UNIVERSITY OF

BATH

Citation for published version:
Pym, DJ & Ritter, E 2004, A semantics for reductive logic and proof-search. Computer Science Technical
Reports, no. CSBU-2004-01, Department of Computer Science, University of Bath, Bath, U. K.

Publication date:
2004

Link to publication

©The Author March 2004

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Dec. 2019


https://researchportal.bath.ac.uk/en/publications/a-semantics-for-reductive-logic-and-proofsearch(0a52d53b-4d66-44ab-845d-ab53d69c01f8).html

UNIVERSITY OF

Department of ,@,\ 3? B ATH
. ’ L)

Computer Science

Technical Report

A Semantics for Reductive Logic and Proof-search

David Pym and Eike Ritter

Technical Report 2004-01 March 2004
ISSN 1740-9497



Copyright ©March 2004 by the authors.

Contact Address:

Department of Computer Science
University of Bath

Bath, BA2 TAY

United Kingdom

URL: http://www.cs.bath.ac.uk

ISSN 1740-9497



A Semantics for Reductive Logic and Proof-search

David Pym Eike Ratter
University of Bath University of Birmingham
England, U.K.

Abstract

Since its earliest presentations, mathematical logic has been formulated as a formalization
of deductive reasoning: given a collection of hypotheses, a conclusion is derived. However, the
advent of computational logic has emphasized the significance of reductive reasoning: given a
putative conclusion, what are sufficient premisses 7 Whilst deductive systems typically have
a well-developed semantics of proofs, reductive systems are typically well-understood only
operationally. Typically, a deductive system can be read as a corresponding reductive system.
The process of calculating a proof of a given putative conclusion, for which non-deterministic
choices between premisses must be resolved, is called proof-search and is an essential enabling
technology throughout the computational sciences. We suggest that the reductive view of logic
is (at least) as fundamental as the deductive view and discuss some of the problems which
must be addressed in order to provide a semantics of reductions and searches of comparable
value to the corresponding semantics of proofs. Just as the semantics of proofs is intimately
related to the model theory of the underlying logic, so too should be the semantics of reduction
and of proof-search. We discuss how to solve the problem of providing a semantics for proof-
searches which adequately models both not only the logical but also the operational aspects
of the reductive system.

1 Introduction

Axiomatizations of logics as formal systems are usually formulated as calculi for deductive in-
ference. Deductive inference proceeds from established or supposed premisses to a conclusion,
regulated by the application of inference rules, R,

u Premiss; ...Premiss,, R

Conclusion

A proof is constructed, inductively, by applying instances of rules of this form to proofs of estab-
lished premisses, thereby constructing a proof of the given conclusion.

A conceptually valuable semantics of proofs is provided by a correspondence between the
propositions and proofs of a logic, the types and terms of a A-calculus and the objects and arrows
of a category ¢.v. Figure 1, in which (e.g., natural deduction) proofs correspond to (e.g., typed
A-terms) which correspond to classes arrows in categories with specified structure.

Reductive inference proceeds from a putative conclusion to sufficient premisses, regulated by
reduction operators, Og,

SufficientPremiss; . ..Sufficient Premiss,,

ﬂ OR,

Putative Conclusion

corresponding to (admissible) rules, R.! We believe that this idea of reduction was first explained
in these terms by Kleene [17]. A reduction is constructed, inductively, by applying instances of
reduction operators of this form to putative conclusions of which a proof is desired, thereby yielding

Henceforth we refer to just R rather than Og.
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Figure 2: Reductions-as-realizers-as-arrows

a collection of sufficient premisses, proofs of which would be sufficient to imply the existence of a
proof, obtainable by deduction, of the putative conclusion.

Starting from a given endsequent,? we apply reduction operators until either we have a con-
structed a proof or we determine that our reduction cannot be further extended to yield a proof.
Such a determination will certainly occur if, on at least one branch of our reduction, we have
reduced as far as a putative conclusion of the form

P1s---3Pm ?- q,

read as querying whether ¢ is a consequence of py,...,pn,, and in which all of the p;s and the ¢
are atomic and no p; is identical to ¢.2 In this situation, we have not terminated the branch by
reaching an axiom and no further reduction will help.

This inherent partiality of reductions presents a clear semantic challenge: we must be able to
interpret those not only proofs, which are a special class of reductions, but also reductions which
cannot be completed to be proofs. Nevertheless, we aim to recover a semantics for reductions of
utility comparable to that of the propositions-as-types-as-objects triangle for proofs.

The desired set-up is summarized in Figure 2, in which " ?7- ¢ denotes a sequent which is
a putative conclusion and ® = T'" ?7- ¢ denotes that ® is a reduction with root I' ?- ¢. The
judgement [I'] [®] : [¢] indicates that [®] is a realizer of [¢] with respect to assumptions [I'].

The provision of such a framework, which we require to be adequate model-theoretically, is
non-trivial. The main difficulty is that the objects constructed during a reduction, are, in contrast
to the objects, i.e., proofs, constructed during deduction, inherently partial. Whilst any deduction
proceeds from axioms to a guaranteed conclusion and so constructs a proof, reductions proceed
from a putative conclusion to sufficient premisses. At any intermediate stage, it can be that it is
impossible to complete the reduction so as to obtain a proof, i.e., all possible reductions lead to

2That is, a sequent occurring at the root of a proof/reduction tree.
3We restrict our attention to single-conlusioned sequents in this discussion just for simplicity.

2



Pym and Ritter / Semantics for Reductive Logic

trees in which there are leaves of the form ¢ ?- ¢ in which the formulae ¢ and v are both distinct
and irreducible.*

Suppose, then, that we have a deductive system D which is interpreted in a category C. Consider
the interpretation of an axiom sequent, ¢ F ¢, given by

[] ~4 4],

the identity arrow from [¢] to itself. Proof trees over D have the property that all leaves have this
form (or something very like it).

Now consider the reductive system R(D), obtained by reading each of D’s inference rules as
reduction operators. Reduction trees over R(D) can have leaves of the form ¢ F 1, where ¢ and
1 are distinct, irreducible formule, so that there is no way to reduce the leaf to an axiom of
the deductive system. A semantics of reductions in R(D) must interpret leaves of this form. One
solution is to interpret reductions not in the category C but in the polynomial category C[a] over
an indeterminate a.®

[Aside: If A and B are objects of a category C, we can adjoin an indeterminate A — B by
forming the polynomial category Cla]. The objects of C[a] are the objects of C and the arrows of
Cla] are formed freely from the arrows of C together with the new arrow a. The basic ideas may
be found in [20].]

Then the interpretation of a leaf of the form p ?- ¢, where p and ¢ denote propositional letters,’
can be defined as follows:
(e
[p] — ldl-

The corresponding language of realizers is the internal language of C[a].

Whilst polynomials over categories of proofs provide a place within which reductions can be
interpreted, there is much more to consider in the semantics of proof-search.

So far we have discussed just reduction as a (declarative) counterpart to deduction. But the
construction of a reduction requires an algorithmic control régime. For example, when faced with
an endsequent I' 7- ¢ we must choose which reduction operator to apply first and to which formula.
This is a disjunctive choice: we need only find one choice of operator and formula for which the
successful construction of a proof is possible.

Having chosen and applied an operator, we obtain, in general, several sufficient premisses,
111 ?- ¢17"-7Fm ?- ¢m

We must then choose which sequent to reduce first. In order to successfully construct a proof, all
of the sequents must be developed — this is a conjunctive choice — but some choices might lead
quickly to failure, while others might fail only after a great deal of computation.

Upon failure, we must return to a point at which a disjunctive choice was made. That is,
we must backtrack. Whilst a complete description of the control régime for constructing a proof
would also require the modelling of the non-deterministic choices described above, the key control
mechanism is bactracking. Thus our semantics of proof-search is focussed on the incorporation of
bactracking into our model-theoretic semantics for reductive logic.

The key point is that the denotational semantics of the search process is inherently intuition-
istic: the search procedure, we might think of it as an agent, can be seen as van Dalen’s creative
subject [38] exploring a Kripke frame (W, C) in which the ordering is generated by the reduction

4We say that an occurrence of a formula ¢, in a reduction tree over a system S, is irreducible if it is not the
principal formula of an instance of any reduction operator of S.

5In general, the polynomial over a set of indeterminates.

SWe call such a leaf atomic.



Pym and Ritter / Semantics for Reductive Logic
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Figure 3: Reduction Semantics as Kripke Semantics

operators of the logic. At each reduction, starting from a given endsequent, the creative subject
increases his knowledge of established atomic propositions. For example, illustrated in Figure 3,
suppose we have, in intuitionistic logic, the endsequent

¢;6D9;0Dx F (VY )A(XVX),

in which ¢, ¥, ¥', x and X' are atomic. At the root world, w;, the only atomic proposition
established on the left, and so potentially capable, in the presence of a matching ¢ on the right,
of forming an axiom sequent ¢ F ¢, is ¢.”

The next two reductions, AR and VR, take us to worlds wy and then ws and wy without adding
to the atomic propositions established on the left. Next comes a D L, with principal formula ¢ D .
This step adds ¥ to the atomic formulae established on the left, and so capable of contributing
to axioms. As before, the accession to worlds wg and wy, via an VR, adds no atoms to the left.
Finally, the D L leading to wg adds x to the collection of formula established on the left.

Thus, beginning with polynomials in § 2, we take, in § 2.1, Kripke-like structures as the basis
for our semantics of reductive logic. We give a game-theoretic example in § 2.2. In § 3, we explain
the representation of classical logic that is provided by the Auv-calculus, and introduce its (fibred)
models. In § 4, this semantics is used to provide, for intuitionistic logic, a basis for incorporating a
semantics of proof-search via an embedding in a classical structure in which the additional ‘states’
are used to represent backtracking. We provide two concrete examples of such a semantics: In § 5,
using continuations, and in § 6, using games.

7Qur use of just atoms to form axioms should be considered analogous to the use of atoms in a least Herbrand
model [39].
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Table 1: Intuitionistic Sequent Calculus

2 Semantics for Intuitionistic Reductive Logic

In this section, we describe a semantics for propositional intuitionistic logic viewed as a reductive
system. Building on the wealth of proof-theoretic studies of proof-search in intuitionistic logic
[7, 33, 31, 30, 28, 40], we take as our point of departure a minor variant of Gentzen’s sequent
calculus, LJ' given in Table 1, in which Contraction and Weakening are built into the other rules.
However, for technical reasons, we include, and emphasize, ExchangeL. For convenience, we shall
simply refer to this system as LJ.

The principal virtues of LJ’s presentation of intuitionistic proofs as a basis for mechanical
proof-search are that it admits Cut-elimination and, in contrast to natural deduction systems,
has, in the absence of Cut, the subformula property. Note, that although Cut forms the basis of
the resolution procedure used by Prolog [34, 19, 39], one can simulate the analytic cuts used in
resolution by implication in LJ (see [31] hence it is possible to use LJ also as a calculus to study
analytic resolution. However, for proof-search either wholly or partially by humans, the Cut rule
is very useful because it allows the use of lemmas in proofs and leads to shorter proofs [37, 3].

An LJ reduction is a tree regulated by the operators of LJ, i.e., the inference rules of L.J read
as reduction operators, from conclusion to premisses. As usual, the sequent I' 7- A at the root of
a tree is called an endsequent. We use the following notations for reductions: We write Ry;...; R,
for a reduction with operators Ry;...; R, applied in which the putative conclusion of every R;,
¢ > 2, is one of the sufficient premisses of some operator R;, for j < i.

As we have explained in the introduction, a major difference between reductions and proofs
is that reductions need not have axiom sequents at their leaves. Whereas all of the leaves of a
proof are of the form T, ¢, ¢, reductions may have leaves of the form p ?- ¢, where p and ¢
are distinct propositional letters. Although a branch with such a leaf cannot be extended so as to
obtain just axioms at its leaves, a semantics of must nevertheless reductions must give meaning
to these reductions of this form.

In order to give a semantics for reductions, we start by reviewing our first main tool, namely
polynomial categories. These polynomial categories are used to model partial reductions.

Definition 1 Let C be a bi-Cartesian closed category, and let A, B be two objects of C. The
polynomial category C (&) over an indeterminate £ : A — B is the free bi-Cartesian closed category
over the graph of C with an additional edge & with source A and target B modulo the equations in

C.
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Polynomial categories have a universal property similar to polynomials over the natural num-
bers [20]:

Theorem 2 Let C be a bi-Cartesian closed category and C(§) be the polynomial category over the
indeterminate £: A — B.

(i) For every bi-Cartesian closed functor F:C — D and any morphism f: FA — FB in D, there
is a bi-Cartesian closed functor F:C(§) — D.

(ii) Any bi-Cartesian closed functor G:C(§) — D is equal to F' for some bi-Cartesian closed
functor F:C — D and morphism f: FA — FB in D such that F(§) = f.

Proof Direct consequence of the freeness of a polynomial category. O

We will write C(&1,...,&,) for (--- ((C(&1)(&2) -+ )(&n)) -+ -). We call a functor

F:C(€) = C(&1y. .., 6n),

obtained by the universal property from the inclusion functor C — C(&1, ..., &,) and a morphism
fin C(&,..., &), a substitution functor and write Se(f) for such a functor. This functor is
the analogue to substitution of natural numbers for indeterminates in polynomials over natural
numbers.

The polynomial category can be defined in more standard categorical terms if the indeterminate
£ is a morphism £:1 — A, where the domain is the terminal object. Such a morphism is called a
global section, and in the case of C = Set corresponds to an element of the set A. This restriction
does not cause a loss of generality: an indeterminate £&: A — B corresponds via the universal
property defining function spaces to an indeterminate £’:1 — A = B. The equivalent definition
using standard terms is as follows:

Proposition 3 Suppose C is a bi-Cartesian closed category. Each polynomial category C(§) with
an indeterminate £:1 — A is isomorphic to the co-Kleisli category D for the endofunctor (— x A)
on C.

Proof Firstly, it is a routine check that the co-Kleisli category is bi-Cartesian closed and that
the inclusion C — D is a bi-Cartesian closed functor. Secondly, one checks that the co-Kleisli
category D satisfies the universal property of Theorem 2. In particular, given any bi-Cartesian
closed functor F:C — £ and any morphism g: 1 — F A, the extension F:D > €is given by

F(A)=F(4) and F(f)=F(f) o (ld,g).
O

In the rest of the paper we will only consider indeterminates £: 1 — A. We write ‘€ is an indeter-
minate of type A’ for such an indeterminate.

Next we show how to use polynomial categories to model reductions. The idea is that a re-
duction with non-atomic leaves I'; ?- ¢; for 1 < i < n is an element of the category C(1, ..., &),
where C(&1,...,&,) is the category C with indeterminates of type [I';] = [¢:] adjoined, where =
denotes the internal hom.® If C is the free bi-Cartesian closed category over an infinite set of basic
objects representing the propositional atoms, then there exists a morphism 1 — [¢] in C if and
only if the formula ¢ is provable in LJ. If C is not the free category, a morphism 1 — [¢] exists in
C if the formula ¢ is provable in LJ with possible non-logical axioms added.

Each reduction operator is interpreted as a functor between the appropriate polynomial cate-
gories, and we show that a reduction is completeable to a proof when there exist morphisms f; in
C(&1,.-.,&—1) such that there is a functor Se, (f1) 0 --- 0 Se, (fn):C(&1,--.,&n)—C.

8Note that we use indeterminates to witness reductions for arbitrary leaves rather than just atomic leaves.

