test (1.3).

Theorem 1. Under model (2.1) and assumption (2.2):

T1N
tr(ΣR)

P→ 1,
T2N

tr(Σ2
R)

P→ 1,
T4N

tr(Σ2)

P→ 1,
T5N

tr(Σ2
C)

P→ 1 ,

where
P→ denotes convergence in probability and

Var (T3N)

tr2(Σ2
R)
→ 0 .

Thus, when ΣR = ∆ΣR
we have that

T3N
tr(∆2

ΣR
)

P→ 1 .

From a computational perspective, it is worth noting that equivalent

formulae for T2N , T3N and T4N available in the Supplementary Material

and the cyclic property applied on the trace operators when r > c can

significantly reduce the order of calculations of T2N , T3N and T4N from

N4r2(r + 2c) to N2 min{r, c}2(min{r, c}+ 2 max{r, c}). In the special case

of centered transposable data matrices (M = 0), further reductions in the

computational time can be gained by employing only the first terms in T1N ,

T2N , T3N and T4N .
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3.2 Sphericity test

The proposed test relies on the general limiting distribution of

UN = r
T2N
T 2
1N

− 1 ,

a ratio-consistent estimator to the scaled Frobenius norm

1

r
tr

[
ΣR

tr(ΣR)/r
− Ir

]2
= r

tr(Σ2
R)

tr2(ΣR)
− 1 ,

which measures the distance between the null and alternative hypothesis

in the sphericity hypothesis test (1.1), which equals zero if and only if the

null hypothesis is true. Let

σ2
UN

=
4

N2

[
tr(Σ2

C)

c2

]2
+

8

N

tr(Σ2
C)

c2
tr

{[
Σ2

R

tr(Σ2
R)
− ΣR

tr(ΣR)

]2}

+
4B

N

tr(∆2
ΣC

)

c2
tr

{[
Σ2

R

tr(Σ2
R)
− ΣR

tr(ΣR)

]
◦
[

Σ2
R

tr(Σ2
R)
− ΣR

tr(ΣR)

]}
.

Since −2 ≤ B, tr (∆2
A) = tr(A ◦A) ≤ tr(A2) for any symmetric matrix A

and tr(Σ2
C) ≤ c2, it follows that σ2

UN
> 0.

Theorem 2. Under model (2.1) and assumption (2.2)

σ−1UN

[
tr2(ΣR)

tr(Σ2
R)

UN + 1

r
− 1

]
d→ N(0, 1)

where
d→ denotes convergence in distribution and N(0, 1) denotes the stan-

dard normal distribution.
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Under H0 in the sphericity hypothesis test (1.1), σ2
UN

reduces to

4

N2

[
tr(Σ2

C)

c2

]2
.

In most applications, tr(Σ2
C) will be unknown but it can be replaced by its

ratio-consistent estimator T5N . Hence, Slutsky’s Theorem and Theorems 1

and 2 imply that a test with nominal α level of significance rejects H0 in

the sphericity hypothesis test (1.1) when

N − 1

2

c2

T5N
UN ≥ z1−α ,

where zp is the p quantile of N(0, 1). The scaling factor (N−1)/N serves as

a precaution against inflated empirical sizes in finite samples and it is moti-

vated by the work of Mao (2016), who compared U -statistics based testing

procedures for assessing the sphericity and identity hypothesis test for the

covariance matrix of high-dimensional vector-valued random variables. It is

a basically a correction in the asymptotic variance of UN that accounts for

estimating the mean matrix M by the sample mean matrix in T1N and T2N

(see the corresponding alternative formulae available in the Supplementary

Materials). In addition, T3N depends on the sample mean matrix and for

this reason, we will also apply the (N −1)/N correction to the identity and

the diagonality test.

