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Abstract—Research on synthetic aperture radar (SAR) scene
matching in the aircraft end-guidance has a significant value for
both research and real-world application. The conventional scene
matching methods, however, suffer many disadvantages such as
heavy computation burden and low convergence rate so that these
methods cannot meet the requirement of end-guidance system in
terms of fast and real-time data processing. Furthermore, there
are complex noises in the SAR image, which also compromise the
effectiveness of using the conventional scene matching methods.
To address the above issues, in this paper, the intelligent opti-
mization method, Free Search with Adaptive Differential Evolu-
tion Exploitation and Quantum-Inspired Exploration, has been
introduced to tackle the SAR scene matching problem. We first
establish the effective similarity measurement function for target
edge feature matching through introducing the edge potential
function (EPF) model. Then, a new method, ADEQFS-EPF, has
been proposed for SAR scene matching. In ADEQFS-EPF, the
previous studied theoretical model, ADEQFS, is combined with
EPF model. We also employed three recent proposed evolutionary
algorithms to compare against the proposed method on optical
and SAR datasets. The experiments based on Matlab simulation
have verified the effectiveness of the application of ADEQFS and
EPF model to the field of SAR scene matching.

I. INTRODUCTION

High-resolution synthetic aperture radar (SAR) is an active
high-resolution microwave remote sensor. From early sixties
in the twentieth century, SAR played a significant role in
military scouting [1]. A large quantity of available airborne
SAR images have changed the conventional view that mi-
crowave imaging only has a low quality on spatial resolution.
In addition, the full-time using of SAR gives a remarkable
impression on the researchers. As an emerging new imaging
tool, SAR has an immense influence on the field of precise
control and guidance. The research on SAR scene matching in
the aircraft end-guidance therefore has a promising future for
military application. It also has a significant contribution on
further improving the air-strikes correctness and preciseness,
fast weakening the enemys combat strength, and effectively
obtaining the turning point in the battlefield.

In the SAR scene matching of aircraft end-guidance sys-
tem, the navigation error is corrected by the combination of
current navigation information from GPS, for example, and
the most up-to-date information of target position from aided
navigation system. The updated position information can be
obtained through matching of the SAR real-time image with

the reference image that has been pre-uploaded to the system.
Therefore, the SAR scene matching method is one of critical
techniques in such an aided navigation system, which requires
real-time performance, sub-pixel accuracy and high robustness.

It has been shown that the matching performance can
be greatly improved by using boundary-based methods [2].
Boundary-based scheme is therefore considered as an effective
way to simultaneously obtain both the position errors and
yawing errors. Generally, there are two critical steps involved
in boundary-based matching approach: contour extraction and
similarity measuring [3]. However, the SAR image, even the
high-resolution image after filtering and processing, is greatly
different from the optical image. Targets in SAR images are
quite dimmer and their details are very vague. In addition,
the SAR images usually contain many severe speckle nois-
es compared to common optical images [4], [5]. Therefore,
many traditional feature extraction and similarity measuring
approaches become invalid or less effective and they cannot
meet the requirement for end-guidance system in terms of fast
and real-time data processing.

Recently, the Edge Potential Function (EPF) model has
been proposed and developed by Minh-Son et al to measure
the similarity between two images that need to be matched [6].
This conception is derived from the physics of electricity. It is
used to build the desired model which includes edge position,
strength and continuity in a powerful representation, called
edge map. The edge map can describe the attraction generated
by edge structures contained in an image over similar curves.
Such a novel approach has been proved its feasibility and
reliability in complex environment [6]–[8]. The EPF model
is therefore expected to deal with scene matching problem in
SAR images.

It is yet another important step that we need a pow-
erful searching technique in order to apply boundary-based
matching approach to SAR aided navigation system. Given
that the attraction field associated to the EPF model is a
complex and multi-modal function, the searching algorithm
should be highly robust. Evolutionary algorithms are there-
fore suitable to complete the task as these population-based
algorithms are popular search techniques for solving global
optimization problems with unknown structure to the objective
function. Many computational evolutionary algorithms are now
used to solve real-world industrial optimization problems [9]–
[13]. The Free Search with Adaptive Differential Evolution



Exploitation and Quantum-Inspired Exploration (ADEQFS) is
a newly population-based optimization algorithm proposed by
Yin et al in 2012 [14]. The ADEQFS algorithm, derived from
Free Search [15], [16], can be easy to implement with high
computation efficiency and rapid convergence.

