

Citation for published version:
Grow, A, Gaudl, S, Gomes, P, Mateas, M & Wardrip-Fruin, N 2014, 'A Methodology for Requirements Analysis
of AI Architecture Authoring Tools'.

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication

Publisher Rights
CC BY

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Dec. 2019

https://researchportal.bath.ac.uk/en/publications/a-methodology-for-requirements-analysis-of-ai-architecture-authoring-tools(e9b45412-f8df-40ab-8092-fb529f8533c6).html

A Methodology for Requirements Analysis
of AI Architecture Authoring Tools

April Grow1, Swen Gaudl2, Paulo Gomes1, Michael Mateas1, Noah Wardrip-Fruin1

1 Center for Games and Playable Media
University of California, Santa Cruz

Santa Cruz, CA, 95064
{agrow, pfontain, michaelm, nwf}

@soe.ucsc.edu

2 Department of Computer Science
University of Bath

BA2 7AY, Bath, UK
s.e.gaudl @bath.ac.uk

ABSTRACT
Authoring embodied, highly interactive virtual agents (IVAs) for
robust experiences is an extremely difficult task. Current
architectures for creating those agents are so complex that it takes
enormous amounts of effort to craft even short experiences, with
lengthier, polished experiences (e.g., Facade, Ada and Grace) often
requiring person-years of effort by expert authors. However, each
architecture is challenging in vastly different ways; it is impossible
to propose a universal authoring solution without being too general
to provide significant leverage. Instead, we present our analysis of
the System-Specific Step (SSS) in the IVA authoring process,
encapsulated in the case studies of three different architectures
tackling a simple scenario. The case studies revealed distinctly
different behaviors by each team in their SSS, resulting in the need
for different authoring solutions. We iteratively proposed and
discussed each team’s SSS Components and potential authoring
support strategies to identify actionable software improvements.
Our expectation is that other teams can perform similar analyses of
their own systems’ SSS and make authoring improvements where
they are most needed. Further, our case-study approach provides a
methodology for detailed comparison of the authoring affordances
of different IVA architectures, providing a lens for understanding
the similarities, differences and tradeoffs between architectures.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence –
intelligent agents, multiagent systems; D.2.1 [Software
Engineering]: Requirements/Specifications – elicitation methods,
methodologies.

General Terms
Design, Standardization.

Keywords
Design, Agent Authoring, Interactive Virtual Agents, Tool-Driven
Development, Behavior-Oriented Design, ABL

1. INTRODUCTION
Interactive Virtual Agents (IVAs) are embodied human characters
that richly respond to user interaction, combining work in AI,
interfaces, sensing technology, and graphics, as well as
interdisciplinary knowledge from fields as diverse as psychology
and theater. We have begun to see the uses of IVAs manifest across
many fields, including medicine [3], human care-giving [12],
education [14], interactive drama [15], and video games [10, 16].
There seem to be as many approaches to creating virtual embodied
agents as there are humans creating them, but the majority of
approaches have one thing in common: authoring.

Our particular use of the overloaded term authoring encompasses
any asset creation and modification necessary to produce the
desired functionality of IVAs: animation, audio, written dialogue,
as well as behaviors, goals, and other more specialized decision-
making constructs belonging to a custom decision-making
mechanism (DMM). Authoring for the DMM adds another
dimension of complexity to the authorial burden of IVAs beyond
scripted scenes. The combinatoric interaction possibilities,
including large internal (to the agent) and external state spaces,
makes it difficult for an author to reason about and modify a
DMM.

Authoring tools are often proposed as a means to help the author
manage this complexity. However, authoring tools, especially for
IVAs exhibiting complex behavior, are a research area of their
own. To be of any practical use, authoring tools must be domain-
specific, system-specific, or customizable enough to be tailored to
the authoring challenges of a specific DMM; this fact is illustrated
by the lack of any cross-architecture tools for IVAs. The choice to
invest time and energy in an authoring tool is a difficult one,
because it is challenging to determine if the cost of
creating/customizing a tool and training authors would be less than
brute-forcing the authoring challenge without the tool.

To better understand IVA authoring, we surveyed 11 IVA authors
across 5 institutions and 9 different projects. We then returned to
three teams for iterative interviews, where we discovered a similar
pattern of difficulty, which we have decided to call the System-
Specific Step (SSS). In the SSS lies the DMM-dependent tangled
web of architectural affordance and constraint in which the author
painfully translates their high-level vision for the character into a
decision policy expressed in a specific architecture. We returned to
the three teams with our interpretation of their system’s SSS,
confirming the requirements it places on any authoring tool
approach, together with authoring tool proposals based on the
challenges discovered in the SSS to gauge their reactions.

