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Executive summary 

Floods are extreme events that can have large impacts on human societies and 

ecosystems. They arise from a multitude of causes and can have very different 

consequences depending on regional and local circumstances. Floods are part of the 

natural hydrological cycle, but adverse impacts arise when water masses inundate 

infrastructures and land that cannot cope with the excessive water. Major flood disasters 

in Europe have caused loss of lives and economic loss that amount to billions of euro, but 

aggregated over large areas small local floods also produce significant losses.  

 

Analyses of trends of past flood events suggest flood hazard may have increased in parts 

of Europe. Available evidence suggests high flows have been increasing in northern 

Europe, especially in western Britain and coastal Scandinavia. Regional patterns are, 

however, diverse, with many weak negative trends occurring in northern Europe as well, 

and a very mixed pattern in central Europe. Across most of the continent, however, 

urbanisation and the accumulation of assets in flood prone areas have led to increasing 

trends in the damages and economic consequences of floods. 

 

Global warming may reduce flood hazard in areas that are dominated by annual 

snowmelt floods, except in those regions where a sharp increase in winter snowfalls 

outweighs the effects of a warmer and shorter snow season. In other parts of Europe there 

is greater uncertainty in how flood hazard will change due to climate change. Increases in 

extreme river flows have, however, been predicted in several studies and may occur over 

relatively short time spans.  

 

Flood risk management is a demanding task that requires careful analysis of flood 

hazards and their causes, assessments of the magnitude of the risks, systematic planning 

to reduce risks and adaptation in the face of possible change. Dam safety is a major issue 

in dealing with flood risks. Flood risk management requires appropriate institutions, 

technical solutions and functioning governance structures. Recently participatory 

approaches have opened up new avenues for the development of flood risk management. 

Promising examples of participatory flood risk management have been documented. 

 

Flood risk management has been seeking new directions and needs to adapt to an 

uncertain future. Flood risk management needs to consider developments in exposure and 

vulnerability due to land-use change and infrastructure development. Due to the 

combined effects of climate change and socio-economic development flood risk is 

unlikely to remain stationary. Scenarios for flood risk management thus have to combine 

socio-economic scenarios, such as projections for population growth, urbanisation and 

industrial developments with projections of future flood hazards. Detailed scenario 

studies are still missing in many river catchments. Recent studies have suggested that 

climate change can add significantly to the expected damages in some parts of Europe 

over the coming decades. Adaptation to changes in flood hazards and risk is therefore an 

essential element in efforts to adapt to climate change. 
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1 Introduction  

This report describes floods in a European context. Flooding in the sense of land being 

covered temporarily by water is a natural event. Many human activities and natural 

ecosystems benefit from and are even dependent on flooding. Adverse consequences 

arise when water masses cover or destroy structures and interfere with activities that do 

not cope with inundation. The EU Directive on the Assessment and Management of flood 

risks (Floods Directive, Directive 2007/60/EC) specifically addresses this problem at the 

EU level. The white paper "Adapting to climate change: Towards a European framework 

for action" (EC 2009a) also identifies flooding as one of the issues that need to be 

considered in planning for the future. 

 

The occurrence of catastrophic flood events proves that our ability to manage floods is 

still limited. Furthermore, in the face of climate change the past is no longer a reliable 

guide to the future. Flood risk assessment, like natural hazards and disaster management 

more generally, cannot be based on an assumption of stationarity (Milly et al. 2008). 

Both the natural and the social conditions are changing and as a consequence also the risk 

and impacts of floods. 

 

The purpose of this report is to highlight factors that contribute to the occurrence and 

adverse consequences of floods, and possibilities to reduce flood risks from inland waters 

and rainfall. It includes a discussion on changes in flood patterns and illustrates how 

different scenarios for climate change may affect vulnerability to floods and flood risks. 

The report provides illustrative examples of flood risk management from the local to 

European level.  

 

 

 

2 Floods and their impacts 

Floods are complex phenomena with respect to origin, predictability, risk and 

consequences. A flood event as defined by the EU Floods Directive is simply the 

temporary inundation of land not normally covered by water (Chapter 1, Article 2). 

Floods are often caused by extreme weather conditions leading into local accumulations 

of rainwater or overflowing of streams and other bodies of water. Impacts arise as a 

consequence of the spreading and movement of the water masses.  

 

In the riverine environment, floods often have mixed impacts. They may produce benefits 

to some parts of the ecosystem and damages to other parts. Regular annual floods provide 

water resources for human use and carry nutrients supporting agricultural production on 

flood plains. Adverse impacts depend on the vulnerabilities of the area in question. The 

vulnerability of an area develops over long time frames but the impacts usually arise 

suddenly when the flooding passes critical thresholds. Flood risks could in principle be 

greatly reduced by avoiding building  and other development close to rivers and other 
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bodies of water, but there is often a high perceived value of living near water, and access 

water or water resources is a necessary part of many activities. Flood damages can 

furthermore arise due to localised extreme rainfall far from water bodies. A good 

understanding of flood damages is a pre-requisite for developing efficient disaster 

prevention policies (EC 2009b).  

 

2.1 Types of flooding, exposures and vulnerability  

 

The reduction of flood risks requires an understanding of the nature of the floods. A 

classification of different types of floods helps to identify certain characteristics that 

need attention in efforts to reduce flood risk. 

 

Any classification of floods is somewhat arbitrary, but distinctions can usefully be made 

between the following types of floods: 

 Fluvial flooding occurs when water levels in a channel, lake or reservoir rise so 

that water covers nearby areas, which normally are dry land. A fluvial flood may 

be caused by heavy or persistent rain, snowmelt or ice jam, sometimes also by 

debris jam, landslide or other blockage of the channel. Flooding can be a regular 

feature of the yearly hydrological cycle, but rivers have different patterns of flow 

and the severity of flooding varies. Antecedent conditions (soil moisture, 

groundwater stage) may also considerably affect the severity of the flood. 

Forecasting fluvial floods is generally easier than for other flood types. 

 Pluvial flooding is caused by intense localised rainfall. Pluvial floods often cause 

damages in urban environments in combination with overflowing sewers and high 

runoff in small catchments. Urban pluvial floods often arise due to a combination 

of land sealing and insufficient capacities of sewers and drainage systems. They 

are difficult to predict due to the difficulty in predicting local rainfall patterns, 

lack of data on the actual hydrological status, and the short lead-times. 

 Coastal flooding occurs when sea level exceeds normal levels due to storm 

surges, exceptional tides or tsunamis. Flooding in deltas and river mouths may be 

caused by a combination of fluvial flooding with storm surges or otherwise 

exceptionally high sea level. Forecasting is difficult but risk analyses can be 

performed using models. Coastal flooding due to sea level rise, storm surges or 

tsunamis is covered in the (forthcoming) EEA report on coasts. 

 Groundwater flooding arise when underground water emerges in excessive 

quantities from either point or diffuse locations. This can be a consequence of e.g. 

persistent rains, high sea levels or land subsidence. If adequate data exist on 

groundwater flow forecasting is feasible. 

 Flash flooding is characterised by very rapid inundation. Some pluvial floods can 

be classified as flash floods, particularly if heavy rain in the upper part of the 

catchment creates flood wave surges downstream where it may not have rained at 

all. In addition to pluvial origin, there are many other causes of flash floods: river 
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or lake outbursts (linked e.g. to landslides or ice jams), lahars and jokulhaups
1
, 

overflowing of karstic formations, dam-breaks and snow-slush flows. The 

forecasting of flash floods is often extremely difficult due to the same factors as 

mentioned under pluvial flooding. 

  Dam failures cause floods when man-made dams fail due to, for example, 

inadequate spillway design, geological instability, internal erosion, frost damage, 

poor maintenance or landslides to the reservoir. The flood may be devastating, 

often of a flash flood type. The flooding material may contain significant amounts 

of other substances than water such as harmful sludge. Dam failures can be 

modelled and assessed in advance through risk analysis, but not forecasted. 

 

The first three flood types are characterised by their source and the two first may occur 

almost everywhere in Europe. Due to the topography and the patterns of rainfall the risk 

of flash floods is highest in Mediterranean and mountain areas, and coastal flooding has 

caused the largest damages in low-lying areas around the North Sea. 

 

2.2 Factors affecting floods and flood risks 

 

The hydrology and flood hazard (the magnitude and frequency of floods) of a 

catchment are strongly influenced by local factors such as the spatial-temporal 

distribution of rainfall, catchment topography, soil types and the proportion of lakes 

in the upstream area. In addition to these basic hydrological factors, human 

activities such as the development of land-use and infrastructure interventions (e.g. 

reservoirs and flood defences), also affect flood hazards.  These are illustrated in the 

cases presented below. 

 

Floods are determined by a combination of hydrological, climatological, and land-use 

conditions. Flood damages are strongly related to socio-economic conditions affecting 

land use. Few pan-European assessments of land-use impacts on catchment flood 

response have been undertaken, but general observations of the direction and magnitude 

of change can be made. The following sections describe how human activities in the form 

of urbanisation and land use changes have been found to affect flood risk. They also 

underline the importance of local conditions for flood risks. 

 
2.2.1 Urbanisation 

 

Urban areas are often particularly vulnerable to floods. Both pluvial and fluvial 

floods can cause significant impacts. The development of the urban form affects the 

vulnerability.  

