

Citation for published version:
Constantinou, M 2013, Tuning of rsync Algorithm for Optimum Cloud Storage Performance. Department of
Computer Science Technical Report Series, no. CSBU-2013-10, Department of Computer Science, University of
Bath, Bath, U. K.

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Dec. 2019

https://researchportal.bath.ac.uk/en/publications/tuning-of-rsync-algorithm-for-optimum-cloud-storage-performance(f142b36e-c798-44a6-9632-a412058a96ce).html

Department of
Computer Science

Technical Report

MSc Dissertation: Tuning of rsync algorithm for optimum
cloud storage performance

Maria Constantinou

Technical Report 2013-10 December 2013
ISSN 1740-9497

Copyright c©December 2013 by the authors.

Contact Address:
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

Tuning of rsync algorithm for
optimum cloud storage performance

Maria Constantinou
MSc in Modern Applications of Mathematics

2013

1

Tuning of rsync algorithm for
optimum cloud storage performance

Submitted by Maria Constantinou
for the Degree of MSc

of the University of Bath

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author. This
copy of the dissertation has been supplied on condition that anyone who consults it is understood
to recognize that its copyright rests with its author and that no quotation from the dissertation
and no information derived from it may be published without the prior written consent of the
author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the requirements
of the degree of Master of Science in the Department of Mathematical Sciences. No portion of
the work in this thesis has been submitted in support of an application for any other degree
or qualication of this or any other university or institution of learning. Except where specically
acknowledged, it is the work of the author.

2

Abstract

The rsync algorithm is tuned so to obtain optimum cloud storage performace. More than
50000 emulations with the “real rsync” and real files have been carried out so to obtain informa-
tion on the algorithm’s performance. The performance of cloud storage is said to be optimum
when the number of bytes trasmitted with every synchronisation is minimum. Hence I also
present a model that captures the number of bytes that are transmitted through the rsync link.
This model was validated by simulating it and comparing the results to the outcomes of the
experiments that were performed. Finally by analysing the model mathematically I extracted
an expression that gives the optimal block-size which depends on the size of the file and the
changes made to it.

Acknowledgements

I am thankful to my two project supervisors Professor James Davenport at the University of
Bath and Dr Keith Briggs at BT Research for their patience, guidance and support throughout
this dissertation. Let me be more specific and say a tremendous “Thank you” for their immediate
responses to all my hopeless emails.

Special mention must also go to Professor Chris Budd for always smiling and being so positive
about my mathematical abilities and strenghts.

I am grateful to my parents for making me a patient hard worker and who planted the desire
for knowledge and determination to achieve my goals.

Last but not least I am beholden to all the friends (or even more than friends) who were next
to me during the hard research period.

Contents

1 Introduction 6
1.1 Cloud online storage . 6
1.2 The rsync algorithm . 7
1.3 Problem description . 8
1.4 Main steps . 8

2 The file-size distribution 10

3 My experiments 12

4 Mathematical model 19
4.1 Motivation . 19
4.2 My model . 19

4.2.1 Simulations . 21
4.2.2 Mathematical analysis . 24

5 Discussion 25
5.1 Mathematical model evaluation . 25
5.2 rsync algorithm speedup and time . 25
5.3 Future work . 25

5.3.1 Mathematical model extension . 26
5.3.2 More experiments . 26
5.3.3 Hash functions . 26
5.3.4 The user model and the distribution of changes 26

6 Conclusions 28

A Simulations for different block-size values 29

B Optimal block-size for different file-size values 32

C Optimal block-size for different number of changes 34

D Optimal block-size for different change-size values 36

E Experiments implementation in Python 2.4.3 38

F Mathematical model simulation in Python 2.4.3 45

4

List of Figures

1 Cloud storage [2] . 6
2 The index table and the sorted signatures table of the signature search algorithm

[3] . 9
3 File-size distribution of file system 1 (provided by J. Davenport, University of Bath) 11
4 File-size distribution of file system 2 (provided by K. Briggs, BT) 11
5 Distribution of the speedup of the rsync algorithm with the block-size parameter

set to 1KB . 13
6 Distribution of the speedup of the rsync algorithm with the block-size parameter

set to 2KB . 13
7 Distribution of the speedup of the rsync algorithm with the block-size parameter

set to 4KB . 14
8 Distribution of the speedup of the rsync algorithm with the block-size parameter

set to 6KB . 14
9 Distribution of the speedup of the rsync algorithm with the block-size parameter

set to 8KB . 15
10 File-size against speedup. J. Davenport, University of Bath 15
11 Distribution of the speedup of the rsync algorithm when 20 1-byte changes were

made to the local file . 16
12 Distribution of the speedup of the rsync algorithm when 50 1-byte changes were

made to the local file . 16
13 Distribution of the speedup of the rsync algorithm when 100 1-byte changes were

made to the local file . 17
14 Distribution of time needed for rsync when 1 change was made to the local file . 18
15 Distribution of time needed for rsync when 100 changes were made to the local file 18
16 Bytes that are transmitted through the rsync link 20
17 A changed file following the assumptions of the example mathematical model

given in Andrew Tridgell’s thesis [3] . 21
18 A changed file following the assumptions of my mathematical model 21
19 The changed file described in my example . 22
20 Distribution of the speedup of the rsync algorithm with block-size set to 1KB . . 29
21 Distribution of the speedup of the rsync algorithm with block-size set to 2KB . . 30
22 Distribution of the speedup of the rsync algorithm with block-size set to 4KB . . 30
23 Distribution of the speedup of the rsync algorithm with block-size set to 6KB . . 31
24 Distribution of the speedup of the rsync algorithm with block-size set to 8KB . . 31

5

1 Introduction

1.1 Cloud online storage

The project’s subject is Cloud online storage and has been carried out in cooperation with
British Telecommunications. In our days Cloud storage is widely used. BT Broadband at home
has the Cloud online storage feature.

BT Cloud, being an auto backup service, keeps a copy of everything on the users’ devices,
so the most recent versions of their files are always protected. Moreover online storage helps
in freeing up space on their devices. Using BT Cloud app the user can access files and photos
wherever they are and on the move. Furthermore BT Cloud enables the user to share files with
friends and family via email, Facebok and Twitter[1].

Now, let me give an idea on how this operates by giving a classic example from a user’s daily
routine. Suppose the user works from home on a document which is stored on the Cloud and
then they turn off their computer to go to work. While they were working at home once they
made a change on the document, the version of the document on the Cloud was automatically
synchronised. Moreover, suppose that the last time the user accessed this specific document from
work was about 36 hours ago. Obviously when the user gets back to work they want to continue
working on this document from the point they were left at home. This is what Cloud Storage
does for them. As soon as they get to work they can download the updated document from the
Cloud and continue working on the version that was synchronised while they were working from
home.

Figure 1: Cloud storage [2]

6

1.2 The rsync algorithm

BT Cloud backup is achieved using the rsync algorithm given in Andrew Tridgell’s PhD thesis
“Efficient Algorithms for Sorting and Synchonization” [3]. The thesis also describes several
applications of the remote data update algorithm (rsync algorithm) and uses of the ideas behind
it. Incremental backup, which is actually the style of backup used by the Cloud, is one application
of the rsync algorithm. In simple words, incremental backup starts with a full backup. Then all
subsequent backups have to do with only the blocks that have changed since the first full backup
[4].

Here, I describe how the rsync algorithm operates.
Suppose there are two file systems A and B connected by a low-bandwidth high-latency link.

Say, also, that B is the remote file system and A the local file system. This means that the
algorithm aims to send a copy of the file from A to B. Before the synchronisation A has a file
with bytes ai and B has a file with bytes bi (0 ≤ i < n i.e. each file is n bytes long). This is
illustrated in Figure 16.

The rsync algorithm performs synchronisation by exchanging block signature information.
Two signatures are being used. The first signature is fast and cheap and it is computed at
every byte offset in a file. The second signature is strong and expensive and it has a very low
probability of random collision. This signature is computed by A only at byte offsets where the
fast signature matches one of the fast signatures from B. Denote the fast signature R and the
strong one H.