This paper proposes the SSS requirements analysis methodology as
a means by which programmer-authors may better understand their
specific system’s authoring burden and potential features of
authoring tools which would alleviate this burden. Further, our
approach to requirements analysis provides a methodology for
comparing multiple IVA architectures to better understand the
relative strengths and tradeoffs of different architectures, as well as
the different authoring metaphors and behavioral idioms supported
by different architectures. We report three case studies of IVA
architectures having different design philosophies, teams, and
levels of complexity as rigorous example test cases of our
methodology. Our goal is to inform the creation of authoring tools
in similar architectures to enable the authoring of more robust
IVAs, to potentially identify common patterns of authoring
difficulty across architectures, and to provide a methodology for
more rigorous comparison of the strengths, weaknesses and
tradeoffs between different IVA architectures.

1.1 Related Work
The authors’ are not aware of any other work that documents and
analyzes the processes of different IVA authoring approaches over
a common scenario. In [11], FatiMA and ABL, two target
architectures of our case studies described below, were compared
regarding their expressiveness for modeling conflict between
characters. While related, this work focused on the output of the
two architectures, rather than their authoring processes. Even
though the content matter of the tools was different, Nelson and
Mateas’ iterative case studies regarding video game design support
tools provided a compelling example for our IVA architecture
authoring analysis [18]. We were able to build up a methodology
and test it with our subjects through tight collaboration, which we
feel was key to our success.

We have implicitly narrowed our definition of authors to
programmer-authors in this paper; the designers with an authorial
vision who have enough technical knowledge to build or use
complicated or technical authoring tools. We would like to support
less tech-savvy authors in the future, for which the list of authoring
issues identified by Spierling and Szilas [21] also provides a useful
starting point. The process of defining the SSS and tools
supporting it involved iterative discussions with our intended
authors in order to “make tools that better match the concepts and
practices of [our] media designers and content creators” [21].

One of the clearest cases of authoring tool effectiveness was
demonstrated by Narratoria, a tool suite that enables non-technical
experts familiar with digital media to create interactive narratives
[24]. Narratoria is comprised primarily of three separate tools:
story graph, script, and timeline editors all linked with collective
underlying data structures. While the interaction with the created
agents was minimal, the addition of the Narratoria tool suite to the
agent authoring process reduced the time spent authoring between
two similar projects by half. Narratoria’s divide-and-conquer
approach to authoring tool design, creating each sub-tool with
familiar vocabulary and tropes of its specific genre to better
support specialized authors, informed our conceptualization of the
SSS.

AIPaint, a behavior tree authoring tool, gains its authoring power
by limiting the behavioral domain to spatial reasoning [1]. In our
case studies, we focused on the authoring of social behavior, as
such behavior is characteristic of many IVA applications. Different
metaphors and conventions will need to be supported for social

behavior than for the spatial behavior supported by AIPaint.
Finally, as AI research progresses, commercial AI systems in
games also evolve using techniques from research to empower their
systems. For example, as the needed complexity of game agents
exceeded that which can be readily authored by finite state machine
approaches, behavior trees [7] arose as one of the dominant
commercial approaches to structuring and controlling intelligent
agents in games. Two of the architectures examined in our case
studies make use of reactive planning, which is closely related to
behavior trees.

2. THE SYSTEM-SPECIFIC STEP

We acknowledge as a first-class authoring challenge that each IVA
architecture comes with its own design philosophy, coding style,
and data structures. While we can all share the idea of an authoring
burden, how this burden manifests in each system can be entirely
unique. In order to begin alleviating the authoring burden for each
system, we need to identify the peculiarities of the authoring
burden in specific instances.

The System-Specific Step is our term for the parts of the authoring
process where broad discussion ends and, as the name suggests,
system-specific design constructs are used instead. Any aspect of
authoring that is driven by the commitments of a specific
architecture, including design constructs and design philosophy, is
part of the SSS of that system. Examples of what an author may
need to do as part of the SSS include: imagining how an agent will
traverse the behavior representation so as to iteratively author
interesting decision points, constructing hierarchical goals so that
an agent can plan its way from the beginning to end of the scenario,
and figuring out how an agent can express frustration if its body is
busy doing other actions. Figure 1 shows a graphical
representation of the boundaries of the SSSs using this paper' three
case studies as examples, including a few of each system's unique
primitives and tasks.

2.1 The SSS Conception
We conducted a series of informal interviews with 5 institutions
across the globe to help understand how different institutions
making use of different architectures approached their personal
IVA authoring challenges. In addition to the six local ABL authors
and the authors of this paper, we surveyed members of GAIPS
[19], CADIA [23], and CTAT [22] to explore different approaches
and purposes for authoring, anecdotes of successes and failures of
particular authoring tools, and techniques for visualization. Our
findings helped us propose the idea of the System-Specific Step to
capture the architecture-specific phases of the authoring process,
and led us to the methodology of using in-depth case studies to
inform the design of authoring tools.

Figure 1. Illustrates the boundaries of an architecture's SSS

2.2 The SSS Methodology
In order to find a specific system’s point of divergence from shared
authoring concepts, we needed to run the architecture through an
authoring exercise. For this paper, we designed a simple scenario,
described below, for intermediate-expert authors to transform into
descriptive pseudocode for their own system, one step removed
from actually programming the scenario. These intermediate-expert
authors were accompanied by an analyst who was not an expert in
the architecture, which forced the intermediate-expert to elaborate
and make explicit every step of their authoring process.

