

Citation for published version: Mcclymont, D, Kolaczkowski, S, Molloy, KC & Awdry, S 2013, 'Novel catalyst systems for deNOx' DTC Symposium Series - Sustainable Industrial Catalysis, Bath, UK United Kingdom, 29/01/13, .

Publication date: 2013

Document Version Peer reviewed version

Link to publication

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Novel catalyst systems for deNO,

David W. J. McClymont,^{a,b} Stan T. Kolaczkowski,^b Kieran C. Molloy,^c Serpil Awdry^b

^aCentre for Sustainable Chemical Technologies, University of Bath, BA2 7AY, UK. ^bDepartment of Chemical Engineering, University of Bath, BA2 7AY, UK.

^cDepartment of Chemistry, University of Bath, BA2 7AY, UK.

E-mail: D.W.J.McClymont@bath.ac.uk URL: http://www.bath.ac.uk/csct

1. What is NO_x?

Nitric oxides are highly reactive gases; primarily NO (>90 %) and NO₂, involved in many pollutant processes *e.g.* the formation of acid rain

They are produced as a result of high temperatures during the combustion of fuels, and legislation is in place to control emissions *i.e.* the Industrial Emissions Directive (IED) regulates activities that involve burning or gasification of waste (Figure 1)

Technologies have been developed which react a reductant with NO_x emissions, forming harmless N_2 and H_2O . Development of a material and process to treat NO_x emissions using H_2 is the aim of this project

2. H_2 for deNO_x

Measurements made on an operational gasification plant (Figure 2), identified the gaseous fuel produced as having a 10-17 % H₂ content depending on the conditions in the gasifier

Utilising H₂ already present in the system (Figure 1) could provide a reductant which does not have to be specially manufactured (e.g. NH₃, urea), and hence would be a cleaner approach

 H_2 can also be used in NO_x storage and reduction (NSR) processes where NO_x species are 'trapped' and subsequently reduced through alternate lean and rich-burn cycles (Figure 4)

Figure 2. Refgas gasification plant, Chester, UK

4. Experimental Results

Figure 4. Example of data obtained from H_2 -NSR over Pt/Ba/Al₂O₃ catalyst. Reaction conditions: Lean Phase - 500 ppm NO, 3 % O₂, balance N_2 . Rich Phase - 2000 ppm H_2 , balance N_2 .

3. Catalysts

Catalysts prepared using techniques impregnation (Table 1)

Supported on honeycomb monoliths (Figure 3)

Channel size = 1 mm x 1 mm (~80 channels per monolith)

Reactor housed within electric furnace

Figure 5. Experimental set-up

Figure 3. Pt/Ba/Al₂O₃ monoliths

5. Initial Conclusions and Future work

Initial results (Figure 4) suggest that catalysts demonstrate some deNO_x activity and there is some competition between desired NO_x storage and the formation of NO₂

Further work will investigate the performance of the prepared catalysts in their relevant processes (SCR/NSR) and identify optimum conditions/limitations. The catalysts will be characterized through temperature-programmed studies (TPD and TPSR)

Centre for Sustainable **Chemical Technologies**

Rotameters

Furnace

controller