In this paper, we focused on applying the novel similarity
measuring approach and powerful searching technique to the
SAR scene matching system. To be specific, the ADEQFS opti-
mized EPF approach has been proposed and developed to deal
with the scene matching for SAR images. We first established
the effective fitness function through introducing the EPF mod-
el. Then, a new method, ADEQFS-EPF, was proposed where
the previous studied theoretical model, ADEQFS, is combined
with EPF model. In order to study the effectiveness of the
proposed approach, we also employed other three advanced
evolutionary algorithms PS2O [17], JADE [18], [19] and
ABC [8], [20], developed from particle swarm optimization,
differential evolution, and artificial bee colony, respectively, to
compare against the proposed algorithm on both normal optical
and SAR datasets. The visual and quantitative results highlight
the benefits of the proposed novel approach and its potential
to be used in the SAR aided navigation system.

The remainder of the paper is organized as follows. In Sec-
tion II, some key techniques such as affine transformation, EPF
model and ADEQFS algorithm are reviewed. The proposed
approach, ADEQFS-EPF, is described in details in Section III.
Experiments, results interpretation and analysis are presented
in Section IV. Finally, Section V gives a concise summary of
our work.

II. RELATED WORK

A. Affine Transformation

In the SAR scene matching aided navigation system, the
detected images are subject to geometric distortion introduced
by perspective irregularities wherein the position of the SAR
imaging sensor with respect to the scene alters the apparent
dimensions of the scene geometry. Using an affine transfor-
mation to a uniformly distorted image can correct for a range
of perspective distortions by transforming the measurements
from the ideal coordinates to those actually used.

An affine transformation [21] is an important class of linear
2-D geometric transformations which maps the current location
(x, y) in the original image to the new position (x′, y′) in the
output image by applying a linear combination of translation,
rotation and scaling operations. The affine transformation from
a reference image point (xi, yi) to a real-time image point
(x′

i, y
′
i) can be written as:

[
x′

i

y′i

]
= k ·

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
·
[

xi

yi

]
+

[
tx
ty

]
, (1)

where the model translation is [tx, ty]
T and the affine rotation

and scaling are represented by θ and k, respectively.

In this paper, the ADEQFS algorithm is employed to find
the optimal parameters (tx, ty, θ, k) of affine transformation
for the sketch template to match up with the targets in the
scene images.

B. EPF Model

The Edge Potential Function (EPF) model derived from the
potential generated by charged particles was firstly developed
by Minh-Son et al [6]. The EPF model is tailored to the context
of image matching, where it can be used to attract a template of
the searched object or a sketch drawn by a user in the position
where a similar shape is present in the image.

In complete analogy with the charged particles, the ith edge
point in the image at coordinate (xi, yi) can be assumed to be
equivalent to a point charge Qeq(xi, yi), contributing to the
potential of all image pixels:

EPF (x, y) =
1

4πεeq

∑
i

Qeq(xi, yi)√
(x− xi)

2
+ (y − yi)

2
, (2)

where εeq is a constant measuring the equivalent permittivity
of image background, taking into account the extent of the
attraction of each edge point. It should be noted that εeq
influences the spread of the potential function making it more
steep or smooth depending on its magnitude. In order to
simplify the calculations and improve the robustness of shape-
matching in noisy environments, we adopted the Binary EPF,
where all edge points are modelled as equal charges, i.e.,
Qeq = Qeq(xi, yi), as a constant.

To complete the model, the object template that needs to be
matched with the edge map can be considered as a test object
in the equivalent edge potential field generated from the image.
Consequently, the template is expected to be attracted by a set
of equivalent charged points that maximizes the potential along
the edge. In this way, the higher the similarity between the
object template and searched target in the image, the higher
the total attraction engendered by the edge field. Therefore,
EPF model can be ideally used as the similarity measure
for SAR scene matching task because it implicitly includes
many important features such as edge position, strength, and
continuity, in a unique powerful representation of the edge.