6
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Before we can state the semantics of LJ reductions we fix some notation about categorical
morphisms. Suppose f: Ax B x C — D is a morphism in C. Then we denote by Curg(f): AxC —
B = D the morphism obtained by applying the definition of exponentials to f. We denote by App
the morphism A x (A = B) — B. Furthermore, we denote the projections by m: A x B — B and
7': A x B — B respectively. More generally, projections are denoted by m4,: A1 X ... X A; X ... X
Am — 141

Before we give the definition of the translation from LJ-sequent reductions into morphisms in
the polynomial category, we present an example. To state the example and the translation, for
each indeterminate & of type [I'] = [¢], &' denotes the morphism App o (£ o (), Id): [T] — [¢].

The morphism for the sequent reduction

¢?-0 99 ?-¢3
929 -9

will be interpreted by a functor H : C(§) — C, where ¢ is the indeterminate of type [(¢ A (¢ D
¥))]. In fact, H is the substitution functor S¢(Curgga(poy)j(App)). This functor arises in two
stages. Firstly, we have the functor F with domain C(§) and co-domain C(&;,&s), where & is
an indeterminate of type [¢ D ¢] and & and indeterminate of type [¢ A ¢ D 9] respectively,
such thatF = S¢ (& o (m, App o (7', &} o 7))). The functor F is the semantics of the inference rule
D L, which is basically the application morphism and describes how to obtain a reduction for
the sequent ¢, ¢ D 1 ?- ¢ corresponding to the indeterminate £ from the two reductions for the
sequents ¢ 7- ¢ and ¢, ?- 1) corresponding to the indeterminates & and &». As the reductions
for the latter two sequents are axioms, they are represented by the functors Gy = Sg, (Curpyy(Id))
and Gy = S¢,(Curpyay](mryy))- The functor H is obtained by essentially composing F' with G
and Gs.

L

After this example we give the definition of the translation.’

Definition 4 Let C be a bi-Cartesian closed category. The interpretation of each unary LJ reduc-
tion operator

A -9
r?¢
in C is a functor C(§) — C(C), where & is an indeterminate of type [I'] = [¢] and ¢ is an
indeterminate of type [A] = [¢]. The interpretation of a binary reduction operator

Al ?- ¢1 AQ ?' ¢2
T2 ¢

in C is a functor C(§) — C(&1,&2), where &1, &2 and € are indeterminates of types [A1] = [¥1],
[Az2] = [¢2] and [T] = [[¢] respectively. These functors are defined as follows:

Axiom: If the reduction operator is

F7¢ ?- ¢7
then [[A.’L‘]] = Sg(Cur[[p]lxm (7r|[¢]|));
Cut: If the reduction operator is
Lip?2-¢9 TI'?2-9
T, 2-¢

and &, & and & are indeterminates of type [T'] = [4], [T,¢] = [@] and [T] = [¢] respectively,
then we have [Cut] = Se(Cur(& o ((1d,£1))));

9Note that we include a clause for the Cut-rule. We need it for the completeness of the categorical semantics we
are considering later in this chapter.
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ExchangeL: If the reduction operator is

F7¢27 ¢1 ?- ¢ ,
Lg1,02 7- ¢
then [ExchangeL] = Se(Curpr 4,,4,1(¢" 0 (T[], T[p2]> T[ea]))) 5

LL: If the reduction operator is
T,L7-¢

then [LL] = Curpryxo(Se (v o m)), where v is the initial morphism 0 = [¢] and 7 is the projection
from [T'] x 0 to 0;

TR: If the reduction operator is

then [TR] = Curry(Se(!)), where ! is the unique morphism with the terminal object 1 as the
co-domain;

AL: [AL] = Se(C);
AR: If the reduction operator is
re2-¢ T 79
T 7 6n0
and &, & and & are indeterminates of type [T] = ([¢] x [¥]), [T] = [¢] end [T] = [«]

respectively, then we have
[AR] = Se(f o (1, &2))

where f is the canonical morphism with domain ([I'] = [4]) x ([T] = [«]) and codomain [I'] =
(Il < [¥D);

VL: If the reduction operator is

I,p?2-o0 T, 7?0
Tovy ?7- 0o

and & and & are indeterminates of type ([I'] x [@]) = [o] and ([T] x [¢]) = [o] respectively,
then we have

[VL] = Se(f o (Curgoprpyg (Curpry(€r) + Curpry (€2)))),
E[uiﬁ]ere f is the canonical isomorphism between ([¢] + [¢]) = [I'] = [o] and ([T] x ([¢] +[¥])) =

VR: If the reduction operator is
r? ¢

L?7-¢Vy
and suppose ¢ is an indeterminate of type [I'] = [¢], then we have
HVR]] = Sé‘(CUFI[F]](iIll o CI))
The other case is similar;

D L: If the reduction operator is

T?2-¢ T,w?o
T, D¢ -0

and &1, &2 and £ are indeterminates of type [T] = [#], (IT] x [¥]) = [o] and ([T] x ([¢] =
[¥D) = [o] respectively, then we have

[> L] = Se(& o (m, App o (7", & o m)));

8



Pym and Ritter / Semantics for Reductive Logic

D R: If the reduction operator is
Lo ?-4
r?-¢o4

and ¢ is an indeterminate of type ([I'] x [¢]) = [¥], then we have

[[D R]] = Sg(Cur[[p]](Cur[[¢]] (CI)))

The interpretation of an LI reduction Ry ; ... ; Ry forT' ?- ¢, where ; denotes the composition
of operators and where the non-aziom leaves are T'; ?- 1; (0 < 14), is given by a functor H:C(€) —
C(&, ..., &), where £ is an indeterminate of type [I'] = [¢] and & are indeterminates of type
[T:] = [¢:] defined inductively as follows:

o If k=1, then H is the interpretation of the reduction operator Ry;

o Ifk>1 and Ry;...; Rp_1 is inductively interpreted as a functor

H:C(&) = C(&1,---,&,m)

and the reduction operator Ry is interpreted as the substitution functor S,(f) for some
indeterminate n and morphism f in C(&1, ..., &), then the reduction Ry;. . .; Ry is interpreted
as the functor Go H, where G is the functor obtained by the universal property of polynomial
categories applied to the maps

& & and ne f.

An example will help to explain how this definition works. Consider the following reduction,
which has one non-axiom leaf o, 7 7- ¢ :

— Az — Az
o, ?- 0 o, T - T

X 0,0 DT, - T

DL
0,0 DY, 0 DT - T

where X is the reduction
Ax
o0 o, T 7= ¢

D L.

0,001 7- ¢
If 7, denotes the projection with co-domain [o], then the semantics of the reduction X is the
morphism
S§1 (CurI[U]IXI[UDT]I (X’ o <7r07Appo,‘r>))

where x is an indeterminate of type o A 7] = [¢], and the semantics for the reduction of the
sequent 0,0 D 7 ?- 7 is the morphism

Sez (Curo)x[oor] (APP © (T, To5r)))-
The semantics for the whole derivation is then
Sﬁ(CU"[[F]] (Appg,f 0 (7o, Mo5r) O Mo, Moo Appy,y © (x'o (WaaApPa,T 0 (T, Tonr))s Tgy))))
which is via projection-equalities equal to
Se(Curpry(App, - © (o, Tor))),

where I' is the context o,¢ D 1,0 D 7. This is unsatisfactory: the left-hand side of the reduction
is ignored in the semantics; in other words any reduction with the same right-hand side but a
different left-hand side has the same semantics.
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The problem is that our semantics implicitly uses a translation from sequent calculus into
natural deduction, as there is a direct correspondence between introduction and elimination rules
of natural deduction and the categorical constructions. As the translation of sequent calculus into
natural deduction identifies sequent calculus derivations up to certain permutations and some
Cut-eliminations (see [41] for details), some sequent calculus derivations have the same semantics.
In this particular case, the translation of O L into natural deduction makes essential use of a
cut. Because it is a cut with a weakened formula, after Cut-elimination the two derivations have
identical natural deduction translation, and hence identical semantics.

2.1 Intuitionistic Reduction Models

We solve the problem of information loss described above by introducing a Kripke-world structure
in which worlds are intended to record the history of application of reduction operators. Hence
each application of a reduction operator gives rise to an extension of worlds. In the key case (cf.
the example above) of D L, worlds may therefore be seen as recording increasing propositional
‘knowledge’ in hypotheses (or, in sequents, antecedents).

In [33], we used the Auve-calculus, which is the Auv-calculus with explicit substitutions added,
as a calculus of realizers for LK'-derivations. We added the explicit substitutions to overcome the
same problem of information loss in a syntactic way. It is possible to treat the explicit substitutions
semantically via a Kripke-world structure where the worlds do not contain all reduction operators
but reductions corresponding to sufficient premisses of the D L and VL-rules which gave rise to
explicit substitutions. The setting described below is more uniform, as it regards application of
all reduction operators as an increase of knowledge. This is certainly appropriate for models of
proof-search.

The categorical model we use to model this Kripke-world structure is a variant of the setting
of a categorical semantics for intuitionistic logic based on functor categories. For deductions, one
considers an indexed category with comprehension F: YW — CCC, where W is a partial order
of worlds regarded as a category, and the functor F' assigns to each world W a category F(W)
which models all derivations which have additional assumptions given by W. In our setting, worlds
represent histories of which reductions have been applied.!® Hence we modify this semantics to
require that the co-domain of the functor F' is not the category of bi-Cartesian closed categories
but rather a category which represents indeterminates. For each set of indeterminates, we require
a bi-Cartesian closed category which models all reductions which use that set of indeterminates.
An appropriate categorical structure for this modelling of indeterminates is given by an indexed
category with comprehension. The base category models the indeterminates and the fibre over
an object models the polynomial category over the indeterminates corresponding to this object.
The universal properties of comprehension correspond to the universal property of the polynomial
categories. The notion of an indexed category with comprehension is as follows:

Definition 5 A strict indexed category with comprehension is a functor
E:B°?—Cat
such that the following conditions are satisfied:
(i) B has a terminal object called T;
(i) Each fibre £E(T) has a terminal object 1 which is stable under re-indexing;

(i3) If we denote by Gr(E) the category whose objects are pairs (T', A), where T' is an object of B
and A an object of E(T'), and morphisms from (T, A) to (A, B) are pairs of morphisms (f, g)

10We can also think of worlds as representing the propositions which have been added to the hypotheses by the
reduction, the key point being that the D L-operator replaces a hypothesis ¢ D v with 9, together with a proof
obligation (for ¢) which may be further reduced. This view is discussed briefly in [29].

10
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where f is a morphism from T to A and g is a morphism from A to E(f)(B), then the the
functor I: B—Gr(E) sending the object T to (T',1) and the morphism f to (f,1) has a right
adjoint G.

We denote the object G(T', A) by T' - A and by (f,g) the part of the bijection between hom sets
given by the adjunction I 4 G sending a morphism f:T—A in B and a morphism g: 1—-E(f)A in
E(T") to a morphism from I" to A - A.

Now we explain how to set-up indeterminates in an indexed categorical setting. An indetermi-
nate of type A is modelled by an object T - A, and a morphism in C(§1,...,&,) is modelled by a
morphism in E(T - A; -...- A,). The universal property of polynomial categories is captured as
follows: if f is a morphism in C(y,...,&,) corresponding to a morphism f'in E(T - Ay -...-Ap)
and ¢ is an indeterminate of type A, the substitution functor Se(f) is modelled by the functor
(Id, f').

With all this technology set up, we can give a definition of a reduction structure, i.e., a se-
mantic structure within which intuitionistic (LJ) reductions may be interpreted. A few points are
noteworthy:

e As we have seen, the interpretation of LJ-reductions in polynomials over a bi-Cartesian
closed category is inadequate. Consequently the interpretation of (Cut-free) LJ-reductions
exploits a Kripke-world structure which records the history of the reduction;

e There is no equality in the semantics: We interpret only Cut-free reductions and do not
consider any equality induced by Cut-elimination.

Definition 6 (reduction structure) Let W be a small category (of ‘worlds’) with finite prod-
ucts. A reduction structure (€, F) is given by

(i) a strict indezed category £: B°P — Cat with comprehension such that B has finite products*!
and each fibre E(T) is a bi-Cartesian closed category and each functor E(f) preserves the
bi-Cartesian closed structure on the nose;

(i) a functor F: W — B which preserves finite products.
Next we present a set-theoretic example of a reduction structure.

Example 7 (set-theoretic reduction structure) Let W be the category of sets and functions.
Let £ the indexed category arising from the flat fibration over Set (i.e., B is Set again, and £(S)
is the co-Kleisli category of Set with respect to the functor — x Idg). We define the functor F' as
the identity functor from Set to Set.

Note that in this example, indeterminates and the state of knowledge given by worlds coincide, as
the functor F is the identity. This is not necessarily true in general.

We now describe the interpretation of reduction operators and reductions in a reduction cat-
egory. This interpretation depends on the worlds of the reduction category. The details are given
in the following definition:

Definition 8 (interpretation) Let (€, F) be a reduction structure. A function [—], which is
parametrized by a list of indeterminates © and a world W, mapping reductions and their syntac-
tic constituents to elements of a reduction structure is called an interpretation if it satisfies the
following mutually recursive conditions:

(i) [O©]" is an object of B and [O]" = A if © is the empty list of indeterminates and F(W) = A;
(ii) For any formula ¢, [¢]& is an object of the category E([O]V);

L11f the functor E(f) is constant on objects then comprehension gives rise to finite products in B. This is the case
for all the reduction structures we consider in this paper.

11
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(iii) For any contertT = ¢1,...,¢n, [T]8 is equal to (A1 x --- X A,), where [¢:]8 = Ai;

(iv) For a reduction ®:T ?- ¢ with indeterminates in ©, [®]8 is a pair (W', g), where W' is a
world and g a morphism from [T]4 to [¢]8 such that g = (Id, F(a))* f for some morphisms
018 = [¢]Y" and a: W — W';12

(v) For all reduction operators R, there exists a world Wg and a morphism ar:1 — Wg;

(vi) For a reduction ®; R with unary reduction operator R and reduction ® for the putative premiss
of R,
[®; R]& = (W', (Id, F(a))*(Curﬂ 1 Wn (App o (Cur xR (f1),Snd)))

where W' = Wy x W x Wg and furthermore [[@]]WXWR = (Wi, f1) and Wi =W x Wgr x W
and a:W — W';

(vii) For a reduction (®1,®2); R with binary reduction operator R and reductions ®1 and ®2 for
the putative premisses of R,

[(®1,®:); R]E = (W', {Ild, F(aw:))*(Cur (] *Wn
(AppO((Cur WxWR(fl) Cur WXWR(f2)>>,Snd))

where W' =Wy x Wo x W x Wg and [®,]8 *"V* = (W/, ) and W) =W x Wg x W;;

(viii) If © = ©' &, where £ is an indeterminate for ¢1,...,¢n 7= &, then [O]W is equal to [O]" -
[(@1 A~ Adn) D S8

This definition only specifies which elements of a reduction structure are used to interpret
a given syntactic constituent of a reduction: each reduction operator gives rise to a change of
worlds (Clause (v)), and the functor F' describes how extensions of worlds give rise to change of
indeterminates corresponding to reduction operators. Clauses (vi) and (vii) say that the semantics
of a reduction ® is given by a pair (a, f), where a is an extension of worlds induced by the reduction
operators of ®, and f is the morphism obtained by applying the changes of indeterminates induced
by the reduction operators to the indeterminates representing the premisses of the reduction.