The structure of the rsync algorithm is the following:

1. B divides bi into N equally sized blocks b′j and computes signatures Rj and Hj on each
block. These signatures are sent to A.

2. For each byte offset i in ai, A computes R′i on the block starting at i.

3. A compares R′i to each Rj received from B.

4. For each j where R′i matches Rj , A computes H ′i and compares it to Hj .

5. If H ′i matches Hj then A sends a token to B indicating a block match and which block
matches. Otherwise A sends a literal byte to B.

6. B uses the literal bytes and tokens, received from A, to construct ai.

Let me note that each comparison is done at each byte boundary of the local file in A and at
each block boundary of the remote file in B so the algorithm is able to find matches at non-block
offsets. This allows for arbitrary length insertions and deletions between the local and remote
files to be handled.

These comparisons are done very efficiently by a hash search algorithm. More information
about hash functions can be found in the Handbook of Applied Cryptography by A. Menezes,
P. van Oorschot, and S. Vanstone [5]. The received signatures for each block of the remote file
are stored in a table and indexed by a 16 bit hash. This is illustrated in Figure 2. Then when
the fast signature at each byte offset of the local file is computed is stored and indexed by a 16
bit hash as well. A linear search is then performed through the two lists, stopping when an entry
is found with a 16 bit hash which doesn’t match. For each entry the 4 byte fast signature is
compared to the entry of the signature table. If that matches the full 16 bytes strong signature

7

is computed at the current offset and compared to the strong signature in the signature table.
This basically explains what happens inside the steps 3 and 4 of the rsync algorithm.

In simple words the algorithm performs a filtering aiming to discover where exactly the
changed file is different from the existing so to transmit just the changed parts of it.

1.3 Problem description

The synchronisation link experiences a huge amount of network traffic, as well as latency, while
a remote copy of a file is being synchronised with the changed local one.

As mentioned before, rsync algorithm is used for synchronising remote copies of files to local
ones. My main aim is to optimize the performance of the rsync algorithm given in Andrew
Tridgell’s PhD thesis [3]. Here “optimise” means to minimise the amount of network traffic
generated when small changes are made to large files.

1.4 Main steps

Firstly, I was provided with some statistics on file-size distribution from two sources.
I continued by getting some statistics on the performance of the standard version of rsync, by

performing emulations. Python scripts were used that call the “real rsync” algorithm. This way
I ran a large number of data transfer. The performance metric was the ratio of the size of the
changed file to the number of bytes actually transferred. This is defined as speedup in Andrew
Tridgell’s thesis [3].

From this thesis, I extracted a minimal description of the algorithm so to identify those ad-
justable parameters which control its performance. Being motivated by an example mathematical
model that is given in the thesis [3] and synthesising the outputs from above, I constructed a
mathematical model for the number of bytes trasmitted with every synchronisation.

After validating the model I analysed it mathematically. This way I adjusted the tunable
parameters so to optimize the performance of the algorithm.

8

Figure 2: The index table and the sorted signatures table of the signature search algorithm [3]

9

2 The file-size distribution

It is assumed that the file-size distribution is power-law. Initial information about the file-size
distribution has been found in the paper on “File size distribution on UNIX systems-Then and
now” by Andrew S. Tanenbaum [7]. Then the power-law distribution assumption was made
considering the Figures 3 and 4 provided by J. Davenport, University of Bath and K. Briggs,
BT respectively. Figure 3 illustrates the file-size distribution of a real file system. It can be said
that this indicates that the file-sizes follow the power-law distribution. Figure 4 illustrates a
log− log plot of the cumulative distribution function of the file-sizes in the real file system. The
approximate straight line indicates a power-law as well.

Furthermore typical parameters for the power-law distribution had to be estimated. They
were extracted from the plot in Figure 4 provided by K. Briggs, BT.

This plot can be approximated by a straight line so the equation that corresponds to it is

log(y) = constant + n log(x). (2.1)

The parameter n was calculated. It is actually the power parameter of the distribution.

n = 100.25−10−4.5

1−14 = −0.137

Hence, the power-law distribution is as follows:

P (x) = Cxn for x ∈ [x0, x1] =⇒ P (x) = Cx−0.137 for x ∈ [101, 1014]. (2.2)

The distribution, P (x), is used in simulations and emulations in Python, so for coding reasons
I had to generate it using a Uniform distribution.

Assume that z is a value of the random variable Z which is uniformly distributed on [0, 1].
In E. W. Weisstein [8] it is discussed that the random variable

X = [(xn+1
1 − xn+1

0)z + xn+1
0]

1
n+1 = [(1.208× 1012)z + 100.863]

1
0.863

is distributed as

P (x) = Cx−0.137 for x ∈ [101, 1014] and C =
n+ 1

1014×(n+1) − 10(n+1)
= 7.15× 10−13. (2.3)

Hence, I used the above argument to generate random numbers that come from a power-
law distribution. As we will see in the following sections, in my codes, the range [10, 1014] was
replaced by the range [e, e14] so to deal with smaller files and make simulations and emulations
faster. This means that [x0, x1] = [e, e14].

10

Figure 3: File-size distribution of file system 1 (provided by J. Davenport, University of Bath)

Figure 4: File-size distribution of file system 2 (provided by K. Briggs, BT)

11

3 My experiments

My experiments were performed using the “real rsync” and real files. They were coded in Python.
The codes for these experiments are in Appendix E.

I work with one file that contains a random string of bytes. The size of the string is randomly
chosen from the power-law distribution presented in Section 2. This gives an average file-size of
546KB. First I create such a file and I copy it, then picking a random byte position I delete c
bytes and add r bytes so a modified version of the copied file is created. Both c and r come from
a power-law distribution that is steeper than the one the file-size follows. The average value of c
and r is 18 bytes and 28 bytes respectively. Then synchronisation is performed by accessing the
modified file remotely.

Here is a list of the initial experiments carried out:

1. The two files were synchronised setting the block-size parameter in the rsync algorithm
equal to 1KB. I performed this emulation 10000 times. The results are illustrated in Figure
5.

2. The two files were synchronised setting the block-size parameter in the rsync algorithm
equal to 2KB. I performed this emulation 10000 times.The results are illustrated in Figure
6.

3. The two files were synchronised setting the block-size parameter in the rsync algorithm
equal to 4KB. I performed this emulation 10000 times. The results are illustrated in Figure
7.

4. The two files were synchronised setting the block-size parameter in the rsync algorithm
equal to 6KB. I performed this emulation 10000 times. The results are illustrated in Figure
8.

5. The two files were synchronised setting the block-size parameter in the rsync algorithm
equal to 8KB. I performed this emulation 10000 times. The results are illustrated in Figure
9.

In Figures 5, 6, 7, 8 and 9 we can see how the speedup distribution behaves for different
values of the block-size parameter. Let me highlight that the highest mean for the speedup is
observed when the block-size value is 2KB.

Figure 10 was produced by J. Davenport using the codes in Appendix E. It illustrates the
relationship of the file size and speedup when a single change is made to the local file and the
block-size parameter in rsync is fixed. This is almost linear. The obvious thing here is that when
the file size increases, the speedup increases. This leads us to the conclusion that the sparser the
changes the larger the achieved speedup.

In addition performing 1000 emulations each time I obtained the Figures 11, 12 and 13. They
illustrate the speedup distribution for block-size value 2KB. 20, 50 and 100 1-byte changes were
made to the local file respectively and then the original version of the file was synchronised with
the changed one. The speedup values observed in Figures 11, 12 and 13 are much lower than the
values observed in the case of a single change (Figure 6). There are, even, some speedup values
less than 1. This means that the bytes transmitted through the rsync link were more than the
size of the changed file.