 

Increasing urbanisation often means an expansion of impermeable areas. In hydrological 

terms, the effects of urbanisation on catchment flood response is therefore generally 

                                                 
1
 lahar= A landslide or mudflow of volcanic fragments on the flanks of a volcano; jokulhaup = the flood of 

water etc. that occurs when a volcano erupts underneath a glacier. 
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considered to be an increase in runoff volume and a decrease in catchment response time, 

both resulting in higher peak flows. Analysis of flood data has confirmed this perception, 

and has also indicated that these effects are most prominent for small to medium size 

floods, whereas they become less important for large floods (Hollis, 1975). It is also clear 

that the effect of urbanisation depends on the pre-urban conditions of the catchment. For 

example, constructing impervious areas on already rapidly-responding soils and 

landscapes is likely to have a less dramatic effect on the downstream flood response than 

the equivalent impervious area in a catchment dominated by a non-responsive soil type 

(Kjeldsen, 2010). Urban floods also have elevated risks of adverse consequences such as 

the spread of diseases and pollution of water when sewers overflow and pollutants leach 

into the flood water. 

Urbanisation affects the vulnerability as shown by the following case of Athens. The 

rapid urbanisation of Greater Athens, peaking in the 1920s due to refugees and internal 

immigration, resulted in both an increase in flood occurrence and a socio-economic 

segregation of the population of Athens, which is, to some extent, still evident today 

(Evelpidou et al. 2009). This has increased flood risk precisely for the more vulnerable 

parts of the population.  

 

Figure 2.1 Western Athens in 1870(a) and 2007(b). Photos from Laskaris (2008), 

used with permission of the author.  

  

 

 

The intense development of the wider Athenian urban complex (Figure 2.1), led to the 

degradation of many tributary streams, with the Kephisos River being the most important 

(Evelpidou et al., 2009). Although the river still drains 70% of its natural catchment, it 

suffered much due to a significant decrease in its width as a result of illegal dumping and 

illegal construction/industrial development on its banks (Figure 2.2). 
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Figure 2.2 Structures (a) and roads and houses (b) on the river bed. Photos from 

Laskaris (2008), used with permission of the author. 

 

 

 

 

 

 

Furthermore, due to its topography (steep slopes) and climate (intense, short duration 

rainfall) Athens is often subject to flash floods. This increases risk - particularly in view 

of its significant population density: 3.000.000 people live within the 300 km
2
 catchment 

of the Kephisos River. A total of 145 significant flood events have been reported between 

1887-2007 in which more than 250 people have died, and with damage estimates in the 

order of hundreds of millions of euro with a surprising consistency in their location and 

recurrence. As can be seen in Figure 2.3, the implementation of flood management 

measures in the 1990s resulted in small decrease of flood risk in some upstream areas but 

did not manage to eliminate main problems close to the Kephisos. Furthermore, the 

continuous urbanisation of the eastern suburbs and the coast increased flood risk in new 

areas (Kandilioti and Makropoulos, 2011).  

 

The most recent flood event that resulted in loss of human life was in 1994 (with 9 deaths 

reported and a state of emergency declared for the city of Athens).  Despite improvement 

in emergency planning, flood protection and awareness raising such catastrophic events 

could happen again (Papathanasiou et al., 2009). This is because major flood 

management interventions in the main urban rivers (such as Kephisos) are still wanting. 

However, community hubs, such as the Kephisos River Managing Authority are 

attempting alliances at the local level between local authorities, business and general 

public initiatives and pressure groups to raise the profile and reveal the true nature of the 

problems pushing for control of illegal activity coupled with economic and 

environmental regeneration of the area. 
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Figure 2.3 Flood hot-spots between 1887-1990 (left) and 1990-2007 (right). From 

Kandilioti and Makropoulos (2011), used with permission of the corresponding 

author. 

 

 

 

 

 

 
2.2.2 Land use management: Agriculture and forestry 

 

Historical land use changes that have converted forests and wetlands to agricultural 

land have affected the hydrology of catchments. The influence of specific 

agricultural land-use management practices on the flood generating processes is 

however difficult, if at all possible, to detect in observed flood series.  

 

The role of forests in controlling flooding is a contentious issue spanning a variety of 

sectors in society with conflicting aims (Calder and Aylward, 2006; Laurance, 2007; with 

reply from Calder et al., 2007). As with more general land-use management issues, the 

discussion often concerns at what spatial scale and severity of flooding an impact can be 

detected. Forests constitute a major, but diverse, land-use component across Europe, 

conditioned by geographical and climatological factors as well as national differences in 

management practices. In a study of 28 forested catchments from across Europe, 

Robinson et al. (2003) concluded that on a broad European or regional scale, the effects 

of forests on extreme flows are relatively small. They furthermore concluded that except 

for the particular cases of managed plantations on poorly drained soils in northwest 
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Europe and eucalyptus plantations in Southern Europe, specific forestry practices appear 

to play only a minor role in managing regional or large-scale flood risk across the 

continent. This supports the finding that changes in land use or land use management 

practices with the aim of reducing storm runoff are only feasible at sites where infiltration 

and wetting can be significantly enhanced (Naef et al. 2002).  

 

In the UK, Defra (2008) concluded that there was little or no evidence linking 

agricultural land-use change to changes in catchment flood response. Similarly, Pfister et 

al. (2004) and O’Connell et al. (2006) both concluded that while land-use change might 

affect flooding in small catchments (headwaters), no evidence could be detected in 

observations on the larger river basin scale such as that of the rivers Meuse and Rhine 

(Pfister et al. 2004). Given the importance of agriculture and food production in Europe, 

more scientific research is needed on the link between flood risk and land-use from a 

larger sample of catchments covering a wider range of geographical and climatological 

conditions as well as agricultural practices within Europe.  

 

2.3 Impacts of major floods 

 

Catastrophic floods have occurred in Europe throughout history, affecting 

thousands of people. They have caused fatalities and the economic losses have been 

significant. Total flood damages have increased in Europe over the last few decades. 

This trend can, however, mainly be attributed to socio-economic, rather than 

climatic, factors. 

 

Across Europe, damaging floods have been an ever-present peril. Several studies have 

documented historical flood events in Europe going back several centuries (e.g. Brázdil et 

al., 2006; Burger et al., 2006; Macdonald and Black, 2010; Elleder, 2010; Glaser et al, 

2010). Most of the large-scale disastrous events have been caused by prolonged periods 

of heavy rainfall, often coinciding with ice-breaking or snow melt (Glaser et al., 2010).  

 

Recent floods have been documented by EEA (2001) and EEA (2010a). Details on 

damages have been compiled in the EM-DAT
2
 Database, which contains floods fulfilling 

at least one of the following criteria: 

 ten or more people reported killed  

 one hundred or more people reported affected  

 declaration of a state of emergency  

 call for international assistance. 

The EM-DAT Disaster Database has documented 266 flood disasters in Europe 

(excluding Russia, but including Turkey) from 2000 to 2011. These floods have caused 

1080 fatalities, affected more than 2.8 million people and caused economic damages 

amounting to more than 48 billion euro.  

 

                                                 
2
 http://www.emdat.be/database (Accessed October 29 2012) 

http://www.emdat.be/database
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In economic terms, the two worst events in this millennium have been the Elbe and 

Danube flood of 2002 and the UK floods in 2007, which caused damages of several 

billions euro. Variations from year to year are large; in 2001, 2004, 2006, 2008 and 2009 

total flood damages in all the countries that currently are members of the EU (EU27) 

were below one billion euro. Examples from outside the EU include floods in the 

Krasnodar region of Russia in summer 2002 which killed 258 people and affected almost 

400,000 and flooding in Switzerland in August 2005, causing six fatalities and 2.5 billion 

Swiss francs or roughly 1.6 billion euros of damages.
3
 

 

In the period of 2000-2010 European countries have been unevenly hit by floods (Table 

1). The Mediterranean region, UK and the Black Sea have been most frequently exposed 

to flood disasters.  In this period Romania had the worst floods in terms of fatalities with 

more than 220 deaths directly caused by flooding. The costs of the damages strongly 

reflect affected assets.  In general total flood damages have increased in Europe over the 

last few decades. This trend can be attributed to socio-economic, rather than climatic, 

factors, such as changes in population, wealth and inflation (Barredo, 2009). Improved 

data collection and better reporting may also have contributed to the overall trend.  

 

The flooding experienced in the UK in the summer of 2007 illustrates how flooding can 

affect multiple aspects of society (Marsh and Hannaford 2007). The flood events were in 

large part caused by three storms of record-breaking magnitude and spatial extent. For 

example, the storm of 19-20 July produced up to 140mm of localised rainfall, estimated 

to have an annual probability of approximately 1 % (a “100-year flood”). The resulting 

river flood peaks exceeded previous maximum recorded flow in numerous locations, and 

in several places the levels exceed those to be expected for a 1 % annual probability.  

 

The extensive flood damages caused by the unusual conditions in the UK are well-

documented. Over 55,000 homes and 6,000 businesses were flooded; the related 

insurance claims were approaching 3.5 billion euro by late-2007. Total costs were 

estimated to be up to 6.5 billion euro. A breakdown of the total economic costs 

(Environment Agency 2010) showed that households and businesses accounted for the 

bulk (66%) of the overall damages; followed by power and water utilities (10%); public 

health costs (9%); communications (7%); local government costs (7%); agriculture (2%); 

and emergency services (1%). Most of the health impacts were mental health costs based 

on estimates of people’s willingness to pay to avoid exposure to the distress caused by 

flooding. Other health impacts of floods typically include direct injuries and outbreaks of 

communicable diseases and infections. Indirect effects caused by the disruption of health 

care services, water treatment or sewage disposal, may in some cases be more serious 

than the direct impacts. 