The asymptotic normality of UN also permits us to investigate the power
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of the proposed test. In this direction, let

0 ≤ ξ1N = 1− 1

r

tr2(ΣR)

tr(Σ2
R)

< 1

and

ξ2N = tr

{[
Σ2

R

tr(Σ2
R)
− ΣR

tr(ΣR)

]2}
,

and note that for large N

4

N2

[
tr(Σ2

C)

c2

]2
≤ σ2

UN
≤ tr(Σ2

C)

c2

[
4

N2
+

4(2 +B)

N
ξ2N

]
.

Theorem 3. Under model (2.1) and assumption (2.2)

lim inf
N

βSN ≥ 1− Φ

(
z1−a −

1

2
lim inf

N

√
c2

tr(Σ2
C)

N2ξ1N
1 + (2 +B)Nξ2N

)
,

where βSN is the power function of the proposed sphericity test and Φ is the

cumulative distribution function of N(0, 1).

Theorem 3 states that the proposed sphericity test is consistent as long

as

lim inf
N

√
c2

tr(Σ2
C)

N2ξ1N
1 + (2 +B)Nξ2N

=∞ .

This does not impose severe restrictions for the row covariance. For exam-

ple, the test is consistent provided that ξ1N and ξ2N are both bounded away

from 0 and that ξ2N is bounded away from∞. Theorem 3 also implies that

in finite samples and when conditioning on the remaining parameters, the
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strength of column-wise correlation might affect the power of the proposed

test. Heuristically, we expect weak column-wise correlation patterns to in-

crease the power of the proposed test since the asymptotic lower bound of

βSN takes its maximum value when ΣC = Ic since tr(Σ2
C) ≤ tr(I2c) = c.

3.3 Identity test

For the identity hypothesis test (1.2), consider

VN = T2N − 2T1N + r

an unbiased estimator of the squared Frobenius norm tr [(ΣR − Ir)
2] =

tr(Σ2
R) − 2tr(ΣR) + r, that equals zero if and only if the null hypothesis

holds. Let

σ2
VN

=
4

N(N − 1)

[
tr(Σ2

C)

c2

]2
tr2(Σ2

R) +
8

N

tr(Σ2
C)

c2
[
tr(Σ2

R −ΣR)2
]

+
4B

N

tr(∆2
ΣC

)

c2
tr
[
(Σ2

R −ΣR) ◦ (Σ2
R −ΣR)

]
> 0 .

Theorem 4 proves that σ2
VN

is the asymptotic variance term of VN and

consequently we can derive the general asymptotic distribution of VN .

Theorem 4. Under model (2.1) and assumption (2.2), it follows that Var(Vn) =

σ2
VN
{1 + o(1)}. Further,

VN − tr(ΣR − Ir)
2

σVN

d→ N(0, 1) .

Slutsky’s Theorem and Theorems 1 and 4 imply that a test with nominal
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α level of significance rejects H0 in the identity hypothesis test (1.2) when

N − 1

2

c2

T5N

1

r
VN ≥ z1−α .

To investigate the asymptotic power of the proposed test, we need to

introduce additional notation. Let

ξ3N =
1

r
tr
[
(ΣR − Ir)

2
]

and

ξ4N =
tr(Σ2

R)

Ntr [(ΣR − Ir)2]
.

Since tr [(ΣR − Ir)
2] ≤ tr(ΣR − Ir)tr(ΣR) we obtain that for large N

4

[
tr(Σ2

C)

c2

]2
r2ξ23Nξ

2
4N ≤ σ2

VN
≤ 4

tr(Σ2
C)

c2
tr
[
(ΣR − Ir)

2
] [
ξ24N + (2 +B)ξ4N

]
.

Theorem 5. Under model (2.1) and assumption (2.2)

lim inf
N

βIN ≥ 1− lim sup
N

Φ

(
z1−α

Nξ3Nξ4N
− 1

2

√
c2

tr(Σ2
C)

1

ξ24N + (2 +B)ξ4N

)

where βIN is the power function of the proposed identity test.