12

Figure 5: Distribution of the speedup of the rsync algorithm with the block-size parameter set
to 1KB

Figure 6: Distribution of the speedup of the rsync algorithm with the block-size parameter set
to 2KB

13

Figure 7: Distribution of the speedup of the rsync algorithm with the block-size parameter set
to 4KB

Figure 8: Distribution of the speedup of the rsync algorithm with the block-size parameter set
to 6KB

14

Figure 9: Distribution of the speedup of the rsync algorithm with the block-size parameter set
to 8KB

Figure 10: File-size against speedup. J. Davenport, University of Bath

15

Figure 11: Distribution of the speedup of the rsync algorithm when 20 1-byte changes were made
to the local file

Figure 12: Distribution of the speedup of the rsync algorithm when 50 1-byte changes were made
to the local file

16

Figure 13: Distribution of the speedup of the rsync algorithm when 100 1-byte changes were
made to the local file

Figure 14 illustrates the distribution of time needed to perform synchronisation when 1 change
(deletion of c bytes and insertion of r bytes) is made to the local file. On the other hand Figure
15 illustrates the distribution of time needed for the rsync when 100 1-byte insertions are made
to the local file. The block-size parameter was set to 2KB in the experiments that produced
these plots. We observe that the time needed to synchronise in these two situations is not very
different.

17

Figure 14: Distribution of time needed for rsync when 1 change was made to the local file

Figure 15: Distribution of time needed for rsync when 100 changes were made to the local file

18

4 Mathematical model

4.1 Motivation

The following example mathematical model is given in Tridgell’s thesis Section 3.3 [3]. It is
assumed that the two files (the local one and the one stored at the remote system) are the same
except for Q sequences of bytes. Each sequence is smaller than the block-size and is separated by
more than the block-size from the next sequence. Then the total number of bytes transmitted,
denoted by t, is approximately

t(L) = (sf + ss)
n

L
+QL+ st

(n
L
−Q

)
+O(1) (4.4)

where L denotes the block-size in rsync and n the size of the changed file. Moreover sf , ss and
st denote the byte size of the fast signature, the strong signature and the block match token
respectively. Actually the values they take in the rsync algorithm are sf = 4, ss = 16 and st = 4.
Figure 16 illustrates the intuition behind the model. It illustrates how the bytes are transmitted
in the rsync link.

Being inspired by this mathematical model I have attempted an optimization of it.

4.2 My model

I actually left the assumption that each sequence is smaller that the block-size behind. Figure
17 and 18 give a picture of the changes to the local file allowed by the assumptions made in
Tridgell’s thesis [3] example model and the assumptions made in my new model respectively.
Black and green colour represent the original file and the changes made to it respectively. The
new model seems, indeed, more realistic. Moreover after running the rsync algorithm I noticed
that the bytes that are sent to the local system A (i.e. the fast and strong signatures) are just
4 and not 20 (sf + ss = 4 + 16 = 20). One argument that explains this could be that the
strong signature is not sent at all. Unfortunately I haven’t investigated this further with more
exepriments. In my model I replaced sf + ss with the number 4.

I produced the following extended model:

t(L) = 4
n

L
+ L

Q∑
i=1

⌈ni

L

⌉
+ 4

(
n

L
−

Q∑
i=1

⌈ni

L

⌉)
+O(1) (4.5)

where ni is how many bytes the ith sequence consists of. This number is divided by L and then
I get the ceiling so to obtain the number of blocks the specific sequence occupies and hence how
many blocks will be sent to the file at the remote system. Then I take the sum over all the
sequences.

Now, I will give an example, so to make my model clearer. Suppose the new file has size
20KB and there are 2 sequences which differ from the old file, i.e. Q = 2. Suppose that the first
sequence has length 7KB and the second 1KB so n1 = 7 and n2 = 1. Let 4KB be the value of
the block-size, L, and just as assumed before these differences are separated by distance 4KB or
more. Figure 19 gives a picture of the new file being described here. The old file and the changes
made to it are represented by the black and red colour respectively. Note that each rectangle
represents a 4KB block. Then the total number of bytes transmitted is

t(L) = 12312 + ε.

19

Figure 16: Bytes that are transmitted through the rsync link

20

Figure 17: A changed file following the assumptions of the example mathematical model given
in Andrew Tridgell’s thesis [3]

Figure 18: A changed file following the assumptions of my mathematical model

4.2.1 Simulations

I continue by studying the model given by the equation (4.5). First I perform simulations.
So to be consistent with my initial emulation experiments from Section 3 I had to make the

four following assumptions when simulating:

1. The file-size, n bytes, follows a power-law distribution.

2. The sequences begin at random byte positions that follow a U[0,n] distibution.

3. The changes are actually deletions of c bytes and insertions of r bytes. c and r follow a
power-law distribution as well. Note that ni = r.

4. There is only one difference in each file.

This means that the simulated model is the following:

t(L) = 4
n

L
+ L

⌈n1

L

⌉
+ 4

(n
L
−
⌈n1

L

⌉)
+O(1) (4.6)

Let me also add that O(1) stands for the single bytes that need to be sent so to give infor-
mation about the position of a difference or the number of bytes that were deleted (c) from the
original file etc. These simulations were coded in Python. The codes can be found in Appendix
F.

21

Figure 19: The changed file described in my example

To start with, the parameters of the power-law distribution the file-size follows are extracted
from Figure 4 as explained in Section 2. This gives an average file-size n =546KB. The parameters
of the power-law distribution that c and r follow are randomly chosen so to give values lower
than the file-size value, n. The avegare size of the different sequence is n1 = 28 bytes.

Varying the value of the block-size, L, in equation (4.6) and performing 10000 simulations
each time I obtained the histograms in Appendix A. They illustrate the speedup distribution
for different values of the block-size parameter. These histograms agree with the Figures 5, 6, 7,
8 and 9 (Section 3). The model given by the equation (4.6) is now validated as the simulations
of it agree with the actual emulation experiments.

From Appendix A and the initial experiments (Figures 5, 6, 7, 8 and 9) I see that there exists
a pattern in the speedup distribution as the block-size parameter varies. This has driven me into
performing more simulations of the model and extracting values for the mean and confidence
interval of the ratio t

n+n1
.The codes for these simulations are in Appendix F.

Table 1 was obtained by varying the blocksize parameter and performing 1000 simulations of
the model given by the equation (4.6) each time.

Block-size mean value of t
n+n1

95% CI for t
n+n1

1024 bytes 0.00965 (0.00935, 0.00100)
2048 bytes 0.00755 (0.00740, 0.00771)
4096 bytes 0.00925 (0.00917, 0.00932)
6144 bytes 0.01234 (0.01229, 0.01239)
8192 bytes 0.01532 (0.01528, 0.01536)

Table 1: Mean and 95% confidence interval for transmitted bytes for several values of the block-size. The
confidence interval was estimated assuming that the simulated values of t follow the normal distribution
(Central Limit Theorem [6]).

It is clear from Table 1 that the optimal block-size, the one that minimizes the ratio of the
number of bytes actually transmitted to the size of the whole file, is the value 2KB. Note that in
Tridgell’s thesis [3] speedup is defined as the ratio of the size of the source file (the local changed
file) to the total number of bytes transmitted. This means that speedup = n1+n

t . Considering
this definition of the speedup, a block-size around 2KB gives the maximum speedup, as well.

Performing simulations of the model given by the equation (4.6) for the file-size

22

n =1MB= 10242 the same way as above, I deduce that in this case the optimal block-size
is 3KB. More informations can be seen in Table B2 in Appendix B. This motivated me to
repeat this simulation for more file-size values, observe the behaviour of the model and deduce
on the optimal block-size for each file-size. All the tables for each repetition of the simulation
can be found in Appendix B. Table 2 presents the optimal block-size for the file-size values
investigated. There is an obvious pattern in the optimal block-size as the file-size increases. The
optimal block-size increases with the file-size.

File-size Optimal block-size
512KB 2KB

1MB 3KB
512MB 64KB

1GB 96KB

Table 2: Optimal block-size for some file-size values.

Furthermore I investigated how the optimal block-size is affected when the size of the change
made to the file is varied. I obtained Table 3 after several simulations. I simulated the model
given by the equation (4.6) for different change-size values and recorded the ratio of the number
of bytes transmitted to the size of the whole file, each time. The tables obtained from each
simulation are in Appendix D. Then I deduced on the optimal block-size for every change-size.
Also, note that the average file-size was n=546KB in all the simulations here.

Change-size Optimal block-size
1KB 2KB
2KB 2KB
4KB 4KB
8KB 4KB

Table 3: Optimal block-size for some change-size values.