 

 

 

                                                 
3
 http://www.bafu.admin.ch/hydrologie/01834/02041/02043/index.html?lang=en  

(Accessed Oct 27 2011) 

 

http://www.bafu.admin.ch/hydrologie/01834/02041/02043/index.html?lang=en
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Table 2.1 Number of flood disasters documented in the EM-DAT-data-base for 

2000-2011 in Europe, excluding Russia but including Turkey (Oct-29-2012 - Data 

version: v12.07). 

Country 
Number of 

documented flood 
disasters 

Deaths 
Flood damage 

costs (USD 
‘000) 

Number of 
affected people 

Albania 5 4 17,673 90,484 
Austria 6 14 3,300,000 61,416 
Belgium 8 5 238,146 3,300 
Bosnia-
Hercegovenia 

8 3 87,000 328,740 

Bulgaria 12 52 458,000 13,350 
Canary Is 2 23 79,923 700 
Croatia 6 0 80,000 3,160 
Czech Rep 9 49 2,977,560 220,165 
Finland 1 0  400 
France 20 72 4,322,350 55,961 
Germany 8 36 1,1840,000 331,450 
Greece 15 16 605,659 12,330 
Hungary 9 2 578,000 47,814 
Ireland 3 2 325,000 900 
Italy 19 115 10,444,000 58,150 

Lithuania 2 4   
Macedonia FRY 6 2 3,600 109,750 
Moldova Rep 4 5 8,584 23,000 
Montenegro 4 0  7,886 
Norway 2 0  2,100 
Poland 7 49 3,880,000 120,550 
Portugal 6 52 1,350,000 948 

Romania 31 222 1,548,790 213,575 
Serbia 5 2  20,480 
Serbia 
Montenegro 

6 2  46,545 

Slovakia 8 8 34,000 1,180 

Slovenia 1 0 5,000  
Spain 10 38 576,285 8,460 
Switzerland 3 7 2,450,000 5,600 
Turkey 18 216 932,000 110,870 
Ukraine 7 55 1,040,755 578,665 
United Kingdom 15 26 14,949,150 350,830 
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2.4 The risk of dam failures 

 

Dams and reservoirs play a vital role in flood management. Especially in 

multipurpose projects, dams are frequently built to support flood management and 

not only for hydropower production or irrigation. However, devastating floods have 

also been caused by dam failures.  

 

A dam failure is defined by the International Commission on Large Dams (ICOLD) as 

the collapse or movement of part of a dam or its foundation, so that the dam cannot retain 

water. There are several data bases on dam failures. The Data Station for Dam Failures 

DSDF-VIENNA has information on 323 failures of large dams, 445 failures of small 

dams and 133 failures of tailing dams since 1980
4 

(EEA 2010b) Analyses of dam failures 

can be very difficult, with many historical events not completely understood. According 

to the ICOLD
5
, the most common cause of failure of earth and rockfill dams is 

overtopping (31%), followed by internal erosion in the dam itself (15%) or in its 

foundation (12%). With masonry dams, the most common cause is overtopping (43%) 

followed by internal erosion in the foundation (29%). Hydrotechnically speaking, 

inadequate spillway capacity is often the factor which triggers the chain of events leading 

to a dam failure.  

 

Dam breaks can cause domino-like failures of downstream dams. Catastrophic 

consequences downstream are also possible with only a minor damage to the dam itself, 

e.g. if a landslide hits a reservoir. This was the case in Italy in 1963, when a huge 

landslide caused 50 million m
3
 of water to overtop the Vaiont Dam, killing around 2,000 

people in the river valley. The dam with a height of 260 m was damaged only slightly at 

the top. 

 

2.5 Have flood hazards changed over time? 

 

An important question for flood risk managers is to establish if the flood hazard has 

changed in recent decades. Available evidence suggests different patterns across 

Europe with increasing high flows in northern and western Europe. Regional 

patterns are, however, diverse, with many weak negative trends occurring in 

northern Europe as well, and a very mixed pattern in central Europe. 

 

Detection of a climate signal in hydrological observations of flood magnitude and 

frequency is difficult due to the confounding effects of long-term natural variability in 

climate, human disturbance of catchments and river systems, as well as the relatively 

short period of observation in most rivers. Global warming is expected to cause changes 

in intense rainfall although local variation can be significant (Huntington, 2006). 

According to Min et al. (2011), an intensification of heavy precipitation events has 

                                                 
4
 http://www.risk-assessment.at/en/we/services_bhdf.asp [6.7. 2011] 

5
 http://www.icold-cigb.net/ [6.7. 2011] 

http://www.risk-assessment.at/en/we/services_bhdf.asp
http://www.icold-cigb.net/
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already been observed over parts of the Northern Hemisphere during the second half of 

the twentieth century (including parts of Europe), and human-induced increases in 

greenhouse gases may have contributed to this trend. Trends in flood frequency and 

magnitude have been examined at the national scale in many European countries (see for 

example the national overviews presented in the various chapters of Kundzewicz et al., 

2012).  

 

A European-wide comparison  by Stahl et al. (2010), based on 441 catchments with near 

natural flow regimes from 15 countries with data from 1932, 1942, 1952,1962 and 2004, 

found evidence of increasing annual runoff in northern Europe, and decreasing runoff in 

southern Europe. A follow-up study by Stahl et al. (2012) analysed trends in 7-day 

maximum flows using the same dataset, and also examined trends in an ensemble of 

large-scale hydrological models validated by using these same observations.  The overall 

pattern found largely confirms the results of national studies – increasing high flows in 

northern Europe, with steepest trends in western Britain, parts of Scandinavia and 

mainland northwest Europe, contrasting with decreases in southern Europe – but regional 

patterns are very mixed, with many weak negative trends also occurring in northern 

Europe, and a very mixed pattern in central Europe (Fig.2.4).  

 

In many of the regional or national studies, trends in hydrological records are associated 

(either qualitatively or quantitatively) with changes in atmospheric circulation patterns. 

Recent observed trends in central Europe are linked to changing circulation types, in 

particular an increase in westerly airflows (Petrow and Merz, 2009). Floods have been 

linked to circulation types in a number of studies (Petrow et al., 2009; Bouwer et al., 

2008) and evidence suggests patterns of higher and lower flood frequency may be driven 

by changes in circulation patterns over long timescales (Schmocker-Fackel et al., 

2010a,b; Jacobeit et al., 2003). The North Atlantic Oscillation (NAO) has long been 

recognised as one of the primary drivers of European climate, and a number of studies 

have shown links between the NAO Index (NAOI) and streamflow at a European scale 

(Shorthouse and Arnell, 1999; Bouwer et al., 2008; Wrezinski and Paluszkiewicz, 2011).   

 

 

Climate variability associated with the NAO has been cited as a likely driver of observed 

high flow trends in some national-scale studies. In the UK, Hannaford and Marsh (2008) 

found relationships between the NAOI and high flow indicators in western Britain, which 

is likely to influence the upward trends seen in these areas; Maraun et al. (2011) reached 

a similar conclusion in studies of extreme rainfall in the UK. The NAO has also been 

posited as a mechanism for influencing streamflows in central Europe. Villarini et al. 

(2012) found the NAO to be a significant factor explaining patterns of extreme flooding 

in Austria, although other studies of NAO influences on flooding in central Europe have 

been less conclusive (e.g., Bouwer et al., 2008; Schmocker-Fackel et al., 2010a,b). The 

association of flooding with modes of large-scale atmospheric circulation raises the 

question whether recent changes in flood frequency reflect anthropogenic climate change 

or the influence of multi-decadal variability. These two factors are not mutually 

exclusive, though, since modelling studies suggest that the recent evolution of large-scale 
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patterns such as the NAO is also driven by anthropogenic forcing (e.g., Gillet et al., 2002; 

Dong et al., 2011). 

 

 

Figure 2.4 The 7-day maximum trends across Europe, 1963 – 2000 (Stahl et al. 

2012). Blue denotes positive trends, red negative. Units are in % of the average 7-

day flow for the respective catchment or model grid for the period 1963–2000.  Top 

left: observations; top right: ensemble mean for eight models at location of 

observations.  Bottom: ensemble mean from eight models for Europe. Modified 

from Stahl et al., 2012, used with permission of author. 

 

 

 

 
 

 

 

A recent analysis of the floods in England and Wales in autumn 2000, based on several 

thousand climate simulations, has shown that anthropogenic climate change due to 

twentieth century greenhouse gas emissions very likely increased the risk of flood 

occurrence (Pall et al., 2011). The precise magnitude of this contribution remained 

uncertain, but in nine out of ten cases the model results suggested it was at least 20%. It is 

important to note, though, that many factors, anthropogenic and natural, contribute to the 
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development of a particular flood event, and that attributing an individual event solely to 

climate change is not appropriate (Pall et al., 2011). 

 

2.6 Projections of flood hazards  

 

Recent analyses suggest that global warming is likely to reduce flood hazard in 

areas that are dominated by annual snowmelt floods, except in those regions where 

a sharp increase in winter snowfalls outweighs the effects of a warmer and shorter 

snow season (Dankers & Feyen, 2009). In other parts of Europe there is 

considerably more uncertainty in how flood hazard will change due to climate 

change. Increases in extreme river flows have, however, been predicted in several 

studies and may occur over relatively short time spans (Kay & Jones, 2011).  

 

It is widely accepted that heavy precipitation events will become more frequent and/or 

intense under global warming (Allen and Ingram, 2002; Hegerl et al., 2007). An increase 

in rainfall intensity may occur even in areas that are getting drier on average (Christensen 

and Christensen, 2004). However, this is a general pattern that may work out differently 

at the local scale. Climate model projections of changes in extremes are less robust than 

for changes in average conditions, and present-day characteristics of climate extremes are 

difficult to reproduce (Meehl et al., 2007). Furthermore, changes in flood hazard do not 

only depend on changes in heavy rainfall but also on other processes such as snow 

accumulation and melt, and antecedent soil moisture conditions. 