C. ADEQFS Algorithm

The recently proposed approach Free Search [15], [16]
has introduced the concept of sensibility, allowing the in-
dividuals exploring any location in the search space with
positive probability. However, such a strategy is difficult to
implement because it requires a priori key knowledge that is
not clearly defined in existing literature. To address this issue,
the authors in [14] proposed a new implementation for the
concept model of Free Search. In the proposed algorithm, Free
Search with Adaptive Differential Evolution Exploitation and
Quantum-Inspired Exploration (ADEQFS), the authors focused
on designing a hybrid mutation strategy. Particularly, in the
ADEQFS algorithm, all the individuals, called H-animals, are
embedded with two types of information: adaptive differential
evolution information and quantum-inspired information. H-
animals conduct different search behaviours balanced between
the exploitation search and the exploration search. Specifically,
H-animals start with random locations in the search space.
For each H-animal, the location fitness, adaptive differen-
tial evolution information and quantum-inspired are evaluated
and calculated. Then, H-animal distributes pheromone in an



amount proportional to the amount of the solution found.
H-animals’ exploration, which is favoured at the beginning,
and exploitation, which is preferred at the end, are executed
in the search process. Each H-animal’s H-sense is generated
randomly. Then, each H-animal selects a location with a
restricted condition that the pheromone of the current location
is better than its sense. During the local search, the H-animal
exploits the current location with a small step size by using
its adaptive differential evolution information, whereas during
the global search, the H-animal explores around the current
location with a large step size by using its quantum-inspired
information. The H-animal takes H-step after performing either
exploitation or exploration processes. Then, the H-animal
updates the locations if it finds a better one. At last, the
two types of information are updated. The whole process is
repeated until a stopping criterion is met. The pseudo code of
ADEQFS’s procedure can be found in [14].

The ADEQFS algorithm is easy to implement with rapid
convergence rate and high computation reliability. In this
paper, the matching process was implemented by ADEQFS
specifically designed for the task, finding the optimal param-
eters in the search space (defined in Section II-A), to locate
the targets in the edge maps extracted from original images
(defined in Section II-B).

III. ADEQFS-EPF APPROACH TO SAR SCENE
MATCHING

A. Fitness Function for Scene Matching

To solve SAR scene matching problem, we need first
build an appropriate fitness function that can be optimized
by ADEQFS algorithm later on. In Section II-B, we can see
that when the test template is approaching to the target in the
image, the total attraction engendered by the the edge potential
field will be maximized. Therefore, the objective function for
SAR scene matching problem can be defined as

fopt(cg) =

N(cg)∑
n(cg)=1

{EPF (xcg
n , ycgn )}, (3)

where, cg = (xg, yg, θg, kg) represents the parameter vector of
affine transformation, calculated by ADEQFS, i.e., (xg, yg),
θg, kg are the matched coordinate, rotation parameter and
scaling parameter, respectively, found by ADEQFS at gth

generation, and N (cg) represents the total number of pixels
along the potential edge.

Given that the ADEQFS algorithm is born to deal with
minimized problems, we can simply re-write the Eq(3) as

f(cg) =
1

1 +
N(cg)∑

n(cg)=1

{
EPF

(
x
cg
n , y

cg
n

)} . (4)

From the above equation, we can clearly see that when
f(cg) gets the minimized value, the total attraction, i.e. Eq(4),
will be maximized. We can therefore use Eq(4) as the fitness
function that can be minimized by ADEQFS algorithm.

It should be noted that optimal value of N (cg) is a constant
which is related to the target in the image that needs to
be matched, that is, there is only one function peak for the
total attraction calculated by Eq(4). Therefore, the optimal
vale in Eq(4) will not be changed at each iteration. In other
words, although N (cg) which is used calculate the Eq(4) could
be different at each iteration due to some missing points in
test template after affine transformation, for example. But the
fitness function can get the optimal value if and only if the
number of points along the edge field is the same or close to
N (cg). Therefore, N (cg) may be changed in each iteration, but
the optimal value of N (cg) will be unaffected and therefore
the optimal value of Eq(4) will not be changed.

B. ADEQFS-EPF Implementation

The details of ADEQFS-EPF are described as below.

Step 1: Data Preprocessing. Load SAR scene matching
image, and convert it into grayscale format for further edge
detection operation.

Step 2: Edge Extraction. Adopt canny edge extractor to
detect the edges of the given image for the sake of obtaining
edge potential field of the original image.

Step 3: Edge Potential Field Calculation. Using Eq(2) to
calculate the EPF distribution of the original image.

Step 4: ADEQFS Initialization. Set the population size
NP , the maximum iteration times G, and the problem di-
mension ND = 4. Create initial population and set g = 1.

