

Citation for published version:
Hall, PM & Hicks, Y 2004, A method to add Gaussian mixture models. Computer Science Technical Reports, no.
CSBU-2004-03, Department of Computer Science, University of Bath.

Publication date:
2004

Link to publication

©The Author April 2004

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Dec. 2019

https://researchportal.bath.ac.uk/en/publications/a-method-to-add-gaussian-mixture-models(30ea992c-6296-4ac0-b56e-53d92cfd7828).html

Department of

Computer Science

Technical Report

A Method to add Gaussian Mixture Models

Peter Hall and Yulia Hicks

Technical Report 2004-03 April 2004

ISSN 1740-9497

Copyright c©April 2004 by the authors.

Contact Address:

Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

A method to add Gaussian mixture models

Peter Hall and Yulia Hicks ∗†

April 5, 2004

Abstract

We provide a method for the addition of Gaussian Mixture Models (GMMs), so enabling
GMMs to be incrementally learned over time. Our method does not require past data, neither
does it resample, but operates on parameters used to describe the input GMMs; we provide an
information theoretic criterion to automically recommend the number of components in the result.
Empirical evidence illustrates the performance of our method, and demonstrate its utility with
a taxonomic application. We conclude that the contributions of our method are (1) to provide a
framework of greater generality for incremental GMM than currently available, uniquely allowing
as we do “forgetting”, and (2) the automated choice for the optimal number of components without
reference to original data.

Keywords

Unsupervised data analysis, Gaussian mixture models,
Incremental learning, Optimal number of components.

1 Introduction

This paper describes a method to “add” a pair of Gaussian mixture models (GMMs) to produce a
third, without reference to sample data. To make matters more concrete we write G[X], where X is a
data set and G[.] is the associated GMM constructed from that data. By “the addition of GMMs” we
mean to combine a pair of operand GMM to produce a third GMM which closely approximates that
which would be constructed by a standard algorithm having the concatenation of data sets as input.
That is, we specify an operator ⊕ for which

G[X] ⊕ G[Y] ≈ G[X : Y] (1)

In which : is the concatenation operator. Our contributions are (1) a framework for addition that is
more general than described elsewhere, and (2) a method for atomically selecting the optimal number
of Gaussian components in the result.

Addition operators furnish on-line learning methods, allowing data models to respond as new data
arrives; that is, they provide an incremental learning ability. This is in contrast with ab initio or batch
methods which learn just once. Despite the fact that ab initio methods tacitly assume training data to
be complete and static, they are often favoured over incremental methods for several reasons, amongst
which are: the difficulty of validating an incremental model (the distinction between training data
and test data is blurred); the model obtained can depend on the temporal order in which update
data appears; and the problem of “over-learning” in which models gradually become too general and
therefore of reduced discriminative power.

Our method for the addition of GMMs is unique amongst other such methods in that it allows
“forgetting”, which combats over-learning. To do this we are able to “subtract” one Gaussian compo-
nent from another during the course of addition; this has the same effect as removing data points from
a component. It is in this respect we claim a framework which is uniquely general. Empirical testing
has shown that our method yields a GMM which can be expected to converge to some underlying
population distribution, independent of temporal data order. This testing used a distance measure
between GMMs that can be computed in closed form, and so we do not confuse training data and test
data.

We assume each operand GMM (G[X] and G[Y])is a good representation of the data used to build
it, and that these data are drawn from the same underlying population distribution of which [X : Y]

∗Peter Hall: Department of Computer Science, Univeristy of Bath
†Yulia Hicks, Department of Computer Science, Univeristy of Cardiff

1

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

is representative subset. We do not require that data used to build an operand GMM are uniformly
drawn from the population distribution; each operand GMM could contain data generated from a
single component only. Indeed, the case of non-uniform data distribution is a strong motivator for
incremental methods.

Incremental GMM is useful whenever training data is insufficient. A typical symptom would be
that a significant fraction of input data is poorly classified by the current GMM. Insufficiency may
be forced through pragmatic constraints — machine capacity may force the exclusion of some data.
Alternatively a suitable range of data was unavailable at the time the original GMM was constructed:
for example, taxonomic data for a yet unknown species does not exist. We can also imagine scenarios
in which insufficiency means the GMM lack specificity. For example, a GMM might be constructed
for a recognition task of some kind, typically each component of the GMM represents an average (an
average face, say, to be specific).

Incremental GMM is beginning to be used in applications, the greater majority coming from the
speech community, not least because a speaker’s voice changes over time and, hence, so should the
representation. Gotoh [9] updates a GMM of speech using new data as it arrives; doing in a principled
manner and like us does not require previous data to be stored, but the number of Gaussian components
if fixed. Lu and Zhang [12] track a speaker’s voice signal by “adding” GMMs. They use a method
which is very similar to our own, at least in the early stages (see 2.1). They (like us) mix operand
GMMs to make a single GMM that has too many components but which models the distribution. Next
(unlike us) they add components in pair-wise fashion, which reduces their total number, halting when
an information-theoretic measure is not improved. This strategy is liable to the temporal orderering
problem mentioned above, depicted in Figure 1. The underlying problem is a tacit assumption: that
GMM components are independent, which breaks down as components cluster tightly, and start to
“overlap”.

1

2

3

4

1

Some criterion allows addition of component 1 and component 2
which yields model to which component 3 can be added, and
so until we obtain just one model

But a different ordering of componet input yields
a more acceptable solution.

2

3

4

Figure 1: The ordering problem with incremental GMM; very different results can be obtain, depending
on the order in which components are added.