However, this definition does not specify how to interpret the logical connectives and operators
in a reduction. As we use bi-Cartesian closed categories for interpreting reductions, this can be
done in a canonical way for the logical connectives and operators of intuitionistic logic. In this
way, we obtain a canonical interpretation which is a specific function from syntactic constituents
of a reduction to elements of a reduction structure.

Definition 9 (canonical interpretation) Let (£,F) be a reduction structure. The following
function [—] is an interpretation, called the canonical interpretation, where © is a list of in-
determinates:

(i) [118 = o;
(i) [T]4 = 1;
(iii) [6 2 ¢]8 = []8 = [1Y 5
(iv) [oAv18 = [418 x [¥18;

(v) [V ol € 618 + WY ;

(vi) For all reduction operators R, F(ar) = {ldi,f), where Se¢(f) is the interpretation of R
according to Definition 4, where the category C is the category £(1).

12Here —* denotes the usual inverse image functor.
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Note that this definition ensures that for each world Wg the object F'(Wg) is the object ([I'1] =
[¢:1]) = [T'] = [¢] for a unary reduction operator R with sufficient premiss I'y ?- ¢; and putative
conclusion I' ?- ¢ and F(Wpg) is the object (([T1] = [¢1]) x ([T2] = [¢2])) = ([T] = [¢]) for
a reduction operator R with sufficient premisses I'y ?- ¢; and I's ?- ¢, and putative conclusion
T' ?7- ¢. For each reduction operator R, we denote by £r the indeterminate of the above type, and
with Ag the corresponding object.

As mentioned before, the interpretation does not enforce any equality between reductions: The
reason is that the semantics of a reduction is a pair (f, g), where f is a morphism between worlds,
and it is possible that each reduction gives rise to a different morphism f. Two different reductions
might give rise to the same morphism g however.

Now let us reconsider our earlier example. We need to be precise and indicate carefully the
changes of the worlds involved in the reduction. We construct the semantics of the whole reduction,
[®]},, where x is an indeterminate of type [o A 7] = [¢] and A the corresponding object in the
base category, step by step. We start with the reduction X. Following Clause (vii), we have to
calculate [X]Y>". We obtain [X]y °* = (ax, fx), where ax is the extension of worlds from the
world W5 to Wop X Wop X Wy, and fx is the morphism

h’ o <7T0'7 Appd,'r)
in the fibre E(Aw,, x A), where h is the morphism App o (ld, Sndo!).

Next, we have to calculate [®]% >", where & is the reduction of the sequent 0,0 D 7 ?- T.
Again, [[<I>]]>IZV °F is a pair (ae, fe), where ag is the extension of worlds from the world W+, to
Wor X Wop X Wa, X Wy, and the morphism fg is the morphism

App o (71'(,, 7TO'DT>

in the fibre E(Aw,, x A). The semantics for the whole reduction ¥ is a pair (aw, fv), where ay
is the world extension from the empty world (the terminal object in the category W) to the world
Wor X Wap X Wae X Wop X Wage X Wag,, and the morphism fg is the morphism

Appa,q— 0 (7o, Morr) © (7o, WaDTvApp¢,¢ o(ho <7rt77App0',T o (T, Tor)),s 7r¢)3¢>>

in the fibre E(A), which is via projection-equalities equal to

Apptr,‘r o <7T<T7 7TG'DT>7
where T is the context o,¢ D ¥,0 D 7.

The semantics of the reduction ¥ does not ignore the reduction X: the world extension ag
explicitly mentions the reduction operators in X, thereby recording the increase of knowledge
obtained by the reduction X.

Our objective has been to establish a semantics of reductive logic of comparable value to that
which is available for deductive logic. To this end, we now establish soundness and complete-
ness theorems relating reductions and their semantics. We begin with the appropriate semantic
judgement,

W =e (2 : 9)[T],

between worlds, W, indeterminates in O, sequents I' 7- ¢ and reductions, ®. This judgement is
formulated as a constraint on reduction structures which is required in order to interpret reductions
correctly in reduction structures.

Definition 10 (reduction model) A reduction model,
R = ((87F)7 [[_]]7 |=>7
is given by the following:

13
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o A reduction structure (€, F);
o An interpretation [—] of reduction operators and reductions;

e A forcing relation W =g (®: ¢)[T'], where W is a world, © and T are contexts, ¢ a formula
and ® a reduction with endsequent I' 7- ¢ with indeterminates contained in ©, such that

rw [[%V w
[ITe [¢]e
is a morphism in the reduction structure, and which satisfies the following conditions:

1. If W l=e (®:9)[[] and a: W — W' is a morphism in W for some world W', then also
W' e (2:9)II;

2. W e (Az: 9)[L, 9];

3. W ke, (& 9)[I] if € is an indeterminate of type T' 7- ¢;

4. If R is a reduction operator with premisses I'y 7- ¢1 and Ts ?- ¢o and conclusion
T ?- ¢, then W =o (91, P2); R)[T, @] if W x Wg |=e (9:)[1, ¢4);

5. If R is a reduction operator with premiss I'1 ?- ¢1 and conclusion T’ ?- ¢, then W |=o
(@1, R)[L, 4] if W x Wk [Fe (®1)[T'1, ¢1].

Substitutivity for indeterminates is a property of the forcing relation:

Lemma 11 If W o (2:9)[[], W o (T:9)[A] and & is an indeterminate of type A 7= 4,
then also W = (@[T /&]: ¢)[T].

Proof By induction over the structure of ®. O

Now we can establish soundness: the existence of a reduction ® of I' ?7- ¢ implies that ¢ is
forced at every world W in a reduction model and, consequently, that reduction & is interpreted
as a realizer of the interpretation of ¢ from the interpretation of T'.

Theorem 12 (soundness) Consider any reduction structure (€, F). Suppose ® is a reduction of
T ?- ¢ with indeterminates &1, . ..,&, of type T 7= ¢;. Then, for any world W, W =g (®:¢)[T],
where © = {&1,...,&n}.

Proof We use induction over the structure of ¢. The case of an indeterminate and an axiom are
trivial. Now consider the case of a reduction (@1, ®2); R. By induction hypothesis, W x Wg e
(®:)[T;, ¢i]- Hence, by Clause (iv) of Definition 10, W =g ((®1, ®2); R)[T', #]. The case of a unary
reduction rule is similar. O

Turning to completeness, we must first establish a notion of validity. We say that the judgement
D : ¢ is valid with respect to T’ and ©, and write

r ':@ o ¢7
if and only if, for all worlds, W, in all reduction models, R,
WS (@ : ¢)[T].

With respect this, quite straightforward, notion of validity, we are able to establish complete-
ness. The first step is a model existence lemma based on the construction of a term model.

Lemma 13 (model existence) There exists a reduction model

T= <F7 [[_]]7 '=®>7
such that if 1 EL (® : ¢)[T], then T 7- o® : 6.

14
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Proof We construct a term model from reductions in the calculus LJ. We begin by defining a
reduction structure (£, F).

The category of worlds is the free cartesian category where

e the ground objects are reduction operators R with sufficient premisses 'y ?- ¢1 and 'y 7- ¢o,
for binary operators, and IV ?- ¢, for unary operators, and putative conclusion I' ?7- ¢, and

e for each reduction operator, there is a ground morphism ag:1 — R.

The objects of the category B are finite sequences of indeterminates &, . . ., &, of type ¢1, ..., dn,
and a morphism from (&1,...,&,) to (&1,...,&.,) is a list (f1,..., fm) of reductions such that f;
is a reduction of — ?- ¢., possibly using the indeterminates &1, ..., &,, where ¢, is the type of the
indeterminate £!. Composition is given by substitution of reductions for indeterminates. For each
sequence of indeterminates (&1, ...,&,), we define the category £((&1,...,&,)) to be the category
where the objects are formulae and morphisms from ¢ to 4 are reductions with premiss ¢ and con-
clusion ¢ with indeterminates amongst the ones in (&1,...,&,) up to Sn-equivalence. Composition
in this category is given by Cut. There is no equivalence on propositions, as we do not consider
any type dependency.

As W is the free cartesian category over the reduction operators R and morphisms ag, it
suffices to define the action of F' on reduction operators and morphisms ag.

For a binary reduction operator, the functor F is given by F(R) = £, where £ is an indetermi-
nate of type (T1 D ¢1) A (T2 D ¢2)) D (T D ¢),'® where the reduction operator with sufficient
premisses I't 7- ¢1 and 'y ?- ¢, and putative conclusion I' ?- ¢ and F'(ag) = h, where S¢(h) is
the interpretation of R in the polynomial categories.

For a unary reduction operator, we define F(R) = &, where £ is an indeterminate of type
(I > ¢') o (T D ¢) for a reduction operator with sufficient premiss I'" ?- ¢’ and putative
conclusion I ?- ¢.

Now consider the morphism apg for the reduction operator with sufficient premisses I'y 7- ¢
and 'y ?7- ¢9 and putative conclusion I' ?- ¢. Let ® i be sequent reduction

Ax Ax
Ty D ¢o, Ty 2- T4 Ty D ¢a,T1,61 2- 1 I ]
D) .
I'i D¢1,T2 D¢, 1 7- 1 't D é1,02 D ¢2,T2 2- q;%
I't Dé1,T2D ¢pa, ' 2- ¢

?-(T1D¢1)AT2D¢2)) DI D¢

AL;D R;DR

where ¥ is the sequent reduction of I'y D ¢1,s D ¢2,Ts 7- ¢ similar to the reduction of
Iy D ¢1,02 D ¢2,T'1 7- ¢1. Now we define F(ar) = ®r. Intuitively, the additional reduction
steps in @ are just book-keeping steps to ensure the typing of F'(ar) matches the typing of the
corresponding indeterminate.

Next, we show that, for this reduction structure with the obvious interpretation [—] of oper-
ators and reductions, the relation defined by W =g (®: ¢)[I'] iff ® is a reduction of I' ?- ¢ with
indeterminates in © such that [®]% is a morphism from [[']& to [¢]& is a forcing relation, and
the triple ((€, F),[-], ) is a reduction model. O

In the usual way, we now obtain the following:

Theorem 14 (completeness) IfT g ®:¢, then T ?- & : ¢.

13Here we abuse notation slightly and write, where I' = 11, ..., %m, just I' D ¢ to denote the formula (1AL A
Ym) D ¢.

15
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Proof Suppose I'' g ®: ¢, then, for all worlds W in all reduction models R,
WES (2:9)

This holds also for the term model constructed in Lemma 13. By construction of this model, we
have I’ 7- & : ¢. O

Under stronger conditions, namely that there exists a canonical interpretation, we can show
more, namely for each reduction structure and interpretation there exists a canonical forcing
relation:

Lemma 15 Suppose (€, F) is a reduction structure with a canonical interpretation [—]. Then the
relation R defined by W =g (®: @)[I'] iff  is a reduction of T' ?- ¢ with indeterminates in © such
that [®]8 is a morphism from [T]Y4 to [¢]& is a forcing relation, and the triple (€, F),[-], E)
is a reduction model. Moreover, the forcing relation |= of Lemma 13 is such a relation.

Proof We have to check that the relation R is a forcing relation. For this, one shows that
Clause (vi) of Definition 9 implies that [®]& is indeed a morphism from [I']&" to [¢]& . O

Now we consider the translation in the other direction. As the reduction category is not neces-
sarily the free category over some ground objects, we cannot define such a translation inductively
but only specify constraints which such a translation should satisfy. If the reduction structure
happens to a free structure, the conditions turn out to define a translation uniquely. We define
this translation first for polynomial categories and then generalize it to reduction structures.

Definition 16 LetC be any bi-Cartesian category. A translation (—)° assigning morphisms f:T—A

inC(&,...,&n) to reductions with non-atomic endsequents contained in &;:T'; ?- A; is called sound
if:
(m)° = Az, where 7 is any projection
(&)s = &
(9o f)® = ((f)%,(9)°); Cut
(f,9)° = ()@ )sA
(CurM)®* = (M)*>;DR
(App)* = DL
(in;)* = VR
(in2)* = VR
(fog)r = () (9)°);VL

Lemma 17 Suppose C is the free bi-Cartesian closed category over some set of objects G. Then
there is a sound translation assigning to each morphism f:T—A in C(&1,. .., &) reductions with
non-atomic endsequents contained in &:T'; 7- A;.

Proof The translation is given in the canonical way by using the Curry—Howard correspondence
to derive natural deductions for morphisms, and then translating them into reductions. O

Now we generalize this translation to the translation of morphisms of reduction structures to
reductions. Again, we list first conditions which such a translation should satisfy.

Definition 18 A translation (=)° from morphisms f:T' — A in £(O©) of a reduction structure
(E,F) to reductions T — A where @ =T - Ay ----- A, and & is an indeterminate with type (A;)°
is sound if

() = Az, where w is any projection
(Fst® % Snd)* = &
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(9o f) = ((f)° (9)°); Cut
(fig)° = () (9)°)AR
(CUI’]\l)S = (M)S; O R

(App)° = DL

(in1)®* = VR
(in2)® = VR
)

(feg)® = ((f)°@)°);VvEL

Again, when we have the initial reduction structure these conditions are sufficient to guarantee
the existence of such a translation.

Lemma 19 Suppose (£, F) is a reduction structure such that Gr(E) is the free comprehension
category over some set of objects G. Then there is a sound translation assigning to each morphism
f:T—=A in £(O) a reduction with non-atomic endsequents contained in &:T; 7- A;, where © is
the context corresponding to the indeterminates &1, ..., &n.-

Proof Direct transfer of the previous lemma. o

Now we can show that a reduction can be completed if and only if there exists a functor from
the corresponding polynomial category into the ground category.

Theorem 20 Suppose (€, F) is the free reduction structure over a set of objects G. A reduction ®
of ' ?7- ¢ with leaves T'; ?- ¢; which are not azioms can be completed to a proof iff there exists a
morphism f such that there is a functor £({!, f)): £(O©)—=E(1) where © is the context corresponding
to the indeterminates &1, . ..,&,. Moreover, the completion of a Cut-free reduction is Cut-free.

Proof If there exists a completion, the soundness theorem guarantees the existence of a mor-
phism f. In the other direction, given such a morphism, the previous lemma provides the sequent
derivations which complete the reduction to a proof. As Cut-elimination holds for LJ without
indeterminates, there is also a cut-free sequent which provides the completion. O

2.2 Games for Intuitionistic Reductions

In this section we present a games model of intuitionistic reductions. Games models have been
used successfully as models for various computational effects. We present here a version which
will turn out to be a suitable basis for games models of both reductive intuitionistic logic and
proof-search.

We consider games played between two players, Proponent, P, and Opponent, O. In such games
for a formula ¢ the aim of Opponent is to falsify the given formula ¢, and the aim of Proponent
is to prove it. A game starts by Opponent challenging the given formula. Proponent wins a game
when he can answer Opponent’s initial challenge, otherwise he loses. The possible moves of both
players in a game for ¢ are determined by the structure of ¢. A proof of a formula corresponds to
a winning strategy for Proponent. Such a winning strategy for a formula ¢ is a function which for
every legal O-move in a game for ¢ produces a legal P-move such that if P uses this strategy to
determine his moves he wins every game for ¢. Such games for proofs have been described for a
variety of logics, including classical and intuitionistic logic [21, 5]. Usually, in games for classical
logic Proponent and Opponent are dual to each other, whereas this is not true for games for
intuitionistic logic.