Considering Table 3, it seems that the optimal block-size does depend on the size of the
change as well. The longer the changes the larger the optimal block-size.

The last thing I have investigated was the way the optimal block-size is affected by the number
of changes that are made; in other words how the optimal block-size depends on the sparsity of
the changes. Relaxing the 4th assumption of the model with (4.6) we return to the model given
by equation (4.5). Note that the average file-size is 546KB. I obtained Table 4 which shows the
dependence of the optimal block-size to the sparsity of the changes. More information about the
procedure can be found in Appendix C.

23

Number of 1-byte changes Optimal block-size
1 2048 bytes
5 1024 bytes

20 512 bytes
50 256 bytes

100 256 bytes

Table 4: Optimal block-size for different number of changes.

4.2.2 Mathematical analysis

The ceilings make it really difficult to proceed working analytically with the model given by
the equation (4.5). (The ceiling function is not continuous at all so differentiation is actually
impossible.) Hence I replaced

⌈
ni
L

⌉
with Bi which implied the following simplified version:

t(L) = 4
n

L
+ L

Q∑
i=1

Bi + 4

(
n

L
−

Q∑
i=1

Bi

)
+O(1) (4.7)

i.e. now Bi denotes the number of blocks the ith sequence occupies.
In the context of the example I gave before this means that B1 = 2 and B2 = 1.
Differentiating the equation (4.7) with respect to L and setting the expression equal to zero

we obtain the optimal value of the block-size. This is the value that minimises the amount of
bytes transferred with every synchronisation and hence minimises the network traffic. This value
is Loptimal =

√
8n∑Q

i=1 Bi
.

Differentiating the equation (4.7) twice and substituting the above value of L, I obtained the
expression

t′′(Loptimal) =
16n(√

8n∑Q
i=1 Bi

)3 (4.8)

which is always positive. Hence Loptimal, indeed, gives a minimum of the equation (4.7) by the
Second Derivative Test [9].

24

5 Discussion

5.1 Mathematical model evaluation

As we have seen in Section 3 and Appendix A emulations and simulations agree. This means
that the experiments with real files and the real rsync validate the model given by the equation
(4.6). Hence considering Section 4.2.2 I conclude that Loptimal =

√
8n
B1

. This gives the optimal
blocksize, i.e. the blocksize at which we have minimum network traffic and hence maximum
speedup, when it is provided with a file-size, n, and a change-size, B1. When we deal with a
file system instead of a single file we could use the average file-size and average change-size
instead. We can even use this expression when we desire to be more general and obtain the
optimal block-size when the changes in a file are more than 1. We just need to know the typical
change-size, B1, for every n bytes in a file, i.e when we have information on the sparsity of the
changes the fact that this formula deals with one change size is not a limitation.

5.2 rsync algorithm speedup and time

In Section 3 we observed that tremendous speedups are achieved when rsync is called to syn-
chronize a remote copy of a file with the local one that has one small change. This is deducted
from Figures 5, 6, 7, 8 and 9. Note that in Figure 6 rsync performs optimally. On the other
hand Figure 10 tells us that the larger the file the highest the speedup when a single change is
made. From these two observations we can conclude that rsync alogirthm achieves a very high
speedup when it is called to deal with files that have some sparse changes.

Moreover in Figures 11, 12 and 13 we can see that as the changes get less sparse the speedup
value decreases but it is rarely less than 1. Even in the worst case, Figure 13, speedup values
above 1 are still being observed. Moreover note that in this case if rsync was tuned to have block-
size value 256 bytes (see Table 4 in Section 4.2.1) we would observe higher speedups. Hence we
conclude that using the rsync algorithm causes less network traffic than transmitting the whole
file. Finally in Figures 14 and 15 we notice that the time needed to perform synchronization
when changes are sparse and when they are less sparse is almost the same. Thus we need not
worry about latency. Keeping this in mind compined with the fact that when the changes are
sparse the speedups are enormous I deduce that it is not worth the effort replacing the rsync
algorithm with a “send the whole new file”command. Since this kind of command would clearly
cause a speedup value of 1 no matter how many changes there are and it might need more time
than rsync.

5.3 Future work

Now I would like to emphasize on that the rsync algorith is a recent invention as it was initially
presented in 1999. It is outstanding how fast it operates when there are “some small” changes
in a large file; as we have seen there are speedups up to 160. These high speedups can be used
in systems where the users desire instant synchronization because they work on the same file
simultaneously from different machines or when a tablet app needs to be updated continuously
in “less than seconds” amount of time. Therefore there can be a new synchronization era if this
algorithm is optimized and implemented according to the characteristics of each file-system and
user’s needs.

25

Here are some ideas for future work:

5.3.1 Mathematical model extension

An extension of the model given by the equation (4.5) is to assume that the sequences are
separated by “at least one byte” rather than by “more than the block-size” number of bytes and
adapt it to this. This will give a realistic model since the only assumption is that the two files
are the same except of Q sequences consisting of ni bytes each.

5.3.2 More experiments

Unfortunately I did not have enough time to complete all the experiments I planned to. I
managed, though, to construct the experimental setup hence the experiments can be continued
from the point I left them. My next step would be to validate the model given by the equation
(4.5) by performing simulations of it and emulations with files that have more than one different
sequence of bytes. I managed to code the emulation experiment for this. First a file is constructed
the same way as in Section 3 then I copy it and I add single bytes at random positions of the
copied version. The number of single bytes that will be added can be specified by the one
experimenting. With a simple modification of the code the experimenter can add more than one
byte or even delete some bytes as well. These codes can be found in Appendix E.

By validating this model the conclusion Loptimal =
√

8n
B1

becomes Loptimal =
√

8n∑Q
i=1 Bi

which

is clearly stronger, more useful and more applicable.
Here let me add that these experiments may produce sequences of changes that are not seper-

ated by more than the block-size number of bytes and hence an assumption of the model would
be violated. Thus there is a possibility of differences between the simulations’ and emulations’
results. The best scenario would be first to construct the model explained in Section 5.3.1 and
then perform simulations and the experiments described above so to validate this better version
of the model given by the equation (4.5).

5.3.3 Hash functions

As explained in Section 1.2 a 16 bit hash for each fast signature is computed at the signatures’
matching stage of the rsync algorithm. Hence I propose a study on these hashes so to see how
they affect the algorithm performance and whether the algorithm is more efficient if a different
hash function is used.

5.3.4 The user model and the distribution of changes

As I have mentioned in Section 1.1 Cloud online storage is widely used. For example it is used
from people in industry who work with text files, programs and data files. This kind of files
experience a lot of small changes on regular basis. On the other hand some users use the Cloud
just to store their movies, music and pictures. These files are changed rarely and when a single
change is made the whole file is different. Hence one can construct a user model depending on
which application of the rsync algorithm they want to concentrate on. A simple example of a
user model is given in A.B. Downey [10].

I also suggest a study on the distribution of changes that will aim in gaining statistics about
the changes for several types of files in several file-systems. The statistics will give information

26

about the sparsity of the changes, their style (deletion or insertion) and their size according
to the characteristics of the corresponding file-system. This is a wide topic and it is directly
correlated with the rsync algorithm performance. Note that the user model can be validated
using the distribution of changes statistics.

Combining the model that captures the bytes that are transmitted through the rsync link,
the user model that will be constructed and the distribution of changes will be very helpful in
optimizing the performance of the rsync algorithm according to the user’s behaviour. Moreover
the frequency at which the file-change events occur will give information on the ideal frequency
of the rsync events. It might be that the rsync events is better to occur after every change or
that it is better to occur at fixed time intervals.

27

6 Conclusions

The conclusions that were drawn are the following:

1. The optimal block-size is given by Loptimal =
√

8n
B1

. It is characterised as optimal, because
when the block-size parameter is set to Loptimal in the rsync algorithm the number of bytes
trasmitted through the rsync link is minimum, i.e. the rsync link performance is optimal
since the network traffic is minimum.

2. As file-size increases, the optimal block-size increases.

3. The larger the size of the changes the larger the optimal block-size. Moreover the optimal
block-size depends on the sparsity of the changes. The sparser the changes the larger the
optimal block-size value. In other words the optimal block-size needs to be decreased when
the number of changes increase and the file-size is fixed.