The problem of incremental GMM has been studied in more general settings — the approach
we adopt in this paper. Verbeek et al. [20] use a greedy algorithm to gradually increase the number
of components in a GMM. In contrast, both Yang and Zwolinski [22], and Figueiredo and Jain [7]
assume a GMM comprising too many components has been fitted to the data, and reduce the number
by discarding “weak” components. These methods can yield considerable increase in efficiency over
standard EM fitting, but all require access to past data, which is one important way we differ. Roberts
et al. [15] use Reversible Jump Markov Chain Monte Carlo to minimise the Kullback-Liebler measure
between source and target distributions; the target comprising a weighted sum of component posteriors
in the source; the form of the kernels is unspecified but includes Gaussians, raw data is not required,
but the number of underlying components remains constant.

The work that resembles our own most closely is due to Vasconcelos and Lippman [19], who use EM
to find a set of weights (probabilities) used to combine N components into M < N components. One im-
portant difference is that Vasconcelos and Lippman assume independence between GMM components.
We have already observed this can lead to sub-optimal output, and this tendency is especially manifest
when components “overlap”. We have found it desirable to lift this assumption and thereby recognise
that dependency does exist between components. To do so we need weights which can rise above unity
and fall below zero. The negative weights can be interpreted as the “forgetting” we mentioned earlier,
because they have the effect of removing points from a component An alternative interpreation is that
of “inhibition”. Weights abouve unity suggest a kind of re-enforcement. Whatever the interpretation,

2

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

it remains true we need weights beyong the [0, 1] interval. A second important difference is that we
provide a mechanism for determining the optimal number of components, requiring neither past data
nor resampling.

In the next section (Section 2) we describe our approach to the addition of GMMs. Following this
we present a series of experiments and applications (Section 3) designed to demonstrate the utility
and limitations of our method. We conclude (Section 4) that the two most important issues when
adding GMM are: (1) they way in which tightly clustered components are handled — this is where
the “component independence” assumption begins to break down, and (2) the choice of the optimal
number of components; we address both issues.

2 Adding a pair GMMs

We now describe how to add GMMs. We begin by writing a data set as X = {xi : i = 1 . . .NX}, NX

is the size of the data set, and each datum is n-dimensional, so xi ∈ <n. A normal distribution is of
Gaussian form:

g(x; µ, C) =
1

(2π)n/2|C|1/2
exp

(

−
1

2
(x − µ)T C−1(x − µ)

)

(2)

in which x is any point in <n. The scalar function g(x) is the likelihood of x. The normalising factor
in front of the Gaussian ensures that

∫∞

−∞
g(x; µ, C) = 1.

An N -component Gaussian mixture model (GMM) comprises a parameter set {(αi, µi, Ci) : i =
1 . . .N}, and can be constructed from the data X. The GMM specifies a probability distribution given
by

p(x; G) =

N
∑

i=1

αig(x; µi, Ci) (3)

The scalar function p(x; G) is the likelihood of x with respect to the GMM; for notational convenience
we write p(x). The weights, αi are the prior probabilities associated with each GMM component.

The priors are such that
∑N

i=1 αi = 1. The centroid (mean) of the ith component is µi and Ci is
its covariance matrix. A random point x can be classified as belonging to some GMM component
or other, an aspect we largely ignore in this paper. We construct operand GMMs using Expectation
Maximisation [6].

When adding two GMMs, under the assumptions mentioned above (that the GMM are a fair
representation of the data used to construct them, and that all data in all GMMs are drawn from
a single underlying population distribution) we proceed as follows. Let one operand GMM have N
components, the other M . First we concatenate the operand GMM into a single GMM of N + M
components. Next we simplify this large GMM into one with K ≤ (N + M) components; this is
done by computing a weighted sum of existing components. Finally we select a K that is optimal by
appealing to an information theoretic criterion. We consider each step in turn.

2.1 Concatenation

Suppose we are given a pair of GMMs; an N -component GMM made from a data set having Nx points,
and an M -component GMM constructed using a data set having Ny points. The GMMs represent the
distributions p(x) and q(x), respectively:

p(x) =

N
∑

i=1

αig(x; µi, Ci) (4)

q(x) =

M
∑

j=1

βig(x; νj , Dj) (5)

3

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

We have changed the names given to the various parameters describing the second GMM for notational
convenience. Now consider a weighted sum of these distributions:

r(x) = f1p(x) + f2q(x)

= f1

N
∑

i=1

αig(x; µi, Ci) + f2

M
∑

j=1

βig(x; νj , Dj)

=

N+M
∑

k=1

γkg(x; mk, Ek) (6)

We have concatenated the GMMs in the sense of concatenating the sets of their descriptions — subject
to scaling the priors: γk = f1αi or f2βj , as appropriate. We insist on the constraint f1 + f2 = 1.

One obvious way to choose the weights is to set f1 = Nx/(Nx + Ny). In practice we found is better
to premise the f on some measure of confidence, such as Minimum Description Length, which reflects
the relative confidence we can place in each operand GMM (see Subsection 3.3). We note in passing
that this concatenation is easily generalised to more than two operand GMMs, and that the possibility
of using negative fractions remains open (we associate subtraction with “forgetting”). In any case we
should ensure that r(x) ≥= 0 for all x.

This concatenated description of the data distribution is accurate, we assume, but possibly not
useful, because there may be too many components; there may even repeated components. One possible
consequence of this is a diminution of classification performance: “overlapping” components that should
represent the same class may be differentiated. In any event the description is less parsimonious that
it could be. Therefore we need to reduce the number of components needed, that is to simplify the
description. A method for doing this without reference to any of the original data is now described.