The authoring team then translated their work into a rigorous
process map, where the analyst wrote the map (confirming their
understanding) and the intermediate-expert validated and expanded
it as necessary. Process mapping involves creating a visual
representation of a procedure similar to a flow chart, making
explicit “the means by which work gets done” [13]. Details of each
step (and possible sub-steps) in the process were recorded, such as
the duration of each step, other people involved, and possible
authoring bottlenecks. The goal of this process map is to make as
much of the authoring process as explicit as possible for analysis.
In the following case studies, conclusions drawn from the process
maps of each team are enumerated as SSS Components.
We found this process not only helpful, but necessary to discover
actionable means by which to improve the authoring experience for
the requirements analysis (as the Authoring Support Strategies
sections of the case studies will elaborate). It is important to note
that it may take multiple of these sessions with the same author
(and possibly multiple process maps) to obtain the full authoring
process with sufficient detail for analysis. For example, one early
process map made with an ABL author was very high-level,
focusing on the interconnection with other teams and the bottleneck
this caused. The analyst had to return to the ABL author for
another session aimed at creating a new process map through the
expansion of a single node in the first process map.

3. THE SCENARIO
The scenario we chose is a simplified version of the “Lost
Interpreter” scenario recently completed and demoed by the
IMMERSE group in ABL [20]. It involves the player as an armed
soldier in an occupied territory searching for their lost interpreter
via a photograph in their possession. The player must show the
image to a cooperative local civilian, who will then recognize the
person in the photograph and point the player in the direction of the
interpreter. Once the player knows the location, the scenario is
successfully completed. The uncooperative civilian will not
respond to the player’s pleas for help, and if the player is rude or
breaks social norms [9], the NPCs (Non-Player Characters) will
leave and the scenario will end unsuccessfully.

We chose this scenario because it exercises a wide range of
capabilities of interactive characters: player involvement, multiple
NPCs with different attitudes, a physical object, communication
between NPC and PC, and multiple outcomes. The scenario was
also simple enough that each team was able to reach a pseudocode
state of completion in a reasonable amount of time (1-3 hours).
While the original IMMERSE scenario required non-verbal
communication via gesture recognition, we did not enforce that
modality on other systems. The specifications of the scenario were
designed to be loose enough to allow each system to encode the
scenario to their system’s advantages without demanding
extraneous features that all systems may not possess.

4. CASE STUDIES
We studied the following three programmer-author teams of one,
two, and five interview participants respectively (although there are
more developers on each team). Each architecture made use of a
different design philosophy, which will become apparent in the
discussion of their individual SSS. The following case studies are
listed in order of increasing complexity of the architectures. Each
of the case studies provides a description of the authoring process
associated with the architecture, a list of the SSS components
abstracted from the authoring description, and a description of
authoring support strategies that could reduce the authoring burden
of the particular SSS.

4.1 Case Study 1: BOD using POSH
Bryson et. al. ascribe to a particular behavior authoring
methodology entitled Behavior-Oriented Design [5], an approach
that combines Object Oriented Design and Behavior-Based AI [4].
Bryson et al. use BOD and their action selection mechanism, the
POSH (Parallel-rooted, Ordered Slip-stack Hierarchical) planner as
their architecture and development process because it focuses on
simplicity and iteration, offering a low barrier to entry for novice
authors. This case study encoded the Lost Interpreter scenario in
the least amount of time.

After the scenario was defined, a programmer and designer worked
together to create a list of abstract behaviors that need to be
performed. It is important to note that the BOD designer (as
distinct from the programmer) will never need to encounter
anything more complicated than graphical interfaces in their
authoring interactions, allowing the designer and programmer to be
the most independent of the three case studies (although they may
be the same person in some projects). The separation of these two
roles is part of the design philosophy of BOD. In our case study the
abstract behavior list included seven actions: a greeting/goodbye to
mark the beginning and end of the interaction, accepting,
examining, returning an item, ignoring the player (for the
uncooperative agent), and telling information. The second step was
to build what is ultimately a list of procedure signatures for the
programmer, determining which of these behavior elements need to
be represented as actions and sensors, as well as an idle state
should all else fail [6].

The programmer then coded the actions and sensors as functions to
create the building blocks of the dynamic plan. In parallel, the
designer used the primitives (actions and sensors) created by the
programmer to design the behavior tree using ABODE*, a
graphical design tool for POSH plans. Figure 2 shows the
BOD/POSH process map for the tasks of the designer and
programmer.

Figure 2: A high-level representation of BOD/POSH's process
map including some defined sample primitives

4.1.1 SSS Components
4.1.1.1 Start Minimally
Even though our scenario was relatively simple, it was important to
begin with a minimal number of behaviors, actions, and sensors to
create a working vertical slice. The scenario began with only four
primitives in the first version of the dynamic plan.