Step 5: ADEQFS Searching. Load the test template, and
use ADEQFS algorithm to search its optimal parameter vector
(xopt, yopt, θopt, kopt) so that it can be matched up with the
target after affine transformation with maximum total attraction
calculated by Eq(4).

Step 6: Iteration. Repeat the same processes of Step 5,
until g has reached to the maximum iteration times G or the
optimization criteria.

Step 7: Output. Output the optimal parameter vector of
affine transformation. Locate the target in the scene image.

IV. EXPERIMENTS AND RESULTS

In this section, the proposed approach has been tested on
both optical and SAR images. We also use three advanced
evolutionary algorithms 1 that were proposed recently: PS2O,
JADE and ABC proposed in [17], [19] and [8], respectively,
to compare against the effectiveness of using ADEQFS in the
proposed approach. In this paper: for relatively fair compari-
son, we set the all the common used parameters to be the same:
εeq = 0.01 and Qeq = 1. The search spaces of parameters in
affine transformation are: 1 ≤ x ≤ rowmax, 1 ≤ y ≤ colmax,
where rowmax and colmax are the maximum of row and
column coordinate in the given image, 0◦ ≤ θ ≤ 360◦ and
0.1 ≤ k ≤ 1.5, respectively.

1The reasons to choose these algorithms are 1) they are representative algo-
rithms proposed recently in trending evolutionary computation sub-branches,
and 2) The matching approach based on ABC proposed in [8] is similar to
this paper and therefore it can be a good reference.



A. Results and Analysis for Scene Matching on Optical
Dataset

In the experiments for scene matching on optical dataset,
we set the population size NP = 20, the maximum iteration
times G = 100 and the problem dimension ND = 4. For
relatively fair comparison, we set and follow the parameter
settings suggested in the original paper for the four comparison
tests. For PS2O-EPF, we set the number of swarms n = 5, C1
and C2 both 2.05, C3 = 2.0, the constriction factor χ = 0.729,
and the maximum velocity was set to be 50%. For JADE-
EPF and ADEQFS-EPF, we set the parameters, p = 0.2 and
c = 0.1. For ABC-EPF, we set the colony size of the employed
bees to be Ne = NP/2, the size of unemployed bees to be
Nu = NP/2 and the largest searching times to be PLimit =
100. The original optical image with the size of 237× 361 as
well as its edge potential distribution map can be seen in Fig.
1.

Fig. 1. The original optical image and its edge potential distribution map

In order to test the effectiveness of the proposed approach,
we employed the left-side plane in the Fig. 1a as the target that
needs to be matched. We first used the canny edge extractor
to detect the edges of the left-side plane, and then used (θ =
330◦, k = 1.25) and (θ = 30◦, k = 0.8) as the parameters
of affine transformation to get two different test templets as
shown in Fig. 2.

In the first experiment, we used the plane test template in
Fig. 2a to find the target plane in the original image. For each
of four test approaches, we run 5 times independently. The
results are summarized in Table I. We also plotted the best

2Note: For better visualization, this sketch has been zoomed 2 times bigger
than the actual test templates.

Fig. 2. The plane test templates 2

results, which are bolded in Table I, in 5 runs to visually com-
pare the performance among different approaches as shown in
Fig. 3.

Fig. 3. Visual comparison for scene matching using plane test template 1

After a 30◦ rotation, 0.8 times scaling, and a [72, 40] trans-
lation, the target can be successfully matched up in the original
image, which means that the best geometric parameters are
([72, 40], 30◦, 0.8). From Table I, we can see that the results
obtained by ADEQFS-EPF were very closed to the optimal
solution in all 5 independent runs. Although ABC-EPF also
achieved relatively acceptable results, its matching accuracy
was not as good as ADEQFS-EPF’s approach. PS2O-EPF and
JADE-EPF were more likely to be trapped in the local optima.

In the second experiment, we used the plane test template
in Fig. 2b to find the target plane in the original image. Similar
to the first experiment, for each of four test approaches, we run
5 times independently. The results are summarized in Table II.
We also plotted the best results, which are bolded in Table II,
in 5 runs to visually compare the performance among different
approaches as shown in Fig. 4.