 

A European scale study by Dankers and Feyen (2009) found some patterns of change to 

be robust across different climate models and scenarios. Especially in north-eastern 

Europe a general decrease in extreme river discharge was projected by the end of this 

century, due to a reduction in the hazard of extreme snowmelt floods. Elsewhere, a 

consistent tendency toward a higher flood hazard in at least the majority of the model 

experiments was found in several major European rivers such as the Loire, Garonne and 

Rhone in France, the Po in Italy and the Danube in central and eastern Europe (see Fig. 

2.5).  

 

At the scale of individual river basins, using a different combination of climate models or 

assuming a different emissions scenario sometimes resulted in a very different or even 

opposite climate change signal in flood hazard. Much of this uncertainty could be traced 

back to the driving Global Circulation Model (GCM) that had a larger influence on the 

results than the choice for a particular Regional Climate Model (RCM) or even the 

emissions scenario. Importantly, Dankers & Feyen (2009) also found that some of the 

changes in simulated flood hazard can partly be attributed to large, decadal-scale natural 

variability in the simulated climate. This underlines the fact that there is still considerable 

uncertainty in future projections of changes in climatic extremes.  
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Figure 2.5 Number of scenarios (out of total eight experiments) showing either a (a) 

decrease or (b) increase of more than 5% in the 100-year return level in the scenario 

period (2071-2100 compared to 1961-1990). (Dankers & Feyen 2009, used with 

permission of the corresponding author). 

 
 

National and catchment-scale studies provide a more detailed and nuanced picture, in 

areas where more data and better models are available. A national assessment for Finland 

by Veijalainen et al. (2010) found important regional differences in the impact of climate 

change across the country due to different climatic conditions and catchment properties. 

In snowmelt-flood dominated areas, annual floods decreased or remained unchanged due 

to decreasing snow accumulation. In contrast, a projected increase in precipitation led to 

an increase in floods in the major central lakes in Finland and their outflow rivers. 

 

Many studies have made projections of changes in river flooding for the UK, most 

recently by Kay & Jones (2011). Their results suggest an increase in flood risk across 

much of the country, particularly in East Anglia and the Upper Thames. Negative trends 

in flood risk, present in a small number of places, were not significant. These changes, 

which were derived over the period 1950-2099 under the A1B emissions scenario, are 

however unlikely to occur linearly over the coming century, partly because of natural 

variability, but possibly also due to the non-linear response of hydrological systems. The 

implication is that changes in flood frequency, whether caused by long-term climate 

change or medium-term natural variability, may potentially happen in a relatively short 

time span (Kay & Jones, 2011).  
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In addition to national studies, there have been many climate impact studies in individual 

river basins. For example in the Elbe basin, Hatterman et al. (2008) projected a shift in 

the occurrence of flood events from early spring to early winter due to less retention of 

runoff in snow. In a modelling study of the Rhine basin, Hurkmans et al. (2010) found 

that future annual maximum river flows at nearly all return periods were generally higher 

than in the reference period (1950-2000) under three different emission scenarios (B1, 

A1B and A2). In the most extreme scenarios, an event with the magnitude of the most 

extreme flooding events in the last half century occurred on average every 5-6 years in 

the future (Hurkmans et al., 2010). Likewise, Te Linde et al. (2010) projected a basin-

wide increase in peak discharge by 2050 of 8%-17% for discharge levels with annual 

probabilities between 1/10 and 1/1250. For the Seine River in France, Ducharne et al. 

(2011) found a slight decrease in high flow levels. In their simulations the flood levels 

with a 10% and 1% annual probability did not change significantly throughout the 21
st
 

century. Similar results were found for the Loire River by Moatar et al. (2010). Very few 

regional or national-scale modelling studies of changes in flood hazard under climate 

change have been undertaken in southern Europe. 

 

 

3 Flood risk management – 
risk analysis, assessment and governance 

Flood risk management entails careful analysis of flood hazards and their causes, 

assessments of the magnitude of the risks, systematic planning to reduce risks and 

adaptation in the face of possible change. This process requires appropriate 

institutions, technical solutions and functioning governance structures. The need for 

adaptation to climate change has increased the interest in finding effective and cost-

efficient approaches to flood risk management. 

 

3.1 Flood risk management 

 

Floods have to be addressed in a risk management framework as they always 

include elements of probability and uncertainty. Such a risk management 

framework for floods includes planning and implementation of preventive 

measures, crisis management and also post-flood management. Historical flood 

events but also scenarios provide feedback that lead to the readjustment of 

measures and actions in all parts of the management process. 

 

Flood management and its regulatory base have evolved along different tracks in Europe. 

The Floods Directive of the EU seeks to achieve some harmonisation (see box 3.1) and 

uses a three-step approach to floods risk management: 

1. Carry out preliminary flood risk (analysis and) assessment (PFRA) by 2011 for 

“those areas for which they [the member States] conclude that potential significant 
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flood risks exist or might be considered likely to occur” (Article 5.1). This assessment 

should also determine acceptable levels of risk and risk reduction as a function of the 

effort and money that can be spent (Merz 2006). Historical data (Chapter 2), 

modelling, quantification of uncertainties, scenarios (Chapter 4), and governance 

need to be considered. 

2. Preparation of flood hazard maps (FHMs) and flood risk maps (FRMs) by 2013. 

These maps will be part of the flood risk management plans and should identify areas 

areas with a high (where appropriate) and medium (at least 1% annual probability) 

likelihood of flooding, as well as the risk of extreme (i.e. low likelihood but high 

impact). In areas identified as being at high risk, the number of inhabitants potentially 

at risk, the economic activity and the environmental damage potential must be 

indicated.  

3. Establishment of flood risk management plans (FRMPs) for areas with a significant 

high risk by 2015. The FRMPs should include and prioritise measures to reduce the 

probability of flooding and its potential consequences by addressing all phases of the 

flood risk management cycle, particularly focusing on prevention, protection, and 

preparedness. Due to the nature of flooding, much flexibility on objectives and 

measures are left to the Member States in view of subsidiarity. Risks should be 

assessed with reference to individual and collective perceptions and weighing of the 

acceptance / tolerability of certain risks. This complements the description of the 

physical flood processes (Wachinger & Renn 2010, Schanze 2006). Objectives and 

different evaluation criteria are ideally identified and selected in this phase. 

 

Integrated approaches to flood management have been developed in, for example, 

Switzerland, the UK, the Netherlands and some German States (Defra 2005, , StMUGV 

2005, Müller 2010).  

 

A central element in flood risk management is the identification of Preventive measures 

(DKKV 2004, Schanze et al. 2008, FLOODsite 2009), which can include actions such as: 

 Spatial planning: keeping constructional development out of floodplains as far as 

possible; 

 Constructional measures: ensuring appropriately adapted construction methods in 

areas prone to flooding; 

 Risk acceptance: own financial provisions (backed by insurance); 

 Behavioural adaptation: explaining, preparing for and practicing how to cope with 

flood-related danger situations; 

 Information systems: alarming, warning and informing about impending events; 

 Increasing natural water retention in catchment areas and reduced land sealing; 

 Technical flood protection: constructional facilities for water retention (dams, 

storage, reservoirs, dykes, flood polders). 

 

The highest costs are usually associated with technical flood protection measures. More 

cost efficient measures can often be achieved through combinations of spatial planning, 

constructional measures, behavioural adaptation and catchment management.  
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A real time early warning system is an important prerequisite for effective management. 

It enables authorities to start implementing contingency plans, such as evacuations of 

inhabitants and the mobilisation of rescue forces. Several countries have developed 

systems for flood warning at national, regional and local level that are connected with 

systems for initiating evacuation actions. For example, Finland has a real time web based 

Catchment simulation and forecasting system which provides information on floods and 

flood warnings.
6
 

 

When floods occur the focus is on crisis management. Contingency plans have to ensure 

that information flows between all responsible actors, bringing the information together 

to support operational actions. Many actors are involved including water managers, the 

police, fire brigade, volunteers and those responsible for infrastructures and their 

maintenance. Flood event management includes forecasting and the provision of 

warnings, deployment of temporary flood protection structures and emergency response.  

 

After a flood disaster relief, reconstruction actions and financial compensations become 

part of the management activities. Flood events may also change past risk assessments, 

put pressure on developing flood defences and lead to the adjustment of regulations and 

norms (Merz et al. 2010). Careful documentation of the event is necessary in order to 

learn from the experiences. General flood impact databases such as EM-DAT
7
 or 

NEDIES
8
 exist to give a general overview, but for true learning more detailed 

documentation is needed. The development of such detailed flood impact data bases is 

going on in several EU member states and also at the European level (EEA, ETC CCA 

and JRC 2012).
 
 

 

Box 3.1 International Floods and Disaster Prevention Policies 

The Hyogo Framework for Action (UN/ISDR, 2007) emerged from the World 

Conference on Disaster Reduction in 2005 to promote a strategic and systematic 

approach to reducing vulnerabilities and risks to hazards. In the EU the Floods Directive 

responds to the framework for action.  . At a national level, one major activity has been 

the establishment of national strategies and national platforms for disaster risk reduction. 