4. The sweet spot of the block-size parameter, for this specific file-size distribution I worked
with, is 2KB.

5. rsync algorithm can give the desired “weighted combination” of latency and network traffic
if it is tuned according to the users needs and file system’s characteristics. Hence it is an
efficient and fast way to synchronize remote systems with local ones. Moreover it can be
found useful in all the synchronization links that are widely used nowdays.

28

Appendix

A Simulations for different block-size values

I performed 10000 simulations of the model (4.6) and I obtained the Figures 20, 21, 22, 23 and
24. They illustrate the distribution of the speedup values that were obtained by performing
the simulations. As it can be seen the highest mean value for the speedup is obtained when
block-size=2KB.

Figure 20: Distribution of the speedup of the rsync algorithm with block-size set to 1KB

29

Figure 21: Distribution of the speedup of the rsync algorithm with block-size set to 2KB

Figure 22: Distribution of the speedup of the rsync algorithm with block-size set to 4KB

30

Figure 23: Distribution of the speedup of the rsync algorithm with block-size set to 6KB

Figure 24: Distribution of the speedup of the rsync algorithm with block-size set to 8KB

31

B Optimal block-size for different file-size values

The following tables illustrate the simulations carried out to decide on the optimal block-size for
several file-size values. Each row of the tables was obtained by varying the block-size parameter
and performing 1000 simulations. Then the mean and a confidence interval for the ratio t

n+n1

was calculated.
As obtained in the mathematical analysis carried out in Section 4.2.2 only one value of the

block-size minimizes t, the number of bytes transmitted through the rsync link. Hence, the
block-size value located by these simulations of the model is indeed the desired optimal one.

Block-size mean value of t
n+n1

95% CI for t
n+n1

1KB 0.0097670 (0.0097667, 0.0097674)
2KB 0.0078137 (0.0078133, 0.0078140)
4KB 0.0097669 (0.0097666, 0.0097673)

Table B1: Mean and 95% confidence interval for transmitted bytes for several values of the block-size and
for file-size n=512KB. The confidence interval was estimated assuming that the simulated values of t

n+n1

follow the normal distribution (Central Limit Theorem [6]).

Block-size mean value of t
n+n1

95% CI for t
n+n1

2KB 0.0058602 (0.0058600, 0.0058603)
3KB 0.0055346 (0.0055344, 0.0055347)
4KB 0.0058604 (0.0058602, 0.0058606)

Table B2: Mean and 95% confidence interval for transmitted bytes for several values of the block-size and
for file-size n = 1MB. The confidence interval was estimated assuming that the simulated values of t

n+n1

follow the normal distribution (Central Limit Theorem [6]).

Block-size mean value of t
n+n1

95% CI for t
n+n1

32KB 0.0003051775 (0.0003051772, 0.0003051778)
64KB 0.0002441425 (0.0002441422, 0.0002441428)

128KB 0.0003051775 (0.0003051772, 0.0003051778)

Table B3: Mean and 95% confidence interval for transmitted bytes for several values of the block-size and
for file-size n = 512MB. The confidence interval was estimated assuming that the simulated values of

t
n+n1

follow the normal distribution (Central Limit Theorem [6]).

32

Block-size mean value of t
n+n1

95% CI for t
n+n1

64KB 0.00018310636 (0.00018310619, 0.00018310653)
96KB 0.00017293374 (0.00017293357, 0.00017293391)

128KB 0.00018310633 (0.00018310616, 0.00018310650)

Table B4: Mean and 95% confidence interval for transmitted bytes for several values of the block-size and
for file-size n = 1GB. The confidence interval was estimated assuming that the simulated values of t

n+n1

follow the normal distribution (Central Limit Theorem [6]).

33

C Optimal block-size for different number of changes

1000 simulations of the model (4.5), with 1 1-byte change (i.e. n1=1byte, a single byte addition),
give Table C1.

Block-size mean value of t
n+n1

95% CI for t
n+n1

1024 bytes 0.00971 (0.00939, 0.01003)
2048 bytes 0.00765 (0.00750, 0.00780)
3072 bytes 0.00811 (0.00801, 0.00821)

Table C1: Mean and 95% confidence interval for transmitted bytes for several values of the block-size. The
confidence interval was estimated assuming that the simulated values of t follow the normal distribution
(Central Limit Theorem [6]).

Table C1 shows that the optimal block-size is 2KB.
1000 simulations of the model (4.5)were performed. It was assumed that there are 5 1-byte

changes (i.e. ni = 1 for i ∈ 1, 2, ..., 5, 5 single bytes were added to the file at random positions)
that are separated by more than the block-size number of bytes. Table C2 was obtained.

Block-size mean value of t
n+n1

95% CI for t
n+n1

512 bytes 0.0202 (0.0196, 0.0208)
1024 bytes 0.0170 (0.0167, 0.0173)
2048 bytes 0.0228 (0.0226, 0.0229)

Table C2: Mean and 95% confidence interval for transmitted bytes for several values of the block-size. The
confidence interval was estimated assuming that the simulated values of t follow the normal distribution
(Central Limit Theorem [6]).

Table C2 shows that the optimal block-size is 1KB.
1000 simulations of the model (4.5) were performed. It was assumed that there are 20 1-byte

changes (i.e. ni = 1 for i ∈ 1, 2, ..., 20, 20 single bytes were added to the file at random positions)
that are separated by more than the block-size number of bytes. Table C3 was obtained.

Block-size mean value of t
n+n1

95% CI for t
n+n1

256 bytes 0.0402 (0.0390, 0.0414)
512 bytes 0.0336 (0.0330, 0.0342)

1024 bytes 0.0447 (0.0444, 0.0450)

Table C3: Mean and 95% confidence interval for transmitted bytes for several values of the block-size. The
confidence interval was estimated assuming that the simulated values of t follow the normal distribution
(Central Limit Theorem [6]).

Table C3 shows that the optimal block-size is 512 bytes.

34

1000 simulations of the model (4.5). It was assumed that there are 50 1-byte changes (i.e.
ni = 1 for i ∈ 1, 2, ..., 50, 50 single bytes were added to the file at random positions) that are
separated by more than the block-size number of bytes. Table C4 was obtained.

Block-size mean value of t
n+n1

95% CI for t
n+n1

128 bytes 0.0734 (0.0710, 0.0759)
256 bytes 0.0541 (0.0529, 0.0553)
512 bytes 0.0610 (0.0604, 0.0616)

Table C4: Mean and 95% confidence interval for transmitted bytes for several values of the block-size. The
confidence interval was estimated assuming that the simulated values of t follow the normal distribution
(Central Limit Theorem [6]).

Table C4 shows that the optimal block-size is 256 bytes.
1000 simulations of the model (4.5). It was assumed that there are 100 1-byte changes (i.e.

ni = 1 for i ∈ 1, 2, ..., 100, 100 single bytes were added to the file at random positions) that are
separated by more than the block-size number of bytes. Table C5 was obtained.

Block-size mean value of t
n+n1

95% CI for t
n+n1

128 bytes 0.0841 (0.0817, 0.0865)
256 bytes 0.0766 (0.0753, 0.0778)
512 bytes 0.1070 (0.1064, 0.1076)

Table C5: Mean and 95% confidence interval for transmitted bytes for several values of the block-size. The
confidence interval was estimated assuming that the simulated values of t follow the normal distribution
(Central Limit Theorem [6]).

Table C5 shows that the optimal block-size is 256 bytes.
As we have seen in the mathematical analysis carried out in Section 4.2.2 only one value of

the block-size minimizes t, the number of bytes transmitted through the rsync link. Hence, the
block-size value located by these simulations of the model is indeed the desired optimal one.

35

D Optimal block-size for different change-size values

The following tables illustrate the simulations carried out to decide on the optimal block-size for
several change-size values. For each row of the tables the block-size parameter was varied and
1000 simulations were performed. Then the mean and a confidence interval for the ratio t

n+n1

was calculated.
As obtained in the mathematical analysis carried out in Section 4.2.2 only one value of the

block-size minimizes t, the number of bytes transmitted through the rsync link. Hence, the
block-size value located by these simulations of the model is indeed the desired optimal one.