These game models for proofs have been adapted to give models of sequential computations
in programming languages [13, 1, 2, 22]. Here, the intuition is that Opponent asks for the value
of a computation, and Proponent performs the computation to produce values as answers. In
such games there is usually a strict alternation between moves by Proponent and Opponent,
corresponding to the absence of concurrent computation. As computations have a clear direction
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(from inputs to outputs) there is usually no duality between Proponent and Opponent in these
games.

The key conceptual difference between the games for proofs and the games for computations
is that in logic not all propositions are provable, so that in these games not all propositions have
strategies, whereas in the programming languages considered, however, all types are inhabited, so
that these games have strategies for every type.

The details of how to present game models differ widely, both within games for proofs and
within games for computations. The definition of the games considered in this paper uses elements
of both approaches. We use one important technical notion from the games introduced by Hyland
and Ong, namely the notion of an arena: for each formula ¢ the possible moves for a game for ¢ are
listed in a forest! called an arena, and the rules of the game use this forest extensively. Ong [23]
introduces also the notion of a scratchpad to model the multiple conclusions in the Au-calculus.
Scratchpads are additional games, which Proponent may start at will. For a detailed explanation
of these scratchpads, see § 4.

This idea of games semantics in the context of proof theory was introduced by Lorenzen [21, 5].
For games semantics as a semantics of programming languages see [13, 2, 1, 22]. A comprehensive
summary is provided in [16]. The use of game-theoretic methods in model theory, however, has
a rather longer history, beginning with Ehrenfeucht-Fraissé games, in which the back and forth
equivalence of models is used to analyse completeness properties of (first-order) theories [11].

Hyland [16] provides a useful general comparison, in terms of categorical composition, of the
correspondences between A-calculus, proofs, algorithms and strategies:

| Object | Map | Composition |
Type Proof Application in context
Proposition | Proof Composition via the Cut rule
Type Algorithm | Composition with hiding

| Game | Strategy | Scratchpad composition |

This organization captures the main themes of this paper, all of which are expressed within the
structures of categorical logic:

e The propositions-as-types (Curry-Howard-de Bruin) correspondence;
e The programs-as-proofs correspondence; and

e Games as a semantics for both proofs and computations.

Now we introduce a particular class of games which combines ideas from those for intuitionistic
provability and those for programming languages to give a class which models intuitionistic proofs
directly.'® Moreover, our games extend cleanly not only to the semantics of classical proofs provided
by models of the Auv-calculus, described in § 3.2 but also to the structures required to interpret
reductive logic and proof-search.

We start the definition of our games semantics by defining arenas. For each formula ¢ we define
an arena, which is a forest used to characterize legal moves by both players in our games.

Definition 21 An arena of type ¢ is a forest with nodes having possibly labels defined inductively
by the following:

o The arena of T is the empty forest;

e The arena of L is the forest with one node labelled 1 ;

14 A forest is a set of trees.
15 Games models of intuitionistic proof can be recovered from games models of linear proofs [2] via the exponential
! and, for example, Girard’s translation of intuitionistic logic into linear logic.
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e The arena for a propositional atom p is a forest with one node labelled p;
o The arena for ¢ A1) is the disjoint sum of the arenas for ¢ and ¥;

o Suppose Ay, ..., A, are the trees of the arena for ¢ and By, ..., By, are the trees of the arena
for . Then the arena for ¢ V o is given by

Note that there are two special nodes called L and R. In the special case that the arena for
¢ or the arena for ¢ is empty, the arena for ¢ Vi is the empty arena too. The root node of
the arena for ¢ V ¢ is labelled V;

e Suppose Ai,..., A, are the trees of the arena for ¢ and By, ..., B, are the trees of the arena
for . Then the arena for ¢ D v is the disjoint union of the following trees

In the special case that the arena for ¢ is empty, the arena for ¢ D v is the arena for 1.
All nodes in the arena for ¢ D 1 which are root nodes in the arena of v are labelled O in
addition to any other label they might have.

We call all root nodes in an arena O-nodes, and all children of O-nodes P-nodes, and all children
of P-nodes O-nodes.

Arenas are used to define possible plays. The definition of moves and plays makes this precise.

We illustrate games for intuitionistic proofs using the formula
p2>(>29)>D(g>Dr)D(rvs).

The arena for this formula is given in Figure 4. Note that we have also labelled all O-nodes with
O and all P-nodes with P.

Next, we define possible moves in our games. Each move for a game for ¢ is associated with a
node in the arena for ¢.

There are several types of moves. Firstly, we have moves by Proponent and Opponent, and
secondly there are question and answer moves. Questions which correspond to O-(P-)nodes are
played by Opponent (Proponent), and answers which correspond to O-(P-)nodes are played by
Proponent (Opponent). The definition is as follows:

Definition 22 A move m for an arena A is a node which is classified as either question or
answer. Questions which correspond to O-(P-)nodes are moves by Opponent (Proponent), and
answers which correspond to O-(P-)nodes are moves by Proponent (Opponent). We call a move
by Proponent a P-move and a move by Opponent an O-move.
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Oy

°0, ° 0, ® 0, ® 0,

Figure 4: Arenafor pD> (pDqg) D (¢Dr)D(rvs)

Next, we define plays, which are instances of the game. Each play consists of a sequence of
moves satisfying certain conditions. The intuition is that Opponent starts the play by challenging
Proponent to verify the given formula. Proponent responds by asking the Opponent to justify the
assumptions which Proponent can make in a sequent calculus proof of ¢. Conjunctive choices are
made by Opponent, and disjunctive choices by Proponent. Proponent wins a particular game if
he can answer Opponent’s initial question.

The moves in a play for ¢ follow the structure of arena of ¢ closely: A O (P)-question can be
played only if there was already a P-(O)-question corresponding to the parent node. An answer
can only be given if a question with the same associated node has already been made.

The precise conditions for a play are as follows:

Definition 23 A play for an arena A is a sequence of moves ma, ..., my such that:

(i) There exists an index I > 1 such that all moves ma,...,mr are O-questions with position
1,...,I respectively, and the corresponding nodes are roots in the forest for A. These moves
are called initial questions;

(i) For each question m;, with i > I, there exists a question my, with k < i, such that the node
corresponding to my is the immediate predecessor of the node corresponding to m; in the
arena A. We call my, the justifying question for m;;

(i3) For each answer m;, with i > I, there exists a question my, with k < i, such that my and
m; are the same node in A. If m; is the justifying question for my, we call m; the justifying
question for m;;

(iv) Each question can be answered at most once;

(v) Any initial questions can only be answered if all non-initial questions have already been an-
swered;

(vi) For any P-answer m; there exists a move m; such that m; is an O-answer with the same
label or 1 and j < i and that the nodes corresponding to m; and m; in the arena are on a
path which does not contain a P-node n labelled D such that the nodes corresponding to m;
and m; are its children or identical to it;

(vii) If m is an O-question labelled V, then at most one P-question is justified by m.
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Condition (vi) of this definition merits an explanation. During plays we have to ensure that
Proponent can answer questions of Opponent only if this answer corresponds to an assumption
which Opponent has provided. This matters in the case of Proponent asking a question labelled
D, which corresponds to using an assumption of type ¢ D 9. The rules of the game work in such
a way that in this case two proofs are constructed: one of the original formula using ¢ as an
additional assumption, and the second one of ¢. Now we need to ensure that v is not available
as an assumption during the proof of ¢. Condition (vi) ensures this by making sure that any
O-answer for ¢ cannot be used by Proponent.

Conditions (vii) and (vi) ensure that these games capture intuitionistic proofs: condition (vii)
enforces the disjunction property of intuitionistic logic, and condition (vi) makes sure that only
one specific formula can be proved at any one given time.

A possible play for the arena for

pD(pDqg)D(gDr)D(rvs)

starts by Opponent asking the initial question. Here, this means that Opponent is asking for a
proof of the formula. Now Proponent has various choices: he can either ask questions labelled L
or R, thereby deciding whether to prove r or s respectively, or to ask Opponent for evidence for
the assumptions by asking any other question. Let us assume that Proponent asks the question
corresponding to the node labelled L. Now Opponent will ask the question labelled r, thereby
asking Proponent to prove r. Proponent now needs to use the assumptions. Let us assume that
Proponent asks the question labelled r, thereby challenging Opponent to provide evidence for the
assumption g D r. Next, Opponent asks the question labelled g and challenges Proponent to prove
the formula 7 in turn, which is the hypothesis in the implication ¢ D r. Proponent now asks in a
similar way the question labelled ¢, and Opponent asks the question p. Proponent now asks for the
final assumption p. Opponent now has no choice but to answer this question, thereby making it
possible for Proponent to answer outstanding questions by Opponent. Now Proponent can use this
answer and answer Opponent’s question p. Again, Opponent is now forced to answer the question
q. This process of answering previously asked questions goes on until finally Opponent is forced
to answer the question labelled L, and Proponent can answer the initial question. In this example
the condition on paths in clause (vi) is not relevant.

The key notion of games semantics is that of a strategy. A strategy describes how Proponent
responds to arbitrary Opponent moves. Intuitively, a strategy describes how Proponent answers
challenges from Opponent to prove the given formula.

Definition 24 A strategy is a function from plays my,...,my, where myg is an O-move, to a
sequence of moves Myy1, ..., My such that mq,...,mg, Mry1,..., My s a play, and the sequence
Mpkt1,- .-, My 1S non-empty if the sequence myq,...,my contains no unanswered P-move which

could be answered by Opponent in the next move according to Definition 23.

Note that this definition makes it possible to force Opponent to answer any unanswered questions
by Proponent if such a move was allowed by choosing the empty sequence as a result of the function
for sequences with unanswered questions by Proponent.

Intuitively, O- and P-questions are challenges for Opponent and Proponent to provide evidence
for conclusions and assumptions respectively. O-answers provide evidence for an assumption, and
P-answers provide evidence for a conclusion.

In the example, a strategy for Proponent would be to answer the initial question by asking the
question labelled L and then play as indicated above in response to any Opponent move. Note
that the choice of asking the question labelled R will not lead to a winning play: Proponent will
be unable to answer Opponent’s question s.

Next we show that each strategy for the arena corresponding to a formula ¢ gives rise to a
sequent calculus proof of ¢. Note that several strategies give rise to the same proof: games make
significantly finer distinctions than sequent calculus proofs.
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Theorem 25 For any formula ¢ and strateqy ® for ¢ there exists a sequent calculus proof of ¢.
We have to show a stronger version of this theorem, namely the following version:

Lemma 26 Given any set A of O-answers with labels p1,...,pn and a strategy for a formula ¢
where Proponent can answer in addition any O-question with label p1,...,pn there is a sequent
calculus proof of

PLA...App Do

We call such a strategy an A-strategy.
Proof By induction over the structure of ¢. Let I' be the formula p; A -« - A py,.

Atom p: All possible strategies start with a p-question by Opponent. If p is amongst the labels
P1,-..,pn of A, then the axiom p F p followed by a D-introduction rule provides the desired
derivation. There is no other strategy for such an arena;

¢ A : Because every question and answer of a strategy for ¢ and 1) has to be justified eventually
by an initial move for ¢ and v it is possible to obtain one strategy for ¢ and one strategy
for ¢ from the given strategy. Hence by the induction hypothesis we obtain sequent calcu-
lus proofs of ' D ¢ and I' D %. Hence one obtains also a sequent calculus proof of T' D (¢A);

¢ D 1y: There are several subcases.

Firstly, suppose ¢ = @1 A ¢a. Then (¢1 A ¢2) D 2 is equivalent to ¢1 D ¢2 D 2, and the
arenas for

(1 Ag2) D and ¢1 D¢ D9

are identical. Hence we consider the case ¢1 D ¢2 D 1 instead.

Secondly, suppose ¢ = o V 7. Now define two A-strategies ®; and &5 for 0 D¢y and 7 D ¢
respectively, where the moves of both players in ®; and ®, are the moves of ® which
are justified by moves not hereditarily justified by 7 or o respectively. By considering an
Opponent-strategy which does not ask the nodes marked L or R corresponding to the dis-
junction in ¢ V 7, one can show that the A-strategies ®; and ®, are well-defined. By the
induction hypothesis, we obtain sequent calculus proofs of I' D (o D ¢) and I' D (7 D ¥).
Hence there is also a sequent calculus proof of I' A (o V 7) D 9.

Thirdly, suppose ¢ = ¢ D 7. Again, define A-strategies ®; for 7 D ¢ and &, for ¢ where the
moves of both players are the ones not hereditarily justified by ¢ or 7 respectively. Clause 6
of definition 23 ensure that these A-strategies ®; and ®, are well-defined. By the induction
hypothesis we obtain sequent calculus proofs of I' D 7 D ¢ and T D o. Hence there is also a
sequent calculus proof of I' D (o D 7) D ¥.

Finally, suppose that ¢ is an atom p. Again, there are two cases. Consider an A-strategy
for p D 9 without a Proponent-question corresponding to p. In this case, the A-strategy for
p D % is in fact a strategy for ¢, and by the induction hypothesis there is a sequent calculus
proof of I D 4, hence also a proof of I' D p D 1. Now suppose there is a Proponent-question
corresponding to p. Clause 6 of Definition 23 ensures that the strategy which removes the
Proponent-question and O-answer for p is a AU {p}-strategy of ¢). By the induction hypoth-
esis there is a sequent calculus proof of (I' A p) D 9.

¢ V ¢: By Clause 7 of Definition 23, an A-strategy for ¢ V ¢ gives rise either to an A-strategy for
¢ or an A-strategy for ¢, depending whether Proponent plays the L-or the R-node. By the
induction hypothesis there is either a sequent calculus proof of I' - ¢ or of I' - ¢. Hence in
both cases there is also a sequent calculus proof of I' - ¢ V 1.
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O

We now describe how to extend our games model of intuitionistic proofs to be a model of
intuitionistic reductions. For this, we need additional structure to model indeterminates. The key
idea is to introduce additional plays which Proponent may start at will.

Definition 27 A strategy with oracle of type ¢ is a strategy where, in addition, Proponent is
allowed to play using an additional arena for ¢. The justifying question for the root nodes of ¢ is
an initial question.

Substitution of reductions for indeterminates is modelled by substitution of strategies for ora-
cles.

Definition 28 Suppose ¥ is a strategy with oracle of type ¢ and ® is a strategy of type ¢. We
define the substitution of ® for the oracle in U to be the strategy ¥ except that we replace every
answer which is a move given by the arena for ¢ by the mowve obtained by using ® to answer ¥’s
move in ¢, then using VU to answer this move and so on until ¥ answers with a move outside the
arena for ¢.

Substitution of strategies for oracles is well-defined:

Lemma 29 Let ¥ be a strategy for the arena for o with oracle of type ¥ and ® is strategy for the
arena for v with an oracle of type ¢. Then the substitution of ® for the oracle in U is a strategy
for the arena for o with oracle of type ¢.

Proof By induction over the structure of o. O

A proof with indeterminate of type ¢ is now modelled as a strategy with oracle of type ®.
More precisely, the proof of ?- ¢ using only an indeterminate of type ¢ is modelled by the copy-
cat strategy, where Proponent simply replays each Opponent-question in the arena for ¢ in the
additional arena for ¢ he may use.