National Platforms are multi-stakeholder national mechanisms that serve as an advocate 

for disaster risk reduction at different levels, from communities to the national 

institutions. So far, 16 European countries have established such a platform, and many 

more countries have established official Hyogo Framework Focal Points. In Europe, 

representatives of National Platforms and HFA Focal Points regularly meet at the 

regional level at least once a year. The meetings are hosted by a European country and 

are supported by UNISDR and the Council of Europe European and Mediterranean Major 

Hazards Agreement (EUR-OPA) (CoE, 2010). In November 2009, European HFA Focal 

Points and National Platform coordinators agreed to establish a European Forum for 

Disaster Risk Reduction (EFDRR). 

 

                                                 
6
 http://www.ymparisto.fi/default.asp?node=11776&lan=en [Sept 20 2011] 

7
 http://www.emdat.be/ [30.10. 2011] 

8
 http://nedies.jrc.it/index.asp?ID=91 [30.10. 2011] 

http://www.ymparisto.fi/default.asp?node=11776&lan=en
http://www.emdat.be/
http://nedies.jrc.it/index.asp?ID=91
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3.2 Dam safety as part of risk management 

 

Dam safety is one of the practical issues in flood management and regulation of dam 

safety plays an important role in avoiding disasters. Dam safety concerns not only 

pluvial or fluvial floods but is also an essential element in industrial operations that 

use tailing dams. Risk management plans need to pay attention to the governance of 

dam safety. 

 

Many countries have a long history of regulatory frameworks for dam safety (Bradlow et 

al., 2002). Important aspects include the legal form of the regulation, the institutional 

arrangements for regulating dam safety, the powers of the regulating entity, and the 

contents of the regulatory scheme. The contents of the regulations relate to factors like 

the obligations of the regulating entities, the scope of the regulations, and the 

consequences of non-compliance with the stipulated obligations.  

 

The scope of the regulatory scheme is essential as it determines what issues can be 

addressed. Historically some countries have focused on the safety aspect only, whereas 

others have also included dam construction, operation, maintenance, and surveillance. 

Legal systems have evolved and generally become stricter. The concern for dam safety 

has also resulted in the creation of organizations devoted to dam safety, for example, the 

Association of State Dam Safety Officials in the US
9
 in addition to organizations with a 

broad agenda such as the International Commission on Large Dams (ICOLD)
10

. 

 

In dam safety the hazard potential is defined as the possible adverse incremental 

consequences that result from the release of water or stored contents due to failure of the 

dam or its misoperation. In many countries dams have been classified according to the 

hazard potential; the class 'high' generally indicates that the failure or misoperation will 

probably cause loss of human life. These dams should fulfil very strict technical and 

hydrological criteria in their construction and maintenance. Emergency Action Plans and 

Early Warning Systems are necessary non-structural tools to minimize the impacts of 

dam failures. 

 

The EU Floods Directive (2007/60/EC) does not specifically refer to flooding resulting 

from dam breaks and dike breaches and it does not deal with the technical aspects of dam 

safety. However, it does require flood hazard maps to be produced for floods with a low 

probability, implying consideration of extreme event scenarios, such as dam breaks. 

There are no EU wide regulations devoted exclusively to dam safety, but the Directive 

96/82/EC on the control of major accident hazards involving dangerous substances 

(SEVESO II), as extended by Directive 2003/105/EC, addresses aspects that are relevant 

to dam safety, by demanding, for example, emergency plans. 

 

                                                 
9
 http://www.damsafety.org/ [6.7. 2011] 

10
 http://www.icold-cigb.net/ [6.7. 2011] 

http://www.damsafety.org/
http://www.icold-cigb.net/
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3.3 Urban flood management 

 

Urban floods emphasise the complex interactions between hydrology and societal 

processes as shown by the example of Athens (Section 2.2.1). The management of 

urban areas requires long-term planning and development of robust measures to 

deal with the possibilities of extreme flood events. 

 

Many cities and towns are situated in locations such as deltas and flood plains that are 

prone to flooding. However, also cities that are far away from water bodies prone to 

flooding may experience pluvial urban flooding because of intense rainfall, and often in 

combination with extensive land sealing and drainage networks with insufficient 

capacity. 

 

Urban floods affect infrastructure, assets and urban activities, including transport. They 

cause health risks due to overflowing sewers and intrusion of surface water into water 

supply systems. Urban floods also increase the risk of pollution of water courses into 

which storm water and flood water drains. Management measures preparing for urban 

floods therefore have to address a wide range of different aspects of urban floods.  

 

There is a general need to make urban areas more resilient to flooding. Flood-proofing of 

buildings is a well-known measure in this respect, sustainable urban drainage another. 

Green infrastructure can also provide opportunities for addressing problems caused by 

land sealing in urban areas (The Civic Federation for the Center for Neighborhood 

Technology 2007, EPA 2010, EEA 2010c, EEA 2012).   

 

The reduction of the vulnerability of urban areas to floods requires detailed knowledge of 

local conditions. Measures have to deal with water supply, waste water treatment, rain 

water runoff and special conditions such as snow melt. There is a need for research into 

the effects of extreme weather events on urban drainage, water management and water 

treatment. 

 

Urban water management have to be developed taking into account risks but also all 

positive aspects of water in the urban environment. Water is a necessary element in a 

sustainable urban environment, but climate change may change conditions for current 

practices related to urban drainage, water management and treatment. These issues are 

dealt with extensively in the EEA report on cities (EEA 2012).  

 

3.4 Participatory management and private action 

 

Modern flood risk management stresses the involvement of societal actors. This has 

raised the need to develop participatory approaches and tools that can be used in 

flood risk management. Private instruments for risk management such as flood 

insurance also change the role of different actors and can contribute to an interest in 

participatory approaches. 
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In many countries flood risk management has been considered to be a task mainly for the 

government. Historical counterexamples exist, for example in the Netherlands water 

boards have been organised and maintained by stakeholders for many decades. Currently 

the involvement of multiple public and private parties is encouraged or even demanded 

(Christoplos et al. 2001, Walker et al. 2010). This change underlines the relevance of 

communication (Renn 2008) and principles of “good governance”, including openness, 

participation, accountability, effectiveness and coherence (McFadden 2009). It leads to a 

‘governance of preparedness’ in which key players are brought together in new 

configurations (Medd and Marvin 2005).  

 

More inclusive management of floods builds trust between the public, administration and 

research (Wachinger and Renn 2010, see also Moser 2010, Mosert et al. 2008, Höppner 

et al. 2011). It may also raise people’s awareness and motivation for taking actions to 

mitigate the impacts of hazards (Stanghellini and Collentine 2008 and Slinger et al. 

2007). When people become more aware of floods, they are more motivated to initiate 

protective action in participatory exercises (Wachinger and Renn 2010; Jonoski, 2002; 

Evers, 2008; White et al., 2010) (Box 3.2).  

 

The inclusion of tacit or local knowledge can improve the effectiveness of the measures 

for flood risk management. Many residents have had personal experience of flood events 

and hence may have good understanding of flooding issues in their local area (White et 

al. 2010). There are possibilities to incorporate valuable local knowledge into modelling 

procedures leading to potentially improved flood risk maps (EXCIMAP 2007, LAWA 

2010, Meyer at al. 2011) 

 

Box 3.2 

Collaborative modelling as a way of managing flood risk: the case the Cranbrook 

(UK)  

 

The Cranbrook catchment (Figure 1) is located within the London Borough of 

Redbridge in the Northeast part of Greater London. Several flood events have been 

reported since 1926 with a recent example being the event of February 2009, where 

coincidental fluvial and pluvial flooding occurred due to heavy rainfall that caused rapid 

snowmelt that was still lingering in large quantities following snowfall the week before. 

The amount of water in the river exceeded the capacity of the channel and surface water 

overwhelmed the local drainage systems. Over 200 calls were received at the emergency 

control centre during the event. After the event, new drainage work was carried out and a 

new flood warning scheme was put in place. The need for more collaboration between 

stakeholders was identified as a means to improve resilience (Ochoa et al., 2011).  
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Figure 1: The Cranbrook catchment. From Ochoa et al., 2011, used with permission of 

the authors. 

 

A formal stakeholder identification approach was undertaken (Figure 2) to map the links 

between stakeholders that would take part in a collaborative modelling exercise. The 

process of identifying stakeholders and their links resulted in a much improved 

understanding of the social-administrative system and its critical points for improvement. 

The stakeholders were presented with alternative flood management interventions and 

explored their effects using online simulation tools. The interventions included: “Do 

nothing”, Rainwater harvesting, Improved and targeted maintenance regimes for the 

sewer system, Improved resistance for preventing water from entering properties and 

Improved rainfall and flood forecasting and warning.  
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Figure 2: Stakeholder organi-sociogram, London Borough of Redbridge (UK) from 

Ochoa et al., 2011, used with permission of the authors. 

 

This engagement of a wide variety of stakeholders in the decision-making process for 

flood risk management proved to make them more aware of the situation and increased 

their personal responsibility towards this issue and their understanding of each other’s 

attitudes and perspectives on risk. 

 

Flood insurance and compensation systems are important parts of strategies for dealing 

with flood risks (Association of British Insurers 2002). The development of flood risk 

insurance is an example of close links between public and private actors in the 

management of environmental issues. The private insurance and re-insurance industry 

has for a long time been involved as an actor in the management of risk. Insurance 

arrangements and the relation between market and public measures are determined at a 

national level and as a consequence a great diversity exists across EU member states. For 

example, in the UK there has been an ever increasing trend towards individualisation of 

flood risk, segmentation of the market and differentiation between insurance premiums 

depending on degrees of assessed risk at a particular location. The UK Environment 

Agency works with the Association of British Insurers to support the insurance industry's 

commitment to continue offering flood risk insurance to the vast majority of homes and 
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businesses in flood risk areas. However, in other parts of Europe exactly the opposite 

trend is observable. For example in France and similarly in Belgium, Spain and Norway, 

compulsory cover for disaster risk is shared amongst all policy holders with an identical 

additional percentage premium paid on top of the assessed premium for fire insurance 

(French Disaster Reduction Platform 2007). In both cases public-private partnerships 

have been central – in the UK an agreement between the government and insurance 

companies to ensure the continued provision of flood insurance cover even in high risk 

locations (although at very high prices); in France a consensual setting up and on-going 

monitoring of the shared risk arrangement linked to a public risk prevention policy. But 

importantly the outcomes of these public-private partnerships remain quite divergent and 

ideologically distinct (Walker et al. 2010). 