4.1.1.2 Decompose Iteratively
A key feature of the BOD authoring methodology is its agility; not
only can programmers iteratively tackle the stubs created in the
previous Component, but the designer and programmers freely
move between phases of the design process to build up missing
primitives that were not in the minimal first list. In our case study,
the programmer was creating idle and item-handling primitives
while the designer realized they had not accounted for the norm-
offense response.

4.1.1.3 Minimize and Encapsulate
While not a part of this scenario, an experienced BOD/POSH
designer knows that if more than three sensors are needed to trigger
a competence, the logic held within the tree is getting too complex.
The designer should flag the programmer to offload the logic from
the tree onto a new sensor, simplifying the logic (and thus
computational resources) controlled by the tree. Not following this
rule of thumb is a common mistake most novice BOD/POSH
authors make, resulting in a tangled mess of restricting sensors that
is difficult to debug and behavior libraries limited to a narrow
subset of scenarios. This last SSS Component is the most unique,
as all behaviors (which contain the majority of the complexity) are
only triggered by the tree rather than contained within the tree.

4.1.2 Authoring Support Strategies
The BOD/POSH case study is unique in that it is the only system
we studied with an explicit authoring approach as well as a
graphical design tool (ABODE*). This makes it easy for novice
authors to create simple agents, but authoring and maintaining
complex agents creates challenges in need of more robust tools.
Thus, the focus of our authoring support strategies will primarily
address SSS Component 4.1.1.3, as the first two are well-
supported via the BOD methodology and the current architecture.

There is no standardized method for testing and debugging in
BOD/POSH, a problem that all the other architectures in this paper
also share. Support for syntax checking and live behavior
debugging would shorten the programmer’s development cycle
considerably while iterating on more challenging behaviors (SSS
Component 4.1.1.2). Most crucial, however, is a mechanism to
facilitate better behavior sharing and reuse between and within
projects. The larger a BOD/POSH behavior library is, the more
likely that novice users tend to develop their own library instead of
reusing existing components. The challenge with three or more
sensors triggering a behavior, discussed above in SSS Component
4.1.1.3, is one example of an authoring lesson that needs to be
encoded in the graphical design tool to help authors build more
reusable behaviors. A new module that manages past similar
encapsulated behavior libraries, and prompts users to submit their
new simplified behaviors for future reuse, would also increase the
reuse and power of BOD and POSH enormously.

4.2 Case Study 2: FAtiMA
FAtiMA [8] is a multiagent architecture in which each agent has an
emotional state and plans future actions to achieve a specific goal.

Goals can be weighted according to their relative importance.
Different characters can have separate personality files in which
these weights are defined. Authoring in FAtiMA is done by editing
several separate XML files. When presented with the requirements
of the the Lost Interpreter scenario, FAtiMA authors started by
considering the motivations of the NPCs. Since the behaviors of
agents in FAtiMA are goal driven, it was proposed that NPC’s in
this scenario must have the explicit goal of helping the player. A
possible example of such a goal is shown in Code 1 with the goal
Help.

Additionally, there needed to be a motivation not to help, in order
to model the uncooperative NPC's behavior. The authors chose for
the uncooperative NPC to have the goal of avoiding harm from the
armed player (let it be called ProtectSelf). For this second goal to
be useful, there must be an NPC action that is helpful to the player,
but at the same time might put it in harms way. For instance, the
NPC might consider the possibility of being harmed when taking
the picture from the player. If the agent considers a plan involving
possibly being harmed, then it will feel a Fear emotion. The authors
then continued to define actions that the agents can take along the
path of reaching the help goal, such as actually taking the photo,
examining it, or speaking.

4.2.1 SSS Components
We were lucky in this case study to consult with a second FAtiMA
authoring team after iteratively discovering the SSS Components
with the first team. Their responses have been included in the
following sections alongside those of the first FAtiMA scenario
authoring team.

4.2.1.1 Goals First
FAtiMA’s goal primitives must be defined first, with the necessary
actions being derived from them. This is driven by FAtiMA’s
dependence on goals for the cognitive appraisal emotion model to
work. For each branching strategy that the agent could take (e.g.
respond to request or not respond), there needed to be a motivation,
hence a driving goal. The second FAtiMA team worked with goals
and actions simultaneously, which was inconsistent with the first
team. Part of the second team’s reasoning was that, with the
appropriate set of actions, the agent should be able to deal with a
wide range of situations, and thus goals. We speculate this different
approach may be caused by the disparity between the author
experience and scenario complexity between the two teams (the
second team had more experience and a less demanding scenario).

4.2.1.2 Find Decision Points
We noticed that the authors divided the scenario into sections
whose boundaries corresponded to moments in which the civilians
had to make a decision. As every decision point must also be

motivated by a goal, it helped to author the previous SSS
Component as well. Authors also found that temporal ordering of
decisions could be enforced by creating goal preconditions that
referenced recent events. The second FAtiMA team agreed with
this analysis. Their modeled scenarios were required to go through
sequential phases, due to pedagogical objectives. Thinking of the
decision point sequences helped define their goals.

