

*Citation for published version:* Mcclymont, D, Kolaczkowski, ST & Molloy, KC 2010, 'Catalyst system design for the control of NOx using hydrogen' DTC Summer Showcase 2010, Bath, UK United Kingdom, 8/07/10 - 9/07/10, .

Publication date: 2010

**Document Version** Peer reviewed version

Link to publication

#### **University of Bath**

#### **General rights**

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

# Catalyst System Design for the Control of NO<sub>x</sub> Using Hydrogen

David W. J. McClymont<sup>a</sup>, Stan T. Kolaczkowski<sup>b</sup>, Kieran C. Molloy<sup>c</sup>

<sup>a</sup>Doctoral Training Centre <sup>b</sup>Department of Chemical Engineering <sup>c</sup>Department of Chemistry Centre for Sustainable Chemical Technologies, University of Bath, BA2 2AY, UK. E-mail: D.W.J.McClymont@bath.ac.uk: URL: http://www.bath.ac.uk/csct

## 1. What is NO<sub>x</sub>?

- Nitric Oxides highly reactive gases; primarily NO (>90 %) and NO<sub>2</sub>
- Pollutants, involved in many atmospheric processes e.g. formation of smog
- Produced as a result of the high temperatures during combustion of fossil fuels
- Legislation is in place to reduce NO<sub>x</sub> emissions

#### **2. Current De-NOx**



Figure  $1 - Pd/Al_2O_3$  monoliths



# 3. H<sub>2</sub>-SCR

- H<sub>2</sub> is already present in many systems e.g. diesel engines, biomass gasification combined heat and power (CHP) plants
- Could replace NH<sub>3</sub>/urea processes:

<u>Target Chemistry</u>  $2NO + 2H_2 \rightarrow 2H_2O + N_2$  $2NO_2 + 4H_2 \rightarrow 4H_2O + N_2$ 

 Removes the need for additional chemicals and their associated costs

## Processes

 NH<sub>3</sub>/urea-Selective Catalytic Reduction (SCR) is an efficient, established method

 $4NH_3 + 4NO + O_2 \rightarrow 6H_2O + 4N_2$  $8NH_3 + 6NO_2 \rightarrow 12H_2O + 7N_2$ 

BUT it requires additional toxic chemicals:

- Intrinsic safety issues
- Extra system costs
- NH<sub>3</sub>/urea infrastructure necessary

Figure 2 – 1 wt% Pd/Al<sub>2</sub>O<sub>3</sub> pellets



Figure 3 – Experimental set-up

### 4. Catalyst

- Pd/Al<sub>2</sub>O<sub>3</sub> catalyst prepared using an incipient wetness impregnation technique
- Supported on honeycomb monoliths (Figure 1)
  - Outer diameter = 14 mm
  - Channel size = 1 mm x 1 mm (x 80)
- Compared to commercially available 1 wt% Pd/Al<sub>2</sub>O<sub>3</sub> pellets (Figure 2)
  - Diameter = 3 mm

# 5. Experimental Conditions

- Gas composition supplied to catalysts:
  - 1000 ppm NO
  - 1000 ppm H<sub>2</sub>
  - Air (12.5 %  $O_2$ ) or  $N_2$
- Temperature varied from 50-250 °C (Figure 3)

## 7. Conclusions

- In the absence of  $O_2$ , Pd/Al<sub>2</sub> $O_3$  catalysts can effectively reduce NO<sub>x</sub> using H<sub>2</sub>
- However, Pd/Al<sub>2</sub>O<sub>3</sub> strongly promotes the reaction between H<sub>2</sub> and O<sub>2</sub>, even at low temperatures
- Conditioning of the catalyst may be necessary to achieve maximum activity
- Some selectivity of products was seen at varying temperatures



Centre for Sustainable Chemical Technologies



Engineering and Physical Sciences Research Council