 

Increasingly insurers and reinsurers use sophisticated probabilistic catastrophe models to 

price flood risk. For instance the Parameter Trigger Concept is based on the principle of a 

pay-out mechanism which includes a parameter that can be measured or modelled. The 

advantage is that funds can be made quickly available after the event because no 

laborious proof of damage has to be given. There is no explicit link to the loss suffered by 

the insured. The main challenge is to capture the majority of damaging events by the 

trigger definition. 

 

3.5 Developing governance for flood risk management 

 

Resilience and adaptation demand flood management that is robust and flexible. 

Combinations of measures can reduce vulnerability and are generally cost efficient. 

This requires integrated strategies and recognition of the role of local authorities, 

non-governmental and private actors (Section 3.4). A tipping point approach may 

be a useful base for adaptive flood management. 

 

Management strategies relying exclusively on cost-intensive technical measures and 

reactive top-down approaches based on large-scale engineering are regarded as an out-

dated way of dealing with floods (Samuels 2006, Coninx 2008). With the increasing 

awareness of the links between large-scale interventions, society and the ecosystems, 

there has been a general call to view flood defence emphasizing sustainability 

(Kundzewicz, 2002, AFPM 2009).  

 

The concept of resilience deals with inherent uncertainties of management strategies 

(Berkes 2007, Klein et al. 2003, Kuhlicke and Kruse 2009, Merz et al. 2010). The 

challenge is to better understand (1) the amount of disturbance a system can absorb 

without major disruption; (2) the degree to which the system is capable of self-

organization; (3) the degree to which the system can build and increase the capacity for 

learning and adaptation (Klein et al. 2003).  

 

Integrated approaches to flood management are increasingly reflected in many policies, 

strategies and projects. On a practical level there is a growing awareness that 

combination of measures should be used to reduce vulnerability and disastrous flooding. 
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Effectiveness and costs and benefits need to be considered together with practical 

applicability and intangibles such as socio-cultural preferences and environmental 

consequences. Evaluation criteria for strategies and measures furthermore include 

robustness, flexibility, and acceptance (de Bruijn et al. 2008).  

 

The EC (2009a) has suggested a number of guiding principles for new measures: 

 Perform a climate check; 

 Choose robust and flexible measures (focus on non-structural measures, a mixture of 

measures, focus on “no regret” and “win-win” measures, etc.); 

 Use a catchment approach; 

 Take long-term developments into account; 

 Consider other adaptation measures and their impact on flooding. 

 

There are a number of approaches that combine technical measures with new modelling 

and participatory approaches in order to better deal with changing conditions. The 

Cranbrook case (Box 3.2) shows that it is possible to improve the resilience of 

communities and cities to flooding through stakeholder involvement. Such involvement 

deepens the understanding for and acceptance of measures that can and have to be taken. 

Other novel initiatives include “Making Space for Water” (Defra, 2005) and “Room for 

the River” (Programme Directorate Room for the River - Netherlands, 2007, see box 3.3). 

These can also accommodate changing conditions related to climate change as in the 

German KLIWAS programme (see box 3.4). In many parts of Europe transnational 

actions have to be taken in order to improve flood management. 

 

New approaches need to be supported by adequate legislation. Current European and 

national legislation does not cover all aspects of integrated flood risk management. For 

example spatial planning is not as such covered by the Floods Directive. The 

management of flood generation areas and land-use changes that affect the magnitude of 

risks are only marginally covered. Flash floods and pluvial flooding in urban areas are 

not explicitly referred to in existing legislation, and their management depends more on 

evolving planning practice than on specific policies. There is thus a need to further 

develop policies at all levels of governance recognising the multifaceted nature of flood 

protection.  

 

Sustainable flood risk management must strike a balance between preparedness 

(considering the long lead times for certain types of measures combined with the pace of 

relevant changes) and economic considerations (avoiding investments in measures which 

by hindsight were not necessary). A promising approach is the adaptation tipping point 

method combined with the development of adaptation pathways (Kwadijk et al., 2010). 

In this approach the focus is on the flood risk management system and its ability to deal 

with extreme events.  
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Box 3.3 

Construction of artificial side channels / flood bypasses, reconnecting old river 

branches and increasing the water discharge capacities (Room for the River) 

After two consecutive flood peaks in 1993 and 1995 in the Netherlands, where the dikes 

only just held, it was decided that flood prevention was inadequate. But instead of raising 

the dikes, as was done so many times in the past, the Dutch government decided to create 

more room for the river in order to lower maximum water levels during flood peak 

events. The Room for the River project is a good example of a combination of a 

resistance and a resilience-based strategy. By lowering the floodplain, realigning the 

dikes and reconstructing secondary channels, the water regains more space and this leads 

to a reduction in high water levels. 

 

Since the mid-nineteenth century, the loss of floodplains in the Netherlands has been 

approximately 65% of the total floodplain surface area in 1850, and urban development 

has created several bottlenecks in the floodplain. Giving more room to rivers 

substantially lowered flood levels, but also help to sustain a more attractive environment, 

both urban and natural. This greatly influenced public and political opinions. 

 

Room for the River was officially adopted by the Dutch government to achieve the 

required safety level for the river systems. In 2005, specific targets were set at the 

national level and local authorities became responsible for the design and construction of 

individual measures along the Rhine, Scheldt and Meuse rivers 

(http://www.ruimtevoorderivier.nl/).  

 

Box 3.4 

Adopting a climate factor when reinforcing existing dikes (KLIWAS) 

Up to 30 climate model runs (including those of the EU-FP6-Project ENSEMBLES), as 

well as different bias correction methods and hydrological models, were evaluated 

against the background of the interdisciplinary research programme KLIWAS 

(http://www.kliwas.de), which integrated ecological, economical, water quality and water 

quantity aspects of climate change for rivers and coastal waters which are used as 

waterways. The purpose was to account for different sources of uncertainty and provide a 

reliable basis for the assessment of various adaptation options. Historical data bases were 

extended for model validation and monitoring of climate change effects. A model chain 

was established, which couples climate models to hydrological/oceanographic, 

hydrodynamical / sedimentological, water quality, and ecosystem models. At each step, 

uncertainty was analysed in detail to assess the level of understanding of the aquatic 

systems and their sensitivity to low flow, floods, and other aspects of “historical” and 

future climate change. As a result, the design level of protection structures (e.g. against a 

flood of 1 % annual probability) is multiplied with a climate change factor between 1.15 

and 1.25, or a generally higher freeboard is chosen (e.g. in Saxony). 

 

 

Tipping points for adaptation are events where the magnitude of change of one of the 

relevant drivers (extreme river discharge, land use, etc.) is such that current flood risk 

management strategies will no longer be able to meet their objectives. When these 

http://www.kliwas.de/
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adaptation tipping points have been identified, scenarios are used to indicate under what 

conditions they may be reached, and thus, when alternative strategies are needed. The 

trigger for taking action is therefore not climate change per se, but a high likelihood of 

conditions under which set objectives for flood protection can no longer be achieved.  

 

When an adaptation tipping point is expected to be reached, a switch to a new strategy is 

needed. Each new strategy has its own future tipping point which, again, requires a 

switch to be made. In the long run water management is thus a succession of strategies. 

Several successions are possible, together forming adaptation pathways.   

 

In this approach, adaptation follows pathways of strategies that are influenced by current 

and future climate, socio-economic developments and societal perspectives. It addresses 

uncertainty over future developments by incorporating flexibility and by increasing 

resilience to tolerate a wider range of conditions. Strategies can be designed to implement 

small, incremental changes which are common to all the strategies first, leaving the major 

irreversible investment decisions as far as possible in the future. 

 

Learning and monitoring is essential to the adaptation tipping points approach. When 

monitoring reveals that changes happen more quickly than originally envisaged, the 

implementation of a new strategy can be brought forward in time. Likewise, under a 

slower change decisions can be put back in time. 

 

 

4 Scenarios for flood risks in Europe  

Scenarios provide a means to explore potential future developments. Rather than 

making predictions of what will happen, they paint a picture of how alternative 

futures might unfold, describing plausible trajectories of climate, environmental, 

socio-economic and technological conditions. Scenario studies can be driven by an 

interest in the uncertainty, probability or desirability of future developments. The 

key question to be addressed is: What futures should European flood management 

be prepared for? 

 

The aim of scenarios is to facilitate decisions that are robust under a wide range of 

possible futures (Moss et al., 2010). As a consequence of climate change as well as socio-

economic developments, the non-stationary dynamics of flood risk has already been 

recognised. The direction and magnitude of future changes are, however, uncertain. 

Scenarios of flood risk can be used to better understand the consequences of these 

uncertainties and are therefore a useful tool in flood risk management.  

 

Scenarios should identify the key drivers that determine flood risk. Flood risks change 

when the hazard changes or when vulnerabilities change. A change in hazard may entail a 

change in the frequency (or probability) of flooding, or a different pattern of flooding 

(see section 2.6). A change in vulnerability may arise from developments in land use and 

infrastructure, economic conditions and economic activities that are sensitive to floods. 
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Societal factors, for example the different role authorities can play relative to private 

actors, may also need to be considered.  