Theorem 5 suggests that the proposed test is consistent under mild

conditions about the row covariance matrix, for example, whenever ξ3N

and ξ4N are bounded away from 0. Similar to the proposed sphericity test,

the proposed identity test is expected to be more powerful in the presence

of weak rather than strong column-wise correlation pattern.
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3.4 Diagonality test

A test statistic for assessing the diagonality hypothesis test (1.3) or (1.4)

can be constructed by following a similar strategy. In particular, consider

WN = T2N − T3N ,

an unbiased estimator of the squared Frobenius norm

tr
[
(ΣR −∆ΣR

)2
]

= tr(Σ2
R)− 2tr(ΣR∆ΣR

) + tr(∆2
ΣR

) = tr(Σ2
R)− tr(∆2

ΣR
)

that equals zero if and only if the null hypothesis in the diagonality hypoth-

esis test (1.3) holds. The asymptotic variance of WN is

σ2
WN

=
4

N2

[
tr(Σ2

C)

c2

]2
tr2(Σ2

R) +
8

N

tr(Σ2
C)

c2
tr [ΣR(ΣR −∆ΣR

)ΣR(ΣR −∆ΣR
)]

+
4B

N

tr(∆2
ΣC

)

c2
tr
{[

Σ
1/2
R (ΣR −∆ΣR

)Σ
1/2
R

]
◦
[
Σ

1/2
R (ΣR −∆ΣR

)Σ
1/2
R

]}
.

Theorem 6. Under model (2.1) and assumption (2.2), it follows that Var(WN) =

σ2
WN
{1 + o(1)}. Further,

WN − tr [(ΣR −∆ΣR
)2]

σWN

d→ N(0, 1) .

As before, the general asymptotic distribution of WN in Theorem 6

will be used to find a rejection area. Slutsky’s Theorem and Theorems 1

and 6 imply that a test with nominal α level of significance rejects H0 in

the diagonality hypothesis test (1.3) when

N − 1

2

c2

T5N

1

T3N
WN ≥ z1−α .
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To investigate the asymptotic power of the proposed test, let

0 ≤ ξ5N =
tr [(ΣR −∆ΣR

)2]

tr(Σ2
R)

= 1−
tr(∆2

ΣR
)

tr(Σ2
R)

< 1

and note that for large N

4

N2

[
tr(Σ2

C)

c2

]2
tr2(Σ2

R) ≤ σ2
WN
≤ tr(Σ2

C)

c2
tr2(Σ2

R)

[
4

N2
+

4(8 +B)

N

]
.

Theorem 7. Under model (2.1) and assumption (2.2)

lim inf
N

βDN ≥ 1− Φ

(
z1−a −

1

2
lim inf

N

√
c2

tr(Σ2
C)

N2ξ5N
1 + (8 +B)N

)

where βDN is the power of the proposed diagonality test.

Note that ξ5N converges to 0 if all elements of ΣR −∆ΣR
converge to

zero. In this case, tr [(ΣR −∆ΣR
)2] → 0 and hence the proposed test is

expected to suffer power loss. On the other hand, the test will be asymptot-

ically consistent provided that ΣR and ∆ΣR
differ in at least one element

as N →∞ and r →∞ as long as this difference is bounded away from zero

and regardless of its magnitude.

3.5 Special Cases

When the subject-specific data are vector-valued instead of matrix-valued

(c = 1), it can be the shown that the proposed sphericity and identity

tests reduce to the corresponding sphericity and identity tests proposed by

Srivastava, Yanagihara and Kubokawa (2014), which Mao (2016) showed
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are the same except for a scale factor to those proposed by Chen, Zhang

and Zhong (2010). Further, the proposed diagonality test is asymptotically

equivalent, but not identical, to the bandness test with fixed bandwidth

equal to 1 proposed by Qiu and Chen (2012).

When the column features are independent, in which case ΣC = Ic, and

M = µ1c for an r-dimensional mean vector µ, then the proposed tests are

asymptotically equivalent to the corresponding test statistics of Srivastava,

Yanagihara and Kubokawa (2014), Chen, Zhang and Zhong (2010) and Qiu

and Chen (2012) when treating the columns as independent. However, if

M 6= µ1c the asymptotic equivalence between the proposed tests and the

existing vector-based tests no longer holds.