2.2 Simplification

In this section we consider the problem of reducing an N component GMM to an M component
GMM, M ≤ N . We call this problem simplification. It is motivated by the need to simplify the result of
concatenating two GMMs (subsection 2.1). Our approach to simplification depends on adding Gaussian
descriptions.

We must highlight the distinction between adding a Gaussian functions, and adding descriptions
of Gaussian functions. The former case will generally result in a multi-modal function, and is readily
expressed in standard form (as in Equation 3). In contrast, adding descriptions of Gaussians results
a new description — a single Gaussian, which is unimodal. If the Gaussians each represent the same
distribution, then the single description which is their addition is to be preferred for this will represent
the same distribution with fewer descriptive terms; in that sense we have simplified the description.

Suppose we wish to add N Gaussians to make M , that is to simplify and N -component GMM
into an M -component GMM. Call the description sets G and H , respectively. Elements of G are
tuples < α, µ, C >, elements of H are tuples < β, ν, D >. Suppose further we are given a matrix of
NM scalars wij , used to specify the contribution that the ith component from G makes to the jthe
component from H . The descriptions that result from such an addition are given by

βj =
N
∑

i=1

wijαi (7)

νj =
1

βj

N
∑

i=1

wijαiµi (8)

Dj =
1

βj

(

N
∑

i=1

wijαi(Ci + µµT)

)

− ννT (9)

This produces a new GMM, of M ≤ N components, and hence represents a simplification. This new
GMM describes a new distribution that approximates that given by concatenation in Equation 6.

It is worth noting that Equations 7 to 9 ostensibly require all components to be of the same
dimension. However, it is possible to consider each GMM component as an eigenmodel, with the
advantage of being able to add components of differing dimension [10].

4

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

The weights wij are subject to constraints:

N
∑

j=1

wij = 1 (10)

0 <

N
∑

i=1

wijαi < 1 (11)

the first acts to “preserve number”, the second ensures valid priors in the simplified GMM. To see
preservation of number, observe that we can interpret the wij as the re-distribution of a single datum,
from the source components into the target. some wij can be negative, meaning that some fraction of a
datum is removed from a source component — equivalent to “forgetting”. This interpretation is given
credence from observations when adding eigenmodels [10]. Let us explain: an eigenmodel is specified by
the number of points used to make it, the mean, the eigenvectors, and eigenvalues: Ω = (N, µ, U ,Λ).
It is possible to both add and subtract eigenmodels descriptions [10], so that if Ω3 = Ω1 + Ω2, then
Ω2 = Ω3 − Ω1. To “add” is to concatenate data sets, to “subtract” is to remove (forget) data points.
Subtraction can be made explicit by [10], but we have found we can “subtract” just by setting the
number of points in an eigenmodel to be negative.

The principal difficulty associated with simplification is finding weights, wij that minimise some
distance measure between two distributions: that which results from concatentation (Equation 6) (in
this section the GMM with N components) and that specified by the simplified GMM (the GMM with
M components). We need a suitable objective function, and a search mechanism. We consider these
in turn.

We need an objective function, that is some distance measure between distributions. Such measures
include the Kullback-Liebler measure used by Roberts et al. [15], and mutual information used by Yang
and Zwolinski [22]. We use χ2 distance because it is easily computable in closed form, as we now explain.
For notational convenience the distribution specified by G is called p(x) here, and that specified by
H is called q(x). These have exactly the same form as Equations 4 and 5, but of course represent
possibley different distributions. The signed distance between the distributions at x is

d(x; G, H) = p(x) − q(x)

=
N
∑

i=1

αig(x; µi, Ci) −
M
∑

j=1

βjg(x; νj , Dj)

=

M
∑

j=1

βj

N
∑

i=1

αig(x; µi, Ci) −

N
∑

i=1

αi

M
∑

j=1

βjg(x; νj , Dj)

=

N
∑

i=1

M
∑

j=1

αiβj(g(x; µi, Ci) − g(x; νj , Dj)) (12)

For ease of notation, denote the ith Gaussian component of G by gi, and the jth Gaussian component
of H by hj ; the g and h are functions of the independent variable x. The difference is now written

d(x; G, H) =
N
∑

i=1

M
∑

j=1

αiβj(gi − hj) (13)

The squared difference at any point is

d2(x; G, H) =

N
∑

i=1

M
∑

j=1

αiβj(gi − hj)

N
∑

k=1

M
∑

l=1

αkβl(gk − hl)

=

N
∑

i=1

M
∑

j=1

N
∑

k=1

M
∑

l=1

αiβjαkβl(gi − hj)(gk − hl)

=

N
∑

i=1

M
∑

j=1

N
∑

k=1

M
∑

l=1

αiβjαkβlFijkl (14)

5

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

Where Fijkl = (gigk − gihl − hjgk + hjhl). Hence the sum of squared differences, χ2, is given by

χ2(G, H)

=

∫ ∞

−∞

N
∑

i=1

M
∑

j=1

N
∑

k=1

M
∑

l=1

αiβjαkβlFijkldx

=
N
∑

i=1

M
∑

j=1

N
∑

k=1

M
∑

l=1

αiβjαkβl

∫ ∞

−∞

Fijkldx (15)

Here, we understand the integral to be over all space — a volume integral — this interpretation holds
throughout this paper. Now

∫∞

−∞ Fijkldx =
∫∞

−∞(gigk−gihl−hjgk−hjhl)dx is the sum of four integrals
of Gaussian products, each of the form

s =

∫ ∞

−∞

g(x; µ, C)g(x; ν, D)dx (16)