 

This chapter briefly reviews current research on scenarios and presents available 

scenarios of how flood risk may develop in Europe in the future.  

 

4.1 Research supporting the development of scenarios for flood risks in 
Europe  

 

The development of scenarios of future flood risk requires input on all the different 

aspects of flooding at different spatial and temporal scales, from climate conditions 

such as precipitation pattern and intensity to hydrological processes and societal 

vulnerabilities.  
 

Comprehensive, integrated scenarios of flood risk need to include projections of: 

 The climate conditions, which are based on global or regional climate models, or 

ensembles of models, providing projections of rainfall and its spatiotemporal 

distribution, temperatures and other climate variables. Note that these projections 

are themselves dependent on scenarios of greenhouse gas emissions assuming 

different trajectories of future socio-economic development.  

 The hydrological processes and (their) variables: river flow and its variation, 

snow melt, soil moisture, evaporation, water levels in lakes and reservoirs. 

 Land cover, which directly interferes with hydrological processes. This includes 

aspects such as land sealing, dykes, dams and reservoirs. 

 Patterns of land use, which affect the physical location of infrastructures such as 

buildings, transport routes, harbours and airports, and activities vulnerable to 

floods such as agriculture, aquaculture and transport.  

 Economic activities that affect the value of the assets and activities at risk from 

flooding. 

 Measures and responses that affect the hazard (e.g. flood defences) and 

vulnerabilities and the ability to cope with flood risks, including general 

adaptation to natural hazards and climate change. 

 

The EU has funded several large research projects on flood risk, some of which focus on 

the basic methodological aspects such as the development and comparison of models and 

scenarios, whereas others explore in particular the possible future developments in flood 

risk, or certain key elements of it such as climate and hydrology. Many projects have 

combined several aspects (Table 4.1). The results of these projects have been synthesised 

in scenarios for future flood risks in Europe (See Section 4.2). A general overview has 

also been provided in the EEA SOER report (EEA 2010a). 

 

The projects listed below differ in geographical scale. The ones selected here are mainly 

Europe-wide, although some use a case study approach focusing on particular regions or 

trans-boundary catchments. Many of the projects are closely linked. For examples, the 
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results of the ENSEMBLES project and the LISFLOOD model studies are extensively 

used in other projects to provide projections of climate or hydrological change. In 

addition to the studies included in Table 2 there have also been projects with a national or 

local focus, although the extent to which flood risk scenarios have been developed differs 

from country to country. 

 

Table 4.1 suggests that although several projects have developed scenarios of changes in 

climate and hydrology, few studies have specifically included changes in land use, 

exposure and adaptive capabilities. Only recently studies have started to develop fully 

integrated scenarios of flood risk that take into account adaptive capacity as well as 

climate drivers and hazards (e.g., ClimWatAdapt, see section 4.2). There is still a need 

for European-wide scenarios of land use and other socio-economic changes. One of the 

difficulties with European-wide scenarios is that flood hazards and vulnerabilities are 

context dependent. For effective and efficient flood protection it is not sufficient to make 

broad brush analyses. One also needs to understand relevant interactions between 

economic, technical, political and hydrological processes.  

 

The large gap in time horizon between climate studies (which typically provide 

projections until the end of the century) and socio-economic studies (which usually do 

not look further ahead than 2030/40) creates further difficulties. At short time scales 

much of the projected climate change is still obscured by natural variability. Short-term 

(decadal-scale) climate projections are, however, in great demand. Meaningful long-term 

socio-economic scenarios would in principle be useful from a strategic point of view, but 

it is a difficult task due to large uncertainties caused by potential structural changes in 

socio-economic conditions.  
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Table 4.1. Overview of major projects contributing information to the development of flood scenarios for Europe with indicative 

information on the focus of the project: ***=major focus; ** = important aspect; *=issue taken into account 

 
Project acronym Project title Project 

period 
Scenarios Geographical 

scale 
Reference (www-page and/or key 
publication) 

   Climate  Hydro-
logy 

Land 
use  

Exposure  Adaptive 
capacity 

  

Main focus on European wide flood issues 
LISFLOOD LISFLOOD climate 

change impact 
assessments 

Since 2005 ** ***  *  Europe http://floods.jrc.ec.europa.eu/climate-
change-impact-assessment.html  

ClimWatAdapt Climate Adaptation – 
modelling water 
scenarios and sectoral 
impacts 

2010–2011 ** **  ** ** Europe http://www.climwatadapt.eu/ 

ADAM Adaptation and 
Mitigation Strategies: 
Supporting European 
climate policy 

2006–2009 * **  *  Europe http://www.adamproject.eu/  

PESETA Projection of Economic 
impacts of climate 
change in Sectors of the 
European Union based 
on boTtom-up Analysis 

2006–2007 ** **  *  Europe http://peseta.jrc.ec.europa.eu/  

WATCH Water and global 
Change 

2007–2011 * ***    Global; 4 case 
study 
catchments 
across Europe 

http://www.eu-watch.org/  

FLOODSITE Integrated flood risk 
analysis and 
management 
methodologies 

2004–2009 * *  * * Europe; 
several case 
study areas 

http://www.floodsite.net/  

Main focus on climate drivers 
ENSEMBLES ENSEMBLE-based 

Predictions of Climate 
Changes and their 
Impacts 

2004–2009 *** * *   Europe http://www.ensembles-eu.org/ 

CORDEX COordinated Regional 
climate Downscaling 
EXperiment 

Since 2009 ***     Europe (and 
other regions 
across the 
globe) 

http://www.euro-cordex.net/  

AVOID Avoiding Dangerous 
Climate Change 

2009–2012 *** **  *  Global http://www.avoid.uk.net/  

PRUDENCE Prediction of regional 2001–2004 *** *    Europe http://prudence.dmi.dk/ , Christensen et 

http://floods.jrc.ec.europa.eu/climate-change-impact-assessment.html
http://floods.jrc.ec.europa.eu/climate-change-impact-assessment.html
http://www.adamproject.eu/
http://peseta.jrc.ec.europa.eu/
http://www.eu-watch.org/
http://www.floodsite.net/
http://www.ensembles-eu.org/
http://www.euro-cordex.net/
http://www.avoid.uk.net/
http://prudence.dmi.dk/
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scenarios and 
uncertainties for defining 
european climate 
change risks and effects 

al. 2007 

STARDEX Statistical and regional  
dynamical downscaling 
of  
extremes for european 
regions 

2002–2005 ***     Europe http://www.cru.uea.ac.uk/projects/stardex/  

Regional analyses 

CLAVIER Climate Change and 
Variability: Impact on 
Central and Eastern 
Europe 

2006–2009 *** **    Central and 
Eastern 
Europe 

http://www.clavier-eu.org/  

CECILIA Central and Eastern 
Europe Climate Change 
Impact and Vulnerability 
Assessment 

2006–2009 *** **    Central and 
Eastern 
Europe 

http://www.cecilia-eu.org/  

ACQWA Assessment of climatic 
change and impacts on 
the quantity and quality 
of water 

2008–2013 ** **  *  European 
mountain 
regions 

http://www.acqwa.ch/  

VERIS-Elbe Changes and 
management of risks of 
extreme flood events in 
large river basins - the 
example of the Elbe 
River 

2005–2008 ** *** **  ** Elbe http://www.veris-elbe.ioer.de/  

AMICE Adaptation of the Meuse 
to the  
Impacts of Climate 
Evolutions 

2008–2013 ** *** * * * Meuse http://www.amice-project.eu/en/index.php  

Rheinblick2050 Impact of regional 
climate change on 
discharge in the Rhine 
River basin 

2008–2010 ** ***    Rhine http://www.chr-
khr.org/projects/rheinblick2050  

 

http://www.cru.uea.ac.uk/projects/stardex/
http://www.clavier-eu.org/
http://www.cecilia-eu.org/
http://www.acqwa.ch/
http://www.veris-elbe.ioer.de/
http://www.amice-project.eu/en/index.php
http://www.chr-khr.org/projects/rheinblick2050
http://www.chr-khr.org/projects/rheinblick2050


4.2 Integrated scenarios of flood risk in Europe 

 

Flood risk management needs to consider developments in exposure and vulnerability 

due to land-use change and infrastructure development. Scenarios for flood risk 

management thus have to combine socio-economic scenarios, such as projections for 

population growth, urbanisation and industrial developments with projections of 

hazards (Section 2.6). Recent studies have suggested that climate change can add 

significantly to expected damages in some parts of Europe over the coming decades. 

 

To estimate future flood risks, the ClimWatAdapt project used hydrological simulations of the 

LISFLOOD model (van der Knijff et al., 2010) that was also used in the earlier studies of 

Dankers and Feyen (2008, 2009). To simulate climate change impacts on river flows the 

LISFLOOD model was forced with the bias corrected output of 11 different RCM simulations 

origination from the ENSEMBLES project. (For details see Flörke et al. 2011). These 

scenarios of changes in flood hazard were then combined with projections of socio-economic 

change. The results showed that the combination of climate change and economic growth will 

likely result in a strong increase in European flood risks (Flörke et al. 2011).  

 

The ClimWatAdapt project focused on floods with an annual expected probability of 

exceedance of 1%. These "100-year floods" are extreme events, which tend to cause 

especially great financial damage. The level is also frequently used as an indicator for the 

development flood protection infrastructure. The LISFLOOD scenarios showed that the 

occurrence of a 100-year flood event is strongly affected by climate change. However, the 

uncertainty related to the spatial distribution is still large. Different climate models gave very 

different results. Using the ensemble mean, floods were projected to increase especially in the 

northwestern part of Europe (UK, western France, Belgium, Netherlands, western Germany) 

and on the Iberian peninsula (Portugal and Spain). 