3.6 Software availability

The function covmat.ts() of the R package HDTD (Touloumis, Marioni

and Tavaré, 2016) implements the proposed sphericity, identity and diago-

nality tests. These can be applied to either the row or column covariance

matrix by specifying the voi argument. The software is available from the

Bioconductor repository at http://bioconductor.org/packages/HDTD/.

4. Simulations

We investigated the performance of the proposed procedures for testing

hypotheses (1.1), (1.2) and (1.3) via numerical studies. Due to the location
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invariance property of the proposed test statistics, we generated r×cmatrix-

variate random variables X1, . . . ,XN according to model (2.1) with M =

0. To assess the nonparametric nature, we simulated Z1, . . . ,ZN under a

standard matrix-variate normal scenario, where Zir1c1
i.i.d∼ N(0, 1) such that

B = 0, and under three standardized Gamma scenarios, where Zir1c1 =(
Z∗ir1c1 − α/β

)
/
√
β with Z∗ir1c1

i.i.d∼ Gamma(α, β): (i) Gamma(1, 0.5) such

that B = 6, (ii) Gamma(0.6, 1) such that B = 10, and (iii) Gamma(0.3, 1)

such that B = 20. To reflect high-dimensional settings, we considered

N = 20, 40, 60, 100, 200, r = 10, 50, 100, 300, 600 and c = 10, 100, 600 so

that the number of subject-specific observations (r× c) was larger than the

sample size (N) in all instances except when N = 200 and r = c = 10,

without specifying the relationship among N , r and c. For the “nuisance”

covariance matrix ΣC, we employed a first order autoregressive correlation

matrix with elements (ΣC)c1c2 = 0.85|c1−c2|. This configuration generated

complex pairwise correlation patterns in which the strength of the pairwise

correlation among the column variables varied from moderate to strong

(c = 10) and from weak to strong (c = 100, 600).

We employed identity, heteroscedastic (2-3) and tridiagonal (4-5) struc-

tures for the row covariance matrix ΣR:

1. The identity matrix ΣR = Ir.
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2. Diagonal ΣR with (ΣR)r1r1
i.i.d∼ U(0.5, 1.5), where U(a, b) denotes the

uniform distribution with parameters a and b.

3. Diagonal ΣR with (ΣR)r1r1 = 1 + I(r1 ≤ 0.9r), where I(A) is the

indicator function of the event A.

4. Tridiagonal ΣR with elements (ΣR)r1r2 = 0.10|r1−r2|I(|r1 − r2| ≤ 1).

5. Tridiagonal ΣR with elements (ΣR)r1r2 = 0.15|r1−r2|I(|r1 − r2| ≤ 1).

In each simulation scheme, we used 1000 replicates and we calculated the

proportions of rejections at a 5% nominal significance level based on the

proposed test statistics for the sphericity, identity and diagonality hypothe-

ses. The empirical level of the proposed sphericity and identity test was

calculated when ΣR = Ir while their empirical powers were recorded when-

ever any of the other four structures for ΣR were used. For the proposed

diagonality test, the empirical level was calculated with the identity and

heteroscedastic structures and its empirical power was calculated under the

tridiagonal structures. Tables 1-10 in Section S9 in the Supplementary

Materials contains all simulation results for the sphericity and diagonality

tests. Results for the proposed identity test are not discussed or presented

as they were similar to those of the sphericity test in all sampling schema.

Table 1 in the Supplementary Materials suggests that the nominal size
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of the proposed sphericity test was well approximated with Normal in-

stances. For Gamma instances, its empirical sizes were slightly inflated

when r = 10 or r = 50 but they were getting closer to the nominal size

once r ≥ 100. The empirical sizes of the proposed diagonality test were

close to the nominal size regardless of the distributional scenario and the

number of row variables as shown in Table 6 in the Supplementary Mate-

rials. The difference in the behavior of the two tests with skewed data and

small r could be attributed to the fact that the variance of WN is approxi-

mated more accurately by σ2
WN

than that of UN by σ2
UN

. From Tables 7 and

8 in the Supplementary Materials, it can also be checked that the proposed

diagonality test preserved its size under both heteroscedastic structures as

desired.