Theorem 25 can be extended to games with indeterminates and stated intuitionistic reductions:

Theorem 30 For any formula ¢ and strategy ® for ¢ with oracles of type ¥1,...,Ym there exists
a intuitionistic reduction of ¢ with indeterminates of types Y1,. .., Ym.-

Proof By Theorem 25 we obtain a reduction of (¢1 A--- A,,) D ¢ and hence also a reduction
of Y1 A--- Ay, 7- 1. Now we use cuts with the reduction (--- (¥, ¥3); AR---), ¥,,); AR where
U, is the reduction consisting only of an indeterminate of type ;. O

At this point, we have achieved our first objective. We have a class of abstract structures which
supports the triangle of Figure 2. The top left-hand corner represents the basic calculus of queries;
the top right-hand corner stands formal language of reductions, built using a class of variables
corresponding to indeterminates; and the bottom corner is given by the interpretation of reduction
models. However, we do not as yet have a declarative, or truth-functional, semantics of search. As
we have seen, in the setting of reductive logic, such a semantics can be understood in terms of
state.

We will now develop a semantics of proof-search for intuitionistic logic by considering the class
of intuitionistic reductions to be embedded in the class of classical reductions, using the techniques
introduced in [33, 31, 27]. To this end, we extend our semantics of reduction to the formulation of
classical logic based on the Apv-calculus [33, 31, 27].
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Ax oA TEFo¢A
ToF ¢, A T'FA
Léy,l'FA ExchangeL PFA Gy, A
y,0,T"FA A Y, ¢, A
R

Cut
ExchangeR

rirat TrTal

L9 FA F'F¢,A TF,A
F,IPA’(,ZJ’I-A/\L FT'Fong', A NE
ko, A T,FA oY, A

Tosora L Tresea B
TobA T, kA THé ¢, A

Toverea X Trgve,a’t

Table 2: Classical Sequent Calculus

3 Semantics for Classical Reductive Logic

In this section, we describe a semantics for propositional classical logic viewed as a reductive
system. Building on the wealth of proof-theoretic studies of proof-search in classical logic logic —
see, for example, [7, 33, 31, 30, 28, 40] — we take as our point of departure a minor variant of
Gentzen’s sequent calculus, LK, given in Table 2. Contraction and Weakening are built into the
other rules but, for technical reasons, we include Ezchange. Note also the absence of the usual
rules for negation,

L'ko,A -L F,qH—A_‘

I,—-¢+F A 'k =¢, A

For technical reasons, it is simpler for our semantic purposes to define ¢ as in the intuitionistic
style as ¢ D L. In the presence of the classical D R rule, =L and —R are derivable. For convenience,
we shall simply refer to this system as LK.

R.

As with the intuitionistic calculus, LJ, the principal virtues of LK’s presentation of intuitionistic
proofs as a basis for proof-search are that it admits Cut-elimination and, in the absence of Cut,
has the subformula property. Note, however, that the advantages of Cut discussed in § 2 apply
equally well to classical logic.

Semantically, we aim to extend the definition of a reduction structure to classical logic, i.e.,
to LK proofs. To this end, we require a representation of classical proofs for which a non-trivial
semantics is available. !¢ For this representation, we use Parigot’s Au-calculus [24]. We present
this calculus and its extension to cover disjunction, and then present a categorical semantics for
it.

3.1 The Auv-calculus
The raw terms of the Au-calculus with conjunction are given by the following grammar:
t u= x| Amd.t | tt | pat | [a]t | pLt | [L]E | (&) | w(t) | 7' (P).

We assume that the scope of the bracket operator [a]t extends as far to the right as possible, i.e.,
the term [a]ts is implicitly bracketed as [a](ts). The rules for well-formed Au-terms are given in
Table 3. The second instances of the rules [] and u model contraction and weakening respectively.

16That is, a semantics which does not identify all proofs of a given a sequent.
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T oor oA A7
T,z k1, A THtp—,A TrsdA
TForg g oA 1 TFts:9,A - F
Tk t¢% A DEegA
TFpatg, A H TF[a]t: 6%, A -
THtA TN
TF pat:g, A H TF[a]t: 6%, A -
| R AN F'F&1,A
TFalt LA TFea 0
THtg,A TFs,A TFtpAp,A TFtpAp, A
TF o drna N Trroeans P Trrmwea N

Table 3: Well-formed Ap-terms

The definition of the reduction rules requires not only the standard substitution ¢[s/z], but
also a substitution for names t[s/[a]u], which intuitively indicates the term ¢ with all occurrences
of a subterm of the form [o]u replaced by s. Again, we need the notion of a term with holes,
adapted for the Ap-calculus. Such a term C with holes of type ¢ is a Au-term which may have also
the additional term constructor _ with the rule I' - _: ¢, A. The term C(u) denotes the term C with
the holes textually (with possible variable capture) replaced by u. Then we define ¢[C(u)/[a]u],
where « is a name and w is a metavariable, by

2[C(u)/[e]u] @
([D)C(w)/[a]u] C(HC (u)/[e]u])

and defined on all other expressions by pushing the replacement inside.

Again, there are three kinds of reduction rules: 8, n and (-rules. The  and n-rules have
the same purpose as the -and n-rules in the simply-typed A-calculus. The (-rules of the Auv-
calculus are variants of the -rules where the exchange is applied to the right-hand side before a
(B-rule is applied. This is different from the simply-typed A-calculus where (-rules model permuting
reductions over VE-rules. The reduction rules are given in Table 4.

The term [o]t realizes the introduction of a name. The term po.[(]t realizes the exchange op-
eration: if ¢ was part of A before the exchange, then ¢ is the principal formula of the succedent
after the exchange. Taken together, these terms also provide a notation for the realizers of con-
tractions and weakenings on the right of a multiple-conclusioned calculus. It is also easy to detect
whether a formula /° in the right-hand side is, in fact, superfluous, i.e., that there is a derivation
of ' F t: ¢, A’ in which A’ does not contain %; it is superfluous if 3 is not a free name in ¢. This
observation is exploited in the sequel.

The Ap-calculus has a special formula | and treats the formula —¢ as ¢ — L. The LI-and
1 E-rule model the fact that the formula 1 can be freely added to the right-hand side of each
derivation. As these two rules suggest, we treat L as a special name, and when we have a generic
term po.t with I'F £:4), 0™, A, we always include the case uL.t.

Now we turn to the addition of disjunctive types to the Au-calculus. We give here only a
summmary; for a detailed exposition see [33, 31].
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Jé] (Az:g.t)s ~ t[s/x]

¢ (pa?V)s ~ B t[[Blus/[o]u]
(pa®=?Lt)s ~ pl.t[[Llus/[a]u]

n* pa.fa]s ~ s if @ not free in s

B [V(pa.s) ~ sly/a]

nt pL L]t ~ ¢t

gt [Lult ~ t

¢ w(uats) ~ s [[Blr() o]
T (na?"?.s) ~ py?.s[[y]a' (u) /[o]u]
m(na"V.s) ~ pl.sl[L]m(u)/[o]u]
' (na®t.s) ~o o pls[[L]r (u)/[o]u]

s m((t,s)) ~

T ((t;s)) ~ s

Table 4: Reduction rules of the Au-calculus

One possible formulation, with a single minor formula in the premiss is as follows:

P—)¢i,A
I'— ¢1+¢2,A

and yields the usual addition of sums (coproducts) to the realizing A-terms:

i=1,2 (1)

t == im(t) | in2(t) | casetof iny(z) = tor ina(y) =t

An alternative formulation given in [4] which exploits the presence of multiple conclusions:

L — 61,62, -
I' — ¢1 \Y ¢27 A
Later, in § 4, we shall see that this formulation is the more desirable as basis to model reduction
operators for proof-search because it maintains a local representation of the global choice between
¢1 and ¢o: Given a local representation, we can hope to avoid backtracking to this point in the
search space.

For the Ap-calculus, however, this latter formulation presents a new difficulty. Suppose the
Ap-sequent T' - ¢: ¢, 9P, A is to be the premiss of an application of the VI rule. In forming the
disjunctive active formula ¢ V 1, we move the named formula +° from the context to the active
position. Consequently, VI is formulated as a binding operation on names and we add the following
constructs to Ay, to form the grammar of Auv-terms [33, 31]:

t == ()t | vB.t. (3)

The term v . t introduces a disjunction and the term ()t eliminates one. The associated inference
rules are as follows:

TFt¢,9P% A THtéVvy,A

Trogtove a1 TF Btg 0P AV F
THtg, A THtoV LA
TFoitev A VIt TF (e a B

To avoid variable capture, we have to add a special clause for the mixed substitution:
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(a)[[C(u)/[du]] = py-C(pex.[YKe)t[C(u) /[a]u])

where 7 is a fresh name. If we had pushed the substitution through, the substitution lemma fails:
the term pf.[a](a)z is well-formed if z is of type ¢V (¢ D x). If the term (uf.[a]{a)z)[[a'|us/[a]u
is defined as pf.[a']({a)xs), we obtain an ill-formed term.

The corresponding reduction rules are

B (B)(va.s) ~ s[B/a]

¢v Byt~ potal(B)s/[7]s]
BY  (ByuytVrit ~  pL[[L)(B)s/[V]s]
¢Y Lyttt ~  pactfal(L)s/[v]s].

The rules VI, VE|, 8Y and () are special cases of VI, VE, 3V and ¢V, respectively. They are
included as convenient abbreviations and need not be analysed separately.

Remark To avoid loops during reduction, all {-rules do not apply if the term ¢ in which the
name « is changed is equal to {a)t’, and o does not occur in ¢'.

Parigot gives only reduction rules for g-reduction. For both proof-theoretic and semantic rea-
sons, we also need extensionality, i.e., we must have the n-rules. We will work with long n-normal
forms in the sequel.

We introduce them here as expansions; that is, each term of functional type is transformed
into a A-abstraction, each term of product type into a product and each term of sum type into a
term v3.t'. These rules are

n" ot~ Ar:ddtx

ot o~ (w(t),7'(1))

nY t ~ vala)t
In these rules, we assume that ¢ is neither a A-abstraction, nor a product, nor a term va.t', nor
that ¢ occur as the first argument of an application, or as the argument of a projection w or 7’ or
of some term (8)_. In the -, n”*- and n"-rules, we also assume that ¢ is of function type, product
type and sum type respectively.

These n-rules generate critical pairs'” which give rise to additional reduction rules. As an
example, consider the term ¢t = [a]ua.s, where « is a name of type ¢ — . This term can reduce
via an n-expansion to [a]\z: ¢.(pa.t)x, and via a pv-rule to t. The reduction from [a]\x: ¢.(pa.t)x
to t can be seen as a generalized renaming operation. This operation is denoted by ¢ {8} and is
defined as follows:

Definition 31 Define the generalized renaming of a Auv-term t by a name (3, written t {8}, by
induction over the type of the name 3 as follows:

Atomic type: (pa.t) {8} = t[3/a];

¢ — P Az g.t) {8} = t{B'}[B] z: d.u/[B'|u] for some fresh name B' if x occurs in t {3’} only
within the scope of [B'u, otherwise (\x: ¢.t) {8} is undefined;

G AN Ift = (t1,ta) and for some names By and By of type ¢ and ¢ respectively, to {Ba2} arises from
t1 {B1} by replacing each subterm [B1]s1 recursively by some subterm [B2]sa, then t{8} =
t1 {B1}[[Bl(s1, 82)/[Br]s1];

17A formal definition of critical pairs may be found in J.W. Klop’s comprehensive reference article on term
rewriting systems [18]. Informally, the idea is that critical pairs are those pairs of terms upon which the normalization
and confluence properties of a rewriting system depend. That is, pairs langlet1,t2) such that there is a term ¢ such
that t1 ~ t and to ~ t.
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oV (vat){B} = t{0'} [Blva.u/[B'|u] for some fresh name B' if o occurs in t {B'} only within
the scope of [B'|u, otherwise (va.t) {8} is undefined.

The additional reduction rule, which is called (¥, can now be stated as:

¢ aji~t{a} (4)

Note that this reduction rule specializes to the rule g* if a is a name of atomic type. Because the
outermost bindings pa._ of names of atomic type disappear by an application of the (#-rule, this
rule cannot give rise to reduction sequences t ~* t. Logically, the (¥#-rule amounts to taking a
introduction rule and moving it above a structural rule (i.e., weakening, contraction) applied to
its principal formula.

Theorem 32 The A\uv-calculus is confluent and strongly normalizing.

Proof See [27]. O

3.2 A Categorical Semantics for the Auv-calculus

In this subsection we describe the categorical semantics for the Auv-calculus which we will extend
later to obtain a semantics for classical reductions. We give here only the definitions; for the proofs
and further background see [27].

We must interpret Auv-sequents, of the form

ThHt:g,A.

Such a sequent represents, as the term ¢ via the propositions-as-types correspondence [24], a
proof of the classical sequent I' F ¢, A, in which we forget variables and names. Now, sequents
I+t : ¢, which represent, via the propositions-as-types correspondence [9], proofs in intuitionistic
propositional logic, can be interpreted in a bi-Cartesian closed category [20]. However, it is well-
known that any attempt to extend this interpretation to classical sequents by adding an involutive
negation must fail because bi-CCCs with involutions collapse to Boolean algebras, thereby causing
the interpretation to identify all proofs of a given sequent. The solution adopted in Ong-Ritter
models [23] is to use a fibration, as follows:

e The base B, which is a category with finite products, interprets the named part of the
sequent, A. Its arrows f : [A] — [A'] interpret compositions of weakenings, contractions
and permutations;

e The fibre £fa] over each object [A] of the base is Cartesian closed. It interprets sequents of
the form T' F ¢, with side-formulae A;

e Finally, we must add sufficient structure to interpret the structural operations, including
negation. In particular, we must be able to interpret the exchange rule
THt:y,0* A
Tk pa. Bt : ¢, 9P A’
described in § 3.1. The key point here is that we move from the fibre over ¢, A to the

fibre over ¢, A and must have sufficient structure in the fibration, corresponding to the
interpretation of u and [—], to interpret this swap.

It follows that the appropriate categorical definitions of models of Ay, Au® and Auv are as fi-
brations with universally-defined extra structure corresponding, respectively, to each additional
logical connective, @ or V.

Such models, because they are fibrations, require Beck-Chevalley conditions [36, 15] for each
connective which is to be interpreted. These conditions interpret the (-rules for the corresponding
type-constructors, ensuring the interpretation of the connectives is stable with respect to change
of base (cf. the use of Beck-Chevalley conditions to ensure that substitution is modelled correctly
in hyperdoctrines). The requisite definitions follow.
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Definition 33 A Au-structure is a split fibration p: € — B satisfying the following conditions:

1. p:& — B is a fibred Cartesian closed category, i.e., each fibre is Cartesian closed and re-
indexing, i.e., applications of functors f*, preserves products and function spaces on the
nose;

2. The fibre & over the terminal object 1 in B is canonical: i.e., for any object D of B, there
is a bijection between the objects of Ep and &1, with one direction given by re-indezing along
the terminal arrow 'p : D — 1, i.e., applications of the functor !p*;

3. The base category B is the free category with finite products generated from the set of objects
of the canonical fibre & less a distinguished object L and all objects isomorphic to it (note
that all arrows in B, a free category with finite products, are compositions of weakening,
contractions and permutations);

4. For each projection
wa:DxA— D,

in the base, there is an isomorphism

Ep(C,A) =2 Epxaa(wa™(C), 1),

written as s [@4]s and pa” .t & t, natural in C and D;

5. For any object A of a category C with finite products, the flat fibre C4 is the category whose
objects are objects of C and the morphisms from B to C are morphisms from B x A to C.
The previous conditions imply the existence of a bijection (:EX, 4, 5(C, D) = 822’% (C, D).
We require the action ( to be functorial, natural in T' and A, and to make the following
diagram commute:

CA:A-B
: ER%B(C, D)

gng—yB(Cv D)
(571 [6°]

T I'x A
Eaxaspxp(Cy L) m ExxBxp(CyL)
X A,

6. A Beck-Chevalley condition holds for =: for each contraction map
cAx(A=B)—>Ax (A= B)x (A= B)
in B we require the following diagram to commute:

IN C'Oé' I'xAxA
EAxA=BxA=B — SAxBxB

* * *
Ca=B CpoCy

r I'xA
gAxA:>B C gAxB

Note that in the composite arrow cg - ¢y, and subsequent similar situations, we overload our
notation (as in [23]) by writing ¢’ for re-indexing along the relevant “contraction map” in
the flat fibration over EaxpxB;
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7. A Beck-Chevalley condition holds for products: for the canonical isomorphism and the con-
traction functor, namely

?:Eax(axB) = Eaxa X Eaxp  ond ca:€axaxa = Eaxa,
the two functors
(cax()x()xcp)o(px@)og:EaxaxpxaxB = Eaxa X Eaxp

and
pochyp:EaxaxBxAxB =+ Eaxa X EaxB

are equal.