Block-size mean value of t
n+n1

95% CI for t
n+n1

1KB 0.00964 (0.00933, 0.00995)
2KB 0.00753 (0.00738, 0.00768)
4KB 0.00938 (0.00930, 0.00946)

Table D1: Mean and 95% confidence interval for transmitted bytes for several values of the block-size
and for change-size n1=1KB. The confidence interval was estimated assuming that the simulated values
of t

n+n1
follow the normal distribution (Central Limit Theorem [6]).

Block-size mean value of t
n+n1

95% CI for t
n+n1

1KB 0.01148 (0.01117, 0.01178)
2KB 0.00754 (0.00739, 0.00769)
4KB 0.00938 (0.00930, 0.00945)

Table D2: Mean and 95% confidence interval for transmitted bytes for several values of the block-size and
for change-size n1 =2KB. The confidence interval was estimated assuming that the simulated values of

t
n+n1

follow the normal distribution (Central Limit Theorem [6]).

Block-size mean value of t
n+n1

95% CI for t
n+n1

2KB 0.01111 (0.01095, 0.01126)
4KB 0.00902 (0.00894, 0.00909)
6KB 0.01222 (0.01217, 0.01227)

Table D3: Mean and 95% confidence interval for transmitted bytes for several values of the block-size and
for change-size n1 =4KB. The confidence interval was estimated assuming that the simulated values of

t
n+n1

follow the normal distribution (Central Limit Theorem [6]).

36

Block-size mean value of t
n+n1

95% CI for t
n+n1

2KB 0.01854 (0.01838, 0.01869)
4KB 0.01663 (0.01656, 0.01671)
6KB 0.02319 (0.02314, 0.02324)

Table D4: Mean and 95% confidence interval for transmitted bytes for several values of the block-size and
for change-size n1 =8KB. The confidence interval was estimated assuming that the simulated values of

t
n+n1

follow the normal distribution (Central Limit Theorem [6]).

37

E Experiments implementation in Python 2.4.3

Create a file and name it experiment_implementation_01.py. Then copy and paste the fol-
lowing code in it.

#!/ usr / b in /env python
Maria Constantinou 2013

from random import random , cho i c e
from glob import glob

def power law (x0 , x1 , n , power) :
”””
g e n e r a t e s a power law d i s t n from a uniform d i s t r i b u t i o n U[0 , 1] and

then r e t u r n s a v a l u e coming from t h i s d i s t n
”””
z=x0∗∗n

return ((x1∗∗n−z) ∗random ()+z) ∗∗(power)

def make changes () :
”””
chooses a random p o s i t i o n in a f i l e and adds a 1−b y t e c h a r a c t e r
”””

home = ’ /u/e/mc380/ p r o j e c t / p r o j e c t f i n a l / ’

f i l enames=glob (home+’ a 2 ’)

for f i l ename in f i l enames : # make a 1−b y t e random change to each
f i l e

f=open (f i l ename , ’ r ’)
txt=f . read ()
f . c l o s e ()
i=cho i c e (range ((l en (txt)))) # p i c k a random b y t e
newtxt=txt [: i]+ cho i c e (’ abcdefghi jklmnopqrstuvwxyz0123456789 ’)+txt

[i :]
f=open (f i l ename , ’w ’)
f . wr i t e (newtxt)
f . c l o s e ()

def c r e a t e f i l e s (f i l e s i z e , home , name , x0 , x2 , a , power) :
”””
c r e a t e s a f i l e t h a t cont a in s a random s t r i n g and then

produces a modi f ied v e r s i o n o f t h i s f i l e
”””

38

c r e a t e a f i l e c o n t a i n i n g a random s t r i n g o f b y t e s
t h i s f i l e has s i z e f i l e s i z e randomly s e l e c t e d from power law d i s t n

x=open (”/dev/urandom” , ” rb”) . read (i n t (f i l e s i z e))
f i l e 1=open (home+name , ”w+”)
f i l e 1 . wr i t e (x)
f i l e 1 . c l o s e ()

we make random changes to the f i l e
f i r s t we p i c k a b y t e p o s i t i o n randomly

p=f i l e s i z e ∗(random ())
then we p i c k c randomly from a power law d i s t n

c = power law (x0 , x2 , a , power)
and r from a power law d i s t n as w e l l

r = power law (x0 , x2 , a , power)+10
we c r e a t e a new s t r i n g o f random b y t e s t h a t has l e n g t h r

random bytes=open (”/dev/urandom” , ” rb”) . read (i n t (r))
we swap the s t r i n g o f random b y t e s wi th the s t r i n g o f random b y t e s

wi th l e n g t h c
at the p o s i t i o n we p ick ed above

y=x [: i n t (p)]+ random bytes+x [(i n t (p)+i n t (c)) :]
f i l e 2=open (home+name+’ 2 ’ , ”w+”)
f i l e 2 . wr i t e (y)
f i l e 2 . c l o s e ()
return i n t (c) , i n t (r)

def c r e a t e f i l e s 2 (f i l e s i z e , home , name , x0 , x2 , a , power , num changes) :
”””
c r e a t e s a f i l e t h a t cont a in s a random s t r i n g

and then produces a modi f ied v e r s i o n o f t h i s f i l e
”””

c r e a t e a f i l e c o n t a i n i n g a random s t r i n g o f b y t e s
t h i s f i l e has s i z e f i l e s i z e randomly s e l e c t e d from power law d i s t n

x=open (”/dev/urandom” , ” rb”) . read (i n t (f i l e s i z e))
f i l e 1=open (home+name , ”w+”)
f i l e 1 . wr i t e (x)
f i l e 1 . c l o s e ()
f i l e 2=open (home+name+’ 2 ’ , ”w+”)
f i l e 2 . wr i t e (x)
f i l e 2 . c l o s e ()

add num changes 1−b y t e c h a r a c t e r s at random p o s i t i o n s o f the f i l e
i f num changes=20 t h i s adds 20 1−b y t e c h a r a c t e r s

for i in xrange (num changes) :
make changes ()

c=0
r=num changes

39

return i n t (c) , i n t (r)

Create a file, copy and paste the following in it and name it run_experiment_loop_00.py.

#!/ usr / b in /env python
Maria Constantinou 2013

def r sync exper iment loop (home , remote) :
”””
s y n c h r o n i z e s f i l e s and e x t r a c t s in format ion to t r a c k performance o f

rsync
”””
from exper iment implementat ion 01 import c r e a t e f i l e s , power law ,

make changes
from math import exp , s q r t
from time import c lock , time
from glob import glob
from os import rename , wait
from s h u t i l import c o p y f i l e
from subproces s import Popen , PIPE
import re

warm up s y n c h r o n i z a t i o n :
power law parameters

n 1 =((10 .0∗∗ (0 . 25) −10.0∗∗(−4.5)) /(−13.0)) +1.0
n 2=n 1 +10.0
power =1.0/ n 1
power2 =1.0/ n 2
x 1=(exp (1 . 0)) ∗∗14 .0
x 0=exp (1 . 0)
x 2=(exp (1 . 0)) ∗∗3 .0
C 1=(n 1) / ((x 1 ∗∗n 1)−(x 0 ∗∗n 1))
C 2=(n 2) / ((x 2 ∗∗n 2)−(x 0 ∗∗n 2))

f i l e s i z e i s e x t r a c t e d form the above power law d i s t r i b u t i o n
f i l e s i z e = power law (x 0 , x 1 , n 1 , power)

c r e a t e a f i l e , then modify i t by adding b y t e s at random p o s i t i o n
[c , r] = c r e a t e f i l e s (f i l e s i z e , home , ’ a ’ , x 0 , x 2 , n 2 , power2)

synchron i ze the two f i l e s
p=Popen ([’ r sync ’ , ’−av ’ , ’−−block−s i z e =1024 ’ ,home+’ a 2 ’ , remote+’ a ’] ,

s h e l l=False , s tdout=PIPE)

wait ()
a c t u a l experiment :