After a 330◦ rotation, 1.25 times scaling, and a [72, 40]
translation, the target can be successfully matched up in the
original image, which means that the best geometric parame-
ters are ([72, 40], 330◦, 1.25). From Table II, we can see that
the results obtained by ADEQFS-EPF were very closed to the
optimal solution in all 5 independent runs. Although ABC-
EPF found a good solution in the first run, it falsely matched
up with the right-side plane in 3rd and 4th runs. PS2O-EPF
and JADE-EPF were also wrongly confused the left-side target
with the right-side plane.



TABLE I. THE COMPARISON RESULTS OF PLANE MATCHING AMONG FOUR DIFFERENT APPROACHES (OPTIMAL SOLUTION: [72,40], 30◦ , 0.8)

1 2 3 4 5

PS2O-EPF 101, 245, 179.49◦, 0.90 109, 19, 23.45◦, 1.47 99, 258, 236.15◦, 0.61 62, 179, 37.50◦, 1.18 54, 237, 151.88◦, 1.22

JADE-EPF 60, 75, 349.75◦, 0.70 1, 1, 265.38◦, 0.10 20, 52, 264.14◦, 0.89 47, 27, 242.07◦, 0.95 68, 38, 233.96◦, 0.71

ABC-EPF 71, 38, 29.65◦, 0.83 72, 41, 30.55◦, 0.78 72, 44, 30.62◦, 0.69 77, 37, 210.52◦, 0.78 76, 45, 26.86◦, 0.75

ADEQFS-EPF 72, 40, 29.76◦, 0.80 72, 40, 29.82◦, 0.80 72, 39, 29.94◦, 0.80 72, 39, 29.88◦, 0.80 72, 40, 30.39◦, 0.79

TABLE II. THE COMPARISON RESULTS OF PLANE MATCHING AMONG FOUR DIFFERENT APPROACHES (OPTIMAL SOLUTION: [72,40], 330◦ , 1.25)

1 2 3 4 5

PS2O-EPF 71, 286, 283.46◦, 1.12 72, 274, 196.99◦, 1.19 115, 87, 176.52◦, 1.32 104, 51, 111.12◦, 1.18 113, 245, 97.29◦, 1.01

JADE-EPF 82, 45, 150.38◦, 0.95 72, 277, 265.44◦, 1.01 72, 277, 265.44◦, 1.01 97, 53, 154.84◦, 0.86 72, 266, 22.27◦, 1.09

ABC-EPF 78, 48, 326.44◦, 1.10 72, 42, 331.67◦, 1.18 92, 254, 325.74◦, 1.17 86, 244, 328.70◦, 1.33 80, 40, 147.60◦, 1.06

ADEQFS-EPF 72, 40, 330.04◦, 1.26 72, 41, 329.84◦, 1.24 72, 41, 330.04◦, 1.24 72, 40, 330.04◦, 1.23 72, 40, 329.95◦, 1.25

Fig. 4. Visual comparison for scene matching using plane test template 2

To further test the matching speed and reliability of the
proposed approach against other methods, we used the two
plane test templates to conduct two additional experiments.
For each approach on each of two tests, we executed 100
independent runs. It should be noted that we employed average
function evaluations (AFEs) instead of real time to measure
the matching speed. This is because all the test approaches
have a similar computational burden, and the code has not
been optimized. Therefore, it is useless to compare the real
searching time. We also used the success rate (SR) of each
algorithm to measure the reliability. In both experiments,
we set the maximum iteration times G = 200. The rest
of parameters were set the same as before. The matching
precisions of parameters in affine transformation were set:
1 pixel for translation, 1◦ for rotation and 0.1 for scaling.
Therefore, when using the test template in Fig. 1a, the stopping
criteria are: x = 72 ± 1, y = 40 ± 1, θ = 30◦ ± 1◦ and
k = 0.8 ± 0.1, whereas the criteria: x = 72 ± 1, y = 40 ± 1,
θ = 330◦ ± 1◦ and k = 1.25± 0.1 are for the test template in
Fig. 1b. In both experiments, if the test approach failed to find

the optimal solution, the experiment will be stopped at 200th
iteration. The results are summarized in Table III and Table
IV, respectively.

As can be seen in Table III and Table IV, the proposed
ADEQFS-EPF has strictly high matching speed and reliability.
Although ABC-EPF approach can find the optimal solution
within the given maximum iterations, it was failed in some
cases. It should be noted that the error precision was set
to be relatively high in both experiments, Therefore, the
PS22O-EPF and JADE-EPF approaches cannot achieve a good
performance.

