UNIVERSITY OF

BATH

Citation for published version:
Oleinik, E 2004, Development of an OpenMath-based unit converter to demonstrate the benefits of the.
Computer Science Technical Reports, no. CSBU-2004-12, Department of Computer Science, University of Bath.

Publication date:
2004

Link to publication

©The Author May 2004

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Dec. 2019

https://researchportal.bath.ac.uk/en/publications/development-of-an-openmathbased-unit-converter-to-demonstrate-the-benefits-of-the(6f461306-a1f2-4a43-9030-3e478de65bea).html

UNIVERSITY OF

Department qf \@ BATH

Computer Science

Technical Report

Undergraduate Dissertation: Development of an OpenMath-

based unit converter to demonstrate the benefits of the
newly proposed extension of OpenMath

Eugene Oleinik

Technical Report 2004-12 May 2004
ISSN 1740-9497

Copyright ©May 2004 by the authors.

Contact Address:

Department of Computer Science
University of Bath

Bath, BA2 7TAY

United Kingdom

URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

D oPrPerimaTH

Development of an OpenMath-based unit
converter to demonstrate the benefits of the
newly proposed extension of OpenMath

Eugene Oleinik
BSc in Mathematics & Computing

13th May 2004

Development of an OpenMath-based unit converter to demonstrate
the benefits of the newly proposed extension of OpenMath

submitted by Eugene Oleinik
Copyright

Attention is drawn to the fact that copyright of this thesis rests with its author.
The Intellectual Property Rights of the products produced as part of the project
belong to the University of Bath

(see http://www.bath.ac.uk/ordinances/#intelprop).

This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with its author and that no
quotation from the thesis and no information derived from it may be published
without the prior written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the
requirements of the degree of Bachelor of Science in the Department of Computer
Science. No portion of the work in this dissertation has been submitted in
support of an application for any other degree or qualification of this or any other
university or institution of learning. Except where specifically acknowledged, it
is the work of the author.

Signed:cococeeee

This thesis may be made available for consultation within the University Li-
brary and may be photocopied or lent to other libraries for the purposes of
consultation.

Signed:cococeeee

Abstract

OpenMath (http: //www. openmath. org) is an emerging standard
for representing mathematical objects with their semantics, allowing
them to be exchanged between computer programs, stored in databases,
or published on the worldwide web. Content Dictionaries (CDs) are
the most important and interesting concept of OpenMath because
they define the meaning of objects being transmitted. A CD is a
collection of related symbols and their definitions, encoded in XML
format. Some of the CDs specify various physical units, such as feet,
metres etc., but OpenMath lacks any logical and agreed mechanism
for attaching units to quantities using these CDs thus these defini-
tions can not be used for various applications that require working
with units. JAMES H. DAVENPORT in his article “Units and Di-
mensions in OpenMath” proposes several solutions to this problem
which would mean extending definitions of unit CDs. While changes
proposed in this article have not yet been accepted by the OpenMath
community, we could speed up this process if the usefulness of such
extensions could be demonstrated on a real-life application. This
project proposes to develop an OpenMath-based unit converter that
will take OpenMath descriptions of physical quantities (e.g. "3 feet")
and a target system (e.g. "metric") and do the appropriate conver-
sion, using the Content Dictionaries as the source of information.
This would mean that someone could write a new CD, e.g. for U.S.
units, and the converter would automatically work on these as well.
While implementing such a unit converter we could also ensure that
all proposed extensions make sense and the extended CDs that have
already been created are valid and do not contain errors.

ii

iii

Acknowledgments

I would like to take this opportunity to express my gratitude to my dissertation
advisor Professor James Davenport for formulating this interesting and challeng-
ing project as well as for numerous fruitful discussions. I would like to thank
my family for encouragement and support during my studies at the University
of Bath. I would like to express my warm appreciation and special thanks to
Ms. Jacki Hargreaves, my supervisor and colleague at the University of Bath
Web team for all her help and understanding that allowed me to successfully
combine my undergraduate studies and part-time work.

Contents

1 Introduction

2 Background information
2.1 OpenMath.
2.2 XML and its relationship with OpenMath
2.3 OpenMath Architecture and Objects

2.4 Content Dictionaries
2.5 Signature Dictionaries

2.6 Location of Content Dictionaries

2.7 Proposed extension of CD format
2.7.1 Representation of units
2.7.2 Attribution L

2.7.3 Unit prefixing
2.8 Existing unit converte

3 Project implementation
3.1 System requirements

rs

3.2 Resourceso
3.2.1 XML parsing as a text .

3.2.2 DOM parsing
3.2.3 SAX parsing

3.2.4 Resource decisions . . .
3.3 System specification and implementation
3.3.1 Startup

3.3.2 STS file proces
3.3.3 User interface
3.3.4 Parsing user in

sing . . .

put . ..

3.3.5 Conversion system . . .

4 Testing
5 Conclusions
Bibliography

A Development notes

A1 Preparation

A.2 Software installation

A.2.1 Installingon UNIX (OSX)

iv

16
16
19
19
20
21
21
22
23
25
27
35
36

44

50

54

CONTENTS

A.22 Installing on Windows
A.3 Content Dictionaries
A4 Userinterfaceo
A5 Algorithms
A5.1 Signaturefiles.
A52 ParsingCDs o
A.5.3 Doing conversions

B User manual
B.1 Toinstall the system
B.2 To perform a unit conversion
B3 Toadd anew unit
B4 Toaddanewsystem
B.5 To change the location of unit definition files
B.6 To view the available CD and units information

C Development testing - bug reports
D Unit converter source code

E Custom CDs

Chapter 1

Introduction

OpenMath is an emerging standard for representing mathematical objects with
their semantics, allowing them to be exchanged between computer programs,
stored in databases, or published on the worldwide web [15]. While the orig-
inal designers were mainly developers of computer algebra systems, it is now
attracting interest from other areas of scientific computation and from many
publishers of electronic documents with a significant mathematical content.

Content Dictionaries (or CDs for short) are the most important and the most
interesting concept of OpenMath because they define the meaning of the objects
being transmitted. A CD is a collection of related symbols and their definitions,
encoded in an XML format. OpenMath has a series of Content Dictionaries
(CDs) some of which contain descriptions of various physical units, such as
feet, metres, etc. It is fair to say that OpenMath lacks any logical and agreed
mechanism for attaching units to quantities using these CDs. James Davenport
in his article “Units and Dimensions in OpenMath” proposes several solutions to
this problem (some of which have been adopted from the closely related MathML
language [17]). The preferred solution is to use times (the symbol representing
an n-ary multiplication function) from existing content dictionary arithl to link
quantities and units in such a way to have the format extension compatible. It
would be highly desirable to make proposed system of unit manipulation and
processing using OpenMath CDs more effective and useful than they are at the
moment.

The major goal of this project is to design an interface and implement a func-
tionality within OpenMath concept to make unit conversions from any given
unit system to any other unit system based on existing CDs that contain these
units. It is clear that some conversions are straightforward (e.g. convert metres
into centimetres) while others are more complicated. The major challenge is
to use the recursive structure of newly proposed format of CDs that allows the
units to be defined in terms of other units which are in turn defined via some
other units. Another challenge is to perform reverse conversions, i.e if the base
unit system is International System of Units (SI) reverse conversions to imperial

CHAPTER 1. INTRODUCTION 2

system (e.g. from metres into miles) become more complicated.

One of the major requirements to the mechanism of unit conversion is to make
sure that the required conversion is legal, that is one type of unit can not be
accidentally converted into another type of unit (e.g. to convert pascals into
metres). The system must also be able to convert between the composed units
(composed means that prefixes like milli can be attached to units). In addition,
some measures do not have their equivalents across all unit systems so this must
also be taken into account and dealt with appropriately.

There is also a need to rationalize the system of unit conversion to ensure the
consistency of definitions and formats of unit CDs. The challenging question
arisen at the stage of formulation of the project is the following: is it necessary
to interpret all the OpenMath Symbols (OMSs) or maybe, or is it better to
define internally those OMSs which are specified in relation! and arithl CDs
in order to reduce the amount of processing needed for such a converter?

After careful analysis of the project goals, the following functionalities of Open-
Math unit converter has been formulated for implementation:

1. To get a list of available unit systems from the configured location;

2. To download CDs and all other necessary files needed for conversion;

3. To work with any number of unit systems and easily add new unit systems;
4. To interpret CDs (parse the format and understand the data);

5. To display units available for conversion;

6. To get user input and process it;

7. To produce needed conversions;

8. To have a user-friendly interface and be intuitive to use;

9. To be easy to install and configure;

10. To be robust and have a good error checking system.

Choice of programming language for implementing OpenMath unit converter de-
pends on the ability to parse XML-like data (using additional modules if needed)
and to produce adequate user-friendly interface. The simplicity of working with
XML data is one of the requirements for the successful design of unit converter.

Taking into account all these requirements we implemented the OpenMath unit
converter based on content dictionaries using Perl programming language. As a
result we were managed to demonstrate successfully that the proposed extension
to OpenMath that aims at attaching units to quantities does work extremely
well and will greatly benefit the community by creating novel and useful system
tools within OpenMath framework.

CHAPTER 1. INTRODUCTION 3

The outline of this thesis is the following. In chapter 2 we present the back-
ground information including the concepts of OpenMath, Extensible Markup
Language (XML), content dictionaries (CDs), proposed extensions of CDs in-
cluding unit processing, existing unit converters outside OpenMath. Chapter
3 is the central part of this thesis which the project implementation including
system requirements and specifications, and resources used. Chapter 5 describes
the unit converter testing. Chapter 6 presents conclusions including future work
and improvements. Appendix A contains development notes and appendix B is
the user manual of the developed unit converter.

Chapter 2

Background information

This chapter includes traditional literature survey as well as the information
that is published on WWW. The OpenMath concepts are nicely described at
the project web site http://www.openmath.org. My particular focus was to
understand and become fluent with the novel concepts of OpenMath, XML and
other related subjects. They include:

e General concepts of OpenMath,

XML & Document Object Model (DOM) and their relationship with
OpenMath,

OpenMath Architecture and Objects,

Content Dictionaries (CDs),

Signature Dictionaries based on Simple Type Systems (STSs),

Proposed extension of CD format.

Before implementing the project I decided to make a comparative review of
already existing unit converters. They are also reviewed in this chapter.

2.1 OpenMath

OpenMath is a standard for representing mathematical data in as unambiguous
way as possible. It can be used to exchange mathematical objects between
software packages or via email, or as a persistent data format in a database. It
is tightly focused on representing semantic information and is not intended to
be used directly for presentation, although tools exist to facilitate this.

CHAPTER 2. BACKGROUND INFORMATION 5

The original motivation for OpenMath came from the Computer Algebra com-
munity. Computer Algebra packages were getting bigger and more unwieldy.
Therefore, it seemed reasonable to adopt a generic “plug and play” architecture
to allow specialized programs to be used from general purpose environments.
There were plenty of mechanisms for connecting software components together,
but the common format for representing the underlying data objects was absent.
It quickly became clear that any standard has to be vendor-neutral and that
objects encoded in OpenMath should not be too verbose. This has led to the
design implemented within on-going OpenMath efforts.

Since 1997 OpenMath development has been partially funded by the European
Union under a multimedia European Strategic Programme for Research in In-
formation Technologies (ESPRIT) project. In 1998, the W3C! produced it’s
first recommendation for the Extensible Markup Language (XML), intended
to be a universal format for representing structured information on the world-
wide web. It was swiftly followed by the first MathML recommendation which
is an XML application oriented mainly towards presentation (i.e. rendering)
of mathematical expressions [5]. The formal definition of OpenMath is con-
tained within The OpenMath Standard and its accompanying documents (see
http://wuw.openmath.org/cocoon/openmath/standard/index.html).

Both MathML and OpenMath are XML applications, these two systems can be
thought of as analogous to each other, but there is a constant feeling of tension
between OpenMath and MathML communities. Work is being done to make
both standards compatible/compliant to each other but it is very difficult, many
arguments and questions arise during discussions mainly because the philosophy
of those two standards is so different. MathML was primarily aimed at solving
a task of rendering without taking into account the actual meaning of the data
being represented. On the other hand, OpenMath concentrates on giving every
object a sensible meaning and compensates this by complicating the rendering
side. The major effort of new European project, Thematic Network, is to align
OpenMath and MathML and to produce a Reduce-based OpenMath/MathML
translator.

2.2 XML and its relationship with OpenMath

XML (eXtensible Markup Language) is a W3C-endorsed standard for text doc-
ument markup [18]. It defines a generic syntax used to mark up data with
simple, human-readable tags. Data are included in XML as strings of text and
are surrounded by text markup which describes the data. XML’s basic unit of
data and markup is called an element. XML is a metamarkup language, i.e. it
does not have a fixed set of tags and elements that will work for everybody in
all areas of interest for all time. Instead, XML allows developers and writers
to define the sets of elements they need. Those sets are often named as XML
applications (i.e applications of XML to a specific area of interest).

IWorld Wide Web Consortium, an organisation responsible for developing and maintaining
many data format standards, e.g. XML, HTML, CSS.

CHAPTER 2. BACKGROUND INFORMATION 6

Although XML is quite flexible in the elements it allows to be defined, it is quite
strict in many other respects. W3C XML specifications provide a grammar
(syntax) for XML documents that says where tags may be placed, what they
must look like, which element names are legal, how attributes are attached
to elements, and so forth. This “strictness” of grammar allows creation of a
standard XML parser that will be able to process any XML document no matter
what its application is.[21]

The markup in an XML document describes the structure of the document.
It lets you see which elements are associated with which other elements. In
a well-designed XML document, the markup also describes its semantics. e.g.
the markup can indicate whether an element is a date or a person or a bar
code. It is also important to note that XML has a hierarchical structure since
it’s roots date back to the time when hierarchical databases were very popular.
Importantly, in a well-designed XML applications the markup allows a flexible
display of the document without strict specification of the format of the output
[21].

The markup permitted in a particular XML application can be documented
in a schema. Validity of any XML application document can be verified by
checking whether it matches the application schema. The most popular schema
at the moment is Document Type Definition (DTD). DTDs are used for HTML,
XHTML, MathML, OpenMath and other systems[21].

The XML parser that was mentioned above is responsible for structuring docu-
ment’s individual elements, attributes and other pieces. The parser passes the
contents of the XML document bit by bit. Individual XML applications nor-
mally dictate more precise rules about exactly which elements and attributes are
allowed and where. Some of those rules are specified using schema as described
earlier, e.g. using DTD.