4.2.1.3 Goal Weighting and Tuning
The cooperative and uncooperative civilians in the scenario chose
to take different actions when deciding to help by having different
numerical weights for the Help and ProtectSelf goals. By giving
more importance to a particular goal in the character’s personality
file, the interviewed authors made sure each agent made the
appropriate decision at the decision points. It is these goal weights
that completely control how different agents take different paths
throughout the performance, which supports previous comments by
FAtiMA authors (including the second FAtiMA team) that weight
tuning is by far the most time-consuming process of complex
FAtiMA authoring [2].

4.2.1.4 Intent Goals for Future Consequences
While not part of this particular authoring scenario, we did
encounter a useful authoring anecdote that sparked discussion of
this additional FAtiMA SSS. Goals have two types: Active Pursuit
and Intent. For Active Pursuit goals, the agent actually creates
plans to achieve them. Intent goals define constraints that the agent
should try to maintain as it pursues Active Pursuit goals. In the
process of researching [11], Gomes created two Active Pursuit
goals that an agent simultaneously tried to achieve. However,
Gomes learned from an expert FAtiMA author that FAtiMA could
not handle more than one Active Pursuit goal at a time and had to
re-write his entire goal structure. The second FAtiMA team did not
agree that this was an important part of their process, as their
authors reported easily choosing between Active Pursuit and Intent
goals.

4.2.2 Authoring Support Strategies
We propose authoring support strategies for the two SSS
Components that were supported by both teams: 4.2.1.2 and
4.2.1.3. For SSS Component 4.2.1.2, we proposed an interface
where authors could create example sequences of events
schematically. Afterwards, the tool would prompt the user when a
given agent was faced with a decision. The author would then
create the corresponding goals (and possibly actions) that would
motivate different strategies.

All three case studies have points in their authoring where quick
iteration of different scenarios would be incredibly helpful in
speeding up the authoring process. FAtiMA exhibits the most
obvious case, as all of its content adjustments can be narrowed to
values in a few specific files. The authors speculated launching
multiple simultaneous configurations of a scenario with FAtiMA
agents encoded with different personality weights (possibly in real-
time), choosing the best version, and iteratively repeating to tune
the weights.

4.3 Case Study 3: ABL
ABL was designed with a focus on the creation of expressive IVAs
and provides a feature-full reactive planning language for
structuring and creating them with a high degree of interactivity
[17]. The primary structure primitive in ABL is the behavior,
which can subgoal other behaviors in sequence or in parallel and

contains preconditions that gate whether or not it can currently be
executed. The Active Behavior Tree (ABT) encodes the current
intention structure of the agent, with the leaves of the tree as
potential executable steps. Working Memory Elements (WMEs)
hold information intended to be shared throughout the ABT, such
as whether an NPC is holding an item. It is important to note that
all the interviewed ABL subjects are involved with the in-progress
IMMERSE project; we will take care to delineate ABL language-
specific and IMMERSE project-specific constructions in this
section.

The ABL authors approached the scenario by first creating a list of
abstract behaviors which were stubbed into the ABT in a rough
sequential structure. At a high level, the authors each tackled a
specific behavior and worked iteratively with each other to bring it
to completion. ABL authors thus also employ the SSS Components
4.1.1.1 and 4.1.1.2 described above, and so they will not be
restated. However, the details of the iterative steps for ABL hold
rich opportunities for further SSS Components.

Consider the example give_object() behavior for a character to
hand an object to another character:

The behavior in Code 2 illustrates the basic behavior structure that
authors of abstract behaviors must address:

• The context of how the behavior will be triggered : in this
scenario, the author knows that give_object() will be triggered in
response to a request_object() behavior or it will be accepted
unconditionally. It contains no logic for having the offered object
rejected. This behavior also only handles removing the object from
the character’s hand, and assumes another behavior handles the
object’s fate.

• Relevant signals and WMEs: The previous behavior was
authored assuming that the characterPhysicalWME contains
locational information, that there is a socialSignalWME ready to
handle socialInterpretationExtendHand, and that there are
constants such as the cExchangeObjectDistance previously defined
and calibrated for the world. If any of these are lacking, or the

author does not know about them, the author must search the
existing code or create them.

• Expected animations: Head tracking, eye gaze, and holding out
the offered object are the animations used in this behavior. The
logic behind procedurally animating them is handled elsewhere, and
if it were not, the author would have to create it.

• Possible Interruptions: The most challenging and crucial step
to making these behaviors robust is handling interruptions, which
the above behavior fails to do. In the success_test, if the NPC never
acknowledges the socialSignal or the player never comes in range,
the NPC will hold their hand out forever. If a timeout was added to
holding out their hand, what should the NPC do about the
unrequited object offering, and how should the lost
request_object() context be handled? These are all considerations
the author must address when making behaviors robust.