for j in xrange (10000) :
n 1 =((10 .0∗∗ (0 . 25) −10.0∗∗(−4.5)) /(−13.0)) +1.0

40

n 2=n 1 +10.0
power =1.0/ n 1
power2 =1.0/ n 2
x 1=(exp (1 . 0)) ∗∗14 .0
x 0=exp (1 . 0)
x 2=(exp (1 . 0)) ∗∗3 .0
C 1=(n 1) / ((x 1 ∗∗n 1)−(x 0 ∗∗n 1))
C 2=(n 2) / ((x 2 ∗∗n 2)−(x 0 ∗∗n 2))

f i l e s i z e = power law (x 0 , x 1 , n 1 , power)
[c , r] = c r e a t e f i l e s (f i l e s i z e , home , ’ a ’ , x 0 , x 2 , n 2 , power2)

re speedup=re . compi le (r ’ speedup\ s+i s \ s +(?P<s>\d+\.\d∗) ’)
r e s e n t=re . compi le (r ’ s ent \ s +(?P<sent>\d+)\ s+bytes ’)
r e r e c=re . compi le (r ’ r e c e i v e d \ s +(?P<sent>\d+)\ s+bytes ’)
s t a r t=time ()

p=Popen ([’ r sync ’ , ’−av ’ , ’−−block−s i z e =1024 ’ ,home+’ a 2 ’ , remote+’ a ’
] , s h e l l=False , s tdout=PIPE)

for l i n e in p . stdout :
m=re speedup . search (l i n e)
i f m: speedup=f l o a t (m. group (’ s ’))

m=r e s e n t . s earch (l i n e)
i f m: sent=i n t (m. group (’ sent ’))

m=r e r e c . s earch (l i n e)
i f m: rec=i n t (m. group (’ sent ’))

e l apsed = time () − s t a r t
n 1=n 1−1.0
n 2=n 2−1.0

p r i n t the the exper imenta l se tup c h a r a c t e r i s t i c s and r e s u l t s in
a f i l e

f out = open (’ output . txt ’ , ’ r ’) ;
data=fout . read ()
f out . c l o s e ()
i=l en (data)
newdata =data [: i]+ ’ %2.8 f %2.8 f %2.8 f %2.8 f %d %d %d %d %2.8 f %2.8

f %d %d\n ’ % (C 1 , n 1 , C 2 , n 2 , c , r , f i l e s i z e , 1024 , e lapsed
, speedup , sent , r e c)

f out = open (’ output . txt ’ , ’w ’) ;
f out . wr i t e (newdata)
fout . c l o s e
wait ()

home = ’ /u/e/mc380/ p r o j e c t / p r o j e c t f i n a l / ’

41

remote=’ 1 3 8 . 3 8 . 3 . 3 4 ’ # address o f remote computer (l y n e s s . bath . uk)
r sync exper iment loop (home , remote+’ : ’+home)

Create a file, copy and paste the following in it and name it run_experiment_loop_02.py.

#!/ usr / b in /env python
Maria Constantinou 2013

def r sync exper iment loop2 (home , remote) :
”””
s y n c h r o n i z e s f i l e s and e x t r a c t s in format ion to t r a c k performance

o f rsync , the number o f changes (1− b y t e a d d i t i o n s) t h a t are
made to the l o c a l f i l e can be s p e c i f i e d

”””
from exper iment implementat ion 01 import c r e a t e f i l e s 2 , power law
from math import exp , s q r t
from time import c lock , time
from glob import glob
from os import rename , wait
from s h u t i l import c o p y f i l e
from subproces s import Popen , PIPE
import re

warm up s y n c h r o n i z a t i o n :
power law parameters

n 1 =((10 .0∗∗ (0 . 25) −10.0∗∗(−4.5)) /(−13.0)) +1.0
n 2=n 1 +10.0
power =1.0/ n 1
power2 =1.0/ n 2
x 1=(exp (1 . 0)) ∗∗14 .0
x 0=exp (1 . 0)
x 2=(exp (1 . 0)) ∗∗3 .0
C 1=(n 1) / ((x 1 ∗∗n 1)−(x 0 ∗∗n 1))
C 2=(n 2) / ((x 2 ∗∗n 2)−(x 0 ∗∗n 2))

num changes=20 #number o f 1−b y t e i n s e r t i o n s
f i l e s i z e i s e x t r a c t e d form the above power law d i s t r i b u t i o n

f i l e s i z e = power law (x 0 , x 1 , n 1 , power)
c r e a t e a f i l e , then modify i t by adding b y t e s at random p o s i t i o n s

[c , r] = c r e a t e f i l e s 2 (f i l e s i z e , home , ’ a ’ , x 0 , x 2 , n 2 , power2 ,
num changes)

synchron i ze the two f i l e s
p=Popen ([’ r sync ’ , ’−av ’ , ’−−block−s i z e =2048 ’ ,home+’ a 2 ’ , remote+’ a ’] ,

s h e l l=False , s tdout=PIPE)

wait ()

42

a c t u a l experiment :
for j in xrange (1000) :

n 1 =((10 .0∗∗ (0 . 25) −10.0∗∗(−4.5)) /(−13.0)) +1.0
n 2=n 1 +10.0
power =1.0/ n 1
power2 =1.0/ n 2
x 1=(exp (1 . 0)) ∗∗14 .0
x 0=exp (1 . 0)
x 2=(exp (1 . 0)) ∗∗3 .0
C 1=(n 1) / ((x 1 ∗∗n 1)−(x 0 ∗∗n 1))
C 2=(n 2) / ((x 2 ∗∗n 2)−(x 0 ∗∗n 2))

num changes=20
f i l e s i z e = power law (x 0 , x 1 , n 1 , power)
[c , r] = c r e a t e f i l e s 2 (f i l e s i z e , home , ’ a ’ , x 0 , x 2 , n 2 , power2 ,

num changes)

re speedup=re . compi le (r ’ speedup\ s+i s \ s +(?P<s>\d+\.\d∗) ’)
r e s e n t=re . compi le (r ’ s ent \ s +(?P<sent>\d+)\ s+bytes ’)
r e r e c=re . compi le (r ’ r e c e i v e d \ s +(?P<sent>\d+)\ s+bytes ’)
s t a r t=time ()

p=Popen ([’ r sync ’ , ’−av ’ , ’−−block−s i z e =2048 ’ ,home+’ a 2 ’ , remote+’ a ’
] , s h e l l=False , s tdout=PIPE)

for l i n e in p . stdout :
m=re speedup . search (l i n e)
i f m: speedup=f l o a t (m. group (’ s ’))

m=r e s e n t . s earch (l i n e)
i f m: sent=i n t (m. group (’ sent ’))

m=r e r e c . s earch (l i n e)
i f m: rec=i n t (m. group (’ sent ’))

e l apsed = time () − s t a r t
n 1=n 1−1.0
n 2=n 2−1.0

p r i n t the exper imenta l se tup c h a r a c t e r i s t i c s and r e s u l t s in a f i l e
f out = open (’ output . txt ’ , ’ r ’) ;
data=fout . read ()
f out . c l o s e ()
i=l en (data)
newdata =data [: i]+ ’ %2.8 f %2.8 f %2.8 f %2.8 f %d %d %d %d %2.8 f

%2.8 f %d %d\n ’ % (C 1 , n 1 , C 2 , n 2 , c , r , f i l e s i z e , 2048 ,
e lapsed , speedup , sent , r e c)

f out = open (’ output . txt ’ , ’w ’) ;
f out . wr i t e (newdata)

43

f out . c l o s e
wait ()

home = ’ /u/e/mc380/ p r o j e c t / p r o j e c t f i n a l / ’
remote=’ 1 3 8 . 3 8 . 3 . 3 4 ’ # address o f remote computer (l y n e s s . bath . uk)
r sync exper iment loop2 (home , remote+’ : ’+home)

Finally, compile all the above. experiment_implementation_01.py is used in running
run_experiment_loop_00.py and run_experiment_loop_02.py.