As expected from Theorem 3, the empirical power of the proposed

sphericity test under the heteroscedastic and tridiagonal structures ap-

proached 1.0 for a large number of column variables (c = 100, 600) , as

shown in Tables 2-5 in the Supplementary Materials. Therefore, we restrict

our attention in sampling schema with c = 10. Conditional on ΣR and r,

the empirical power was not severely affected by the distributional scenario

and this can be viewed as a confirmation of the nonparametric nature of

the proposed test. For fixed r, the empirical powers approached 1.0 as N
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increased to 200 under both heteroscedastic and tridagonal structures for

ΣR but the exact gains depended on the implied value of ξ1N . For the two

structures that lead to smaller values of ξ1N , that is the heteroscedastic

structure with (ΣR)r1r1 = 1 + I(r1 ≤ 0.9r) and the tridiagonal structure

with non-zero correlation parameter equal to 0.10, the empirical powers

were low even for N = 60. For the other two structures, the larger values

of ξ1N were obtained and this was reflected in their empirical powers for

N = 40 and N = 60. Therefore, we conclude that for a small number

of strongly dependent column variables, the consistency of the proposed

sphericity test appears to depend on the magnitude of ξ1N . The results for

the power of the proposed diagonality test were almost identical to those

above and can be found in Tables 9 and 10 in the Supplementary Materials.

5 Examples

5.1 Mouse aging project

In a project to study aging in mice, Zahn et al. (2007) measured gene ex-

pression levels in up to 16 tissues per mouse (N = 40). Herein we focused on

inferring the dependence structure among nine tissues (r = 9), namely the

adrenal glands, cerebrum, hippocampus, kidney, lung, muscle, spinal cord,

spleen and thymus, based on the expression levels from 46 genes (c = 46)

that play a role in the mouse endothelial growth factor (VEGF) signalling
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pathway. Since Ning and Liu (2013) argued against a normality assump-

tion, we applied the non-parametric bootstrap test of Aston, Pigoli and

Tavakoli (2017) to assess the plausibility of a Kronecker product depen-

dence decomposition for the covariance structure (p−value = 0.616). This

finding partially supports the Kronecker product covariance decomposition

modelling approach adopted in previous analysis (Yin and Li, 2012; Ning

and Liu, 2013) for the construction of gene and tissue networks and justifies

utilization of our proposed testing methods.

The tissue correlation matrix implied by the tissue-wise shrinkage co-

variance matrix estimate (Touloumis, Marioni and Tavaré, 2016) revealed

a rather weak correlation pattern; all pairwise tissue correlations were esti-

mated to be smaller than 0.1 in absolute value except that between the lung

and spinal tissues which was equal to 0.2754. At a 5% significance level, we

tested and failed to reject the null hypothesis in the diagonality hypothesis

test for the tissue covariance matrix (p−value = 0.0686). Combining these

results, it appeared that both Yin and Li (2012) and Ning and Liu (2013)

might have overestimated the strength of the tissue dependencies. The tis-

sue networks presented therein might be influenced by networks of genes

that co-vary consistently between tissues. Controlling for this, the apparent

“relatedness” between tissues is less than previously reported. We further
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concluded that the tissues cannot be assumed to be equi-variant since we

rejected the sphericity hypothesis (p−value < 0.0001). Therefore, it seems

sensible to treat the nine tissues as uncorrelated but with differing vari-

ances. Using the sample tissue variances, the hippocampus tissue appeared

to be the least variable followed by the muscle, kidney, adrenal, spleen,

spinal, thymus, cerebrum and lung tissues in ascending order.