4.3.1 SSS Components
4.3.1.1 Define Coding Idioms
Unlike BOD/POSH and FAtiMA, which make strong architectural
commitments to specific agent authoring idioms, ABL is a more

general reactive planning language, within which many different
idioms can be implemented. Before novice and intermediate
programmers can make progress, generally an expert ABL
programmer must first define the coding idioms used to structure
the agent (see [25] for examples of ABL idioms). These idioms
define approaches for organizing clusters of behaviors to achieve
goals. For the IMMERSE project, an idiom called Social
Interaction Units (SIUs) has been developed to organize clusters of
behaviors around goals to achieve specific social interactions. The
ABL authors interviewed all approached the “Lost Interpreter” task
using the SIU idiom.

4.3.1.2 NPC and Player Considerations
Although we can see that the example behavior above, as well as
the architecture, is separated from a particular implementation, the
code must intimately consider implementation details. There is an
enormous amount of state information and ABT possibilities the
author must personally maintain regarding how the behavior will
be triggered in the performance, whether NPC or PC characters will
be performing or responding to the behavior, and what supportive
information must be stored in working memory. BOD/POSH and
FAtiMA offload much of this complexity into the actions

Table 1: A summary of SSS Components described throughout the paper

Section # Name Summary Systems Authoring Support

4.1.1.1 Start Minimally Having a working vertical slice early gives programmers
and designers a good overview of the scenario structure

BOD/
POSH,
ABL

Current ABODE* graphical design
tool is sufficient

4.1.1.2 Decompose
Iteratively

Filling in the stubs iteratively gives designers and
programmers freedom to adjust the structure without
getting in each other's way

BOD/
POSH,
ABL

Current ABODE* graphical design
tool is sufficient

4.1.1.3 Minimize and
Encapsulate

The BOD/POSH tree relies on simple logic to execute
quickly, so complex sensory preconditions should be
offloaded to behaviors

BOD/
POSH

A module that manages encapsulated
behaviors, keeping them simple and
proposing them to new authors

4.2.1.1 Goals First The agent's actions are driven by goals, so there must
always be a goal structure

FAtiMA Combined with SSS Component
4.2.1.2

4.2.1.2 Find Decision
Points

Necessary scenario-defined decision points make sub-
goals more apparent to author

FAtiMA Scenario event sequencing tool with
prompts for goals and actions at
decision points

4.2.1.3 Goal Weighting
and Tuning

Agent's different behaviors are driven by different
weights, which is a huge time sink to debug

FAtiMA Parallel execution and real-time
adjustment/comparison of values

4.2.1.4 Intent Goals for
Future
Consequences

Language-specific limitations, such as only having one
active goal at a time, hinder novice-intermediate authors

FAtiMA Better documentation

4.3.1.1 Define Coding
Idioms

As ABL is its own language, an author must have a
strong understanding of their chosen idioms

ABL Too advanced for a tool to offer much
help

4.3.1.2 NPC and Player
Considerations

An author must conceptualize roles, the contents of the
working memory and ABT, and fine-grain performance
details while building up their behaviors

ABL Revival of the ABL Debugger through
modularization: offline code analysis
of behavior structures through idioms

4.3.1.3 Consider
Interruptions

Authors must try to robustify their behaviors against
interruptions and stalling, which complicates the
previous SSS Element

ABL Revival of the ABL Debugger through
modularization: offline code analysis
of behavior structures through idioms

implemented in the game engine, while ABL keeps this complexity
within the decision-making process of the agent.

4.3.1.3 Consider Interruptions
In the ABL scenario, if the system detects the player offering the
photo, it will trigger the series of ABL behaviors by the
cooperative NPC: take_object(photo), examine_object(photo), and
point_to(interpreter). If the system detects the player requesting the
photo back any time after examine_object(photo), this will trigger
the NPC to give back the photo regardless if it is in the middle of
another behavior such as pointing. From a designer’s perspective,
it is perfectly logical that someone may return the photo with one
hand and point with another. However, the author of point_to()
must account for the fact that the behavior may have to multitask
with other behaviors to dynamically decide which hand to use. If
the synchronization of those behaviors is not done properly, the
animation of the IVA will contain artifacts which are not appealing.

4.3.2 Authoring Support Strategies
We discussed ABL’s SSS with novice, intermediate, and expert
authors of the ABL language, and their processes all shared the
same structure described in detail above. However, novices and
early intermediate authors needed to reference experts to
understand that the above considerations existed, and where to look
for them in the code or how to create aspects of them if they were
missing. Once example behaviors have been created, authors
routinely copy-paste and adapt existing code. ABL meta-behaviors,
an advanced language feature, could help alleviate this process, but
they were not utilized by any of our authors.

Novice-intermediate ABL authors work within previously
established idioms, such as IMMERSE’s SIUs. Making tools to
support the design of new idioms in regard to SSS Component
4.3.1.1 is not within the scope of this approach, as we have been
focusing primarily on novice-intermediate authoring tool support.