Apart from thinking of XML as a plain-text set of strings, there are several
Application Programming Interfaces (APIs) created to access and manipulate
XML data. Two most popular APIs are DOM and SAX.

DOM stands for Document Object Model (derived by W3C) which describes
the method of processing an XML document as a tree of nodes, every single
data item being thought of as a node in the document tree. DOM maps an
XML document into an internal tree structure, then allow an application to
navigate that tree. DOM navigation methods are used to move around the tree
and allows for easy tracking of interrelationships between the elements [16].

SAX stands for Simple API for XML (SAX) and it is event-based API. In con-
trast to tree-based API such as DOM, SAX reports parsing events (such as the
start and end of elements) directly to the application through callbacks, and
does not usually build an internal tree. The application implements handlers to
deal with the different events, much like handling events in a graphical user in-
terface, i.e SAX triggers an event and the parser calls the corresponding handler
function in the code to handle the event [11].

CHAPTER 2. BACKGROUND INFORMATION 7

2.3 OpenMath Architecture and Objects

The OpenMath representation of a mathematical structure is referred to as
OpenMath object. This is an abstract structure which is represented concretely
via an OpenMath encoding. These encoded objects are what an OpenMath
application would read and write. In practice the OpenMath objects themselves
almost never exist, except on paper. The advantage of this is that OpenMath
is not tied to any underlying mechanism in contrast to previous practice when
functional, SGML and binary encodings were used. The current favorite mode
of OpenMath is to use XML to describe OpenMath objects (even though the
XML representation is an encoding itself) [5].

OpenMath application object is viewed as a “tree” by software applications
that do not understand Content Dictionaries. The conversion of an OpenMath
object to/from the internal representation in a software application is performed
by an interface program called Phrasebook. The translation is governed by the
Content Dictionaries and the specifics of the application. It is envisioned that a
software application dealing with a specific area of mathematics declares which
Content Dictionaries it understands. As a consequence, it is expected that the
Phrasebook of the application is able to translate OpenMath objects built using
symbols from these Content Dictionaries to/from the internal mathematical
objects of the application [22].

OpenMath objects are the elements of a labeled tree whose leaves are the ba-
sic objects including integers, floating-point numbers, character strings, byte
arrays, variables and symbols. Symbols are the most interesting OpenMath
objects since they consist of a name and a reference to a definition in an exter-
nal document called Content Dictionary. OMS stands for OpenMath Symbol
and using XML notation the following line <OMS name="sin” cd="transcl”
/> represents the usual sin function as defined in the CD “transcl”. A basic
OpenMath object has the following representation:

<0MOBJ>
<0MS name=’’sin’’ cd="’transcl’’ />
</0MOBJ>

OpenMath objects can be built up recursively in a number of ways. The sim-
plest is the function application. For example, the expression sin(x) can be
represented by the XML as

<0MOBJ>

<0OMA>
<0MS name="’sin’’ cd=’transcl’’ />
<0MV name="’x’’ />

</0MA>

</0MOBJ>

CHAPTER 2. BACKGROUND INFORMATION 8

where OMV introduces a variable and OMA is the application element. Another
straightforward method is attribution which as the name suggests can be used
to add additional information to an object without altering its fundamental
meaning [5].

2.4 Content Dictionaries

Content Dictionaries (CDs) are the most important and interesting concept of
OpenMath because they define the meaning of objects being transmitted. A CD
is a collection of related symbols and their definitions, encoded in XML format.
Defining the meaning of a symbol is not a trivial task and even referring to well-
known references can be fraught with pitfalls. Formal definitions and properties
can be very useful but time-consuming to produce and verbose, not to mention
difficult to get right. A symbol definition in OpenMath CD consists of the
following pieces of information:

e the symbol name
e a description in plain text

e set of symbol’s properties in plain text - Commented Mathematical Prop-
erties (CMPs), optional

e set of symbol’s properties encoded in OpenMath - Formal Mathematical
Properties (FMPs), optional

e one or more examples of its use - encoded in OpenMath, optional

In practice, the CMPs and FMPs can come as pairs, and often serve in the place
of examples [5]. Here is a simple instance of a CD definition:

<CDDefinition>

<Name> mile </Name>

<Description>This symbol represents the measure of one mile.

This is the standard imperial measure for distance.</Description>
</CDDefinition>

CDs usually consist of related symbols, and for the purpose of convenience the
collections of related CDs can be grouped together. For example, CD Groups
(units_imperiall.ocd) defines symbols to represent standard measures.

Given the evolutionary nature of mathematics, it is clear that the set of CDs
will be constantly growing and will never be complete. Therefore the CD format
is constantly evolving to include the most useful information about symbols [5].
We will discuss this process in the section 2.7 on page 10.

CHAPTER 2. BACKGROUND INFORMATION 9

2.5 Signature Dictionaries

It is possible to associate an extra type information with CD. There are many
type systems available, but simple signatures are preferred to be encoded using
the Small Type System as described in[3]. Types are associated with OpenMath
objects using attribution. This is done by (i) creating a CD that specifies
constructors of the Type System, (ii) building OpenMath objects representing
these types. Here is an example of the signature for the metre, the standard SI
unit of length:

<Signature name="metre" >
<0M0OBJ>

<0MS cd="dimensionsl" name="length"/>

</0MOBJ>
</Signature>

The most interesting areas of signature usage related to this project are the
units for defining type of each unit (e.g. length) and prefixes for defining type
of each prefix.

2.6 Location of Content Dictionaries

All Content and Signature Dictionaries are stored at the OpenMath official
website (http://www.openmath.org) in section “Content Dictionaries”. CDs
are sorted into subsections according to their importance and readiness for the
OpenMath world. There are four subsections in the Content Dictionaries sec-
tion:

1. Core - this part contains a core set of CD Groups that is required to
understand OpenMath syntax and a MathML CD group which provides
compatibility with the Content markup of MathML 2.

2. Public - this part contains CDs that have been reviewed and endorsed
by OpenMath community (these CDs have stable "official" status). It is
useful to note that at the present moment this subsection also has only
key CDs: they define symbols used in OpenMath constructs (the meta CD
Group), in the signature files (for the simple type system for OpenMath),
and for OpenMath error handling.

3. Eztra subsection has more interesting content. It has a full set of Open-
Math Content Dictionaries (CD) and Signature Files that are available
from http://www.openmath.org. This section contains not only key CDs
from Public and Core subsections but also other dictionaries which have
not yet been assigned status "public" (they include the old versions of CDs

CHAPTER 2. BACKGROUND INFORMATION 10

for defining units). The dictionaries from Eztra subsection are constantly
evolving: some of the CDs have been updated and newer versions (stored
in the Contributed subsection) have been proposed.

4. Contributed subsection contains all the newly proposed CDs that have
been added using the online submission form. CDs in this section have
not yet been reviewed. The good practice is always to check that there
are no errors in these CDs. For example, it was discovered in the course of
this project that there is no link between metric and imperial pressures.
It is always recommended to create local copies of the CDs downloaded
from this section for subsequent revision and improvements.

The final version of the unit converter implemented in the course of this work will
reference a central official location of CDs but special checks must be performed
to make sure that all the necessary CDs migrated from Contributed to Extra
subsection.

For the purpose of the current project the following CD files have been used:

e Arithmetic and operation CDs from Extra section:
arithl.ocd & relationl.ocd

e All “units_*” files found in Contributed subsection (including STS files).
Currently, they include:
units_imperiall.ocd & units_imperiall.sts
units_metricl.ocd & units_metricl.sts
units_timel.ocd & units_timel.sts
units_siprefix.ocd & units_siprefix.sts

2.7 Proposed extension of CD format

One might ask a question: “We have these wonderful definitions of symbols using
CDs but can we do anything useful with them?”. For example, take unit CDs
(CD defining different unit measures), these describe various measures like feet,
metres, litres, pints, etc. How can we do anything useful with them using CDs?
How can conversion between different units be actually performed? It is fair to
say that OpenMath lacks any logical and agreed mechanism for attaching units
to quantities using these CDs. JAMES H. DAVENPORT in his article “Units and
Dimensions in OpenMath” proposes several solutions to this problem (some of
which have been adopted from the closely related MathML language [17]). The
preferred solution is discussed in detail below.

CHAPTER 2. BACKGROUND INFORMATION 11

2.7.1 Representation of units

It is necessary to express all unit systems in terms of a metric system. Using
times from relationl CD express the basic measure in terms of a metric system.
For example foot: express foot (standard of length in imperial) in terms of
metres. All other measures in the particular system are represented in terms of
the standard measure. For example, mile would be represented in terms of feet
as:

<CDDefinition>

<Name> mile </Name>

<Description>This symbol represents the measure of one (land,
or statute) mile. This is a standard imperial measure for
distance, defined in terms of the foot.</Description>

<CMP> 1 mile = 5280 feet </CMP>

<FMP><0MOBJ>

<0OMA>
<0MS name="eq" cd="relationl"/>
<0OMA>
<0MS name="times" cd="arithl'"/>
<OMI> 1 </0MI>
<0MS name="mile" cd="units_imperiall"/>
</0MA>
<0OMA>
<0MS name="times" cd="arithl"/>
<OMI> 5280 </0OMI>
<0MS name="foot" cd="units_imperiall"/>
</0MA>
</0MA>

</0MOBJ></FMP>

</CDDefinition>

Updated CDs that comply with this proposal have been deposited at Con-
tributed section of Content Dictionaries at http://www.openmath.org. They
are:

units_metricl.ocd
units_imperiall.ocd
units_timel.ocd

We recap again that every unit, unless it’s a base SI unit, must be defined in
terms of some other unit. Because SI system is agreed to be metric, “units _metricl”
CD is the minimum CD necessary to define any units. All other systems may

CHAPTER 2. BACKGROUND INFORMATION 12

define their units using “units _metricl” CD. Following this idea it was suggested
in [4] to rename “units_metricl” into “units_sil”.

2.7.2 Attribution

The next step is to add quantities to units. For example, we would like to
represent 2 grammes in OpenMath as follows

Number 2 in OpenMath is:
<OMI> 2 </0OMI>
Gramme in OpenMath is:
<0MS name=’’gramme’> cd="’units_metricl” />
We can use times from arithl to bound them together like so:

<0OMA>

<0MS name="times’’ cd="’arithl” />

<QMI> 2 </0MI>

<0OMS name="’gramme’ cd=""units_metricil” />
</0MA>

2.7.3 Unit prefixing

The next issue to address is to deal with units that are composed of prefixes.
Creating separate CD entries for them would cause many inconsistencies and
be very verbose: each unit would acquire 20 variants. Instead, it was proposed
to create a special operator such as <OMS name="prefix” cd="units _ops1’>
whose signature is given by:

<Signature name="’prefix’”>
<0MOBJ>
<0OMA>
<0MS name="’mapsto’’ cd="’sts’’>
<0MS name="’unit_prefix’’ cd="’units_sts’’>
<0MV name="’dimension’”>
<0MV name="’dimension’’>
</0MA>
</0MOBJ>
</Signature>

CHAPTER 2. BACKGROUND INFORMATION 13

Following the rules of the Small Type System|[3], the first argument must have
type unit_prefix (i.e. must be a prefix), the second argument can be any-
thing (“something of an unknown dimension”) but must return something of
the same kind (“the same dimension”). CD (“units_siprefix.ocd”) and STS
(“units _siprefix.sts”) files for unit prefixing have been created according to this
proposal and can be found in the Contributed section of Content Dictionaries
at http://www.openmath.org.

2.8 Existing unit converters

Prior to implementing this project, I decided to review existing unit convert-
ers in order to understand state of the art methodologies and technical ap-
proaches. There are a number of Unit converters available on the Internet,
many of them execute conversions online using web interface. One such con-
verter hosted by Digital Dutch can be found at: http://www.digitaldutch.
com/unitconverter/. The screenshot of this converter is shown below:

Navigation
Area
Bits & Bytes
Density

Energy |1 Imeters [m] j EI

Farce

Length or distance

Input

Length
Mass Output

Power 1 Imeters [m] j

Pressure

Speed
Tetmperature
Wolume

Options
Order
Help

The interface of digital dutch converter is relatively simple: there is a menu to
choose the type of measure for conversion (e.g. lengths, pressures). Once the
type of measure has been chosen, new window appears with two list boxes: input
and output unit and a quantity of input unit. I immediately spotted a problem
seems to be a common drawback of all unit converters that I inspected: they
do not use official definitions of unit values in relation to each other. Therefore,

these systems are not easy to extend when a new unit type or unit system is
added.

I noticed that the interface would be much more practical if all types of units
were converted from one page rather than navigating through different pages
using a menu on the left. This particular layout of input boxes does not allow
an easy handling of this situation. Another shortcoming of this system is that
it presents no options to choose the prefix for the units. While in most cases it
is convenient to choose kilometres from a single list box, it is not always a good

CHAPTER 2. BACKGROUND INFORMATION 14

idea. This is because every length unit has all prefix variants in a list box which
produces too many entries to be selected from in the list-box. This means that
it is very difficult to find quickly the necessary unit. As I mentioned above, I
found several similar systems both web-based and standalone running on MS
Windows platforms.

Another approach for constructing unit-converter was found at [14]. The screen-
shot is shown below:

Metric
kilotorme l‘\i
e fiom
Ilonewton (on Earth surface) (KM lBBD?i
teilograrn (kg) [ooooop
newton (on Earth surface) (M) W
- T
reen () [ooooooooo
— [focoooooooos
smillzrarn (ing) [1oooanoncoom
microgram (meg) IM
atetric mass unit (amu) W
Avoirdupois (U.S.) Convert

short ton lﬂD2—
leng hundredweight W
short hundre dweight |22E|5E|7

This web-based system converts different weight units and is implemented as a
Java script. All the units are listed on a single page separately. Once a number
has been entered in one of the units and Convert button has been pressed,
the rest of the unit boxes show the converted values. This interface is good
when comparing different unit values, but it is impractical because you can only
convert one type of units from one page. In addition, the units are hard to find
and the prefixes are not split up.