Definition 34 A Auy-model is a pair P = (p,[—]), where p:€ — B is a Au-structure and the
interpretation [—] : L, — p is a function from the syntaz of A (denoted Ly, ) to (the components
of ) p such that [A] is an object of B and T' - t: A, A is interpreted as morphism [t]: [T'] — [4]
in the fibre over [A]. The interpretations of variables, pairs and A-abstractions are given in the
usual way via projections, products and the exponentials in the fibres, respectively. The terms po.t
and [a]t are interpreted by the isomorphism given in Definition 33 (4).

We will sometimes write Ep(D) for the fibre over D in the model P and Bp for the base in the
model P. Also, we will sometimes write [—], to denote interpretation in the model P. We extend
structures to account for each of the two forms of disjunction in the next two definitions. In each
case, the corresponding definition of model requires an interpretation [—], extended to Ly,q and
L., respectively, as in Definition 34.

Definition 35 A Au-structure is called a Au®-structure if each fibre has a coproduct which is
stable under re-indexing, i.e., applications of the functor f*, where f is any morphism of B.
Additionally, we require the following Beck-Chevalley condition: the diagram

o

ENOTP (W B, 1) - ETXAHB) (B )

L(A+B) L(A+B)

ENA(WEE, L) x EXB(wEE, 1) e EVA(E, 0) x ENB(E, C)

commutes, where L4 B) 18 the defining isomorphism for the co-product in the fibres. The definition
of interpretation [—] can adapted to Mu®-structures in order to give Aud-models as follows: the
term constructors case, iny and ing are interpreted by the corresponding co-product constructions.

Given this definition of Au@®-models, we can establish soundness and completeness for Au®
quite straightforwardly.

Definition 36 A Au-structure is a called a Apv-structure if each weakening functor w ,:€a —
Eaxa has a right adjoint. We denote by v the defining isomorphism

v: hOmg(AxB)(F,A) = homg(A)(F,A \% B)

We also ask for this adjunction to satisfy a Beck-Chevalley condition, i.e., that the diagram

Cvody

gAxA\/BxA\/B gAxAxBxAxB
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commutes, where (y is the functor given by assigning each morphism f:C — D in Eaxavp the
morphism py.[](v=2(uB.[v]f)). The definition of interpretation [—] can adapted to A\uv-structures
in order to give Auv-models as follows: the interpretation of terms va.t and ()t uses the defining
isomorphism for V.

Apv-structures are sound and complete for the Auv-calculus (see [33, 31] for details).

Next we adapt the semantics of LK-proofs in the Auv-calculus to deal with LK-reductions, in
the same way as we changed the semantics of LJ-proofs using bi-Cartesian closed categories to
deal with LJ-reductions.

3.3 Classical Reduction Models

Having established the semantics of Auv as a deductive system, and given our general prescription
for reading inference rules as reduction operators, we can give the definition of a classical reduction
structure. Such a structure arises from a Apv-structure by introducing an additional fibration to
model indeterminates and introducing a category of worlds and a functor to the Grothendieck-
completion of the fibration as for reduction structures. Note that we can merge the two fibrations
(one for the formula on the right hand side, and one for indeterminates) into a fibration over a
product.

Again, a few points are noteworthy:

e The addition of indeterminates to models of \uv follows the same pattern as for (intuition-
istic) reduction structures but fibre-wise;

e The structure of Auv-models reflects the fact that Auv is essentially a system of natural
deduction. Consequently, just as in the intuitionistic case, the interpretation of (Cut-free)
LK reductions exploits a Kripke-world structure which records the history of the reduction;

e As before, there is no equality between reductions in the semantics: We interpret only Cut-
free reductions and do not consider any equality induced by Cut-elimination. A non-trivial,
symmetric categorical semantics of LK (essentially in Gentzen’s original form [8], which
validates all (in)equalites induced by Cut-elimination, has been introduced by Fithrmann
and Pym [6], but these ideas are beyond our present scope.

Definition 37 Let W be a small category (of ‘worlds’) with finite products. A classical reduction
structure (€, F) is given by the following:

(i) A strict indexed category E: (B x C)°? — Cat with comprehension such that B has finite
products and each fibre E(T, A) is a bi-Cartesian closed category and each functor E(f,q)
preserves the bi-Cartesian closed structure on the nose; and

(i) A functor F:W — B which preserves finite products;
such that the following properties hold:
(i) There is a natural bijection between Homp(A, B x C) and the pair
(Homg(A, B), Homg(A,l)(l,C’));
(i) For each object A of B, the functor E(Ida x —) is Auv-structure, and for each morphism

f: A= B in B, the natural transformation E(f,—) preserves the structure of a Auv-structure
on the nose.

We will give a set-theoretic example of a classical reduction structure using continuations in
§ 5.

Next we describe how to interpret LK-reductions in a classical reduction structure. In the same
way as for intuitionistic logic, we first spell out the defining conditions for such an interpretation.
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Definition 38 (interpretation) Let (£,F) be a classical reduction structure. A function [—],
which is parametrized by o list of indeterminates © and a world W, mapping reductions of LK
and their syntactic constituents to elements of a reduction structure is called an interpretation if
it satisfies the following mutually recursive conditions:

(i) [©]" is an object of B and [O]Y = A if © is the empty list of indeterminates and F(W) = A;
(ii) For any formula ¢, [¢]& is an object of the category E(([O]W,1));
(iii) For any context T = ¢1,...,¢n, [T]Q is equal to (A1 X --- x A,), where [¢;]8 = Ai;

(iv) For a reduction ®:T ?- ¢, A with indeterminates in ©, [®]% is a pair (W', g), where W' is a
world and g a morphism from [T]Y to [8]% in E([O]Y', [A]Z") such that g = ((Id, F(a)),1d)* f,

for some morphisms
f:Ir18 — (418
and a:W — W';
(v) For all reduction operators R, there exists a world Wg and a morphism ar:1 — Wg;

(vi) For a reduction ®; R, with unary reduction operator R, with sufficient premiss T' 7- ¢', A’
and putative conclusion T' 7- ¢, A,

[9:F18 = (W', (1, F(@)),10)" 0 e (CUr S

(App © (Cutyy i (Vpp g (1)), 50))

where W' =Wy x W x Wg and [[@]]gvXWR =W' f1) and a: W — W';

(vit) For a reduction (®1,®2); R, with binary reduction operator R, with sufficient premisses
T; 7- ¢;, A; and with putative conclusion T 7- A, A,

(@1, 220 RIS = (W', (14, F(@),1d)* (7 2w v
[S]
(CUI’H_FI]IS/XWR (App (0] <<Cur[[rl]|Z)VXWR (V[[Al]lWxWR@(fl)),
Cur[[Fl]l(‘;VXWR (V'[AQ]]WXWR@(f2))>>, Snd))),

where W' = Wy x Wo x W x Wg, a: W—=W' and [®,]8 " = (W/, f;) and W! = W x Wg x
Wi'

(viii) Suppose ©® = ©' &, where £ is an indeterminate ¢1,...,¢n 7= ¢. Then [O]W is equal to
[O1" x [(41 A--- A ¢n) D 418

We can now give the canonical interpretation of LK-reductions in classical reduction structures.
Definition 39 (canonical interpretation) Let (£,F) be a classical reduction structure. The
following interpretation, [—], where © is a list of indeterminates , is called the canonical inter-
pretation (where ass is the associativity isomorphism between (¢ V )V A) and ¢V (P V A)):

(i) 1118 = o;
(ii) [T18 = 1;
(iii) [62 018 € [418 = [W]8;
(iv) [6 A 018 < [418 x [418;
() [6v 918 = (418 v 18 5
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(vi) For all reduction operators R except O L, VL, VR and ExchangeR, F(agr) = {ld1, f), where
Se(f) is the interpretation of R according to Definition 4, where the category C is the category
E(1,1);

(vii) For the remaining reduction operators, F(ag) is defined as follows:

ExchangeR Consider the reduction operator

T ?7-4,¢,A
I'7-¢,9,A

and let ¢' be the formula T DYV oV A. Then
F, (EwchangeR) = (14, Cur(v(ua.[8App o (v (1) ugry)))

D L: Consider the reduction operator

T ? ¢,0,A T,i 2 0A
T,6D ¢ 2- 0, A

and let ¢1 be the formula (T D ¢V oV A), ¢2 be (T A) DoV A, and let w1 be the
projection

[61 A 62 AT A (6D 9)]§ — [61]5

o the projection

[61 A d2 AT A (6 D )] — [d2]5-
Then

F(asp) = (ldi, Cur(py.c*([7](w™" (Cur™(m))o
(Id, 7pry, App © (g s, v~ (Cur™ (1)) o (Id, mey))))));
VL: Consider the reduction operator

T,¢ ?- 0,A T, - 0,A
T, 6V - o, A

and let ¢ be the formula (T A @) D oV A, ¢2 be (T A) DoV A, and let w1 be the
projection

[61 A2 AT A (S V)] — [o1]5

and s be the projection

[61 A ¢ AT A (¢ V)] — [215-

Then ,
Flayr) = (i, Cur(py.c*[v)(w*my o (Id, mprys, nB-[7]

(w*Cur™ my o (Id, ey v~ (apovrgy)))))
VR: Flayr) = {ld1, Cur(u(ass o v~ (App o (mirys 1> avsvar)))-

(Because reduction structures are derived from Apv-structures, in the cases for D L and VL, the
formula o is distinguished in order to define the interpretation.)

Note that also in the classical case the definition of interpretation does not force any two
reductions to be equal. The reason is the same as for (intuitionistic) reduction structure: No
equality between worlds or morphisms between them is forced by the interpretation.

Note that the the semantics of the reduction operators which involve structural rules on the
right-hand side or change the side formulse on the right-hand side involve a change of base C. This
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is obviously true for ExchangeR, but also D L, VL and VR involve such a change of base: for O L
and VL it is given by a contraction on the right-hand side, and for VL by the isomorphism used
for modelling V.

We can now define classical reduction models, which generalize the (intuitionistic) reduction
models established in Definition 10.

Definition 40 (classical reduction model) A classical reduction model,

R=((& F),[-].E)
is given by the following:
e A classical reduction structure (€, F);
o An interpretation [—] of reduction operators and searches for LK;

o A forcing relation W =g (®:9)[[; A], where W is a world, © and ', A are contexts, ¢ a
formula and ® o reduction with endsequent T' ?- ¢, A with indeterminates contained in O,
such that

N PN
[Tle [, Als
is a morphism in the reduction structure, and which satisfies the following conditions:

1. If W e (®:9)[I'; A] and a: W — W' is a morphism in W for some world W', then
also W' |Eg (®:9)[[; A];

2. W e (Az: 9)[T, ¢; A];
3. W ke (&) A] if € is an indeterminate of type T' 7= ¢; A;

4. If R is a reduction operator with premisses 'y 7= ¢1,A1 and 'y 7= ¢2, Az and conclu-
sionT' 2= ¢, A, then W =g ((®1, @2); R)[T, ¢; A] if

W x Wg e ()L, ¢:i; Adl;

5. If R is a reduction operator with premiss 'y ?- ¢1, A1 and conclusion T’ ?- ¢, A, then
W ke (21; R)[L, ¢; Al if W x Wg e (®1)[T'1, ¢1; A1];

Soundness and completeness carry over from the intuitionistic case.

Theorem 41 (soundness) Consider any classical reduction structure (€, F'). Suppose ® is a LK-
reduction of I' ?- ¢, A with indeterminates &1, .. .,&y of type Ty 2= ¢5, A Then W =g (9: 9)[I; A]
for any world W, where © = {&1,...,&.}.

Proof The proof is essentially the same as for Theorem 12. O

Again, we write I' g ®: ¢; A if for all worlds W and all classical reduction models, we have
W k= (®: ¢)[I'; A]. Then we have also completeness:

Theorem 42 (completeness) If T g ®: ¢, then T ?- & : ¢.

Proof The term model construction for the intuitionistic case can be extended easily to give a
term model for a classical reduction structure. For the category C choose the free cartesian category
over the atomic formulee, and now follow the intuitionistic case in constructing a term model out

of reductions. O

We also obtain completeness with respect to searches:
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=T 7 ¢« T[]~ (2] - [4]

(<]

[T] ~ [¢]

Figure 5: Reductions-as-realizers-as-arrows

Theorem 43 Suppose (€, F) is the free classical reduction structure over a set of objects G. A
reduction ® of I' ?2- ¢, A with leaves T'; ?- ¢;, A; which are not axioms can be completed to a
proof iff there exists a morphism f such that there is a functor E((!, }):£(©)—=E(1), where © is
the context corresponding to the indeterminates &1, ..., &,. Moreover, the completion of a Cut-free
reduction is Cut-free.

Proof The proof can be transferred directly from the intuitionistic case. O

We have now provided, in the intuitionistic and classical settings, a semantics for reductive
proof which satisfies our triangular criterion of Figure 5:
However, we have not yet provided a semantics for proof-search. Following our slogan,

Proof-search = Reductive Proof + Control,

we must now pay attention to control. Hence we shall provide, in § 4, a semantics for backtracking.

We conjecture that the semantics for reductive proof given in this chapter can be easily extended
to predicate logic and quantifiers: we have previously described how to use fibrations to obtain
models for predicate logic. It should be possible to combine these fibrations in a modular way
with the fibrations used to describe reduction structures, so as to produce reduction structures for
predicate logic.

4 Towards a Semantics of Control: Backtracking

In this section we provide a semantics for proof-search in intuitionistic (propositional) logic which
captures, within the framework of models of reductive logic we have described in § 2 and § 3,
backtracking. We achieve this aim firstly, by providing a characterization in classical reduction
models of where backtracking can occur in intuitionistic proof-search and, secondly, by constructing
a specific games model within which both backtracking and the uniform proof strategies may be
understood quite naturally.

Given a system of reduction operators, R, the search space of R, Space(R), may be described
graphically as an and-or tree as follows:!18

1. Nodes of the tree are labelled by problems, I' ?- A. The root is labelled by the initial
problem;

2. Nodes are connected by arcs labelled by instances of reduction operators,

i 2-=Ay ... T 7- Ay
rz2- A

181n [28, 30], the search space for an intuitionistic sequent calculus is defined to carry the ‘subderivation ordering’,
C: For reductions R, S, R C S if R is a labelled subtree of S. In this paper, we shall make no use of this ordering but
remark that orderings of this kind may provide a suitable basis modelling control régimes such as formula-selection
strategies. For example, Prolog programs may be seen as antecedents of sequents, ordered from left to right in order
to impose the “leftmost first” strategy.