TABLE III. THE MATCHING SPEED AND RELIABILITY COMPARISON
RESULTS (x = 72± 1, y = 40± 1, θ = 30◦ ± 1◦ , k = 0.8± 0.1)

PS2O-EPF JADE-EPF ABC-EPF ADEQFS-EPF

SR 0% 0% 46% 100%

AFEs – – 151 59

TABLE IV. THE MATCHING SPEED AND RELIABILITY COMPARISON
RESULTS (x = 72± 1, y = 40± 1, θ = 330◦ ± 1◦ , k = 1.25± 0.1)

PS2O-EPF JADE-EPF ABC-EPF ADEQFS-EPF

SR 0% 0% 51% 100%

AFEs – – 148 83

B. Results and Analysis for Scene Matching on SAR Dataset

In this section, we conducted two experiments on SAR
dataset provided by Sandia National Laboratories. In the first
experiment, we used a sub-region SAR image (1-m resolution)
of size 166× 427 in Washington, D.C. The data was obtained
by a Ku-Band (15 GHz) SAR carried by the Sandia Twin
Otter aircraft. The used sub-region SAR image as well as
its edge potential distribution map can be seen in Fig. 5. In
this sub-region image, the target that needs to be matched is
the Pentagon. The target sketch, which was used as the test
template, can be seen in Fig. 6.



Fig. 5. The sub-region SAR image in Washington, D.C. and its edge potential
distribution map

Fig. 6. The test template of Pentagon sketch 3

In this experiment, we set the population size NP = 30,
the maximum iteration times G = 50 and the problem
dimension ND = 4. All other parameters were set as same as
in Section IV-A. For each of four test approaches, we run 5
times independently. The results are summarized in Table V.
We also plotted the best results, which are bolded in Table V,
in 5 runs to visually compare the performance among different
approaches as shown in Fig. 7. It should be noted that the used
Pentagon test template was a manual sketch. Therefore, there is
no theoretical optimal solution so that we can conduct further
experiments on testing matching speed and reliability.

From Table V and the visual comparison in Fig. 7, we
can see that ADEQFS-EPF approach achieved the best overall
performance in all 5 independent runs. The PS2O-EPF, ABC-
EPF and JADE-EPF also obtained relatively good results, but
they were still inferior than ADEQFS-EPF and were easily
trapped in the local optima. It should be noted that because
the shape of sketch template is similar to a perfect pentagon, it
is possible that the visual results are similar but differ greatly
in numerical results. In terms of the accuracy of ADEQFS-
EPF matching results, they are not as perfect as we expect.
This is mainly due to the inaccuracy of edge detection when

using Canny edge extractor.

Fig. 7. Visual comparison for scene matching using pentagon test template

In the second experiment, we used a sub-region SAR image
(1-m resolution) of size 302×351 in Hangers at Kirtland AFB,
Albuquerque, New Mexico. The data was obtained by an X-
Band (10 GHz) SAR carried by the Sandia Twin Otter Aircraft.
The used sub-region SAR image as well as its edge potential
distribution map can be seen in the Fig. 8. In this sub-region
image, the target that needs to be matched is a building. The
target sketch, which was used as the test template, can be seen
in Fig. 9.

In this experiment, we set the population size NP = 50,
the maximum iteration times G = 100 and the problem
dimension ND = 4. All other parameters were set as same as
in Section IV-A. For each of four test approaches, we run 5
times independently. The results are summarized in Table VI.
We also plotted the best results, which are bolded in Table VI,
in 5 runs to visually compare the performance among different
approaches as shown in Fig. 10. It should be noted that the used
building test template was also a manual sketch. Therefore,
similarly we cannot test the matching speed and reliability of
ADEQFS against other approaches.

From Table VI and the visual comparison in Fig. 10, we can
clearly see that the results achieved by ADEQFS-EPF approach
outperformed all other tested approaches. Although the PS2O-
EPF, ABC-EPF and JADE-EPF can locate the position that
was very close to the target, the accuracy was not as good as

3Note: For better visualization, this sketch has been zoomed 2 times bigger
than the actual sketch template.