An interesting converter has been found on the same page as a link to a down-
loadable Windows executable (shareware):

CHAPTER 2. BACKGROUND INFORMATION 15

Unit Conversion Tool [Evaluation Yersion] -0 1[
File Edit View Help
L
BEW®®ESER A =0
Prefixes | Data Storage | Data Transfer | Length | angle | area | volume Volume - Dry |T|me |
|1 b |1816165068
| Get the Full version to convert more than 2100 units in 78 categories! |
Units | oo ‘ Results “ Units ‘ B | Results “
litcer Ll liter Ll 1
barrel dry (US) b, barreldry (US) b... 0.00864843
pint dry (U5 P pint dry (L5 p.. 116165968
quart dry {LI5) q. quart dry {U5) q.. 0.90308295+
peck (LUS) P peck (US) p.. 0113510373
peck (LK) P peck (LK) P
bushel [US) b.. = | bushel (Us) b b
bushel [UK) b.. bushel (UK} b
cor (Biblicaly cor (Biblicaly
harner (Biblicaly hamer (Biblical)
ephah (sibical) | | eohah (siblical; =
-+
Log ‘Window
|Ready 4

I immediately spotted interesting aspects of this converter that I would like to
implement in my own project. Although it is not based on OpenMath CDs but
has some sort of semantic system that defines some units in terms of other units.
Moreover, it has some sort of prefix definition. This product has some other
unique features like the ability to accept complex expressions like formulae in
the input boxes and ability to add/modify units. However, the interface of the
converter is not user-friendly: some bookmarks for selecting measure types do
not fit into the window, and the user must use arrows for scroll up and down.
This is an important drawback since the user is not able to see all available
measures at once and has to click many graphical objects to achieve what he/she
wants.

00} 0] 0 4 aHr Aq Jaded ,wesAg adA] uyrepuadQ |lews v, peay 19
001 10 0 4 aHr Aq Jeded ,sao Bunlpn, peay 09
00l 10 09 yrepyuadQ uo ainjessy Jayuny Apnis 4 6G
00l 20 0y 4 soads Jeip ZA 1eWIO) MBIA o
001 00 'L 4 soads |*| A 1BWIo) MaIA L
00l 00 'L 4 $09dS | A JewIo) MaIA o
001 "0 002 (sSLS *® s@D 0} burejas sued) jewlo} yreuado Apnis & 6€
00l 0l Yy 0‘g dn-ajum Joj TAIX JO MBIAIBAO UB 80npoid eG
00l vl 091 Yy %ooq ,Jlaysinu e ul TNX, Apnis Zs
00l vl 0've yewJoy TNX Apnis & 1S
001 00 0l y ainjeJayl| pajejal-NX Buipnjoul ainjela)l| Jueasjal Jo 1s]| e ajidwo) 6

001 vl 029 (A108U3) mainay ainjesay -4 3

00l 20 0y 4 UOISJSA [eul 3¢c
00l 00 G0 k |lesodoud yym Addey si sosintadns jey) yoayoH)€
00l 0L 408 UOISJaA |eniu o¢
00} 0L GCl lesodoud joafoid & Ge
001 00 'L 4 ue|d 108loid |eniuj Z9
00} vl L'lzte dn-ayum j09foid & [z
00l vl 8'/G¢ ue|d j0afoud - JopBAUOD JlUN paseq-yeyuadQ| |

a19|dwo) o, coﬁ_wbﬂﬂ ﬁw“_um% aweN Yse| Aoy

ueld j08loud - 18uBAU0D JUN paseq-yienuado

00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l

00

00
L0
00
€0
L0
€0
o'l
L0

€0
L0
€0
o'l
€0
20
€0
7’0

€0

80
0C
€0
0'S
0'¢
L1
0’8

13

0 4
0’0l
0's
gl
g'9
0'8
0'
o't
0'6
0'8

A A AAMAA AL

AA AA

100} |0Jju09 193(oid ssnasIq
SUOISIOap JaAISS gam pue walsAs Bunelado ssnosi(
$80JN0S8lJ BJIXS UO UOISIOBp B aYelN &
dn-ajum 8y} Ul JI UOSEaI pue asn 0} Jasled Jeym UO UOISIOap e a)e
dn-aj1um ay) ul 1l ssnosip pue abenbue| Buiwwelbold uo uoIsIoap e aye\
dn-a)um ul si8sied punoyj Uo JUBWWOY
way) Alsseo pue siasied X d|qejieAe Jo 1sl| e aidwo)
$80IN0SaYy &
dn-a)1um 8y} J0o} |IB}op Ul Juswalinbal yoeas ssnoasiq
sjuswaJinbal Jo 1s1| B 80Npolid
sjuswadinbal wajsAs &
salnjes} Jejnoiued Jo "suod sA “soud Buipnjoul syonpold Buiisixa Jo MalAal B 89Npoid
syonpold Bunsixa Ajjuap|
sjonpoud Bunsixg &
dn-a)1um 10} JUswWWOod pue Aiojoalip g9 yieyuadQ ayy Jo ainyonais ay) Apnis
s|ielap ul dn-ajum ui Jaded sIy} UO JuUBWIWOD
aHr Aq saded ,yiepyuadQ ul suoisuswiq R siun, peay
yieyuadQ Jo uoisusixe pasodoid Apnis &
dnajlum ay} 1o} yiepyuadQ JO MBIAIBAO Ue 82Npold
Jemaq ‘N Aq Jeded ,mainianQ uy :yiepuadQ, peoy

€l

¢l

Ll

Ly

VL

6v

8Y

0.

69

19

99

g9

¥9

o

14

144

28]

8¢

€9

ueld j08loud - 18uBAU0D JUN paseq-yienuado

00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l

€0

10
A
o'l
o'l
o'l
A’
o'l
A’

€0
€0
€0
o'l
€0
A’
10
00

A AAA

0L 4
0'8Z
o'c 4
09l 4
o'
o'
0'8
0‘0y
o'
0'lS
sl 4
0's 4
09 4
0k
5 4
0L 4
0'6.
o't 4
50 4

s@9 auIno ul sbnq Buixi4
Bunss] &
aoel8}UI UB YlIM uonelbajul Jnoge ajlup
JBIBAUOD JUN 8quosaq
uoljouny Joje|nws uonelado aquosaq
uoniulap 108[qo ue spuly Jey} uonouny 8quISag
uonouny Buisied aquosaq
Buisseooud syun &
soxiyald Buissaoold aquosaq
wialsAs uoisieAuo) -
Buisied indur aquosaq
uonelausb |N aquosaQ
UOISIOap |eulj B 8w pue SUOISIaA [N 3|qissod ssnasi
90BUBIUI JBSN
Buissasoud 9|} SIS JUBWNO0Q
Buissaooud ejep dnuejs Jnoge ajlIA
suoneoloads walsAs
ue|d 108loud JO uOISIBA |BeUl} 8oNpOoId
ABajens Buiuueld ay) ssnosig
ueld josfoud jeulq &

Ll

98

g8

LLL

oLl

601

801

¥8

€8

18

08

6.

Ll

9.

Gl

V.

€L

¢l

Gl

ueld j08loud - 18uBAU0D JUN paseq-yienuado

00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l

00

€0
Ll
€0
€0

10
20
L0

L'l
A
10
10
L0
1’0
€0
€0

13

A
A
A
A
L'}
A
A
y
A

Bunsa) Buissaooud dnueys oQq
aoeudU| JosN &
Buisseooid dnue)s juswa|dw|
elep yiepyuadp bBuissasold - sasioiaxs awos 0
ejep X Buisied - sasioiaxe swos oQg
ejep X 8sied 0] moy Jnoge peay
$9S10J90X8 BWOS 0 4
SaleUOI0Iq JUBIUOD YNM Jeljiwe) Buiiab uo sejou Juswdojoasp aonpold
Buidojanap Jo} suoneledald uo ssejou juswdojoasp adnpold
palinbai se Buiuonouny sI 81eM}0S pajjeisul Jeyl 3oayo
Jasied X pue uad ‘J9AISS goMm ||ejsu|
Juswdojaraq &
[enuew Jasn 8onpo.id
SUOISN|2UOD [|eJaAQ
auop a8 p|No9 jey) sjuswaroldw|
walsAs ay) Jo syoegmel
dn-8)lum uoISN|oU0D &
dn-ajlum 10§ podaus Bunsa |
Bunse) sjuswalinbay
SO wojsno mau Jo uoneltedald

G6

ve

L€

0¢

6¢

9¢

16

€6

Gc

Gll

c6

LC

06

8.

68

88

.8

vil

el

oLl

ueld j08loud - 18uBAU0D JUN paseq-yienuado

00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l
00l

00 01
0L 408

00 01 4
1o 0C 4
00 01 4
20 0v 4
00 01
0L 06
00 01
o 0t 4
00 01
€0 0L 4
0h 008

20 0
00 S0 4
€0 0L 4
€0 S

20 0 4
00 01
0L 408

Bngap pue ysej snoinaud 1sa |
J8JBAUO0D BAljlWIId-UOU 8SEq-UOU O} 8SEJ-UOU 99NpOoId
Bngap pue yse) snoinaid 19|
JaJBAUO0D aAllwId 8seq-uou 0} 8SBg-UOU 89NpPoId
Bngap pue yse) snoinaid 1sa |
JBUBAUO0D BAIWILId-UOU 8SEeg-UOU 0] 8Seq pJemydoeq adnpold
Bngap pue ysej snoinaud 1sa |
JOUBAUO09 BAIWILId 8Seg-Uou 0] 8Seq pJemydoeq adnpold
Bngap pue yse) snoinaid 1o |
JBBAUO0D BAlIWILId-UOU 8Se(0} 8Seq-UouU pJemio) 8dNpold
Bngap pue yse) snoinaid 1sa |
JaPBAUO09D aAIWILId 8seq 0} 8Seq-Uou pJemio) 8dNpold
walsAs uoisisAuo) &
Jasied ndui asijeuly
Jayoel) bng 0} pappe aq pjnoys punoy sbng Aue ‘Bunss) oq
JasJied indul JO UOISIBA |eljiul Ue 82NpoId
Buisied jndui Jesn &
Jojelausab aoepsiul ul punoy sbnq Aue 1081100
Jayoel) Bng ay) 03 punoj BuiyiAue ppe pue Buise) aoeualul 0Qg
1d1I0s 90elB)UI JBSN JO UOISIOA [Bl}iUl 82Npold

Lcl

ccl

ocl

Gcl

vel

ecl

8Ll

x45

0cl

6Ll

€0l

101

L6

00l

66

86

96

148)

9g

LS

ueld j08loud - 18uBAU0D JUN paseq-yienuado

00l
00l
00l
00l
00l
00l

20
L0
o'l
€0
L0

0'v
0C
y 0’8
0'S
0¢

AAMAA AA

Bunsey |euly Joye punoy sbng Aue 1081109

Bunssy |euly oq

uonoas sajou JuswdodAsp sy} 0} ueld ay} wouly suoneinsp Aue ppy
Buibbngap pue Buisa) WoisAS JalBAUOD Jiun [|N4
Bngap pue ysej snoinaud 1sa |

JalaAu09 8)isodwod 8onpold

L0l

901

cOl

ocl

6¢l

8¢l

ueld j08loud - 18uBAU0D JUN paseq-yienuado

Chapter 3

Project implementation

This chapter describes the actual work done on developing OpenMath unit
converter. The project implementation plan included

1. formulation of system requirements,

2. researching the best programming resources available for implementing
the project and making appropriate decisions,

3. working on detailed system specifications

4. actual project implementation in the form of developing, testing and doc-
umenting program modules that comprise the OpenMath unit converter.

It is worth mentioning that this document was created in the course of the
project and reflects the actual dynamics of the process. My main strategy was
to work in multitasking environment, that is to work simultaneously on several
independent aspects of the project that require considerable time investment.
The consistency of the goals has been achieved by keeping track of project stages
using project planning and bug tracking tools. This approach allowed to work
persistently on program coding, benchmarking and error testing, together with
constant documenting of the goals achieved and problems discovered.

3.1 System requirements

The major requirements for my OpenMath unit converter were enlisted in in-
troduction. Here we discuss these points in detail.

16

CHAPTER 3. PROJECT IMPLEMENTATION 17

A. To get a list of available unit systems from the configured location

System must be able to start up by having one piece of data - the location of
CDs and their corresponding STSs. The system should then be able to detect
which of those CDs represent unit definitions, check that signature files for those
CDs are available as well to check that all the other necessary supplementary
CDs are present (e.g a CD containing prefix information).

B. To get a list of available unit systems from the configured location

Required CDs will then be loaded every time before conversion is begins. System
must be able to work with local addresses only. It was initially thought to work
with remote URLs but this would create a less reliable system due to directory
listing, connection and URL redirect problems. References to loaded files should
then be stored at some predefined storage location in memory.

C. To work with any number of unit systems and easily add new unit
systems

The system must be able to work with any number of unit systems, automat-
ically update the new units and include them in the list of available units for
conversion. If a new CD with a new unit system has been created, new CD
along with the corresponding STS file is placed in a central location where all
those unit CDs are stored.

D. To interpret CDs (parse the format and understand the data)

The converter must be able to parse XML data contained in CD and STS files
and extract needed information. It must understand the CD structure and be
able to process composite statements (definitions) i.e. be recursive.

E. To display units/prefixes available for conversion

After reading appropriate CDs the system must list these units that are available
for conversion. STS information should be used to group various units from
different systems into types (e.g. length, volume, pressure) and to list available
prefixes. The system must be able to deal appropriately with the units that
have no equivalent in other systems.

CHAPTER 3. PROJECT IMPLEMENTATION 18

F. To get user input and process it

User should be able to choose the required conversion, enter the values, choose
prefixes and submit data for conversion. The input should be processed and
checked for validity:

e Are the input data valid? (e.g. are the value inputs “pure” numbers?)
e does the prefix chosen exist?
e do the units exist?

e is the conversion valid? (e.g. are both input and output units of the same
type?)

e is it possible to do the conversion?

G. To produce needed conversions

The system must then do the conversion. The conversion has to be split into
several tasks:

To split value that user provided for the quantity of input unit, process the
prefix information to get the necessary coefficients, use recursive approach to
do the base conversion (to convert without taking into account prefixes and
user-supplied quantities). The result of the base conversion is then multiplied
by the prefix values (output prefix actually means divide) and multiplied by the
quantity that user supplied.

Before performing actual base conversion, the conversion must be classified in
order to determine how to convert and how far the recursive level goes. These
aspects of classification are considered below when discussing the technical de-
tails of project implementation.

H. To have a user-friendly interface and be intuitive to use

The unit converter is not a terribly complicated mathematical calculation but
just matter of convenience. Therefore the interface must be as user-friendly as
possible, be intuitive and easy to use. The major emphasis must be made on
convenient way of displaying possible conversions and choosing what user wants
to convert.