R,
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which may be denoted

ry 7- A B AT

in which arcs are directed (traditionally) down the page. The collection of arcs from a node
labelled by some problem I' ?- A to the nodes labelled by the problems

Ly 2-A ... T 7- Ay,

determined by such an instance of a reduction operator, R, and connected by the curved arc
in the figure, is called an R-bundle;°

3. A problem may be the origin of several different bundles, corresponding to different reduction
operators and giving the disjunctive (or) structure of the space. If n different reduction
operators R;,

Taa 7- A oo Tom 7- Aim
r?A

for 1 <i < n, are applicable to a problem I' ?- A, then the corresponding arcs in the search
space may be denoted

Riv

(Flj ?- Alj)?zl (Fn] ?- An])n

i.e., a disjunction of R;-bundles;

4. Paths through Space(R) thus correspond to compositions of instances of reduction operators.

Within a bundle, the search space has conjunctive (and) structure. For example, the problem

PAY T- OV,

in the search space Space(LK), is the root of bundles arising from AR, with two branches, and
VR, with one branch. In the search space Space(LJ), two distinct bundles, each with one branch,
arise from % V 1.

Thus the exploration of a search space requires navigation between disjunctive choices: one
might make a choice, such as between the the two branches of Space(LJ) generated by the two cases
of the VR operator, explore that branch of the search space, and perhaps fail. One then backtracks
to the point at which the choice was made, and tries the other branch. Thus backtracking is
a key, and we suggest perhaps the prototypical, control mechanism in proof-search. Indeed, the
lack of a full permutation theorem for intuitionistic propositional sequent calculus [17, 33, 31],
with the consequence that the order of the propositional rules used is critical in the finding of a
proof, renders backtracking an essential component of the control of a search for a proof in LlJ.
To see this, consider the following example, in which the use first of D L on p D ¢ leaves the

19Whilst this graphical notation is useful for defining search spaces, it is not convenient for performing specific
reductions, for which we revert to the use of “proof trees”.
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subsequent development of the left-hand branch of the reduction doomed to failure, even though
the endsequent is provable:2°

succeeds succeeds
fails(t) ro>s,q,r ?-s ros,q,r,t?-t
DLsDt
ros,sDt,q,r -t
pDqg,rOs?-p r>s,sDt,q?-rDt
(1) DLpn,

pDqg, rD8,8sDt?-rDt

After the first D L, we can see that the left-hand branch will fail, and we must backtrack to (1)
and make a different choice of reduction. We might try D L, instead. Such a control step lies
outside the logical structure we have so far established but we can give a logical account of it by
considering the intuitionistic calculus LJ to be embedded in the classical sequent calculus, LK.
We quickly review the main points from [33] in this context before proceeding to characterize
backtracking.

In general, every intuitionistic sequent derivation arises as a subderivation of a classical se-
quent derivation via (for example) Dummett’s presentation of intuitionistic logic as a multiple-
conclusioned sequent calculus [4]. Because the classical D R rule allows multiple succedents in the
premiss, two different intuitionistic sequent derivations, which are not identical up to a permu-
tation of inference rules, can be subderivations of the same classical derivation up to a choice of
axioms. For example, consider the following two intuitionistic reductions:

w7¢"¢ SR and ¢»X-'¢ SR
Y ?7-9DY,xDY Y ?7-XxD¢,0D%

They arise as restrictions to intuitionistic logic of the following classical reduction:

Azx
¢7 ¢7 X ?- ¢ ) ¢
/(p » X ?- ¢ D wv w
DR
Y ?7- D¢, xDY
Similarly, in LK viewed as reductive system, the D L rule has the form

L?2-¢,A T, 72 A
LoDy 72- A ’

in which the A is retained in both premisses. Using this operator instead of its intuitionistic
counterpart, we are able to restart the computation at (2), and proceed to apply the necessary
DR:

succeeds

DLsDt
rDs,sDt,r ?-t,p

DR as above
rDs,sDt?-,p :

(2) Exzchange : SR
rDs,sDt?-p, rDs,sDt,q?-r>Dt

(1) DLy,

pDqg,rOs,sDt?-r>Dt

20We adopt the notation Ry to denote the instance of the operator O generated by the formula ¢, e.g., D Lpogq-
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Note, in particular, the use of Exchange at (2). From the point of view of the Auv-calculus, the
necessary DO R rule is applicable only if the implicational formula is leftmost in the succedent.

A successful classical reduction for a problem I' ?- ¢ yields a classical proof but not necessarily
an intuitionistic proof. So, in order to exploit the structural and combinatorial advantages of
classical reduction for intuitionistic logic, we must be able to calculate syntactically whether a
given classical reduction determines an intuitionistic proof.

To do this we represent the sequent calculus LK in the Auv-calculus (see [33]). More precisely,
we represent LK in the Auve-calculus, i.e., the Auv-calculus with explicit substitutions. If we
represent the classical sequent calculus in the Auve-calculus, then we can calculate whether a
successful classical reduction determines the existence of an intuitionistic proof by analyzing the
structure of the Auve-term which realizes the classical proof (see [33]).

We repeat here the basic idea. Consider the difference between the D R rule in the classical

calculus, LK,
Dok, A

¢ Dy, A

and the form of its restriction to capture intuitionistic implication, as in Dummett’s multiple-
conclusioned calculus [4],
I
k¢ D¢, A

Here the key point is that a built-in Weakening,?! by A, is required. To see this, consider the
following reduction:

DR,

D R.

U, ¢,0 2- T,szx
v, o ?- 0377¢DR
Exchange
V,d -, 0D7T
Y ?-90D¢,0D7T >
We need to be able to detect that the use of the D R operator to reduce the formula 6 D 7 is

superfluous, and so conclude that we could have simply deleted § D 7 at the first O R reduction
and so conclude that the initial problem, b ?- ¢ D 1,0 D 7 has an intuitionistic proof.

In [33] we developed the the notion of an intuitionistic term in the Apve-calculus to solve this
problem. We repeat the basic definitions here:

Definition 44 We define Weakening terms and Weakening occurrences of names by induction
over the structure of terms as follows:

1. pot is o Weakening term if all occurrences of o in t are Weakening occurrences;
A term t of type L is always a Weakening term;

(t,s) is a Weakening term if t and s are Weakening terms;

e e

Az: @.t is a Weakening term if t is a Weakening term and if x has only Weakening occurrences
i t;

5. The outermost occurrence of a in [a]t and (@)t is a Weakening occurrence if t is a Weakening
term,

6. va.t is a Weakening term if t is a Weakening term and all occurrences of o are Weakening
occurrences;

21The Weakening rules are
TFA TFA

I,I'FA TFA,A
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7. All occurrences of L in t are Weakening occurrences;

8. The occurrence of the variable x in tx is a Weakening occurrence if t is a Weakening term
and x is not free in t. In this case, the term tx is a Weakening term as well;

9. t{u/z} is a Weakening term if t is a Weakening term.

Definition 45 Call a Apve-term intuitionistic if in any subterm Ax: ¢ .t which is not a Weakening
term, all occurrences of free names are Weakening occurrences.

The idea behind these definitions is that intuitionistic terms identify those implicational re-
alizers, i.e., terms of the form I' F Az:¢.t : ¢ D ¥, A, in which all of the subterms of Ax:¢.t
corresponding to formulae in A arise from Weakenings. In [33] we proved the following Theorem:

Theorem 46 (intuitionistic provability) Let ® be an LK-proof of T' - ¢, A and let to be
the corresponding Auve-term. Then te is an intuitionistic term iff T b ¢, A is intuitionistically
provable. O

If we translate intuitionistic LJ-reductions into classical reductions, backtracking may occur at
two points: firstly, at the D L rule, and secondly at the VR-rule. In both cases we lose potentially
useful side formulse when we apply the reduction operator. This can be captured semantically as
follows:

Theorem 47 (backtracking) An intuitionistic reduction contains a possible backtracking point
before the reduction operator R if and only if for the translation of the reduction into a classical
reduction, the corresponding reduction operator R with sufficient premisses I'; 7- ¢;, A; and puta-
tz’lue conlclusion T ?- ¢, A, there exists a j such that the fibres £(1,[A]§) and E(1,[A;]}) are not
1dentical.

Proof All left-operators except D L leave the right-hand sides of sequents unchanged, and hence
£(1,[A]) and £(1,[A;];) are identical for all j. These operators also do not give rise to a possible
backtracking point. For the operator D L, £(1,[A];) and £(1,[A1]j) are not identical, and indeed
D L gives rise to a backtracking point. All right-operators except VR do not modify the side-
formulee on the right-hand side, and hence £(1, [A];) and £(1,[A;]§) are identical for all j. These
operators also do not give rise to a possible backtracking point. The VR-rule does change the side
formulae on the right-hand side and models the intuitionistic V R-rule, which indeed gives rise to
a backtracking point. Also, £(1,[A]}) and £(1,[A]§) are not identical. O

5 Continuations as a Model for Proof-search

In this section we describe continuations as a model for proof-search. We provide an instance of a
classical reduction structure using continuations and analyze backtracking using continuations by
specializing the results of the previous section.

In the denotational semantics of programming languages, e.g., [35, 26], in which programs are
given a functional interpretation over structures such as the category of complete partial orders, an
important technique is to interpret not only the linguistic constructs of the programming language
but also its control régime. The semantic structures commonly used for this purpose are called
continuations.

The idea is that a continuation models a change of control during the evaluation of a program
with respect to given data: we temporarily suspend the current computation, carry out another,
subsidiary, one and after a while resume the original one. Thus a continuation describes how
to complete the subsidiary computation and return to the original computation. Continuations
are commonly used to describe, inter alia, backtracking [35, 10], co-routines [35] and evaluation
strategies [25]. A survey of the various origins of the idea can be found in [32].
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Rather than attempt a general definition, we describe a category of continuations, introduced
by Hofmann and Streicher [12], which can be extended so as to correspond to a semantics of
classical proofs as represented by the terms of the Auv-calculus.

The Ap-calculus can be used to describe continuations as follows: a continuation of type ¢
is described as the type —¢. The intuition is that a continuation expects a term of type ¢ and
produces some value which is never used because the control context changes. One could take any
type R (for responses) for the type of these values, but as it is never used, the Au-calculus uses
1 for the type of these values. The creation of a continuation is then described by a term of type
¢ D ——¢ because it transforms a value of type ¢ into a continuation —¢. The other direction,
namely the evaluation of a continuation, gives a term of type ——¢ D ¢. With these two control
operators it is possible to define an operational semantics which treats each term as a continuation
rather than having a value.

This syntactic view has a semantic counterpart: Hofmann and Streicher define a category of
continuations as a category C with a distinguished class T' of objects of C called type objects and
a distinguished type object R of responses. In addition there is a chosen Cartesian product I" - ¢
for every object I' and type ¢, and chosen terminal objects [] and 1 € T'. Moreover, for each type
object ¢ there is a chosen exponential R? € T, and for any two type objects ¢ and 1) a chosen
Cartesian product R? -4 € T of R? and . A Au-term ' F ¢:9), A is interpreted in such a category
as a map RI'T- [A] — RI4I.

To interpret conjunctions, we ask in addition for sums of types in the category, and can then de-
fine [oAy] = [¢] +[v], and use standard isomorphisms involving sums, products and exponentials
to define the interpretation of Au-terms involving products or projections.

The classical disjunction requires the closure of T under products ¢ - ¢ for every ¢,v € T: we
can define

[o Vol =141 - [¥]

and use the natural isomorphism between
hom(RITT . [A], RIPVI¥])  and  hom(RIMT . [A] - [B], R

as the categorical counterpart of the introduction and elimination rules for disjunction.

A similar construction for the intuitionistic disjunction @ seems to be more difficult to obtain.
For the soundness theorem we require

hom(RI#®¥] . [A], RI) = hom(RI4] x [A], RIM) - hom(RIY] - [A], RIX)

but there is no obvious way of defining [¢ @ ¢] in a Cartesian closed category such that RI#&Y]
RIY1 + RI¥I. We show in [27] that intuitionistic and classical disjunction do not coincide proof-
theoretically: a Auv-calculus in which classical and intuitionistic disjunction coincide is trivial in
the sense that all terms of the same type are equal.

Hofmann and Streicher prove completeness for Au-categories by defining a continuation cate-
gory C from the syntax of the Au-calculus. Objects are (continuation) contexts A = @7, ..., ¢%m;
a morphism from A to ¢ is a certain Au-term ¢ such that + ¢:¢ DO L, A. The intuition is that
t transforms the name o’ of type ¢; to a continuation of type ¢, which is the type ¢ D L. The
condition on the term is that for any observer o (any Au-term of type ——¢) the two possible terms
for execution of the continuations ¢ by the observer, namely ot and t(ua®.o(\z: ¢ . [a]r)), are equal.
The type of responses is fixed as L D L. It follows from the naturality of their definitions, i.e.,
they respect substitution, that the completeness result can be extended to cover conjunction and

classical disjunction.

Hofmann and Streicher also prove that the continuation categories are universal for the Au-
calculus in the sense that for each Au-theory (i.e., a Au-calculus with some additional judgemental
equalities between terms) there is a continuation category (namely the term model) such that there
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is a map from this model to any other Ay-model which respects the interpretation of Au-terms in
both models. Again, it follows from the naturality of their definitions, i.e., they respect substitu-
tion, that the universality result can be extended to cover conjunction and classical disjunction.

The completeness of our categorical model implies that we must be able to transform each
continuation category into a Auv-structure. For this construction, we view this category as a
category of display maps [14]; then we exploit a standard construction which transforms categories
of display maps into fibrations [15]. We sketch this construction, but omit the detailed verification
that the structure we define and which we call a continuation fibration is indeed a Auv-structure,
as follows:

e The base category B has as objects the objects of C and all morphisms necessary to make C
a Cartesian category;

e Objects of the fibre Fa are projection morphisms A - ¢ — A;

e Morphisms from A-¢ — A to A-¢ = A are morphisms f in C such that my o f = 74, where
my and my are the projections corresponding to A - and A - ¢, respectively;

e Given a morphism f:T — A the functor F(f) transforms an object A-A - AtoT-¢ - T
and a morphism & into 7’ o (Id x h) o (Id x f), where 7’ is the projection from I' - A - to

L9
e The object L is R;

e The isomorphism between Fa(x,¢) and Fa.4(x,L) is captured by the bijection between
hom(A - ¢, R) and hom(A, R?) in C;

e The naturality and Beck-Chevalley condition of the bijection ¢ follow from the fact that
F(f) is defined by composition.

The verification that interpretations of Auv are indeed well-defined in this structure, so yielding
our definition of a Apv-model, is routine.

Finally, we remark that Hofmann and Streicher also show that the interpretation of a Au-
term ¢ in the syntactic continuation category is obtained by replacing each object variable x by a
term which describes the execution of a continuation given be a new name «. This interpretation
transforms each term into a continuation. This property too extends to Auv.

Next, we describe how to construct a classical reduction structure out of continuations.

Definition 48 Let C be any continuation category C. A continuation reduction structure (£, F)
s given by

e o strict indexed category E: (B - D)°P—Cat, where the category B is the categroy C again,
and the category D is the free cartesian category over the objects of C and the functor € is
defined by E(A, B) = F(A,-B);

e a category W worlds, which is the full subcategory of C of objects RA;
e a functor F, which is the inclusion functor from W into C;

It is easy to see that every continuation reduction category is indeed a classical reduction
structure:

Theorem 49 For each continuation category C, the continuation reduction structure (€, F) is a
classical reduction structure.