TABLE V. THE COMPARISON RESULTS OF THE PENTAGON MATCHING AMONG FOUR DIFFERENT APPROACHES

1 2 3 4 5

PS2O-EPF 94, 200, 4.28◦, 0.57 9, 187, 78.74◦, 1.39 74, 141, 119.76◦, 0.90 55, 196, 165.46◦, 0.57 62, 182, 33.98◦, 0.79

JADE-EPF 82, 144, 295.99◦, 0.81 9, 135, 201.51◦, 1.42 77, 175, 334.16◦, 0.81 34, 132, 200.69◦, 1.12 55, 156, 278.59◦, 1.06

ABC-EPF 72, 173, 59.89◦, 0.84 74, 172, 118.80◦, 0.80 72, 169, 104.16◦, 0.84 79, 158, 72.42◦, 0.83 73, 160, 96.32◦, 0.96

ADEQFS-EPF 77, 164, 297.01◦, 0.85 78, 162, 302.44◦, 0.79 75, 163, 305.12◦, 0.85 77, 166, 309.78◦, 0.81 78, 164, 299.86◦, 0.83

Fig. 8. The sub-region SAR image in Hangers and its edge potential
distribution map

Fig. 9. The test template of building sketch 4

compared with the proposed ADEQFS-EPF approach, meaning
that they were more likely to be trapped in the local optima
and ADEQFS-EPF achieved the best overall performance.

V. CONCLUSIONS

A new approach of SAR scene matching using ADEQFS
optimized edge potential function has been described and
assessed. Specifically, by introducing the EPF model, the target
matching problem was converged into an optimal issue that

Fig. 10. Visual comparison for scene matching using building test template

can be solved by a newly proposed ADEQFS algorithm. The
main advantage of using EPF model is that it enables the
proposed approach to exploit the joint effect of single edge
points in complex structures more efficiently, achieving a better
global matching. The edge potential can be easily calculated
from an edge map extracted from the image, and represents
a sort of attraction field in analogy with the field generated
by a charged element. Then, the problem can be restated to
find the optimal parameters (position, rotation and scaling
factor) that maximize the overlapping between sketch and
target. Finally, the ADEQFS algorithm can be employed to find
these optimal parameters in the given search space. In order
to test the performance of proposed approach, we conducted
two groups of experiments on both optical images and SAR
images. We also use three advanced evolutionary algorithms
PS2O, JADE and ABC to compare against the effectiveness of
using ADEQFS in the proposed approach. The numerical and
visual results highlight the matching speed and computation
reliability of using proposed ADEQFS-EPF approach.

Compared with optical images, one of salient features in
SAR images is that it contains the heavy multiplicative noise,
which significantly decares the feature extraction performance.
The benefits of using the proposed ADEQFS-EPF approach
in SAR scene matching system are presented in two ways: 1)
Fast matching speed. The proposed ADEQFS-EPF approach is



TABLE VI. THE COMPARISON RESULTS OF BUILDING MATCHING AMONG FOUR DIFFERENT APPROACHES

1 2 3 4 5

PS2O-EPF 189, 252, 223.60◦, 1.17 176, 270, 360.00◦, 1.16 180, 223, 321.37◦, 1.46 188, 273, 252.53◦, 1.14 197, 246, 242.13◦, 1.30

JADE-EPF 162, 132, 313.24◦, 0.75 170, 246, 51.05◦, 1.41 184, 261, 158.70◦, 1.11 168, 266, 155.46◦, 0.92 198, 250, 253.33◦, 1.06

ABC-EPF 189, 243, 253.10◦, 1.28 170, 264, 146.58◦, 0.93 191, 246, 249.72◦, 1.20 168, 266, 155.46◦, 0.92 169, 265, 152.53◦, 0.90

ADEQFS-EPF 169, 270, 336.60◦, 0.88 169, 272, 339.87◦, 0.84 170, 271, 339.20◦, 0.89 169, 272, 340.18◦, 0.85 170, 271, 343.18◦, 0.84

designed for the SAR scene matching aided navigation system.
Therefore, the traditional matching techniques based on the
image sequential scanning are not feasible as they cannot meet
the requirement for end-guidance system in terms of fast and
real-time data processing. 2) High adaptability. The proposed
ADEQFS-EPF approach uses the EPF model, which is suitable
to be applied to matching problem in complex environment,
to measure the similarity between the test template and the
target in the scene image. Therefore, the EPF model provides
the proposed approach with high matching accuracy and ro-
bustness in presence of complex noise in SAR images.
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