In contrast to the visual representation of BOD/POSH’s dynamic
plan, the Active Behavior Tree (ABT) in ABL is in a constant flux,
making it hard to visualize. Currently, ABL authors use debug log
print statements of the current system state and trial-and-error
experiments to understand ABT dynamics. Support for more
sophisticated debugging techniques does exist in the form of an
ABL debugger (a process that executes alongside an agent at
runtime), but none of the ABL authors choose to use it. The current
ABL debugger contains too many usage barriers to ascertain if it is
technically useful in helping visualize SSS Components ix and x.
Our current plan for overcoming these usage barriers include a
graphical ABT representation that allows for parallel viewing of
disjoint parts of the tree, saving tree snapshots, and saving viewing
locations for repeated tests. We also have plans to analyze ABL
code structure offline through an IDE plugin, and an ABT pattern
recognition algorithm to alert authors to missing behavior cases
(NPC vs. PC implementations), unused behaviors, and other
structural indicators we have yet to find.

5. DISCUSSION
The SSS Components that arose from the simplest case study,
BOD/POSH, were high-level authoring guidelines that apply to
multiple architectures. Specifically, all three of BOD/POSH’s
Components apply to ABL as well, as they are more characteristic
of a hierarchical planning structure than of BOD/POSH
specifically. Other SSS Components, such as FAtiMA’s Goals
First (iv), are guided by FAtiMA’s planning-oriented cognitive-

appraisal architecture that is driven by explicit goals. The ABL
case study provides a level of complexity above the other two;
ABL is a general reactive planning language where many authoring
idioms may be designed, as well as the only architecture in the case
studies with a behavior tree that dynamically changes during
runtime.

Many interviewees were resistant to the idea of specifying
implementation time (in number of hours), as it varied greatly
between each task. We also found that the particular shape or
contents of any single process map wasn’t as relevant as the
process of elucidation and reflection. The goal of the process
mapping technique is to tease out what is general and what is
system-specific about a given architecture. The system-specific
information forms the core of requirements analyses and the
actionable plans found therein. Table 1 shows a summary and
consolidation of each team's analyst's best attempt at discovering
system-specific patterns of frustration and proposing solutions to
alleviate the problems.

Although the SSS concept contains the phrase “System-Specific”
in its name, we found that certain SSS Components are shared
between different systems, revealing common architectural tropes.
However, we did find common medium-level authoring challenges
that may be of use to other teams by abstracting SSS Components
of the case studies: the need for (better) mechanisms for behavior
(or other architecture construct) sharing and reuse, live debugging,
and template structures for architecture constructs. We hope that
the SSS Components defined in this paper not only help other
architectures discover their own SSS Components, but that the
other architectures can reuse the SSS Components and the
corresponding authoring support strategies we have outlined.

6. CONCLUSIONS
This paper has proposed the SSS requirements methodology as a
means by which programmer-authors may better understand their
IVA architecture’s authoring burden and make progress toward
alleviating that burden. The methodology was born of interviews
conducted with many disparate and independent groups performing
IVA authoring research. We then performed case studies of three
teams authoring a single simple scenario where we process-mapped
their authoring process, extracted and elaborated their SSS and its
Components, and proposed authoring strategies that might alleviate
their authoring burdens. The three teams found the SSS to be a
valuable tool in analyzing their system, and each group plans on
implementing support for their authoring strategies.

7. ACKNOWLEDGEMENTS
In no particular order: Martin van Velsen, CTAT, Claudio Pedica,
CADIA, Samuel Mascarenhas, GAIPS, Andrew Stern, Dan
Shapiro, the IMMERSE team, the AmonI group, Megan Pycroft,
and Kerry Bruce

8. REFERENCES
[1] Becroft, D., Bassett, J., Mejía, A., Rich, C., & Sidner, C. L.

2011. AIPaint: A Sketch-Based Behavior Tree Authoring
Tool. In AIIDE '11.

[2] Bernardini, S., & Porayska-Pomsta, K. (2013). Planning-
Based Social Partners for Children with Autism. In Proc. of
the Twenty Third International Conference on Automated
Planning and Scheduling (ICAPS-13).

[3] Bickmore, T., Bukhari, L., Vardoulakis, L. P., Paasche-Orlow,
M., & Shanahan, C. (2012). Hospital buddy: A persistent
emotional support companion agent for hospital patients. In
Intelligent Virtual Agents (pp. 492-495). Springer Berlin
Heidelberg.

[4] Brooks, R. A. (1986). A robust layered control system for a
mobile robot. Robotics and Automation, IEEE Journal of,
2(1), 14-23.

[5] Bryson, J. J. (2001). Intelligence by design: principles of
modularity and coordination for engineering complex
adaptive agents (Doctoral dissertation, Massachusetts
Institute of Technology).