This integral is computable in closed form because the product of two Gaussians is another Gaussian.
To be precise

exp

(

−
1

2
(x − µ)T C−1(x − µ)

)

exp

(

−
1

2
(x − ν)T D−1(x − ν)

)

= exp

(

−
1

2
γ

)

exp

(

−
1

2
(x − m)T E−1(x − m)

)

(17)

in which

E = (C−1 + D−1) (18)

m = E
(

C−1µ + D−1ν
)

(19)

γ = (µ − ν)T (C + D)−1(µ − ν) (20)

which can be verified by substitution. We can therefore continue evaluating the integral product,
Equation 16, by substitution of the above result. This yields an integral of standard form with solution

s =
1

(2π)n/2

exp
(

− 1
2γ
)

(|C||D||E|)1/2
(21)

Hence we can compute χ2 distance as given in Equation 15 in closed form. To strike a practical
note; a naive algorithm to compute χ2 may be of quartic complexity — a practical algorithm exploits
symmetries and is of quadratic complexity.

Having specified the objective function it remains to propose an algorithm by which the weights
wij are found. We have found a two stage approach to be useful. The first stage initialises the weights,
and the second stage “polishes” the solution.

The set an initial value on the weights we begin by considering a fully connected graph in which
each of the N components in the source GMM is a graph node, and each edge is labelled with the
Chernoff bound between the linked components. The Chernoff bound provides some measure of the
extent to which the two components are likely to be confused; it is 1 if they are identical, and tends to
0 as the difference between the components rises. Clearly, we do not assume independent components.
We iteratively remove the edge with the smallest label in the graph, until the graph comprises M
forests. The Chernoff bound from the ith source component to the newly formed jth component is
set as the initial weight wij . The weights are normalised so that those with a common source sum to
unity:

∑

i wij = 1. The components within each cluster are then added (equations 7 to 9) to give a
new GMM, a first guess at the target distribution, and hence an initial distance measure. We continue
searching using a simple downhill method until χ2 is minimised.

Why use the Chernoff bound rather than χ2 to initiate a search? We found that for well separated
components almost any measure would do and little or no search was required. However, in cases where
the components were close, the weights computed as described give a good starting points for a simple
gradient descent search. This was especially noticeable when in a pair of “overlapping” components
was “fat”, and the other “thin”. An explanation is that the Chernoff bound places an upper bound
on mis-classification rate and so in some sense measures “overlap” more effectively than χ2 between
individual components. However, the Chernoff bound between a pair of distributions is not easy to
compute, which explains why we do not use it as the basis of an objective function.

6

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

When searching we must take the constraints into account. The constraint that
∑

i wij = 1 over
all j seems to give a problem, because it imposes a dependency between weight values. To remove
this dependency observe that each row of weights lies on a (M − 1) dimensional hyperplane which
is embedded in M dimensional space. In fact, this hyperplane is fully specified by the unit vector
uM = [1, . . . 1]T /

√

(M); its direction is normal to the hyperplane, and its tip specifies a point in the
hyperplane. We compute the eigenvectors of uuT to find a set of basis vectors in the hyperplane. Each
row of initial weights is projected onto that hyperplane, thus reducing the degrees of freedom for the
overall problem from NM to N(M − 1).

Consider now the second constraint is ∀j : βj =
∑N

i=1 wijαi ∈ [0, 1]. From a geometric point of
view a column-vector of the weights must project onto the row-vector α in the same direction, and the
sum of such projections must total unity. In N -dimensional space the constraint can be interpreted as
providing the central axis of a hyper-conic of some kind. The shape of the hyper-conic is unknown to
us. Each column of weights gives rise to one such hyper-conic, which must then be projected into the
N(M − 1) dimensional search space; unfortunately we have been unable to characterise the geometry
of the solution space in any greater detail. We therefore simply search over the hyperplane, which
guarantees the first constraint. At each candidate point we compute the priors and check them against
the second constraint. If it succeeds we continue to compute the χ2 distance as already described,
otherwise we set χ2 = ∞.

When a (locally) minimal χ2 is found we project back into the full space and so obtain final weights
wij which are used to add the components of G, and hence obtain a final simplified version of the GMM,
which we call H .

2.3 Selecting the optimal number of components

We now turn our attention to selecting the optimal number of components, without appeal to either
original data or resampling. Our scheme is analogous to methods of selecting the optimal number in ab
initio GMM: several GMM which differ in the number of components are computed, the selected model
has the smallest penalised log-likelihood. The difference is that we have to estimate log-likelihood from
the GMM descriptors, we have no data to use.

A penalised log-likelihood has the general form

−L(X|G) + ρ(X, G) (22)

in which L(.) is the log-likelihood of data X given model G, and ρ(., .) is some penalty measure. Given
a probability function p(x), the log-likelihood is defined as

L(X|p) =

|X|
∑

i=1

log(p(xi)) (23)

in our case the p(.) is a GMM, and so is the form given by Equation 3. The penalty ρ(.) has several pro-
posed forms, including Minimum description length (MDL) [14], Minimum message length (MML) [21],
ICOMP (also called CAICF) [3], and Akaike’s information criterion (AIC) [2]. Extensive empirical
studies we have carried out lead us to prefer the Bayesian method [16] for ab initio GMM, for it shows
the least bias and greatest efficiency.