I. To be easy to install and configure

The system must be relatively easy to install. Assuming that the operating
system has all pre-requisite modules and libraries installed, all what is needed to

CHAPTER 3. PROJECT IMPLEMENTATION 19

install the system is to unpack the converter archive file and set the appropriate
permissions on executable files (this will be outlined in section 3.2.4 on page 21).

J. To be robust and have a good error checking system

The system must be stable and not crash irregardless of user errors, errors
containing in unit CDs, STS or a simply broken internet connection.

3.2 Resources

XML is all about structuring the data in the way which is required for using tree
structures. XML parser is the prerequisite for reading XML documents. Parser
simply recovers the data by passing parts of the document bit by bit. There are
many parsers freely available for most popular programming languages.

As we have already discussed in 2.2, there are three types of XML parsing
methods:

e Usual XML parsing (as a text)
e DOM parsing
e SAX parsing

Here we review the most popular products and resources available for each
method of parsing.

3.2.1 XML parsing as a text

Expat

Implemented as C++ library, but there are numerous extensions for Perl, php
& Python.

Expat is a library written in C++ for parsing XML documents. It is used in
XML parser for Mozilla web tools project, Perl’s XML::Parser and other open-
source XML parsers. It is very fast (although the speed is not an important
aspect of the current project) and sets a very high standard for reliability, ro-
bustness and correctness. It is easy to use: you simply register a call-back (or
handler) functions with the parser and then start feeding the document. As the
parser recognizes parts of the document, it will call the appropriate handler for
the particular part.[§]

XML::Parser
As mentioned above, this is an extension to Expat C++ library. This comes
with a standard Perl installation.[12]

CHAPTER 3. PROJECT IMPLEMENTATION 20

Libxml2

This is a C library developed for the Gnome project (although it can be used
outside the Gnome platform). Although the library is written in C, there are
several extensions that allow the library to be used in other languages (mainly
php and Perl).[19]

3.2.2 DOM parsing

Xerces

There are several Xerces (named after the Xerces Blue butterfly) libraries under
this name which are very strongly promoted by Apache project. Fully validating
parsers are available for both C++ and Java. Perl wrapper is also available.[20]

e Xerces C+-+
Xerces C++ is a validating XML parser which makes it easy to give an
application the ability to read and write XML data. A shared library
is provided for parsing, generating, manipulating and validating XML
documents.

e Xerces2 Java parser
Xerces? is a fully conforming XML Schema processor. It also provides an
experimental implementation of DOM Level 3 Core.

e XML::Xerces
XML::Xerces is the Perl API to the Xerces XML parser. It provides
a validating XML parser. Classes are provided for parsing, generating,
manipulating and validating XML documents. The module is faithful to
DOM Level 3.

XML::DOM
This is a Perl module built on top of XML::Parser which parses XML documents
using DOM Level 1.

php5 DOM extension

This an extension based on the Libxml2 library that offers an implementation
of XML DOM Level 3. This module is included by default in the standard php
installation.|[13]

PyXML

PyXML package is a collection of libraries to process XML with Python. It
contains a validating parser and a fully compliant DOM Level 2 implementation.
[10]

Java API for XML Processing (JAXP)

The Java API for XML Processing (JAXP) is for processing XML data using
applications written in the Java programming language. JAXP leverages the
parser standards SAX (Simple API for XML Parsing) and DOM (Document

CHAPTER 3. PROJECT IMPLEMENTATION 21

Object Model) so that you can choose to parse your data as a stream of events
or to build an object representation of it.[9]

RIACA OpenMath Library
The OpenMath Library project provides a possibility to use OpenMath modules
written in Java. Includes an OpenMath DOM reader.[6]

3.2.3 SAX parsing

Java API for XML Processing (JAXP)

The Java API for XML Processing (JAXP) is for processing XML data using
applications written in the Java programming language. JAXP leverages the
parser standards SAX (Simple API for XML Parsing) and DOM (Document
Object Model) so that you can choose to parse your data as a stream of events
or to build an object representation of it.[9]

XML::Parser

XML::Parser operates as a SAX parser by default. Handler functions are as-
signed to the various events by passing a hash with the names of these handlers
and references to the function calling XML::Parser class new method.

3.2.4 Resource decisions

It is clear that for each parsing method there are parsers available for almost
every programming languages. Therefore, it is important to make a decision
based on effectiveness of the required operations.

With two powerful extensions of “plain-text” XML parsing, it is wise to use
these extensions since this would make a project development easier and faster.
The main question is which API should be used for my project: SAX or DOM?

Many experts say that SAX is a lot easier to work with. However, there are no
mechanisms for navigating through the document data, moving up and down
the nodes since there is no node tree in SAX. The only possibility to accomplish
this is to wait until the item you want to navigate to is passed to you by the
SAX parser. Mainly due to this reason I decided to use DOM parsing in my
project. Thinking of CDs as a tree-structured documents is the best way to deal
with them.

The only disadvantage that DOM parsing presents is its speed. DOM parser
builds full document tree in memory, and this causes an additional overhead of
keeping the tree structure in memory. My project is not oriented at providing
a server solution that will be used by hundreds of people at one instance, nor
does the project that would involve dealing with big XML trees. Therefore this
disadvantage is of minor importance.

CHAPTER 3. PROJECT IMPLEMENTATION 22

RIACA OpenMath Library looks like the best option for DOM parsing as it is
targeted for OpenMath development. However, after inspection I came to the
conclusion that the use of the library does not provide any significant advantages
compared to standard XML::DOM or php DOM extensions. Since both libraries
are standard extensions of Perl this decision makes the technical part of the
project much more easier. Perl is the program language of choice for work with
large databases as well as it is exceptionally efficient in interfacing with HTML,
XML, and other mark-up languages. (full list of Perl subjects that I mastered
is given in the section A.1 on page 56). Perl also has another advantage - it
has very powerful text processing capabilities which I mastered not only during
the work on this project but also during all my previous work as web developer
at the University web team. Therefore I decide to use Perl with XML::DOM
module for my project. This module has been around for a while, is very stable
and is widely used by programming community. It also extensively documented
in many publications. In particular, this module is covered in detail on the book
(“Perl Black Book”, Steven Holzner, Coriolis, 2001) that I use as Perl desktop
reference in my everyday practice.

Because I have chosen to use Perl as my programming language, best user inter-
action can be achieved by creating a web-based system. This means that apart
from Perl interpreter and XML::DOM module, a web server is also required.
Unlike XML parsers, the choice of a web server for this project is not an im-
portant issue, since nearly any web server can be used. I decided to develop
UNIX based system. Therefore, the obvious web server of choice is Apache since
it is included in all standard distributions of UNIX including Linux, FreeBSD
and Mac OS X. In addition, I also envisioned the necessity to install OpenMath
unit converter on MS Windows type PCs. In this case I made a choice for the
Small HTTP Server (http://home.lanck.net/mf/srv/) because of its small
disk, memory and CPU consumption it can be very easily and quickly installed
by nonspecialist.

For actual project planning and control I used two resources:

1. jxProject tool (http://www.jxproject.com) for project planning;

2. Mantis bug tracking tool (http://www.mantisbt.org) for keeping track
of all bugs as they appear and for subsequent project testing.

3.3 System specification and implementation

I decided to outline OpenMath unit converter system specification and its im-
plementation in one section. These two aspects of the project are naturally
connected. Therefore it is natural to describe the specifications (that is how
the things should work) and implementation (how to actually make the things
work) together within one context. This will include discussion of decisions on
problems I faced as well as explanation how I came to the decisions (see, for
example, section on user interface 3.3.3 on page 27).

CHAPTER 3. PROJECT IMPLEMENTATION 23

3.3.1 Startup

As mentioned in System Requirements (section 3.1 on page 17), the only infor-
mation required for the system to make unit conversions is to locate CD files and
their corresponding STS files. Although it would be reasonable to store CDs
and corresponding STS files in the same directory, this is clearly not the choice
that OpenMath community has made. CDs and STSs are stored in different
directories at the OpenMath site, so we decided keep a local file (locations.cfg)
in the program script directory that contains separate locations for CD and STS
directories.

The interface script is invoked in two cases: (i) to generate the input form
containing unit and prefix information, and (ii) to start the conversion and
report the result. In both cases the information on CD directories is read from
locations.cfg. The directory listing should contain the minimum set of files in
order to have at least one unit system available for conversion. This must be
checked upon script invocation. The base unit system is SI system that is metric.
This means that the following files are an absolute minimum for the converter
to start up without errors:

e units_metricl.ocd

e units_metricl.sts

There is no way to determine which CDs belong to unit definitions because
there is no definition file that lists these CDs. If we were to look for those CDs
which contain “units_” at the beginning of the filename then this would include
CDs like unit_opsl1, units_siprefix & units_ sts, none of which represent unit
definitions (although they are used by unit definition CDs). One of the solutions
would be to make a list of CDs which represented unit definitions by getting a
list of CD filenames which start with “units_” and then exclude the list those
CDs that are known not to define unit systems. However, this is a very inefficient
way of solving the problem since the system will not be robust anymore: the
CD list is constantly evolving and can be is extended with non unit defining

CDs with filenames starting with “unit .

There is another piece of information which might help determining what files
are used for defining units: STS signature files attached to unit definition CDs
all reference dimensionsl CD. We can address this problem in the following
way:

1. Get a list of CDs that have corresponding STS files. To filter them out
from the list all names which don’t have “unit ” prefix.

2. Check that the minimum pre-requisite files are present in the resulting list
(the minimum files were listed earlier in this section).
If they are not present, report an error and stop the program.

CHAPTER 3. PROJECT IMPLEMENTATION 24

3. Read all STS files, extract useful information from them and put this
information into two main hashes (associative arrays)

All STS files that start with “units 7 are of the extremely similar structure:

<CDSignatures type='"sts" cd="orig_cd_name">
<Signature name="signame" >
<0MOBJ><0OMA>

<0MS name="type" cd="cd_of_type"/>
...extra OMS & OMV tags possible here...

</0MA></0MOBJ>
</Signature>

...more signatures here...
</CDSignatures>

The important information is contained in Signature and OMS tags. It is this
information that will go into two main hashes. How we process STS files and
what we put into these hashes is described in section 3.3.2 on the next page.

Note that for CDs which define units, c¢d attribute in OMS tag has a value of
“dimensions1” (even in wnits_timel!). We can determine which CDs contain
unit definitions using this information. In fact, having this information means
that we don’t need to find out which CDs contain unit definitions. Required
CDs will be loaded automatically when needed (described in section 3.3.5 on
page 36) and the rest of CDs that define units will be loaded as they needed.

Script structure for this part of the system is :

invoking script ->
Startup.pm
sub: ParseSts

sub: GetFileList
sub: Traverse

Invoking script is the script that is called from the browser. This can be a script
that is called to display the interface or the code to carry out the conversions.
The structure of the invoking script itself will be discussed in the appropriate
sections (see User interface, section 3.3.3 on page 27 and Input parsing, sec-
tion 3.3.4 on page 35). Startup.pm module will contain subroutines that are
responsible for parsing STS files. ParseSts subroutine is called without param-
eters from the invoking script but returns either:

e references to two main hashes; or

e a scalar holding error information; or

CHAPTER 3. PROJECT IMPLEMENTATION 25

e undef, which means that there was an error when trying execute ParseSts;

Path to config file (locations.cfg, as mentioned before) is defined inside ParseSts.
The format of locations.cfg is the following;:

cd::/path/to/cd
sts::/path/to/sts

ParseSts subroutine has the instruction to deal with extraction of directory
paths from the locations.cfg using the stated format (use split function). If it is
not able read the config file or there is not enough data in config file then it passes
an error message to the invoking script and stop the program. Extracted paths
to CD and STS directories are passed as parameters to GetFileList subroutine.
The algorithm for GetFileList is the following:

1. Return an error message if the input parameters are incorrect (for example,
when one of the parameters is missing);

2. Get alist of CDs, STS files for which exist. If there are problems in reading
directory lists, return an error message;

Y

3. Filter out all names which don’t have “unit_” at the beginning;

4. Check that the minimum pre-requisite files are present in the resulting list
(the minimum files were listed earlier in this section). If they are missing,
issue an error message;

5. Return the reference to an array of filenames for STS files that we might
find useful.

If GetFileList sub returned an error, or didn’t return anything, then the startup
script issues an error message and stops the program. If GetFileList subroutine
receives a valid reference for an array, then Traverse script is called for each entry
in this array to parse each STS file. The algorithm for Traverse subroutine is
described in the next section.

3.3.2 STS file processing

As it was mentioned in the previous section, Traverse subroutine from Startup.pm
deals with parsing of STS files. Traverse subroutine is called for each entry from
the array that is returned by GetFileList function. To be more precise, the new
object of the XML::DOM::Parser class is created. Then, for each filename from
the returned array we use object’s parsefile method to parse the document. This
creates a reference to the document object that is finally passed to the Traverse
subroutine. If at least one filename entry can not be parsed (e.g. the file can not

CHAPTER 3. PROJECT IMPLEMENTATION 26

be opened or file contains wrong data) the ParseSts subroutine is immediately
stopped and error message is passed to the invoking script.

It is useful to note that STS and CD files are in valid XML file format with one
minor exception: CDs and STSs don’t have XML declaration tags. This is just
fine since XML parser does not complain if this tag is omitted. If XML parser
would complain then the problem could be solved by loading each file into an
array and adding an XML declaration tag at the beginning of this array and
then using parse method instead of parsefile.

Let’s now discuss what happens inside the Traverse subroutine. Traverse is
a recursive function. It receives a reference to the current node as one of the
parameters, gets a list of children for the passed node, processes the current
node and calls itself again for each child node passing a reference to the selected
child node. Of course, if Traverse receives a null reference then it immediately
stops the current instance of itself. The case when a null reference is passed
to the function usually happens when the function is called without passing a
reference to it.

There are other parameters that Traverse subroutine is looking for. However,
they are optional and are used for checking that the structure of STS signatures
is correct. These parameters are: (i) name of the father element node, and (ii)
two attributes that have been found. It is clear that these parameters are null
when the Traverse function is called for the first time. We will talk more about
this aspect later on page 26 when discussing how we process particular element
nodes.

It is important to note that the major objective of parsing STS files is to extract
maximum amount of information. This means that we ignore any inconsistencies
within STS structure that might occur if some parts of STS do not follow DTD
specs. In this case it is not necessary to issue an error message.