5.2 EEG Data

The EEG dataset Zahn et al. (2007) et al., available at http://kdd.

ics.uci.edu/databases/eeg/eeg.data.html, describes a study that ex-

plores whether EEG data suggest a correlation between alcoholism and ge-

netic predisposition. The 122 subjects who participated in this study were

classified into either an alcoholic group (77 subjects) or a control group

(45 subjects). For each subject, voltage fluctuations were recorded from 64

electrodes placed on the subject’s scalp. Each subject was shown either one

stimulus or two (matched or unmatched) stimuli and the voltage measures

were recorded at 256 consecutive time points. This procedure was then

repeated for up to 120 trials. For each of the 122 subjects, we created a

two-dimensional data matrix such that the rows correspond to the 64 elec-

trodes, the columns to the 256 time points and the values represent the

average of the corresponding voltage measures across the available number
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of trials.

Xia and Li (2017) analyzed this dataset assuming a matrix-variate nor-

mal distribution, an assumption that will follow in our analysis as well.

Their goal was to construct a brain connectivity network for each of the

two groups. The key to the construction of the networks is to decorre-

late the 256 time points and in effect increase the sample size from 77 to

19712 = 77 × 256 in the alcoholic group and from 64 to 11520 = 64 × 256

in the control group. Application of the proposed diagonality test to the

temporal covariance matrix in each group indicates that at least some of

the time points were correlated (the p-values are close to 0 in each group).

To decorrelate the columns, Xia and Li (2017) employed and estimated a

banded structure (with bandwidth equal to 3) for the temporal covariance

matrix at both groups. If this is the case, then the time points in each of the

following three sets are expected to be uncorrelated: (i) {1, 5, . . . , 253}, (ii)

{2,6,. . . ,254} and (iii) {3, 7, . . . , 255}. To assess this hypothesis, we applied

the sphericity test to each set for both groups. The corresponding p-values

were again close to zero, suggesting that the time points in each set were

correlated regardless of the group. Our finding suggests that Xia and Li

(2017) might not have completely decorrelated the rows, and the construc-

tion of their two brain connectivity networks might have been affected by
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the presence of significant temporal correlations.

6. Discussion

We considered test statistics for assessing the sphericity, identity and diag-

onality hypothesis tests for the row or column covariance matrix in high-

dimensional transposable data, conditional upon the N i.i.d. random ma-

trices having a Kronecker product dependence structure, a reasonable the-

oretical and practical assumption with high-dimensional transposable data.

From a computational perspective, all three tests proposed are parsimo-

nious in construction as estimation of just five parameters is required and

there is no need to estimate the full column covariance matrix. Based on

the results of the simulation study, it appears that the proposed diagonality

test preserves the nominal size regardless of the distributional scheme, the

sample size and the number of row and column variables. The proposed

sphericity and identity tests also appeared to maintain the nominal size

under normality but they might be slightly liberal when there are few col-

umn variables, say 10 or less, under non-normality. All three proposed tests

seemed to be extremely powerful when there is a large number of ‘nuisance’

(column) variables but they suffered some power loss in the presence of

strongly correlated column variables unless the sample size is greater than

100. We have also created the R package HDTD that implements the pro-
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posed testing methods. The implementation of the proposed tests in HDTD

takes advantage of the computationally inexpensive formulae presented in

the Supplementary Materials, making the proposed methodologies suitable

for use with high-dimensional transposable data even for very large numbers

of row and/or column variables.

In future works, we aim to investigate the implications of the proposed

tests when the true covariance structure does not satisfy a Kronecker prod-

uct assumption, extend our methodology to account for covariance matri-

ces that do not satisfy assumption (2.2), such as a covariance matrix with

bounded variances that implies a compound symmetry correlation pattern,

and consider extensions of these methods to array-variate random variables.

Supplementary Materials

The Supplementary Materials contain technical details, alternative for-

mulae for the proposed test statistics, additional simulation results and the

R code for reproducing the results in Section 5.
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