The only method we know of in the literature which does not depend on data is Fuzzy hyper-
volume(FHV) [8]. At first glance this looks attractive, but our studies show it to give poor results
(high bias, low efficiency) and we prefer not to use it. Instead we take as our starting point the work of
Smyth [18], who uses a cross-validation method to determine the optimal number of components (our
experimental studies show it compares with AIC). Smyth observes that the expectation value of the
log-likelihood per datum drawn from a distribution p(x), with respect to a second distribution q(x) is

E[L(X)] =

∫ ∞

−∞

p(x) log (q(x)) dx (24)

(25)

In our case p(x) is the distribution that has been simplified, and q(x) is its simplified version; recall

7

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

both are sums of Gaussians:

p(x) =

N
∑

i=1

αig(x; µi, Ci)

q(x) =
M
∑

j=1

βjg(x; νj , Dj)

An obvious route to follow is to make use of the Taylor expansion for log(x + 1):

log(x + 1) = log(2) +

∞
∑

i=1

−1i+1(x − 1)i

i2i

valid for x ∈ (−1, 3] [13]. This can be used to give the result is

E[L] = log(2) +
∞
∑

i=1

−1i+1

i2i

∫ ∞

−∞

p(x) (q(x) − 2)
i
dx

If we now make use of the binomial expansion we obtain

E[L] = log(2) +
∞
∑

i=1

−1i+1

i2i

i
∑

j=0

(

i
j

)

(−2)j

∫ ∞

−∞

p(x)q(x)(i−j)dx

each term of which, in principle, is computable in closed form as we now explain. We can compute
∫

pqn because we can compute
∫

pq. Let the set of Gaussian components that make p(.) be denoted
by G, and those making q be denoted by H . As earlier, each element of G and H is a description
of a Gaussian. Now consider the Cartesian product F1 = G × H , each element in the new set, F1 is
the product of a pair of Gaussians, which by Equation 17 is just another Gaussian, the description of
which we can compute in closed form. We can continue recursively and compute Fi+1 = Fi × H in
exactly the same way. Further, each element in each Fi can be integrated analytically,in closed form,
because each is of standard form; the sum of all element-integrals is exactly

∫

pqn.
Therefore, in principle, we need only compute Taylor terms until some error bound is satisfied.

Unfortunately this algorithm has exponential complexity because the size of Fi is |G||H |i. We have
found discarding very small elements of Fi to be effective in controlling this growth. However, we also
found that (1) convergence is slow so that the number of Taylor terms can be large, and (2) rounding
errors can lead to divergence. Both of these problems are worse when a Gaussian has low prior, so
that is has broad, flat distribution. We concluded that using Taylor expansion of log is an ineffective
approach to our problem of computing

∫

p log(q).
Our approach is instead based on the following observation:

d

dη

∫ ∞

−∞

p(x)q(x)ηdx =

∫ ∞

−∞

p(x) log(q(x))q(x)ηdx (26)

Hence

d

dη

∫ ∞

−∞

p(x)q(x)ηdx

∣

∣

∣

∣

η=0

=

∫ ∞

−∞

p(x) log(q(x))dx (27)

It would seem we could now base a solution on the expansion of (1 + x)η , and use finite-differencing
to estimate the slope, but this suffers from the same problems as the log-based approach. Therefore,
we fit a function that we can differentiate analytically to the first few terms of

f(η) =

∫ ∞

−∞

p(x)q(x)ηdx (28)

at integer values of η from 0 to some convenient value, typically about 40 or so terms, which can be
computed on a practical basis. Next we fit a sum of exponentials:

y(η) =
K
∑

i=1

ai exp(−biη) (29)

8

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

η

∫ p
qη

slope at η = 0 is ∫ plog(q)

real
estimate

Figure 2: Showing the computation of
∫

p log(q): The function f(η) =
∫

pqη is sampled at integer
values of η; such samples are shown as black circles. The solid curve shows the function at non-integer
values, it was computed directly from the (2D) distributions p and q by spatial sampling at regular
intervals. The dotted curve shows the fitted curve, a sum of exponentials. The

∫

p log(q) is the slope
at η = 0, the direct (spatially sampled) value shown in black, the estimated value shown in red.

and search for the coefficients ak and bk so as to give a least-squares fit between the y(η) and f(η).
It is advisable to select several random starting points, for the solution space is very “bumpy”. We
iterate K from 1 to 5, fitting several randomly-initiated curves for each and selecting the curve which
best fits the data in the least-squares sense. The slope of the fitted function, at 0, is

∫

p log(q) ≈ σ =

K
∑

i=1

aibi (30)

(31)

which approximates the expected log-likelihood per datum, and which can be computed in an acceptable
time (given that small terms in the Fi are discarded). Figure 2 illustrates the process.

We are now in a position to estimate a penalty. We assume we know the total number of data points
Nd that contribute to the model, and the number of free parameters Nf in the GMM, and compute

E[L] = σNd +
1

2
Nf log(Nd) (32)

we use Nf = k(n + 2)(n + 1)/2 − 1, where k is the number of components in the GMM, and n is
the dimension of the space in which it is embedded. This form of penalised log-likelihood function is
analogous to MDL, the Bayesian approach [16] we prefer is not available to use because its penalty
term uses the data samples.

3 Experiments

We now present a series of empirical tests designed to measure the behaviour of both simplification
and relative entropy estimation, which are the most important subcomponents of GMM addition. We
also show empirical studies regarding GMM addition as an overall process. Unless stated otherwise, all
GMMs use two-dimensional data. When we constructed a random GMM of N components we selected
parameters for each component independently, sampled from these components, and fitted a GMM ab
initio, determining the number of components, M automatically. We insisted that the distribution of
samples be “separable”, by which mean M = N . This allows components to “overlap” so much that
they are effectively a single component.