Before calling itself and passing a reference to a child node, Traverse function
must check what kind of node is the current node. We are only interested in two
types of nodes: DOCUMENT NODE and ELEMENT NODE. If the current
node is not of the two types then the Traverse function returns without calling
itself again. If the current node is a root node (DOCUMENT _NODE) then we
just call the Traverse function again and pass it a reference to the first child
of document node. If the current node is an ELEMENT NODE the first step
would be to get the name of the node and extract all attribute data from it.
Several checks are done to look for particular names of the element node and
some extra processing is carried out if the needed element name is found. This
processing includes the following stages:

1. If the name of the element node is CDSignatures and attribute “type” has
a value “sts” (remember that we extracted attribute data at the beginning
of the function) and attribute “cd” has some value assigned to it then:
get a list of children for the current node and for each child call the function
again passing as a reference to the child node as a first parameter, passing

CHAPTER 3. PROJECT IMPLEMENTATION 27

the name of the current element node (i.e. CDSignatures, this would
become a father node in the called function) as a second parameter, and
passing the value from the “cd” attribute as a third parameter.

2. If the element name is Signature AND the father element name is CDSig-
natures (remember that father name is passed as one of the parameters)
AND there is an attribute for this node called “name” AND the first
attribute passed exists then:
get a list of children for the current node and for each child call the func-
tion again passing a reference to the child node as a first parameter, name
of the current element node (i.e. Signature) as a second parameter, the
value from the first attribute that was passed as a third parameter and
the value of “name” attribute for this node as a fourth parameter.

3. If the element name is OMOBJ AND the father element is Signature
AND two parameters are defined then:
call Traverse subroutine for each child node of the current node, passing
a reference to each child node, a father name (i.e. OMOBJ) and two
parameters.

4. If the element name is OMS and father element name is OMOBJ AND
two parameters are defined AND attribute data for the current node
contains values for “name” & “cd” attributes then:
record the data. Specifically, if the second passed parameter value contains
“unit " at the beginning of the string, then the data is useful and is put
into two main hashes. In the first main hash named sysData we put a unit
name (extracted from the second passed parameter) as a key and CD file
name which defines this unit (first parameter that was passed) as a value
for that key. In the second main hash named unitData we use again the
name for the unit as the key and the value from the attribute “name” of
the current node as the value to that key.

This concludes the STS file processing. Once all STS files are processed, two
main hashes are created that contain enough information to produce user inter-
face, parse data submitted by the user, check legality of conversions, etc.

3.3.3 User interface

User interface design

Because Perl is used to develop the unit converter, the best interface can be
created using HTML and controlled using CGI and a user agent (web browser).
Before writing specifications for the User Interface, it is a good idea to discuss
the possibilities that existed and why the particular user interface has been
chosen.

Althouth there exist several web interface, we decided to use the simplest inter-
face style available which is shown in Figure 3.1

CHAPTER 3. PROJECT IMPLEMENTATION 28

Figure 3.1: Simple interface style

Unit converter

Amount: Input unit: Input unit:

|35 | | millimetres into -> miles | | Convert
1 2 3 4

The interface we have chosen contains the minimum of elements with only three
text input fields, see Fig. 3.1: field 1 for entering quantity of the unit to be
converted, field 2 for specifying the original unit and field 3 for output unit.
To carry out the conversion, “Convert” button is pressed (item 4). At first
glance, this looks like a great interface (at least from programmers point of
view) because it takes minimal amount of space, the program accepts minimal
amount of parameters and you just type the units in the boxes instead searching
them. In practice, this is a very ambiguous approach since there are so many
ways to write each single unit (e.g. kilometre, kilometer, kilometres, km, etc)
and it is not easily possible to make a program that will be able to deal with
every variation of the every unit. Therefore, user must know exact spelling of
each unit. This violates one of the system requirements outlined in section 3.1
on page 18, i.e. the system must “have a user-friendly interface and be intuitive
to use”. This interface is not intuitive and no one wishes to memorize the syntax
to use the unit converter.

The second two versions of unit converter interface (Figures 3.2 and 3.3) are
very intuitive to use: you just enter the amount in input box (item 1 in Figures
3.2 and 3.3) and make choices from listboxes (items 2, 3, 4 & 5 in Figures 3.2
and 3.3). The interface is divided into several parts (pages), each page being
responsible for a separate measure, e.g. separate pages for length, pressure,
area, etc. To select a specific page that allows you to do required conversion
user has to click corresponding menu link (item 8 in Figures 3.2 and 3.3) at the
top of the page. Under the menu there is also a headline that displays the type
of currently displayed measure (item 7). The default page displays conversion
page for the most frequently used measure (unit) which is certainly the measure
of lengths.

The only difference between interfaces a (Figure 3.2) and b (Figure 3.3) is that
the units are presented in menu boxes (items 2, 3, 4 & 5 in Figure 3.3) instead
of listboxes (items 2, 3, 4 & 5 in Figure 3.2). Using menus instead of listboxes
makes options easier to see and so they are more intuitive to use. Therefore, we
would use interface b if there were no other alternatives. Both of these interfaces
have one disadvantage: if you need another type of conversion different from
that is currently being selected, you have to click on one of the menu links

CHAPTER 3. PROJECT IMPLEMENTATION

Figure 3.2: User friendly interface, version a

Menu: length | weight | volume | time | pressure | area | etc...
8

Current unit type: weight
7

Amount: Prefix: Unit: Prefix: Unit:

35 | |none |V| |Mi|es |V| into > |mi||i |V| |Metres
1 2 3 4

6

Figure 3.3: User friendly interface, version b

Menu: length | weight | volume | time | pressure | area | etc...
8

Current unit type: weight
7

Amount: Prefix: Unit: Prefix: Unit:
|35 I none [A | wies (A none (A Miles
Lo mill Metres milli Metres
kilo Inches kilo Inches
mega Yards into > mega Yards
peta peta
giga giga
terra || |] terra |
| Convert | hecta |V v hecta |V

>

<

6 2 3 4

29

CHAPTER 3. PROJECT IMPLEMENTATION 30

Figure 3.4: Section of the user friendly interface, the preferred version

,OpenMath-based Unit Converter

5 Information

3Conven. length - weight - volume - time - pressure - area - etc...

Length conversions
'

Amount: Prefix: Unit: Prefix: Unit:

35 I lnone IVI I Miles IVI into -> ImiIIi IVI lMetres IVI I Convert I
s 7 6 i

8

9Ienglh - weight - volume - time - pressure - area - etc...

Volume conversions
10

at the top of the interface which will redirect you to a new page containing
the interface for the desired measure conversion. The interfaces a and b are
very much like the interface of freely available Windows converter reviewed in
existing products section 2.8 on page 13. Having different measures on different
pages is fine because the conversions are done offline, and there is no need for an
additional data transfer in order to display an interface for different measure.
As mentioned above, this is not a good feature in case of on-line converter.

The next interface shown in Figure 3.4 does not have problem just mentioned
above: all measure conversions can be done from one page. There are links to
the measure types at the top of the page. But rather than linking to other pages,
these links point at different sections of the single page. All measure conversions
are invoked using these links. Measure conversions are split up into appropriate
sections. Each section has a title (e.g. Length conversion, see item 4 in Figure
3.4), input box for entering the amount of unit to be converted (item 5) and
appropriate listboxes (items 6 & 7) to adjust the conversions (input/output units
and input/output prefixes). “Convert” button (item 8) is also provided for each
section. Sections are divided by the same links menu (for getting the necessary
measure types) listed at the top of the interface. The interface is almost the
same as interface in Figure 3.2, the only difference is that all measure conversions
are listed on a single page and the top menu now points at different sections of
this page.

We decided to use the latter interface shown in in Figure 3.4 since it is most user-
friendly and easier to implement among all three interfaces considered. Below
we discuss particular details of the selected user interface.

There is an “Information” link (item 2) below the heading “ OpenMath-based Unit
Converter” (item 1) which leads to the information page. This page contains
basic information about unit converter including the version number and menu
with list of available measures for conversion. The latter are linked back to the
main interface page where all the conversion forms are displayed. The menu
is exactly the same as that on the main interface page. Below version number
it lists all the CDs that the converter has found. For each CD there is a list

CHAPTER 3. PROJECT IMPLEMENTATION 31

of objects that a particular CD defines, this section is entitled as “Content
Dictionaries available”. The next section below section describing CDs (and
objects inside them) is “About & Credits” section that gives the name of the
author and a list of credentials to people contributed to the converter.

We return back to the main interface page and describe the next item after
the “Information” link. This is the menu that gives a list of available measures
available in the system for conversion. This list is the list of links of type:

measure

They are arranged in alphabetical order for easy navigation between the mea-
sures. After the first menu, we list all sections for converting measures. Each
section contains a title (items 4 and 10) that displays what kind of conversion
each particular section does. The conversion form is given after the section ti-
tle. This includes an amount box (item 5) that has a default value of 1 already
present upon converter invocation, and listboxes for input/output prefixes and
for input/output units (items 6 & 7).

Prefix listboxes. It is impossible to specify exactly which prefixes are avail-
able for which measures. Therefore, the prefix listboxes are the same for all
input/output prefixes in all measure conversion sections. Prefix listbox con-
tains entries sorted in an alphabetical order (so that it is easier for user to
choose the required prefix) and a value of “none” is at the beginning of the list
so that conversions without prefix values can be done.

Unit listboxes: They contain only units that are relevant to the particular
conversion section. Before listing the available units, some simplification of
listbox values were performed for more neat look, such as

)

e ’ per_ ’replaced by ’/’

e ’ sqrd’ replaced by "2’

’

_’replaced by ’’

e make first letter upper case.

Unit listboxes are also sorted. Finally, the navigation menu is displayed at the
end of the conversion form. As mentioned earlier, this menu is used to divide
different measure conversion sections (item 9).

One might argue that conversion sections don’t have to be displayed for the
measures that have only one unit because there is nothing to convert between.
For example, Watt is the only measure for power for both metric and imperial
systems. However, a user that does not know numerical definitions of prefixes
might want to convert milliwatts into megawatts. One might argue that every-
one knows numerical definitions of these prefixes and can do conversions without

CHAPTER 3. PROJECT IMPLEMENTATION 32

using converter. However, this is not completely true since there are some rarely
used prefixes such “yocto” or “pico” that many people simply don’t know. In
addition, one might want to convert from one prefix to another prefix, e.g. from
kilometres to millimetres. Therefore it has been decided to leave the conversion
facilities even for the units that don’t have any other equivalents.

User interface implementation

After developing clear understanding how the interface scripts will generate the
listboxes and menus we identified the following steps in the converter flowchart:

1. to get a measure list from the hash where measures are the values of keys
in wnitData hash;

2. to get a CD list from the hash where CDs are values of keys in sysData
hash;

3. to get a list of units for a particular measure, where a measure is equal to
some values in unitData hash;

4. to get a list of units for a particular CD, where a CD is equal to some
values in sysData hash;

5. to get a list of prefixes, where prefixes are some keys in unitData hash.

Obviously, the items 1 & 2 and 3 & 4 are performing exactly the same op-
erations but on the different hashes, so it was decided that some portions of
the code will be re-used. Small module ExtractData.pm deals with these items,
that includes subroutine GetUnique Values to deal with items 1 & 2, subroutine
GetKeysFromValue to deal with items 3 & 4 and subroutine GetPrefizes to deal
with item 5. Let’s discuss them in more detail.

GetUniqueValues

It receives a reference to a hash as a parameter and returns a sorted list of
unique values found in this hash. Note that this is not a list of unique keys.
Therefore, for each key in the hash we put its value into a new hash as a key
and assign a value of 1, in order to form a list of the unique values. This way
non-unique list of values from the original hash will appear as a unique list of
keys in the new hash. Then, we just return a sorted list of keys from the new
hash.

GetKeysFromValue

It receives a reference to a hash and a value that is to be searched for in this
hash. Returns a list of keys found that have a value passed to this subroutine.
In order to get a list of keys for the value we do the following for each key: if
its value is equal to the one passed to the subroutine the key is put into a new
hash as a key. After this operation, a sorted list of keys from the new hash is
returned. We could just push new keys as values into a new array instead of a

CHAPTER 3. PROJECT IMPLEMENTATION 33

new hash because keys will not have duplicates as they are also keys from the
hash. However, use of a new has makes the the code more robust.

GetPrefixes

It receives a reference to a unitData hash and returns a list of prefixes. In order
to get a list of prefixes for each key in the unitData hash, we check if its value
is equal to “unit_ prefix”. If it is, then add the current key from wnitData hash
as the key to the new hash. Finally return a sorted list of keys from the new
hash.

There are two scripts that are responsible for displaying the user interface:
show.pl and info.pl. Show.pl deals with the main page generating forms for
converting different measures and info.pl displays the “Information” page. De-
signs and layouts for both of these have been described in the previous section.

Both show.pl and info.pl display a heading “OpenMath-based unit converter”
when executed from the browser. They then try to run external ParseSts func-
tion (described earlier in section 3.3.2 on page 25) and to get references back
to two main hashes. Then, both scripts check if both returned variables are
references. If they are, then the steps to produce an appropriate interface are
taken, But if they are not, we check to see that first returned variable exists
and is not a reference. If this is true then we print an error contained in the
first variable. Otherwise, we just stop the program and report that an unknown
error has occurred as ParseSts did not return anything. After this check, the
main code for displaying the main interface and information interface branches
onto to parts:

show.pl

If two variables are references then show.pl does an extra check to see that one
of the main hashes (it doesn’t matter which one as they will have the same
keys) contains “units metricl” value for at least one of the keys. If this is
not the case then the script should report an error stating that there is not
enough information to continue. The situation like this should never happen in
normal circumstances as ParseSts performs some checks to see that there is a
“units _metricl” STS and CD present. However, what it does not do is to check
that there is at least one definition inside that STS file. As mentioned above,
this normally will not happen but it is still useful to have such a check in the
system. This makes the code much more stable and robust. This check is not
necessary to be done in info.pl as it is only responsible for displaying information
about available CDs and author/credits info.

If the test has passed successfully (i.e. at least one definition of metric unit was
found) then the first thing to do is get a measure list by calling a GetUnique Val-
ues function from EzxtractData.pm and passing it a reference to unitData hash.
Measure list has to be processed because it includes non-measure values, such
as “units_sts” for prefix entries. We also have to generate menu entries using
this list. Thus, for each entry in the raw measure list we check to see if it starts
with “unit”. If not, we add this entry to a new measure list and also add this
entry to the list of menu entries (wrapping link HTML code around each entry
before adding it to the menu list).