44

F Mathematical model simulation in Python 2.4.3

Create a file math_model_simulation.py and copy and paste the following in it:

#!/ usr / b in /env python
Maria Constantinou 2013

from math import c e i l , exp , s q r t
from random import random

def power law (x0 , x1 , n , power) :
”””
g e n e r a t e s a power law d i s t n from a uniform d i s t r i b u t i o n U[0 , 1]

and then r e t u r n s a v a l u e coming from t h i s d i s t n
”””

x=((x1∗∗n−x0∗∗n) ∗random ()+x0∗∗n) ∗∗(power)

return x

def math model (L) :
”””

implementat ion o f mathematimal model when we want to make
one change t h a t may c o n s i s t o f d e l e t i o n o f some b y t e s
and i n s e r t i o n o f n i b y t e s

”””

power law d i s t r i b u t i o n parameters
n 1 =((10 .0∗∗ (0 . 25) −10.0∗∗(−4.5)) /(−13.0)) +1.0
n 2=n 1 +10.0
power =1.0/(n 1)
power2 =1.0/(n 2)
x 1=(exp (1 . 0)) ∗∗14 .0
x 0=exp (1 . 0)
x 2=(exp (1 . 0)) ∗∗3 .0
C 1=(n 1) / ((x 1 ∗∗n 1)−(x 0 ∗∗n 1))
C 2=(n 2) / ((x 2 ∗∗n 2)−(x 0 ∗∗n 2))

n=power law (x 0 , x 1 , n 1 , power) # f i l e −s i z e
n i =(power law (x 0 , x 2 , n 2 , power2)) +10.0 # change−s i z e

t =4.0∗n/L+4.0∗(n/L−c e i l (n i /L))+L∗ c e i l (n i /L) +10.0∗random ()
equat ion o f the model t h a t c a p t u r e s the number o f b y t e s t r a n s m i t t e d

speedup=(n i+n) / t # speedup as d e f i n e d in Andrew T r i d g e l l ’ s t h e s i s

return speedup , t , n , n i , n 1 , n 2 , C 1 , C 2

45

def math model2 (L , num changes) :
”””

implementat ion o f mathematical model when we want to make
more than one changes t h a t are more than the b lock−s i z e
b y t e s appart

”””

power law d i s t r i b u t i o n parameters
n 1 =((10 .0∗∗ (0 . 25) −10.0∗∗(−4.5)) /(−13.0)) +1.0
n 2=n 1 +10.0
power =1.0/(n 1)
power2 =1.0/(n 2)
x 1=(exp (1 . 0)) ∗∗14 .0
x 0=exp (1 . 0)
x 2=(exp (1 . 0)) ∗∗3 .0
C 1=(n 1) / ((x 1 ∗∗n 1)−(x 0 ∗∗n 1))
C 2=(n 2) / ((x 2 ∗∗n 2)−(x 0 ∗∗n 2))

n=power law (x 0 , x 1 , n 1 , power) # f i l e −s i z e

B i=num changes
number o f changes (one b y t e a d d i t i o n s)
i f num changes=100 t h i s means t h a t t h e r e are 100 1−b y t e a d d i t i o n s
t h a t are s e p e r a t e d by more than the b l o c k s i z e number o f b y t e s

t =4.0∗n/L+4.0∗(n/L−B i)+L∗B i +10.0∗random ()
equat ion o f the model t h a t c a p t u r e s the number o f b y t e s t r a n s m i t t e d

speedup=(B i+n) / t # speedup as d e f i n e d in Andrew T r i d g e l l ’ s t h e s i s

return speedup , t , n , B i , n 1 , n 2 , C 1 , C 2

Create a file, name it simulation_loop_00.py and copy and paste the following in it:

#!/ usr / b in /env python
Maria Constantinou 2013
mathematical model s i m u l a t i o n s are performed

from math model s imulat ion import math model
from array import array
from math import s q r t

n=10000
speedup=array (’d ’ ,n ∗ [0 . 0])

L=8192 # block−s i z e

46

perform n s i m u l a t i o n s o f the model
for i in xrange (n) :

[speedup , t , f i l e s i z e , change , n 1 , n 2 , C 1 , C 2] =math model (L)
t h i s can e i t h e r be math model or math model2
note t h a t f i r s t the user needs to import the d e s i r e d one
p r i n t the s i m u l a t i o n c h a r a c t e r i s t i c s and r e s u l t s in a f i l e

f out = open (’ output s imu la t i on . txt ’ , ’ r ’) ;
data=fout . read ()
f out . c l o s e ()
i=l en (data)
newdata =data [: i]+ ’ %2.8 f %2.8 f %2.8 f %2.8 f %d %d %d %2.8 f %2.8 f ’ %

(C 1 , n 1 , C 2 , n 2 , change , f i l e s i z e , L , speedup , t)
f out = open (’ output s imu la t i on . txt ’ , ’w ’) ;
f out . wr i t e (newdata)
fout . c l o s e

Create a file, name it simulation_loop_01.py and copy paste the following in it:

#!/ usr / b in /env python
Maria Constantinou 2013
mean and o f 95% co nf i denc e i n t e r v a l f o r the r a t i o o f b y t e s
t r a n s m i t t e d over the s i z e o f the whole f i l e are computed

from math model s imulat ion import math model2
from array import array
from math import s q r t

n=1000
t=array (’d ’ ,n ∗ [0 . 0])
r a t i o=array (’d ’ ,n ∗ [0 . 0])
change=array (’d ’ ,n ∗ [0 . 0])
f i l e s i z e=array (’d ’ ,n ∗ [0 . 0])
L=512.0 # block−s i z e
num changes=100 #number o f 1−b y t e a d d i t i o n s
perfom n s i m u l a t i o n s o f the model
for i in xrange (n) :

[speedup , t [i] , f i l e s i z e [i] , change [i] , n 1 , n 2 , C 1 , C 2] =math model2 (
L , num changes)

t h i s can e i t h e r be math model or math model2
j u s t remember to always import the one t h a t i s used
and t h a t they have d i f f e r e n t i n p u t s

mean2=f l o a t (sum(change)) / f l o a t (l en (change))
mean3=f l o a t (sum(f i l e s i z e)) / f l o a t (l en (f i l e s i z e))

r a t i o array

47

for i in range (n) :
r a t i o [i]= t [i] / (mean2+mean3)

mean o f the r a t i o
mean=sum(r a t i o) / l en (r a t i o)

standard d e v i a t i o n o f the r a t i o
sum sqrd =0.0
for count in r a t i o :

sum sqrd+=(count−mean) ∗∗2

std=s q r t (sum sqrd/n)

95% c onf iden ce i n t e r v a l
l o w e r q u a n t i l e=mean−1.96∗ std / s q r t (n)
uppe r quant i l e=mean+1.96∗ std / s q r t (n)
by c e n t r a l l i m i t theorem

p r i n t mean , s tandard d e v i a t i o n and 95% CI
print ’mean : ’ , mean
print ’ standard dev i a t i on ’ , s td
print ’95% con f idence i n t e r v a l : (’ , l owe r quant i l e , ’ , ’ , uppe r quant i l e

, ’) ’

Finally compile the above files. math_model_simulation.py is used in running simulation_loop_00.py
and simulation_loop_01.py.

48

References

[1] BT Cloud online storage.
http://www.productsandservices.bt.com/consumerProducts/displayTopic.do?
topicId=27272

[2] R. Twisted Cloud storage. 2003. http://www.twistedross.com/cloud-storage/

[3] A. Tridgell. Efficient Algorithms for Sorting and Synchronization, PhD Thesis. The
Australian National University, 1999.

[4] C. Keiper. NetApp SnapMirror Block Level Incremental Backup to Tape with NetVault
Backup. Quest Software, 2012.

[5] A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. CRC Press,
1996.

[6] P. Hall. Rates of convergence in the central limit theorem. Australian National University,
1982.

[7] A. S. Tanenbaum, J. N. Herder, H. Bos. File Size Distribution on UNIX Systems-Then and
Now. Vrije Universiteit, Amsterdam, The Netherlands, 2005.

[8] E. W. Weisstein. Random Number. From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/RandomNumber.html

[9] H. Anton, I. C. Bivens, S. Davis. Calculus Late Transcendentals, 9th Edition. Drexel
University and Davidson College,United States, 2010.

[10] A. B. Downey. The structural cause of file size distributions. Wellesley College, 2001.

49