The random GMM were generated by choosing random priors, means, and covariance matrices. The
means were randomly distributed in a hypercube of edge d. A low value of d increased the likelihood of
“overlapping” components making separation more difficult; simplification, and selecting the correct
number of components became correspondingly more difficult tasks. A high value of d reverses this
effect by allowing the components to spread out from one another. Thus d is a parameter that gives
some indication as to the difficulty of the task. We found that d = 10 gave a good mix of “difficult”
and “easy” problems, and so set d to this value for every experiment, unless otherwise indicated.

9

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

3.1 Efficiency, bias, and accuracy of simplification

One measure of the accuracy of simplification is the χ2 distance between the estimated GMM and some
ground truth. Alternatively, we can consider a performance measure, in our case the fraction of data
whose classification data agreed with a ground-truth classification. χ is available between GMMS with
differing numbers of components, but the fraction of correct classifications requires that each GMM
have the same number of components.

Computing the fraction of data correctly classified (in the sense of agreeing with the ground-truth
classifier) was a little more involved. We classified the original data used during construction against the
ground-truth GMM, the control GMM, and the simplified GMM. To estimate the fractional agreement
between a pair of GMMs we computed the number of number of points belonging to class i in one
GMM, and class j in the other, in effect measuring the degree of intersection between a class pair.
Class pairs with the largest intersections were deemed to correspond. Hence the fractional agreement
was taken as the total fraction of points in such intersections. We estimated the fractional agreement
with the control GMM against the ground-truth GMM, and also the simplified GMM against the
ground-truth GMM.

We randomly sampled 1000 points from some ground truth GMM of N components. We fitted
a control GMM of N components using EM. We fitted a second GMM with 2N components, which
was simplifies to N components. We measured the χ2 distance between each computed GMM and
the ground truth. We also measured the fraction of correctly classified points between each computed
GMM and the ground truth. We repeated this over 100 trials for N = 1 to 5 inclusive. Results from
this experiment can be seen in Figure 3 and Figure 4.

1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
mean χ2 distance over 100 trials

Number of components

m
ea

n
χ2

Simplified
EM

Figure 3: The mean χ2 distance, over 100 trials, for simplified and ab initio GMMs. The broken lines
mark one standard deviation from the mean; the mean is bounded below by the abscissa.

1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1
mean fraction correctly classified over 20 trials

Number of components

m
ea

n
fr

ac
tio

n
co

rr
ec

tly
 c

la
ss

ifi
ed

Simplified
EM

Figure 4: The fractional number of points correctly classified, over 100 trials, for simplified and ab
initio GMMs. The broken lines mark one standard deviation from the mean. The mean is bounded
below by the abscissa.

The results indicate that simplified GMM are usually further from the ground truth than ab initio

10

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

GMM, and that the classification performance for simplified GMM is general lower than for ab initio
GMM. Given the fact that the simplified GMM are the consequence two search processes this result is
not surprising. Even so, each mean for the simplified GMM is everywhere within one standard deviation
of the mean for the ab initio GMM, and the correct classification rate can be expected to remain above
90% for simplified GMM

3.2 The accuracy of the relative entropy estimate

The aim here is to measure the accuracy of the
∫

p log(q) estimate; that is, relative entropy per datum,
ρ. To do so we generated a pair of GMMs, one of N components at random, and a second of M ≤ N
components, via an EM fit. We made sure that the randomly generated has separable components.
We then estimated relative entropy; first by regular sampling to give a “real” value ρreal, and second
using the approximation given in Subsection 2.3 to give ρest. We varied the number of components, N
and M ≤ N to lie between 1 and 5, and for each (M, N) pair we ran 10 trials and computed bias of
the relative entropy estimate compared to the real relative entropy, at each (N, M) pair as

(ρest(N, M) − ρreal(N, M))/|ρreal(N, M)|

Finally we computed the relative error as a function of N − M , the difference in the number of
components. Figure 5 shows that the error decreases as the number of components rise.

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

differnce in number of components |g|−|h|

re
la

tiv
e

er
ro

r
(e

st
−

re
al

)/
ab

s(
re

al
)

Figure 5: The relative entropy estimates error as function of the difference in the number of components.

The experiment shows that accuracy of the estimate decreases as NM rises. In practice we have
found that the estimate gives a working approximation, despite the fall in accuracy.

3.3 Measures on the performance of GMM addition

GMM addition relies on both simplification and the relative entropy estimate; in this section we measure
the overall process. We are interested in the bias, efficiency, and convergence properties of addition.
Bias is defined as the expected difference between the ground truth number of components and the
estimated number. We follow Baxter and Oliver [1] in defining efficiency as the expected minimum
number of samples required to estimate the correct of components. We define convergence using the
MDL of sample points: a GMM fitted with more samples should have an MDL per sample closer
to the ground truth. We use MDL because the additive method uses MDL to select the number of
components.

To measure bias we generated an N component ground truth GMM, which was separable, using
1000 points. We used these point to compute a control GMM, estimating the number of components
automatically [16]. The data set was partitioned into 2 sets of equal size, and a GMM computed for
each. This pair of GMMs was added. We performed 20 trials for each value of N = 1 . . . 5. Figure 6
presents the results of the above experiment. The additive method shows the same general trend as
the ab initio methods, and in these experiments produces a better bias as N rises.