CHAPTER 3. PROJECT IMPLEMENTATION 34

Next, get a prefix list by calling GetPrefizes function from the same module and
passing it a reference to unitData hash. According to the user interface (UI)
design specifications the prefix list is the same for all measures so we generate
prefix listbox HTML code straight away by concatenating all values from prefix
list along with HTML wrappers and storing this as a single variable.

These steps were preparations for displaying the main Ul. Next, we display the
first menu by concatenating values from the menu list. After this, measure
conversion sections is displayed. For each entry in the measure list we do:

1. get a unit list by using GetKeysFromValue (from ExtractData.pm) and
passing it: a reference to the unitData hash and a current measure value;

2. prepare unit listbox by replacing all substrings in each entry (as described
in section 3.3.3 on page 27), uppercasing the first letter, wrapping each
unit with HTML listbox code and concatenating all unit listbox values
into a single listbox;

3. print the title of the current section (uppercased first letter of the measure
name followed by a word “conversions”, e.g. “Length conversions”);

4. display the conversion form by printing a table with amount input field,
“Input prefix” listbox (using the prefix listbox code prepared earlier), “in-
put unit” listbox (point 2 above creates it), “output prefix” listbox (same as
“Input prefix” listbox), “output unit” listbox (same as “input unit” listbox)
and a submit button to trigger the conversion process.

5. finally, display the menu underneath each measure section by concatenat-
ing entries from the menu list.

info.pl

After performing the checks for valid references to two main hashes as described
earlier, info.pl gets a list of available measures and checks each measure that
contain “unit” at the beginning. If it doesn’t contain this forbidden substring
then the measure is wrapped up in a link HTML code and is inserted into a menu
list. The script then gets a list of available CDs by calling GetUnique Values and
passing it a reference to sysData hash. The actual interface is then displayed
as follows:

1. print a menu using the menu list generated earlier;

2. print a heading to define the section listing of all defined objects: “Content
Dictionaries available”;

3. for each entry in the CD list, print the current CD name and appropri-
ate objects defined in the current CD (by using GetKeysFromValue and
passing a reference to sysData hash and a CD name as arguments);

4. after all CD names and appropriate objects have been listed, the script
prints author and credits info.

CHAPTER 3. PROJECT IMPLEMENTATION 35

3.3.4 Parsing user input

process.pl script is responsible for getting user input, executing an external
function to do the conversion and displaying the result of this conversion to the
user.

To get the data submitted by the form, the program should use generic CGI
module that comes with standard Perl installation. “Amount”, “input prefix”,
“input unit”, “output prefix” and “output unit” are all stored as separate vari-
ables. There is also a special CheckData subroutine in process.pl that validates
all user data. Thus, after storing all our variables, we call CheckData subroutine
with all user input variables as parameters. Then, CheckData function checks
that:

1. amount entered is a positive number,
2. prefixes exist and are in fact prefixes,
3. units exist and are in fact units,

4. type of “input unit” is the same as type of the “output unit”.

If any of these checks didn’t pass then the CheckData subroutine prints an error
message and returns null. If all the data are valid, the subroutine returns a
value of 1. Therefore, when calling CheckData from process.pl we must check
the return value of the function. If the function didn’t return anything then we
stop the program (no need to report an error as this has already been done by
the CheckData sub). Note that all checks are separated into a subroutine to
avoid unnecessary nesting. The subroutine is defined inside process.pl.

If CheckData returned without errors, we take several steps to produce the
conversion:

1. get the numerical values of “input/output prefixes”;

2. produce global coefficient by multiplying the amount by “input prefix”
value and then dividing by “output prefix” value;

3. get the value resulting from conversion;

4. get the final result by multiplying global coefficient and the value resulting
from conversion;

5. display the final result to the user.

Notice that prefixes and units are worked on separately and combined together
only when producing the final result. Let’s now discuss steps mentioned above
in detail:

CHAPTER 3. PROJECT IMPLEMENTATION 36

3.3.5 Conversion system
3.3.5.1 Common functions

Before implementing the main converter code, we can identify further several
parts of processing that can be generalised for the system and thus allow more
code re-using:

1. We need a function that can parse documents using XML::DOM::Parser
module. This could be used by the prefix converter and especially by the
unit converter when doing recursive processing (and so several CDs might
need to be parsed),

2. We need a function that can find a reference to the specific object definition
given an object name and a reference to the document object of the CD
that contains a definition of this object. This function will also report
what the selected unit is defined in terms of,

3. We need a function that will emulate standard arithmetic operations.

Let’s consider these in detail now:
Parsing Content Dictionaries

The purpose of ParseCd subroutine is to try and open CD, parse it with XML
parser and return a reference to the document object for that CD given a CD
name.

ParseCd should receive a name of the CD file. If this subroutine was called
without parameters then it should produce an error report and stop. The func-
tion then opens a configuration file (path to this file should never change and so
is embedded in the subroutine as a variable). Paths to CD and STS directories
are then extracted from the opened configuration file. The function should pro-
duce an appropriate error report and stop if the configuration file could not be
opened or the paths to either STS or CD directories are not found. Using the
directory path for CD files, an appropriate CD should be parsed using the de-
scribed method for parsing STS files, see section 3.3.2 on page 25 (path given to
parsefile method of XML::DOM::Parser consists of CD directory path extracted
from configuration file and a CD name that was passed to this subroutine). If
the XML parser could not process a file, the function should catch an error
report generated by the parser, display it to the user and stop. Reference to the
parsed CD document object is then returned. Note that this reference should
also be inserted into the cdDocuments hash that stores CD names as keys and
references to those CD document objects as values to the keys. This will elimi-
nate the need to parse the same CD more than once, because next time we can
get a reference to a parsed version of this CD from the cdDocuments hash.

Finding object definitions

CHAPTER 3. PROJECT IMPLEMENTATION 37

FindObject subroutine is needed to find the reference to the FMP part of the
definition given a reference to the parsed CD document object and a name of the
object, definition for which is required. In fact, the returned reference should
point not to the FMP tag but rather to the first OMA tag as this will reduce
the amount of work that needs to be done by the code that calls this subroutine
when processing objects.

FindObject subroutine should also return a list of objects that are used to define
the selected object.

So, as soon as the input is received by the FindObject function, we check that
both input arguments received (reference to the CD document object and an
object name) are valid and get a list of references where Name tag is found
in a CD. The function then, for each entry in the list of Name tag references,
checks whether the first child (i.e. data within <Name> and < /Name> tags)
is the same as the selected object name. If none of the nodes in the list meet
the described criteria, then this is an error as the object is defined by one of the
STS files but is not defined in the appropriate CD. Thus, in such case function
displays an error report and stops.

If the name inside one of the Name tags is equal to the name of the object
that we are looking for, then the function has found the needed location of the
object definition. But this is not entirely correct location as it points to the
Name tag. What is required is the location of the first FMP tag, which is one
of the siblings of the found Name tag. The best method to browse to this tag
is to:

1. get the parent element of the Name tag. If the parent element name is
not CDDefinition then display an error reporting that the definition of
the selected object is corrupt and stop the subroutine,

2. find all sub-elements of CDDefinition that are named FMP. If there are
none found then return a value of 1 and stop. Depending on a CD being
parsed, this might mean different things: corrupt definition inside prefix
CD, for “units_ metricl” this will mean that a unit is a base SI unit (unless
incorrectly defined) and for the rest of unit definition CDs this will also
mean that the definition of a unit is corrupt. What action to take in this
case is the responsibility of the code that called this function,

3. find all sub-elements of the found FMP tag that have the name OMOBJ. If
none found then this an error, the definition of an object must be corrupt
so display an appropriate error report and stop,

4. find all sub-elements of the OMOBJ tag that are named OMA. If none
found, display an error stating that definition is corrupt and stop. Else,
the first reference to an OMA tag that was found is the reference we are
looking for. Check that parent of this reference is an OMOBJ tag and
report an error if not. This reference will be returned later by a function
as one of the parameters.

Further checks need to be done to ensure the validity of a definition. Because
there are so many possible ways to define objects, function can not check every-

CHAPTER 3. PROJECT IMPLEMENTATION 38

thing, but there are some rules that all definitions must obey:

1. first child of the first OMA tag should be an OMS tag which will relate
next two children (i.e. and OMS tag with c¢d attribute equal to “relationl”
or “set1” and name attribute existing),

2. there are either one or three children for each element node.

After further validation, function should now start extracting all objects that
are used to define the selected object. This is done by getting a list of all OMS
tags that are sub-elements of the third child of the initial OMA tag (the one
which is a child of OMOBJ tag) including processing the third sub-element
itself. For each OMS tag that was found we then check that ed attribute value
starts with “unit_”. If it does, add a value of the name attribute to the array
that contains all names of the objects that were used to define the selected
object. After processing all OMS tags, function should return a reference to the
beginning of the object definition (i.e. reference to the first OMA tag) and an
array of objects that were found to be used for the selected object definition.

Emulating standard operations

The structure of OpenMath Content Dictionaries is such that objects are defined
in terms of some other objects, which in turn, are also defined in terms of other
objects. This recursive process goes all the way down to the core set of Content
Dictionaries (“Core” section of the OpenMath website). It is pointless to try
and produce a unit converter that will be able to understand all definitions all
the way down to the “Core” set. After all, the objective of this project is to
demonstrate usefulness of the proposed extension of unit CDs, so such precise
and time-consuming approach is completely unnecessary. Thus, at some level
we will need a function that emulates object definitions for some CDs.

As we know from the section on background information (page 2.7 on page 10),
operations defined in “arith1” CD are used to attach units to numbers and other
units. This would be a very sensible point to start the CD emulation.

The purpose of arithl subroutine is to emulate the operations that are defined
within “arith1” CD. arith! should receive the operation name and two argu-
ments to perform an operation on. It should then check whether there are three
arguments passed to it and if they are not null. In case of an error, the function
should display a message to user and stop the program.

It would be useful to have definitions of reverse operations emulated as well
because this will allow us to perform reverse conversions. This could be done
by passing to arith! an operation name with a minus sign in front of the opera-
tion. Thus, arithl should check if first symbol of operation name is equal to “-”.
If this is true, arithl should take steps to redefine the reverse operation, e.g.
if operation name is “-plus” then the function should exchange two arguments
(first argument becomes second argument, second becomes first) and operation
name should be changed to “minus”. After checks for reverse operations, the
function should perform the selected operation and return the result value.

CHAPTER 3. PROJECT IMPLEMENTATION 39

3.3.5.2 Getting the numerical values of “input/output prefixes”

When doing conversions with prefixes, we need to convert prefixed values as well
but prefixes are just factors (input prefix should be multiplied by the amount
before amount is being passed to the unit converter code, result of conversion
is divided by the output prefix value). Thus, prefixes need to be processed
separately from unit conversions. Function GetPrefizValue does exactly that.
It receives prefix name as well as the reference to the sysData hash (this hash
stores the names of CDs which hold a definition for the particular object). This
function should then output the numerical value of the selected prefix.

As soon as GetPrefiz Value receives parameters, it should check that prefix name
is not an empty string and that the hash reference is a real reference. It should
then parse the CD that defines the selected prefix (we can find out the name of
the CD that stores the needed definition by accessing sysData hash and we can
parse the selected CD using the function ParseCd that was described earlier in
section 3.3.5.1 on page 36). The function should then try to find the location of
the selected prefix definition within the parsed document (using the GetObject
subroutine described in section 3.3.5.1 on page 36). If definition was not found,
GetPrefizValue should display an error report and exit.

The structure of all prefixes is the same. Moreover, the main structure is not
supposed to be changed so it is decided to implement a non-recursive extraction
of values from prefix definitions. This way we can ensure that only fully prefix-
compliant structures are used.

So, using the the output from GetObject we check that the element at the
found location is an OMA tag. If not, the function should inform user that
the definition is invalid and exit. The subroutine should then get a list of all
children (element nodes only) of the found OMA tag and check that the first
child is OMS tag, second child is OMA tag and third child is an OMV tag.
If this condition is not met, function reports that the definition is corrupt and
exits. Next, the function should check that attribute name has a value of “times”
and cd attribute has a value of “arithl1”. If this condition is not met, function
should display an error and exit. Next check is preformed on the third child.
We get the value for the name attribute of this node and ensure that it is equal
to “unit”. If not, report an error and exit. Finally, we get a list of children of
the current second child (which passed all previous checks so must be an OMA
tag). Using the new list of children we need to check that the first child is
an OMS tag, second and third are OMI or OMF tags. If this check was not
passed, function reports “corruption” error and exits. If the condition was met,
the function calls arith! subroutine passing it an operation and two arguments.
Operation name is extracted from the name attribute of the first child (OMS
tag), first argument is extracted from the second child and second argument is
extracted from third child. Before extracting operation name from the OMS
tag, the function should check that cd attribute for this tag is equal to “arith1”.
After arithl was called, we check to see what it returned. If it did not return
anything, an error must have happened inside arithl so GetPrefizValue should
exit. No need to report an error as this must have been done inside arithl. If
arithl did return a value then this must be a numerical value of the prefix so
we also return this value from GetPrefizValue subroutine.

CHAPTER 3. PROJECT IMPLEMENTATION 40

3.3.5.3 Unit converter

So far we have been discussing various “wrappers” around the unit converter
that will either provide some interface functionality or some helpful functions
that could be used by the unit converter. The main and most complicated part
of the code is the “engine” of the system which is a unit converter itself. There is
a lot required from this part of the code, the algorithms involved in this section
of the system are complicated and involve considerable amount of recursion.

Before thinking about how to create conversion algorithms, we need to classify
all possible conversions. This would assist in creating the best algorithms for
conversions. If we ignore prefix data (we dealt with it in the previous section),
then the following classes exist:

1. non-base to base primitive conversions (e.g. degrees Fahrenheit into de-
grees Celsius)

o

non-base to base non-primitive conversions (e.g. miles into metres)

@

base to non-base primitive conversions (e.g. metres into feet)

=

base to non-base non-primitive conversions (e.g. metres into miles)
5. non-base to non-base primitive conversions (e.g. miles into feet)

6. non-base to non-base non-primitive conversions (e.g. feet into U.S. survey
feet)

7. composite conversions (e.g. metres per second into miles per hour)

where primitive conversion is when one of the units is expressed in terms of the
other one directly.