 

When accounting only for climate change, some regions dominated by snowmelt (for example 

the Vistula and Odra catchments in Poland) are likely to see a reduction in annual flood 

damages due to the strong reduction in snowmelt-driven and ice-jamming floods, which 

compensates for the increase in summer flood damage in these regions. The total number of 

people affected by floods (assuming protection up to a current 100-year flood event) was 

expected to increase by 80% in the EU27 due to the impact of climate change alone. This 

happened in all European countries except Denmark and Poland. The changes in people 

affected by flooding varied between the different European countries and were the highest in 

Belgium, Italy, Slovenia, and UK.  

 

Within the EU FP7 project Climate Cost
11

 the LISFLOOD model was also used in an 

assessment of future changes in the cost of floods in Europe. To achieve this, changes in the 

frequency of floods were combined with information on exposed assets, depth-damage 

relations and population density to estimate economic damages as well as the number of 

people living in flood risk areas. Under current conditions, the Expected Annual Damage 

(EAD) was estimated to be ~€5.5 billion for the EU27. On average higher flood damages 

were projected for all countries within the EU (Fig. 4.1). Taking into account both climate and 

socio-economic changes under the A1B scenario, the EAD was projected to increase to €20 

billion by the 2020s (2011-2040), €46 billion by the 2050s (2041-2070), and €98 billion by 

the 2080s (2071-2100) for the ensemble mean results. A significant part of this rise will be 

                                                 
11

 http://www.climatecost.cc/ [Accessed Oct 29 2012] 

http://www.climatecost.cc/
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due to socio-economic change. Nevertheless, the isolated effect of climate change alone 

amounted to €9 billion by the 2020s (2011-2040), €19 billion by the 2050s (2041-2070), and 

€50 billion by the 2080s (2071-2100).   

 

The highest increases in climate change-related flood damage (over and above socio-

economic change) were projected for the UK, Italy, Slovenia, Belgium and the Netherlands. 

This is due to a strong increase in the frequency of current high return period floods (e.g., the 

current 100-year return level was projected to become a 10- or 20-year flood by the end of 

this century). For several eastern European countries (e.g., Hungary and Czech Republic) the 

projected increase in flood damages was only related to economic development. In other 

words, in these areas the risk of damage per flooding event is increasing while the flood 

hazard itself is not changing much.  

 

Figure 4.1. EU27 relative change in direct flood damage from floods due to climate 

change only (no socioeconomic change) for (a) current (1981-2010), (b) 2020s (2011-

2040), (c) 2050s (2041-2070) and (d) 2080s (2071- 2100) relative to the baseline period 

(1961-1990), for the A1B scenario on LISFLOOD simulations driven by 12 regional 

climate models. Produced by JRC for the FP7 project ClimateCost, Feyen and Watkiss 

2011, used with permission of the authors. 

 
 

 

In addition to the European-wide analysis in ClimWatAdapt, a number of studies on specific 

areas have started to explore how changes in climate compare to changes in land use, and 

particularly in exposed assets, when it comes to future changes in flood risk. Te Linde et al. 

(2011) projected that by 2030 the annual expected damage from flooding over the entire 



 37 

Rhine basin may increase by between 54% and 230%, of which the major part (~ three-

quarters) could be accounted for by an increase in flooding due to climatic variables (Fig. 

4.2). The remaining increase was due to projected changes in exposure which were based on 

land-use projections under two different socio-economic scenarios. In contrast, a small-scale 

case study in Belgium by Poelmans et al. (2011) found that although climate was the main 

source of uncertainty associated with projected future changes in peak flow and flood extent, 

the projections of potential damage were dominated by future land cover changes that occur 

in the floodplain.  

 

Figure 4.2 Annual expected flood damage, for the reference situation and projections for 

2030, aggregated into seven regions along the Rhine. From Te Linde et al. 2011, used 

with permission of the corresponding author. 
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5 Conclusions 

Floods are extreme events that can have a large impact. They arise from a multitude of causes 

and can have very different consequences depending on regional and local circumstances. 

Major flood disasters in Europe have caused loss of lives and economic loss that amount to 

billions of euro, but aggregated over large areas small local floods also produce significant 

losses.  

 

Analyses of trends of past flood events suggest flood hazard may have increased in parts of 

Europe. Available evidence suggests high flows have been increasing in northern Europe, 

especially in western Britain and coastal Scandinavia. Regional patterns are, however, 

diverse, with many weak negative trends occurring in northern Europe as well, and a very 

mixed pattern in central Europe. Across most of the continent, however, urbanisation and the 

accumulation of assets in flood prone areas have led to increasing trends in the damages and 

economic consequences of floods. 

 

Global warming may reduce flood hazard in areas that are dominated by annual snowmelt 

floods, except in those regions where a sharp increase in winter snowfalls outweighs the 

effects of a warmer and shorter snow season. In other parts of Europe there is greater 

uncertainty in how flood hazard will change due to climate change. Increases in extreme river 

flows have, however, been predicted in several studies and may occur over relatively short 

time spans.  

 

Flood risk management is a demanding task that requires careful analysis of flood hazards and 

their causes, assessments of the magnitude of the risks, systematic planning to reduce risks 

and adaptation in the face of possible change. Dam safety is a major issue in dealing with 

flood risks. Flood risk management requires appropriate institutions, technical solutions and 

functioning governance structures. Recently participatory approaches have opened up new 

avenues for the development of flood risk management. Promising examples of participatory 

flood risk management have been documented. 

 

Flood risk management has been seeking new directions and needs to adapt to an uncertain 

future. Flood risk management needs to consider developments in exposure and vulnerability 

due to land-use change and infrastructure development. Due to the combined effects of 

climate change and socio-economic development flood risk is unlikely to remain stationary. 

Scenarios for flood risk management thus have to combine socio-economic scenarios, such as 

projections for population growth, urbanisation and industrial developments with projections 

of future flood hazards. Detailed scenario studies are still missing in many river catchments. 

Recent studies have suggested that climate change can add significantly to the expected 

damages in some parts of Europe over the coming decades. Adaptation to changes in flood 

hazards and risk is therefore an essential element in efforts to adapt to climate change. 
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Appendix 

Terminology 

 

The terminology mainly follows UNISDR: UN International Strategy for Disaster 

Reduction Sec, 15 January 2009, http://www.unisdr.org/eng/library/lib-terminology-

eng.htm. In addition aspects emphasised by the climate change assessments have been 

included.  Important concepts include the following: 

 

Adaptation: The adjustment in natural or human systems in response to actual or expected 

climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities. 

Coping capacity: The ability of people, organizations and systems, using available skills and 

resources, to face and manage adverse conditions, emergencies or disasters. 

Disaster: A serious disruption of the functioning of a community or a society involving 

widespread human, material, economic or environmental losses and impacts, which 

exceeds the ability of the affected community or society to cope using its own resources. 

Disaster risk: The potential disaster losses, in lives, health status, livelihoods, assets and 

services, which could occur to a particular community or a society over some specified 

future time period. 

Disaster risk management: The systematic process of using administrative directives, 

organizations, and operational skills and capacities to implement strategies, policies and 

improved coping capacities in order to lessen the adverse impacts of hazards and the 

possibility of disaster. 

Exposure: People, property, systems, or other elements present in hazard zones that are 

thereby subject to potential losses. 

Hazard: the magnitude and probability of occurrence of a flood event. 

Preparedness: The knowledge and capacities developed by governments, professional 

response and recovery organizations, communities and individuals to effectively anticipate, 

respond to, and recover from, the impacts of likely, imminent or current hazard events or 

conditions. 

Resilience: The ability of a system, community or society exposed to hazards to resist, 

absorb, accommodate to and recover from the effects of a hazard in a timely and efficient 

manner, including through the preservation and restoration of its essential basic structures 

and functions. 

Risk: The combination of the probability of an event and its negative consequences. The 

concept “captures uncertainty in the underlying processes of climate change, exposure, 

impacts and adaptation” (Schneider et al. 2007, p. 781). 

Risk assessment: A methodology to determine the nature and extent of risk by analysing 

potential hazards and evaluating existing conditions of vulnerability that together could 

potentially harm exposed people, property, services, livelihoods and the environment on 

which they depend. 

Risk management: The systematic approach and practice of managing uncertainty to 

minimise potential harm and loss.  

Scenario: A scenario is a coherent, internally consistent and plausible description of a 

possible future state of the world. It is not a forecast; rather, each scenario is one 

alternative image of how the future can unfold. A set of scenarios is often adopted to 

reflect, as well as possible, the range of uncertainty in projections. (IPCC-TGICA, 2007) 

Storyline: A narrative description of a scenario (or a family of scenarios), highlighting the 

main scenario characteristics and dynamics, and the relationships between key driving 

forces. (IPCC-TGICA, 2007) 

http://www.unisdr.org/eng/library/lib-terminology-eng.htm
http://www.unisdr.org/eng/library/lib-terminology-eng.htm
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Vulnerability: The characteristics and circumstances of a community, system or asset that 

make it susceptible to the damaging effects of a hazard. IPCC defines vulnerability as the 

degree to which a system is susceptible to, and unable to cope with, the adverse effects of 

climate change, including climate variability and extremes. It is measured as a function of 

the character, magnitude, and rate of climate change and variation to which a system is 

exposed, its sensitivity, and its adaptive capacity (IPCC 2007, p.883). 