We used an iterative procedure to determine efficiency, and from there to measure accuracy. We
began by drawing 50 samples from a separable ground truth GMM of N components. At each iteration
we added the new samples to an accumulating sample set (initially the empty set) and fitted an ab
initio control GMM, determining the number of components automatically [16]. Also, at each iteration,
we fitted a second ab initio GMM, but only using the samples from that particular iteration. This new
GMM was added to an accumulating GMM (initially empty). The iteration halted when both the

11

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

accumulator GMM and control GMM had the correct number of components. Results can be seen in
Figure 7

1 2 3 4 5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
bias

Real number of components

M
ea

n
de

vi
at

io
n

fr
om

 r
ea

l n
um

be
r

of
 c

om
po

ne
nt

s

MDL
Bayes
ADD

Figure 6: The bias for different numbers of ground-truth components, K; the mean of 20 trials for each
K value is shown.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

450

500
mean efficiency over 20 trials

Number of components

N
um

be
r

of
 s

am
pl

es

MDL
Bayes
ADD

Figure 7: The efficiency of addition as a function of the number of ground-truth components.

0 5 10
0.9

1

1.1

1.2

1.3

1.4
100 samples

0 5 10
0.94

0.96

0.98

1

1.02

1.04

1.06
250 samples

0 5 10

0.98

1

1.02

1.04
500 samples

0 5 10
0.98

1

1.02

1.04

1.06
1000 samples

0 5 10
0.95

1

1.05
2000 samples

batch complete
added
batch per iterate

Figure 8: The progression relative MDL as a GMM is accumulated using GMMs built from 100, 250,
500, 1000, and 2000 points. In general as more points are used the “complete” and “accumulated”
GMMs both tend to converge to the ideal value of 1; it is not surprising to find the “batch” version
demonstrates superior convergence properties.

Finally we set out to test whether the result of accumulating GMMs tends toward the ground
truth. Starting with a null accumulating GMM we iterated 10 times over the following steps: (1)
randomly sample Nd points from a ground truth GMM of N components; (2) formed a new ab initio
GMM from these samples; (3) add the “new” GMM onto the accumulator, using MDL as a basis to
decided the concatenations fractions; (4) form an ab initio from all the points sampled in this and all
previous iterations; (5) measure the MDL using the same data used to build the ground truth, for the

12

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

accumulated GMM, each new batch GMM, and the “complete” GMM formed at each iteration from
all data.

Results in Figure 8 shows a typical set of curves for Nd = {100, 250, 500, 1000, 2000}, with a ground
truth of 3 components, build from 1000 samples. The MDL measure shown is normalised by the MDL
for the ground truth data (optimal “relative MDL” is 1, therefore). As mentioned these curves are
typical. However, we should mention the fact that if a particularly poor GMM (that is, one that does
not fairly represent the ground truth), then the system can diverge. This is because we assume from
the outset (stated at the top the paper) that the operand GMMS are “fair” estimate of the population
distribution, and hence so too is the result of our concatenation step. If this assumption does not hold,
then we cannot give guarantees regarding a result. This is reasonable; of we input poor data we cannot
expect a good result. Nonetheless, we found that using of MDL as a weight during concatenation
down-plays the effect of a poor distribution, allowing us to violate our assumption to some degree.

3.4 An application in the taxonomy

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6
A GMM formed from half the data

Figure 9: The data and GMM for ’tax-
onomist A’.

−10 −8 −6 −4 −2 0 2 4
−8

−6

−4

−2

0

2

4

6
Another GMM, formed from more data

Figure 10: The data and GMM for ’tax-
onomist B’..

−10 −5 0 5 10
−10

−5

0

5

10

Figure 11: A control GMM made ab initio from
the combined data.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6
A GMM formed by adding a pair

Figure 12: The result of adding the
GMMs of taxonomists A and B, the raw
data is shown as a reference only and is
not used for the addition.

We now present a particular application that is enabled by adding GMMs. We are in collaboration
with taxonomists whose interests centre on diatoms; unicellular algae that live in almost any moist
or aquatic environmen [17]. The problem for us is to design a classifier, despite that fact that not
all species are known. It is true that classifiers for diatoms exist [5, 11], but these do not respond to
novel species. Consider the scenario in which a taxonomist is presented with two classifiers, perhaps
generated by different laboratories using some existing approaches (possibley different at each lab).
The evidence from the classifiers is that there exist just two species of diatom, because these seem to
be two clusters of components in each GMM. The taxonomist suspects that there are, in fact, three
species. By adding the GMMs and determining the number of clusters, that taxonomist can hope to
decide the number of species: two, or three.

We modelled the above scenario, knowing that there were in fact three species of diatoms. Tax-
onomist ’A’ was given 150 datum from species ’a’, and ’b’, taxonomist ’B’ was given 150 datum from
species ’b’ and ’c’. Each datum was a 30-component vector, comprising Fourier descriptors to represent

13

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

the shape of a particular diatom. The only pre-processing was to use Principal Component Analysis to
reduce the data to just 3 dimensions. Figures 9 and 10 show the GMMs produced by taxonomist A and
B, respectively. The GMM that results from their addition is shown in Figure 12, while an ab initio
control GMM is in Figure 11. The two “total” GMMS are in broad agreement in that both provide
evidence for the existence of three species. They differ in the number of and shape of components —
this might be expected as the different searches fall into local minima.

4 Conclusion

We have provided a method for the addition of GMMs, including a change in the number of components
and the selection of the optimal number of components. We require no reference to data, either original
or sampled, and need to supplement the GMM descriptions with the number of datum only. The result
of addition is a GMM that approximates an ab initio GMM founded on a concatenation of the original
data. We have empirically tested our method, in detail and in whole.