Clearly, class 1 is easy to calculate - you just take a CD definition of the input
unit (non-base in this case) and perform all operations contained in the CD sub-
stituting amount at the position where OMS tag for the output unit is found.
Class 2 is a little more complicated - you look at what input unit is defined in
terms of. You then convert from input unit into the unit that that is used to
define an input. The same step is repeated again for the new unit and so on
until we get down to the bottom, i.e. to the base unit. Basically, to get this
done we use the algorithm from class 1 in a recursive way.

Class 3 is also easy to calculate, it is similar to class 1 but operations are done
in the inversed way when compared to that of the output unit definition. We
perform these inversed operations on an amount.

Class 4 is more complicated. It is similar to class 3 but recursion is used to
get from the output unit to the base, passing an amount right to the bottom.
Once recursion procedure gets to the bottom, the first inverse conversion is done
using the amount that was passed. The value returned from conversion is the
new amount that is used to perform inverse conversion one step up and so on
until the recursion gets back to the top.

CHAPTER 3. PROJECT IMPLEMENTATION 41

Class 5 is really simple and is exactly the same as either class 1 or class 3 (de-
pending on whether the input is defined in terms of output or output is defined
in terms of the input).

Class 6 is the most complicated conversion that is possible. The method for
carrying out this type of conversion can be thought of as moving from right to
left. First step converts input into base using forward recursion and second step
uses inverse recursion to go from base unit to the non-base output unit.

Class 7 is simple and can be thought of as applying class 6 to separate compo-
nents of the composite unit and then assembling them together.

There will be a UnitConverter.pm module that would deal with all conversions.
This module will have the following structure:

invoking script ->
UnitConverter.pm

sub: ConvertUnits

sub: ForwProcessOma

sub: BackwProcessOma
sub: CompositeProcessOma
sub: GetPrefixValue

sub: ParseCd

sub: FindObject

sub: arithil

As well as subroutines for converting units, this module should have subrou-
tines that deal with prefix processing (GetPrefizValue) and assist in conversion
process (ParseCd, FindObject, arith1) all of which have already been described.

ConvertUnits subroutine is responsible for initialising the conversion process. It
is initially called from the process.pl script which does the user input parsing
and starts the conversion. ConvertUnits should be able to perform a classifi-
cation described earlier in this section and call other subroutines depending on
the classification result. If the ConvertUnits detected that required conversion
is of class 1, class 2 or class 6 then it should call ForwProcessOma function to
do the conversion.

In case of class 1 conversion, ForwProcessOma is called with the following pa-
rameters: reference to the input unit definition, name of the output unit and
amount.

In case of class 2, we find out what unit is used to define the input unit and
call ForwProcessOma passing it a reference to input unit definition, name of
the unit that is used to define input unit and amount. The output returned
by ForwProcessOma is then recorded and we call ConvertUnits again but now
passing the new amount (the value that was returned by the ForwProcessOma
in the previous step), the new input unit name (this should be a name of the
unit that was used to define the original input unit) and output unit name.
This ensures that the recursion goes one step down at a time and will gradually
reach the base SI unit.

In case of class 6, the same steps are taken as per class 2. The recursive step

CHAPTER 3. PROJECT IMPLEMENTATION 42

of class 2 processing will ensure that when we reached the base input unit, the
next time ConvertUnits is called, the conversion will be detected as class 3 or
4.

One of two cases of class 5 (case when input non-base unit is defined in terms
of the output non-base unit directly, labelled as “class 5 part 1” in the code)
should also be processed by ForwProcessOma using the method that was ap-
plied to class 1 conversion.

If the ConvertUnits detected that needed conversion is of class 3 or 4 Backw-
ProcessOma is called passing it a reference to the output unit definition, input
unit name and amount. The recursion for class 4 is initiated within the Back-
wProcessOma function.

In case of second part of class 6 (output is defined in terms of input, labelled
as “class 5 part 2” in the code), the function should also call BackwProcessOma
passing it the same parameters as per classes 3 and 4.

If ConvertUnits detected class 7, we need to call CompositeProcessOma passing
it references to input and output object definitions and the amount.

Note that ConvertUnits subroutine should be able to deal with returned values
of zero, negative and interval definitions.

Let’s discuss the inside algorithms of the conversion subroutines mentioned
above:

ForwProcessOma

This is a recursive function that parses through a definition tree (one level is
processed per call) and computes the numerical values as it goes along. If it
finds an OMS tag that references the output unit, the amount is substituted in
this place and numerical operations are done as normal. The final amount is
returned back to the calling function.

BackwProcessOma

This is also a recursive function that parses through the definition tree, but
this time, we need to get a value that will then be used together with amount
to perform an inverse operation. To get the amount for each node we do a
trick by using the ForwProcessOma and passing it references to children nodes
(only for second and third child as the first one is always an operation), some
random unit name and arbitrary amount. If the current child tree only involves
numerical objects then the value is returned by ForwProcessOma. If the current
node does involve some unit definitions then there will be nothing returned back
by ForwProcessOma as we asked it to look for a unit definition which has some
random non-existent name.

Another recursive part of BackwProcessOma is initiated if the output unit is
not defined directly in terms of input. In this case, before returning any results
or performing any operations we call ConvertUnits subroutine again passing it
the original amount, input unit name and the unit found in the current output
unit definition as a new output.

CompositeProcessOma

CHAPTER 3. PROJECT IMPLEMENTATION 43

This function just splits up the composed input and output definitions into
components, then performs unit conversions between appropriate unit pairs us-
ing ConvertUnits and passing 1 as an amount. It then composes back values
returned by ConvertUnits using operations found in the definition of the com-
posed input unit and any numerical values found in the composed definition. If
there are numerical values existing in the composed output unit definition then
those values should be applied to the result as well using the reversed operations.

Let’s now discuss the code that provides an output to the user.

process.pl is responsible for displaying conversion results to a user.

First of all, the script does the common checks, similar to the ones done in in-
terface generator, that check that sysData and wunitData hashes exist and that
ST unit system (metric) is present. If these conditions are not met, the script
generates an error report and exits. Next, script parses input as described in
section 3.3.4 on page 35. After this, we call GetPrefizValue from the UnitCon-
verter.pm to get the numerical values of input and output prefixes. We then get
the new amount by multiplying original amount by the input prefix value. We
then call ConvertUnits subroutine from UnitConverter.pm to produce the unit
conversion and we pass it a new amount, input unit name, output unit name
and references to sysData and unitData hashes. The value received back from
ConvertUnits is divided by the output prefix value and the result is displayed
to a user.

Note that conversion algorithms have not been discussed in as much detail as
the other parts of the system for the following reasons:

e This helps the reader to concentrate on conversion algorithms rather than
on technical details of implementation,

e The source code is provided for the converter code (the main converter
algorithms) in appendix D on page 66 which can be used to find out
implementation details.

3.3.5.4 Final product

The converter has been implemented according to specifications, testing report
in the next chapter identifies how well the system was implemented. Only
source code for main converter algorithms is provided in the printed version.
Full source code set is available on the CD that comes with this dissertation.

Chapter 4

Testing

In course of implementing this project two types of testing have been performed:
development testing and requirements testing. The development testing of the
system aims at performing a set of measures that guarantee that the system is
robust and bug free (although it is almost impossible to exclude any bugs even
in commercial products). As it was mentioned in the Resources section 3.2.4 on
page 21, Mantis bug tracking system was used to track all bugs that were found
in both OpenMath data and the converter system during development testing.
Mantis has also been used to monitor how bugs were resolved. The bug tracking
system can be accessed omnline at: http://www.bath.ac.uk/ "maleo/mantis/
(login: guest, password: guest). A short summary of all bugs found is given in
the appendix C on page 65. Special care was given to error processing discovered
at the stage of development testing. All fault situations have been simulated
to ensure that all checks for corrupt or invalid OpenMath data produce error
messages and exit.

When testing parsing function, a custom form page was created that includes
all the input fields as text fields. This enabled us to input values which were
not possible to enter using the standard user interface. This was then used to
simulate situations when some data got lost while being transferred from the
browser to server and to check that input validation is functioning correctly.

The second type of testing, requirements testing, focuses on comparing the
final version of the system against a set of system requirements (chapter 3.1
on page 16). Before completing requirements testing, the following tasks were
performed:

1. To check that all CDs contain full and valid definitions. Bugs within CDs
have been found while completing development testing and are noted in
the bug tracking report (appendix C on page 65).

2. A custom dictionary was made for some new measure system so that we
could test that new units and unit systems that might be added easily to

44

CHAPTER 4. TESTING 45

the converter in the future. (This is one of the requirements as formulated
in the chapter 3). Our choice included U.S. units as a custom dictionary
that has been created for testing.

We shall briefly discuss rules that were followed when creating the dictionary.
New unit system was defined to represent the U.S. units, two files were created:

1. “units_usl.ocd” - a CD that defines U.S. units in terms of the SI ("units_ metricl")
units,

2. “units_usl.sts” - an STS file that describes the type of each unit defined
in "units _usl.ocd".

What has to go into "units usl.ocd"? The U.S. customary units (more com-
monly known in the U.S. as “English units”) are the non-metric units of mea-
surements that are presently used in the United States alongside the metric
system of units [7]. Most of the measurements of this system are the same as
measurements from the imperial (UK) system with the following exceptions:

1. There exists another foot definition which is a U.S. survey measure [1].
Imperial measure states that 1 foot is equal to 0.3048 metres exactly, while
U.S. survey measure defines 39.37 U.S. survey feet as 12 metres exactly
(one foot = 1200/3937 meter). This causes yards, miles and acres also
be different (although the ratios between them are exactly the same as
in the Imperial system). So "units usl" must contain definitions for the
following units:

)

) yard_us_survey (1 U.S. Survey yard = 3 U.S. Survey feet),
(c¢) mile_us_survey (1 U.S. Survey mile = 5280 U.S. Survey feet),

)

acre_us_survey (1 U.S. Survey acre = 4840 square U.S. Survey
yards),

(e) inches_us_survey should be defined as well, but "units imperiall"
misses them out so we trust the creator of "units imperiall" that
we do not need to define inches inches wus_survey in "units usl"
for consistency.

2. Volume units for measuring liquids are different for the U.S. system (i.e.
cubic foot, cubic inch and cubic yard are the same as in Imperial sys-
tem but others are different). We ignore survey volumes because survey
units are used for cartography only. This means in our case that U.S.
pint must be defined in "units _usl" in terms of SI base unit, which is
litres. The definition of U.S. pint states that 1 U.S. liquid pint is equal
to 0.473176473 litres exactly. Note that unlike Metric or Imperial, U.S.
system has separate types of units - one type for dry volume and another
for liquid volume. Therefore, definition of dry pint also exists, one dry
pint being equal to 0.5506104713575 litres exactly.

It follows that the following new units have to be added to "units usl":

CHAPTER 4. TESTING

46

(a) pint_us_dry (1 U.S. dry pint = 0.5506104713575 litres),
(b) pint_us_liquid (1 U.S. liquid pint = 0.473176473 litres).

Information that confirms the conversion facts stated above is available from

the Wikipedia encyclopedia [7] and from the number of other official sources.
"units usl" CD and STS files have been created according to the notes above
and are listed in appendix E on page 67. With this new measure system present,
we performed full requirements testing. Results of this testing are listed in the

table below.

Test

| Outc0m43 Comments

Get a list of available unit systems from the configured location

type of object?

Does the system handle success

configuration files correctly?

Does the system report if success reports an error if at least one

configuration file contains path is missing

erroneous information?

Does the system find the success reports if directories can not

correct paths? be opened

Does the system detect CDs success produces an error if SI CD

that represent units? (“units _metric1”) is not found

Is it easy to customise the failed you will have to go through

name of the SI system? several scripts to replace the
name of the SI CD

Does the system check that SI | success produces an error if no units

CD has at least one definition? are found in SI CD

Does the system detect prefix success

CDs?

Does the system detect all success lists all detected objects on

available signatures for objects the information page

found in CDs?

Does the system detect the success

Load CDs and all other necessary files needed for conversion

Is the system able to load and
parse the CDs and STSs
required during the conversion
process?

success

references to CDs that have
previously been parsed are
stored in a hash, thus saving
time and memory when pro-
cessing composed and recur-
sive conversions

Work with any number of unit systems and

easily add new unit systems

Is it possible to add new
units/prefixes?

success

added objects appear in the
interface next time it is dis-
played

CHAPTER 4. TESTING

47

composite units (like Acre)?

Test Outcome Comments

Is it easy to add new success | to add a new object, all that

units/prefixes to the converter? needs to be done is to update
the relevant CD and STS files

Is it possible to add new unit success objects defined in the new sys-

systems to the converter? tem files appear in the inter-
face next time it is displayed

Is it easy to add new unit success | to add a new unit system, just

systems to the converter? drop CD and STS files for the
new system in the directory
which is referenced by the con-
verter to get CDs and STSs

Do conversions work between success

already created systems and

the newly created custom

systems?

Is there a limit of number of success no limit on the number of sys-

systems that can be added? tems that can be added, but
a lot of systems will make in-
terface more difficult to use;
clearly an interface issue

Interpret CDs (parse the format and understand the data)

Is the system able to success

understand the CD structure?

Is there any validation of CD success | common rules are checked

data? when processing CD data

Does the system understand success works on components of the

unit separately and then joins
together to finalise the conver-
sion

Display units/prefizes available for conversion

measure section?

Does the system list all units success both main interface and infor-

that have been found? mation page list all available
units

Are the units listed in type success interface consists of measure

groups? sections, each section contains
all units that are of that par-
ticular measure type

Are the units which have no success | “single” units are displayed as

other equivalents displayed as well so that prefix-only con-

well? versions can be done

Are all prefixes listed for each success prefix list is the same for all

sections

Get user input and process it

CHAPTER 4. TESTING

48

Test Outcome Comments

Does the system get input success

from user?

Is the input validated? success system checks if all required
fields have been sent, checks
the validity of the amount and
existence of input /output pre-
fixes and units

Does the system check if the success | before converting, the system

selected conversion is valid? will check that input and out-
put units are of the same type

Does the system check if it success if some definitions are incor-

possible to do the conversion? rect and there are more than
one base units, the system will
report and error

Produce needed conversions

Is the system able to process success prefixes are generated before

input/output prefixes? converting units themselves

Is the system able to do success e.g. degrees Fahrenheit into

forward non-base to base degrees Celsius

primitive conversions?

Is the system able to do success e.g. miles into metres

forward non-base to base

non-primitive conversions?

Is the system able to do success e.g. metres into feet

backward base to non-base

primitive conversions?

Is the system able to do success e.g. metres into miles

backward base to non-base

non-primitive conversions?