[6] Bryson, J. J., & Stein, L. A. (2001). Modularity and design in
reactive intelligence. In International Joint Conference on
Artificial Intelligence (Vol. 17, No. 1, pp. 1115-1120).
Morgan Kaufmann.

[7] Champandard, A. J. (2003). AI game development: Synthetic
creatures with learning and reactive behaviors. New Riders.

[8] Dias, J., Mascarenhas, S., & Paiva, A. (2011). Fatima
modular: Towards an agent architecture with a generic
appraisal framework. In Proceedings of the International
Workshop on Standards for Emotion Modeling.

[9] Evans, Richard (forthcoming). Computer Models of Social
Practices. In Vincent Muller (ed.), Synthese Library:
Philosophy and Theory of Artificial Intelligence. Synthese.

[10] Gaudl, S., Davies, S. and Bryson, J. J., 2013. Behaviour
oriented design for real-time-strategy games: An approach on
iterative development for STARCRAFT AI. In: Foundations
of Digital Games Conference 2013 (FDG 2013).
Foundations of Digital Games, pp. 198-205.

[11] Gomes, P., & Jhala, A. (2013). AI Authoring for Virtual
Characters in Conflict. In Ninth Artificial Intelligence and
Interactive Digital Entertainment Conference.

[12] Gratch, J., Wang, N., Gerten, J., Fast, E., & Duffy, R. (2007).
Creating rapport with virtual agents. In Intelligent Virtual
Agents (pp. 125-138). Springer Berlin Heidelberg.

[13] Madison, D. (2005). Process mapping, process
improvement, and process management: a practical guide
for enhancing work and information flow. Paton
Professional.

[14] Mascarenhas, S. F., Silva, A., Paiva, A., Aylett, R., Kistler, F.,
André, E., ... & Kappas, A. (2013, May). Traveller: an
intercultural training system with intelligent agents. In
Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems (pp. 1387-
1388).

[15] Mateas, M. (1999). An Oz-centric review of interactive
drama and believable agents (pp. 297-328). Springer Berlin
Heidelberg.

[16] Mateas, M. (2003). Expressive AI: Games and Artificial
Intelligence. In DIGRA Conf..

[17] Mateas, M., & Stern, A. (2002). A behavior language for
story-based believable agents. IEEE Intelligent Systems,
17(4), 39-47.

[18] Nelson, M. J., & Mateas, M. (2009, April). A requirements
analysis for videogame design support tools. In Proceedings
of the 4th International Conference on Foundations of
Digital Games (pp. 137-144). ACM.

[19] A. Paiva. GAIPS: Intelligent agents and synthetic characters,
2014. http://gaips.inesc-id.pt/gaips/

[20] Shapiro, D., McCoy, J., Grow, A., Samuel, B., Stern, A.,
Swanson, R., ... & Mateas, M. (2013). Creating Playable
Social Experiences through Whole-Body Interaction with
Virtual Characters. In Ninth Artificial Intelligence and
Interactive Digital Entertainment Conference.

[21] Spierling, U., & Szilas, N. (2009). Authoring issues beyond
tools. In Interactive Storytelling (pp. 50-61). Springer Berlin
Heidelberg.

[22] Carnegie Mellon University. CTAT: Cognitive Tutor
Authoring Tools, 2014. http://ctat.pact.cs.cmu.edu/

[23] Reykjavik University. CADIA: Center for Analysis and
Design of Intelligent Agents, 2014. http://cadia.ru.is/

[24] Van Velsen, M. (2008). Narratoria, an Authoring Suite for
Digital Interactive Narrative. In FLAIRS Conference (pp.
394-395).

[25] Weber, B. G., Mawhorter, P., Mateas, M., & Jhala, A. (2010).
Reactive planning idioms for multi-scale game AI. In
Computational Intelligence and Games (CIG), 2010 IEEE
Symposium on (pp. 115-122). IEEE.

	1. INTRODUCTION
	1.1 Related Work

	2. THE SYSTEM-SPECIFIC STEP
	2.1 The SSS Conception
	2.2 The SSS Methodology

	3. THE SCENARIO
	4. CASE STUDIES
	4.1 Case Study 1: BOD using POSH
	4.1.1 SSS Components
	4.1.1.1 Start Minimally
	4.1.1.2 Decompose Iteratively
	4.1.1.3 Minimize and Encapsulate

	4.1.2 Authoring Support Strategies

	4.2 Case Study 2: FAtiMA
	4.2.1 SSS Components
	4.2.1.1 Goals First
	4.2.1.2 Find Decision Points
	4.2.1.3 Goal Weighting and Tuning
	4.2.1.4 Intent Goals for Future Consequences

	4.2.2 Authoring Support Strategies

	4.3 Case Study 3: ABL
	4.3.1 SSS Components
	4.3.1.1 Define Coding Idioms
	4.3.1.2 NPC and Player Considerations
	4.3.1.3 Consider Interruptions

	4.3.2 Authoring Support Strategies

	5. DISCUSSION
	6. CONCLUSIONS
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