There are several additions we could have made to this paper. We could have presented more exper-
iments, but those we have presented reflect salient properties: details of simplification, of the

∫

p log(q)
estimate, and of addition as a whole. We also demonstrated an application. We could have included
additional applications, but with little gain. We could also have generalised the concatenation step
(Subsection 2.1), but only at the cost of extending the paper unduly: such a generalisation potentially
allows for many more applications, such as biasing a general model toward a specific (individual) model,
but that is another paper.

As a result of this work we conclude the most difficult, but essential, issues relevant to incremental
learning of GMM are (1) coping with “overlapping” components, and (2) choosing the optimal number
of components in the final model. We contibute to issue (1) by allowing weights to take on any value —
subject to constraints of the final model, and to issue (2) by fitting to a one-dimensional function (and
therby avoiding the need to resample in some high dimensional sapce while estimating an integral).
Further work is needed in noth areas — the search for a good set of weights can be slow, and the
estimate of

∫

p log(q) can be innacurate to the point where one finds it a little surprising it works as
well as it does.

From this work it is clear that ab initio methods are to be preferred, where they are available.
However, the addition of GMMs is possible and can give acceptable results. The addition of GMMs
has many applications, including the inclusion of new classes. By generalising the relative weights of
complete GMM during concatentation, we allow the possibility of subtracting one GMM from another
(that is, “forgetting”) as well as strongly biasing output towards any given operand GMM (useful,
perhaps, for emphasising data from an individual for biometeric analysis, say). Estimating

∫

p log(q)
is difficult but very useful, it may provide a way to estimate other distances (e.g. Kullbeck-Lieblier)
without resort to expensive resampling). It is also interesting to consider whether the weights used to
sum component GMMs can find use in other applications; the addition of Markov Chains, perhaps.

Acknowledgements

Thanks to David Mann, Stephen Droop, and Micha Bayer at the Royal Botanical Gardens, Edinburgh.

References

[1] R. A. Baxter and J. J. Oliver, “Finding overlapping components with mml,” Statistics and Com-
puting, vol. 10, no. 1, pp. 5–16, 2000.

[2] H. Bozdogan, “Determining the number of component clusters in the standard multivariate nor-
mal mixture model using model-selection criteria,” TR UIC/DQM/A83-1, Quantitative methods
Dept., University of Illinois, Chicago, Illinois 60680, Tech. Rep., 1983.

[3] ——, “On the information-based measure of covariance complexity and its application to the
evaluation of multivariate linear models,” Communications in Statistics: Theory and Methods
(A), vol. 19, no. 1, pp. 221–278, 1990.

[4] ——, “Mixture-model cluster analysis using model selection criteria and a new informational mea-
sure of complexity,” in Proc. of the first US/Japan Conf. on the frontiers of statistical modelling:
An informational approach. Kluwer Academic Publishers, 1994, pp. 69–113.

14

Peter Hall and Yulia Hicks / A Method to add Gaussian Mixture Models

[5] H. D. Buf and M. Bayer, Eds., Automatic Diatom Identification. Singapore: World Scientific
Publishing Company, 2002, vol. 51.

[6] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the em
algorithm,” Journal of the Royal Statistical Society, vol. 39, no. 1, pp. 1–38, 1977.

[7] M. Figueiredo and A. K. Jain, “Unsupervised learning of finite mixture models,” IEEE Transaction
on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 381–396, March 2002.

[8] I. Gath and B. Geva, “Unsupervised optimal fuzzy clusturing,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, no. 7, pp. 773–781, 1989.

[9] Y. Gotoh, “Incremental algorithms and map estimation: Efficient hmm learning of speech signals,”
Ph.D. dissertation, Brown University, 1996.

[10] P. Hall, D. Marshall, and R. Martin, “Merging and splitting eigenspaces,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 9, pp. 1042–1049, September 2000.

[11] Y.A. Hicks, et al “Modelling life cycle related and individual shape variation in biological spec-
imins” in Proc. British Machine Vision Conference, Cardiff, Wales, pp 2–5, 2002.

[12] L. Lu and H.-J. Zhang, “Real-time unsupervised speaker change detection,” in International Con-
ference on Pattern Recognition, 2001.

[13] P. O’Neil, Advanced Engineering Mathematics. Brooks Cole, 1995.

[14] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, pp. 465–471, 1978.

[15] S. J. Roberts, C. Holmes, and D. Denison, “Minimum-entropy data partitioning using reversible
jump markov chain monte carlo,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 23, no. 8, pp. 909–914, 2001.

[16] S. J. Roberts, D. Husmeier, I. Rezek, and W. Penny, “Bayesian approaches to gaussian mixture
modelling,” IEEE Transactions of Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp.
1133–1142, 1998.

[17] F. Round, The Diatoms. Cambridge University Press, 1990.

[18] P. Smyth, “Model selection for probabilistic clustering using cross-validated likelihood,” Statistics
and Computing, vol. 10, no. 1, pp. 63–72, 2000.

[19] N. Vasconcelos and A. Lippman, “Learning mixture hierarchies,” in Neural Information Processing
Sysytem 11, Denver, Colorado, 1998, pp. 602–608.

[20] J. Verbeek, N. Vlassis, and B. Krose, “Efficient greedy learning of Gaussian mixtures,” Pattern
Recognition, 2002.

[21] C. Wallace and D. Boulton, “An information measure for classification,” Computer Journal,
vol. 11, no. 2, pp. 195–209, 1968.

[22] Z. R. Yang and M. Zwolinski, “Mutual information theory for adaptive mixture models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 4, pp. 396–403, 2001.

15