Proof Routine verification, using the fact that the functor F' is an inclusion. O
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Now we show how to interpret backtracking in this setting. In an earlier section, we related
backtracking to the change of fibre in an classical reduction structure. If we specialise this to the
classical reduction structure built from continuations, it turns out that backtracking is captured
by suspending the current continuation and selecting another continuation. Technically, this is

given by the isomorphism
Hom(R" - ¢, R?)

Hom(R' - ¢ -4, R)
Hom(R! - ¢, R¥)

which is modelled by a change of fibre in the classical reduction structures. The precise theorem
is as follows:

Theorem 50 A reduction operator R gives Tise to a backtracking point if its translation into a
continuation reduction structure applies a change of continuation to the sufficient premisses.

Proof Direct consequence of Theorem 47. O

6 A Games Semantics for Proof-search

We conclude with an example of our semantics — of intuitionistic reduction with backtracking,
embedded in classical reduction — which corresponds closely to our intuitions about the nature
of constructing proofs: i.e., a games semantics for proof-search.

This games semantics is an extension of the games semantics we described in § 2.2 to games
for classical logic. The main difference between the games for intuitionistic logic and those for
classical logic is a consequence of the fact that for classical logic we are working with sequents
with multiple conclusions, I' F A, with the intuitive meaning that (at least) one of the formula in
A must to be proved, whereas in intuitionistic logic we work with only one conclusion. This means
that, in classical games, when Opponent challenges a formula ¢ in A, Proponent might choose to
defend a different formula 4 in A, which has to be accepted also as a valid defense of ¢.

The definitions of arenas, moves and justification for classical games are the same as those for
intuitionistic games. We call a strategy (play) classical if it is the one for classical games. Otherwise
we call the strategy (play) intuitionistic.

The conditions for classical plays are not as strong as the conditions for intuitionistic plays. In
particular, the rules for disjunction have been changed to allow Proponent to select both disjuncts,
thereby possibly violating the disjunction property of intuitionistic logic. More precisely, we have
relaxed Clause (vi) and Clause (vii). We drop the latter clause, and replace the former as follows:

Definition 51 A play for an arena A is a sequence of moves my,...,my such that conditions (i)
- (v) for intuitionistic plays, and the following additional condition are satisfied:

(vi) For any P-answer m; there exists a O-question my and an O-answer m; such that m; is
hereditarily justified by my, m; is an O-answer with the same label as my or L and k < j <4
and that the nodes corresponding to my and m; in the arena are on a path which does not
contain a P-node n labelled D such that the nodes corresponding to m; and m; are its children
or identical to it;

This relaxation captures the possibility of pending O-questions (arising from the multiple conclu-
sions on the right-hand side) being answered as well as the immediate justifying question.

Compared to a games semantics for natural deduction, we allow both Opponent and Proponent
more freedom: both players can make several moves at a time, which are subject to fewer restric-
tions. In this way, we capture the possibility of applying reduction operators to several sequents
independently. We also capture the possiblity of sequences of blocks of left and right rules in a
play.?2

22This latter possibility is critical for modelling proof procedures such as resolution.
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This games semantics is sound for classical logic:

Theorem 52 For any formula ¢ and classical strategy ® for ¢ there exists a classical sequent
calculus proof of ¢.

The proof follows the same line as the proof for the corresponding theorem for intuitionistic games
(Theorem 25). Again, we have to show a stronger version of the theorem with a stronger notion
of strategy.

Definition 53 For a set A, of propositional atoms or L, and a sequence ¢1,...,¢r of formule,
define an A, ¢1, ..., ¢r-strategy for the formula ¢ to be any strategy for ¢ where both players may
make additional moves according to the arenas for ¢1. ..., dk.

The key lemma is now the following:

Lemma 54 Given formule ¢1,...,0, and any set A of O-answers with labels py,...,p, and a
A, p1, ..., ¢Or-strategy for a formula ¢ there is a classical proof of p1,pn b &, 01, .., Ok.

Proof By induction over the structure of ¢, ¢1, ..., ¢r. As the definition of A, ¢4, ..., pp-strategy
is invariant under permutation of any of the ¢;’s and ¢ and sequent calculus admits the exchange
rule, it suffices to do a case analysis regarding the structure of ¢. We will write A for the sequence
of formulae ¢1, ... ¢, and I' for the sequence py, ..., ps.

Atoms: Firstly, assume ¢ = p for some propositional atom p, and ¢1,...,¢r = ¢1,---,qx, where all
¢;’s are atoms or L. Any possible strategy starts by Opponent asking at least one question
labelled p or g1, ..., qk. Proponent only has an answer if either p; = p, for some ¢, or p; = ¢;,
for some ¢ and j. In both cases, the classical axiom py,...,p, F p,q1,...,qx is the desired
sequent calculus proof;

11 V ¢¥o: Any possible strategy starts with Opponent asking question corresponding to the root of the
arena for 1 Vibo. There are now several cases. If Opponent never asks any initial question for
the arenas 1, and 5, then the given strategy is also a strategy for ¢, ..., ¢x. Hence there is
a sequent calculus proof of I' - A and hence also of I' - 94 V 95, A. If Proponent never asks
the question corresponding to the node labelled R (L) of this disjunction or Opponent never
asks any of the initial questions of the arena for ¥ (1) then the given strategy is also a
strategy for ¥ (12). By induction hypothesis there is a sequent calculus proof of I' - 41, A
(T' F 42, A) and hence also a sequent calculus proof of I' F 41 V 92, A. If Opponent asks
any initial questions for both arenas 91 and 12, then the strategy has to consider all initial
moves for 1y — 1 and 5. Hence by induction hypothesis for 11,12, A there exists a sequent
calculus proof T' 91,12, A and hence also a sequent calculus proof of T' 11 V ¥, A;

11 A y: Because every question and answer of a strategy for ¢; and ¥ has to be justified eventually
by an initial move for ¥; and 5 it is possible to obtain one strategy for ¢); and one strategy
for i from the given strategy. Hence by induction hypothesis we obtain sequent calculus
proofs for T' F 91, A and T' F 45, A. Hence one obtains also a sequent calculus proof for
T }_ ¢1 N ¢2, A;

¢' D 1p: There are several subcases. Firstly, assume ¢’ = 11 A 1po. Then (1 A1) D 9 is equivalent
to @1 D Py D 1), and the arenas for (11 A 12) D ¥ and 91 D ¥ D 9 are identical. Hence we
consider the case 11 D ¥9 D 9 instead.

Secondly, assume ¢’ = o V 7. Now define two A, A-strategies ®; and &, for ¢ D ¥ and
T D 1 respectively, where the moves of both players in ®; and ®, are the moves of & which
are justified by moves not hereditarily justified by 7 or o respectively. By the induction
hypothesis, we obtain sequent calculus proofs for

P-(cDvy),A and TkFH7TDY,A.
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Hence there is also a sequent calculus proof for I'F (o VvV 7) D ¢, A.

Thirdly, suppose ¢’ = ¢ D 7. Again, define A, A-strategies ®; for 7 D ¢ and ®» for o where
the moves of both players are the ones not hereditarily justified by ¢ or 7 respectively. By
induction hypothesis we obtain sequent calculus proofs for ' F 7 D ¥, A and T' o, A. Hence
there is also a sequent calculus proof for T'+ (0 D 7) D 9, A.

Fourthly, suppose ¢’ is an atom p. Again, there are two cases. Consider a A, A-strategy for
p D ¥ without a Proponent-question corresponding to p. In this case, the A, A-strategy for
p D Y is in fact a strategy for ¢, and by induction hypothesis there is a sequent calculus
proof of T' F 4, A, hence also a proof of I' F p D 4, A. Now suppose there is a Proponent-
question corresponding to p. In this case the strategy which removes the Proponent-question
and O-answer for p is a AU{p}, A-strategy for . By induction hypothesis there is a sequent
calculus proof for I', p F 9, A and hence also for T' F p D ¢, A.

Finally, suppose ¢’ = L. In this case there is always a sequent calculus proof of T', 1L F 9, A,
and hence also a proof of ' F 1 D 2, A.

O

The games semantics Ong presents in [23] for the Ap-calculus (without disjunction) uses
scratchpads to model classical logic. Scratchpads are separate plays to be started by Proponent
whenever he chooses. As we consider disjunction as well, we have extended the definition of an
arena and introduced the concept of switching moves (the moves labelled L and R) to model the
Apv-calculus. Proponent choosing a move labelled R corresponds to the switch of fibres in the
Apv-structures, which is captured by changing to a scratchpad in Ong’s model.

Next we describe the additional structure we need to model reductions and searches. The
additional structure is very similar to the one we already introduced for the case of games for
intuitionistic reductions and searches.

To formulate this extension we need a lemma about substitutions. If one substitutes arbitrary
formulee for propositional variables in a proof, one still obtains a valid proof. This substitution
lemma, has an important analogon for games:

Lemma 55 Suppose we have a strategy for the arena of a type ¢ which contains a propositional
variable A. Then there also o strategy for the arena of type ¢[1p/A], where ¢ is any formula.

Proof We only sketch the proof here. By definition of plays, in all plays defined by the strategies
Opponent asks a question labelled A before Proponent does, and Opponent’s answer is then used
by Proponent to answer Opponent’s original question. Hence Proponent can use a copycat-strategy
whenever the opponent makes a move in the arena for . O

To model reductions, we use oracles, i.e., additional plays which Proponent may start at will.

Definition 56 A strategy with oracle of type ¢ is a strategy where in addition Proponent is
allowed to play using an additional arena for ¢.

The instantiation of non-axiom leaves of a reduction with reductions is modelled by the sub-
stitution of strategies for oracles.

Definition 57 Suppose U is a strategy with oracle of type ¢ and P is a strategy of type ¢. We
define the substitution of ® for the oracle in U to be the strategy ¥ except that we replace every
answer which is a move given by the arena for ® by the move obtained by using ® to answer ¥U’s
move in @, then using U to answer this move and so on until ¥ answers with a move outside the
arena for ¢.

Before we can construct a classical reduction structure from games, we need some preliminary
notation.
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Definition 58 Suppose C is the free Cartesian category over the set of formule and assume 7 is a
morphism from (¢1,...,¢n) to (¥1,...,%m) and assume that @ is a strategy for YV i1 V-V ihy,.
Furthermore, let B;1,...,Bi, be the arenas of 1; and Aj1,..., A, be the arenas of ¢;, and let
Ay, ..., A, be the arenas of ¢.

We define the strategy 7 (®) to be the strategy for YV ¢1 V -+ V ¢, answering any question
in the arena for i by the answer ® would give to the corresponding question, and by answering
any Opponent move in the part of the arena selecting a subarena for 1; by the Proponent move
selecting the corresponding subarena for ¢;, where ™ maps ¢; to ¢;, and answering any move in
any subarena ¢; by the answer ® gives to the corresponding subarena in ¢;.

We now describe how to construct a classical reduction structure from this notion of game.
Intuitively, the base category B of a reduction structure models the collection of indeterminates. A
reduction with indeterminates is modelled as a game with oracles. Hence the category B consists of
formule as objects (these represent the available oracles) and of games with oracles as morphisms.
The indexing functor models substitution of games for oracles. As the category of worlds, we take
compositions of reduction operators, as in the construction of the term models in § 3.

The precise definition of the classical reduction structure obtained from games is given in the
proof of the following proposition:

Proposition 59 Games form a classical reduction structure.

Proof We present here only the definition of the categories involved; the natural transformations
are straightforward.

The category C is the free Cartesian category over the set of formulae.

The category B has as objects finite lists of formulee (¢q,...,¢,) and as morphisms from
(f1,---,0n) to P,..., @), finite lists ®@q,..., P, of strategies such that ®; is a strategy for ¢,
possibly with oracles of type ¢1,..., ¢,. We define composition of two morphisms

((1)1,...,@n):(dl,...,Jk)—>(¢1,...,¢n) and (q’l,...,\I/m):((ﬁl,...,(ﬁn)—)(’(ﬂl,...,’(ﬁm)

in B as the list of strategies (¢1,...,¥.,), where ¢! is the strategy 1; with every answer which
arises from the arena for ¢; is replaced by the move obtained by first using the strategy ®; to
answer this move, then ¥ to answer this move and so on until ¢; answers with a move outside the
arena for ¢;.

For each pair of finite lists of formulee, (¢1,...,¢,) and (¢1,...,¥m), we define a category
F((P1,---,0n),(W1,-..,%¥m)), where the objects are formulee and the morphisms from ¢ to ¢
strategies for ¢ D (Y V ¢1 V -+ V ¢,), with oracles of type 1, ..., %,,. We define composition in
the category

]:((¢13'"7¢n)7(w17---a¢m»

in the same way as in the category B.

For a morphism (®1,...,®,) in B and 7 in C we define a functor
E(Py,...,B,),m)

by leaving the objects unchanged and assigning to each strategy ® the strategy 7*(®'), where ®.
is the strategy obtained by substituting ®, for the indeterminate of type ¢; in .

As category of worlds, we take the free Cartesian category generated from ground objects
Wg, where R is an LK-reduction operator, and ground morphism agr: 1—-Wpg for each reduction
operator R. The functor F is defined as the functor assigning to Wg the object

(T2 VAN AT, D VAL)) DT DoVA)

where R is a reduction operator with sufficient premisses I'; ?- ¢;,A; and putative conclusion
I' ?7- ¢, A, and to the morphism ag the canonical derivation given by R. O
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Note that this highly intensional category is non-trivial: equality between morphisms is es-
sentially equality between partial functions. As the arenas for L and T and for ¢ and ——¢ are
different, strategies for them cannot be equal. If we were to try to define an extensional collapse
of this category, we should have to be careful to ensure that the arenas for —=—¢ and ¢ be not
identified under the collapse.

Now we explain how backtracking is modelled in our game semantics. Backtracking points
are captured by the possibility of Proponent making disjunctive choices which are not available
when the moves are restricted to intuitionistic games. This is the case when Proponent plays both
switching moves and when Proponent plays a P-question m corresponding to a node arising from
a D L-operator. In the first case, playing the other switching move is not allowed in games for LJ,
and in the second case no previously pending O-question can be used to justify the P-answer to
the O-question which is the immediate successor to the P-question m.

Backtracking actually occurs when Proponent plays a different switching move, or actually
answers a question with a different label using Clause (vi) of the definition of a play.

To illustrate this point, consider an example of the previous section, namely the reduction for
the sequent
(pD2g@)AN(rDs)A(sDt)AT) >t

The arena is given in Figure 6. Then the following play corresponds to the second reduction (with

O

Figure 6: Arenafor (p Dq) D (rD>s)D(sDt)DrDt

the Exchange) in the § 4:
OFPROZPPOIPLOSPROAPAOAPAOLPAOAPS.

where moves by Opponent (Proponent) are denoted by the letter O (P) with subscripts and su-
perscripts, and the subscript indicates the label of the move and the superscript indicates whether
the move is a question or an answer.

Note first the contraction involved in this play: the move PtQ models both instances of the
D L-operator reducing s D t. The backtracking points are the P-questions labelled ¢, s and ¢,
and backtracking is reached with the move P: this move is possible only in games for multiple-
conclusioned LK, and models the exchange which is necessary to make the reduction succeed.
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