Is the system able to deal with | success | e.g. miles into feet

non-base to non-base primitive

conversions?

Is the system able to deal with | success e.g. feet into U.S. survey feet

non-base to non-base

non-primitive conversions?

Is the system able to deal with | success | e.g. metres per second into

composite conversions?

miles per hour

Have a user-friendly interface and be intuitive to use

Is the user interface available? success web-based user interface is
provided
Is it easy to get to know how success it is clear for a new user how

to use the user interface?

to use the interface; user man-
ual is also provided, see ap-

pendix B on page 62

CHAPTER 4. TESTING

49

Test Outcome Comments

Is the user interface easy to partial the interface is easy to use,

use? success but might become too chunky
if many units/systems are
added

Be easy to install and configure

Is the system easy to install by | success system is extremely easy to in-

the unfamiliar user? stall; installation is described
within the user manual that
is given in appendix B on
page 62

Is the system easy to partial paths to CD and STS direc-

configure? success | tories can be configured by

editing “locations.cfg” file; but
path to config file can not be
changed easily; also the name
of the main SI system can not
be changed easily; these is-
sues will be discussed in detail
in chapter 5 on the following

page

Be robust and have a good error

checking system

Is the system stable?

success

the system will report if data
files or input are invalid but it
is very difficult to let this hap-
pen unless data files are cor-
rupt or do not comply with
DTDs

Is there an error checking
system?

success

at any point of execution, the
system tries to see if any error
have occurred and stop is this
is the case

Chapter 5

Conclusions

Instead of recapping the main results of the project which are summarized in
the abstract and in the introduction, we would like to concentrate on unsolved
problems and future work.

Unsolved problems

Several minor problems was been detected in the course of extensive testing
of the system. In particular, the user interface is generally easy to use, but
problems might occur if many units/systems are to be added. The interface
simply becomes full of new items.

The system is generally easy to configure but some configuration parameters
can not be changed easily. Paths to CD and STS directories can be configured
by editing "locations.cfg" file; but path to config file can not be changed easily.
This would require to search and replace the path by running several scripts.

It is not easy to customize the name of the SI system. We will have to go
through several scripts to replace the name of the SI CD. This is not a big
problem because the name of the SI unit file does not change very often. In
fact, as we will discuss below, such change has been proposed to the OpenMath
community. If it is is accepted it is unlikely that the name will be changed again
in the future. Both these points are of minor importance and do not affect at
all the proper functioning of the developed system as well as the ease of its
installation and use.

It is also worth mentioning that some composed units are impossible to represent
using current user interface. For example we can not work with kilometres per
hour, cubic metres.. One might argue that this is a user interface problem, but
is it really the case?

50

CHAPTER 5. CONCLUSIONS 51

OpenMath unit CD structure only allows to customize units by composing var-
ious units and prefixes. Yes, it is true that any custom unit can be represented
using OpenMath but a new definition has to be created before being able to han-
dle this custom unit. The designed system is a signature-based unit converter
and can only convert between units found in signatures. Choosing a different
time unit for composed measures like speed (for example to transform metre
per second to kilometre per hour) is equivalent to introducing a new unit itself.
For the same reason, various other popular units such as cubic metre can not be
converted to and from using the current converter. One might think that this
is the interface problem in considering the time as another form of prefix, but
it is not actually the case and it can not be considered as an interface bug.

In addition, arith! and intervall subroutines emulate operations performed by
the “arith1” and “intervall” CDs respectively. The problem might appear when
someone decides to add a new operation to these CDs. This would not be re-
flected in the work of the developed unit converter. This requires arithl or
setlintervall subroutines to be amended to include this new operation. How-
ever, this will not pose a big problem since “arith1” and “intervall” CDs are
stored in the “Core” section of CDs on the OpenMath website. This means that
it is very unlikely that they are going to improvements change in a near future.
We can think of operations defined in the subroutines as a complete set which
is enough to define any kind of unit representation.

Future work

While completing this project, we would like to discuss new improvements that
can be made in the future. future First of all, the system can be improved by
addressing the problems discussed above. In particular, we would like to spend
more attention to interface design. Although the major emphasis of this project
was in working within OpenMath concepts and user interface was of secondary
importance, more advanced graphical user interface is highly desirable. The
current interface is satisfactory but it will become difficult to use once many
more units and systems are added to the converter.

The special attention is required to address the issue of configuration of the
converter. As it was mentioned above, the path to the configuration file can
be declared as a global Perl constant that is is available across all subroutines.
This solutions reduces the configuration change to the change of the path to the
configuration file to be made in the predefined place of the system. Name of the
SI system CD can also be stored as a Perl constant and can be accessed by all
subroutines.

Finally, the speed of the current system is quite satisfactory but could be im-
proved more by processing two prefixes at once. This will allow the prefix CD to
be opened and parsed once, thus saving memory and time. This effect can not
be noticed on a single user system, but this can become more noticeable in the
server environment when many users want to access the system simultaneously.

CHAPTER 5. CONCLUSIONS 52

The error handling is implemented well in the system. But an even better error
processing can be achieved by using CG::Carp Perl module.

Looking back at the beginning of the project I would spend more time by thor-
ough analysis and development of more consistent and complete set of unit def-
initions. This would definitely increase the final product quality. In fact, this
issue is identified as extremely important by OpenMath community and the
appropriate work is currently under way. The content dictionaries for units are
still at the early development stage and more effort and team work is required
in this area.

A message to the OpenMath community

In course of this work, several changes and additions have been made to CD and
STS related to processing units. They are reflected in the bug track report and
listed in appendix C. While the changes made are quite obvious there are still
several questions related to OpenMath unit data representation that appeared
during the development process. I decided to adhere the existing OpenMath
standards because my questions and concerns require an additional research and
discussion by the OpenMath community. Nevertheless, it is useful to formulate
these questions in the hope that they might be by OpenMath community at
some point.

1. We agree with [4, text after| that “units_metricl” should be renamed
into “units_sil”. It would be very constructive to implement this change.
If this were to happen then it would be highly desirable to make an-
other CD | “units _metricmiscl”, that will include the Metric horsepower,
hectare, and other units as it is suggested in [4]. If renaming will take
place, then “units _sil” should contain only base SI units. This point is
not stressed in the article [4] but we suggest to move some units already de-
fined in “units metricl” to “units metricmiscl”, including litre_ pre1964,
degree_ Kelvin, etc. Units that are not likely to be used by other CDs to
define other units should go into “units metricmiscl”.

2. There are some more or less fundamental units that are not present in
the current unit CDs. In particular, they include inch, ounce, gallon. As
far as the volume units is concerned, there is no representation of solid
volumes (e.g. cubic metre, cubic foot, etc). There are only liquid volumes
defined. No clear distinction exists between liquid and solid volumes in
Metric system, but lack of solid unit representations does make volume
conversions limited.

3. Content of CMP in CDs is extremely misleading. It is OK for simple units
but it poses the problems in case of units such as like degree Fahrenheit.
Here is a CMP content of the degree Fahrenheit:
<CMP> 1 degree Fahrenheit = 0.5556%(1-32) degrees Celsius </CMP>
Obviously, it might be a good idea to reconsider CMP definitions for unit
CDs. This is not a substantial change that might confuse any existing

CHAPTER 5. CONCLUSIONS 53

software based on unit CDs. But since this Commented Mathematical
Property objects, created by mathematicians, the most logical people by
profession in the world, it is highly desirable to make the logic in this area
even better.

Final words

IT consider this project as highly successful and rewarding. To my opinion, the
main objective has been achieved. As it was demonstrated by the testing report
(see chapter 4 on page 44) the 99% of items from the system requirements have
been fulfilled. It is my project supervisor who will decide the degree of my
success in the development of the OpenMath unit converter. However, the brief
conclusion regarding the purpose and meaning of this work can be made. The
proposed extension to OpenMath that aims at attaching units to quantities does
work extremely well and will greatly benefit the community by creating novel
and useful system tools within OpenMath framework. Although the converter
developed in the course of this project is just a small and very simple example of
this type of applications, it demonstrates the power of this this extension that
can enormously benefit the other areas of practical importance.

Demonstration of the system

A working demo of the designed OpenMath converter can be accessed at:http:
//ccpc-jh2.bath.ac.uk/ (only accessible within University of Bath campus
network). Source code is available upon request and is also enclosed in the form
of CD to the hardcopy of this dissertation.

Bibliography

[1] U.S. Coast and 1893 Geodetic Survey Bulletin 26, April 5.

[2] James H. Davenport. On writing openmath content dictionaries. ACM
SIGSAM Bulletein, 34(2):12-15, 2000.

[3] James H. Davenport. A small openmath type system. ACM SIGSAM
Bulletein, 34(2):16-21, 2000.

[4] James H. Davenport. Units and dimensions in openmath. ACM SIGSAM
Bulletein, 2003.

[5] M. Dewar. Openmath: An overview. ACM SIGSAM Bulletein, 34(2):2-5,
2000.

[6] http://crystal.win.tue.nl/products/openmath/lib/. Riaca openmath li-
brary website.

[7] http://en.wikipedia.org. Wikipedia, the free encyclopedia.

[8] http://expat.sourceforge.net. Expat website.

[9] http://java.sun.com/xml/jaxp/. Java api for xml processing (jaxp) website.
[10] http://pyxml.sourceforge.net. Pyxml, xml parsing module for python.
[11] http://sax.sourceforge.net/. Sax standard website.

[12] http://search.cpan.org/ coopercl/ XML Parser/Parser.pm. Xml::parser
perl module website.

[13] http://uk.php.net/domxml. Php5 dom extension website.

[14] http://www.convert me.com/en/convert/weight. Convertme.com: weight
and mass conversion.

[15] http://www.openmath.org. Openmath standard website.

[16] http://www.w3.org/DOM/. Document object model (dom) standard web-
site.

[17] http://www.w3.org/Math/. Mathml standard website.
[18] http://www.w3.org/XML/. Xml standard website.

54

BIBLIOGRAPHY 35

[19] http://www.xmlsoft.org. Libxml2 parser website.
[20] http://xml.apache.org/. Xerces xml parsing modules website.

[21] Eliotte Rusty and W. Scott Means. XML in a Nutshell. O’Reilly, 2nd
edition edition, 2002.

[22] S.Buswell, O.Caprotti, D.P.Carlisle, M.C.Dewar, M.Gaetano, and
M.Kohlhase. The OpenMath Standard, 2.0 public 5a (7 april 2004) edi-
tion, 2004.

Appendix A

Development notes

Development notes include everything that could not be included in the main
project write-up. These informal notes provide an in-depth view how the project
was developed, what difficulties were faced (e.g. technical problems, etc). Al-
though not completely relevant to the major goal of the project, these notes
provide important information for someone two wants to understand how deci-
sions were made and how technical problems were solved. This documents my
own personal experience of software project development and management.

A.1 Preparation

Before I started to write specifications for the project, I carefully analyzed all
the important stages of the project. However, several important issues required
some input from my supervisor, Professor James Davenport. Therefore, I ar-
ranged a series of meetings with him to discuss the issues related to strategic
goals of the project as well as some technical details. Here is a brief script of
our discussions.

First meeting:

e Q: Is there a way to ensure a legality of a conversion, that is to ensure
that converting from metres to miles is legal but converting from litres to
centimetres is illegal?

A: Small OpenMath Type System (STS files) will assist you in solving this
problem.

e Q: Some non base SI units are not defined in terms of other units (for
example, bar, standard imperial measure for pressure is not defined in
terms of anything else but it is non SI unit!). How do I have to deal with

o6

APPENDIX A. DEVELOPMENT NOTES 57

this situation?

A: The CDs on OpenMath official website are a little out of date and
require updating. This can be considered as a bug and should be checked
and corrected by OpenMath community.

e (Q: There is no definition of kilometre at all. How do I have to deal with
this?
A: Use a prefiz CD.

Second meeting:

e Q: Do I need to include project proposal and literature review in my
project write-up?
A: Proposal is left as a separate section of project write-up, literature
review is integrated into the write-up.

e Q: Is it worth using RIACA library which is written in Java or can I use
other alternative libraries that are much better interfaced with Perl?
A: Tt doesn’t matter what library you use, if you feel more confident and
fluent with Perl then use some Perl library.

Third meeting;:

e (Q: How do we deal with conversions to and from “months” and similar
units? There is no clear definitions of a month as it can be a time period
counsisting of 28, 29, 30 and 31 days (which is represented as a period in
OpenMath).

A: When converting this unit, return a period instead of a single value.

e (Q: There are several parts of CDs and STSs that I don’t consider as logical
and consistent. They might be simply some bugs and there might appear
a situation when these bugs could be eliminated by correcting appropriate
CDs. Would you be able to give me latest versions of CDs or comment on
my concerns and disagreements?
A: The versions that are uploaded to OpenMath.org are the latest ones
so the problems that you spotted do in fact exist. I will correct these as
soon as possible and will send you the new versions. (Later, I added some
bugs found in CDs to my bug tracking system.)

A.2 Software installation

An important issue I had to address is to to set up an adequate computa-
tional infrastructure for this project. This included the necessary prerequisites
in terms of standard software, compilers, libraries, platform independence and
compatibility. As discussed in section 3.2.4 on page 21, I have chosen to use Perl

APPENDIX A. DEVELOPMENT NOTES o8

with XML::DOM module. Perl is a part of standard UNIX installations, and for
MS Windows there is a freely available installer (that can be downloaded from
http://www.activestate.com). XML::DOM module does not come with Perl
installations by default so it has to be installed separately. I checked with BUCS
server system administrator about the possibility of installing XML::DOM mod-
ule and make it available for other users. This would allow my project advisor
as well as other interested users to have an access to my OpenMath unit con-
verter. Due to security concerns BUCS system administrator was not able to
install the third party XML::DOM module Perl module with system wide access
permissions and advised to install it in my home directory.

A.2.1 Installing on UNIX (OS X)

The module of my choice (XML::DOM) is based on the Expat C++ library in
requires several prerequisites They include:

e XML::RegExp
e XML::LibXML
e XML::Parser (at least v.2.28, 2.30 is required)

e LWP (libwww module is required)

XML::Parser requires installation of Expat C++ module that can be down-
loaded from http://epxat.sourceforge.net. Latest source has been down-
loaded and installed by extracting everything from archive, moving to the di-
rectory containing extracted files and running:

./configure
make

make install

All Perl modules were installed by downloading them from http://www.cpan.
org, extracting files from module archives, locating module directory and run-
ning the following commands from there:

perl Makefile.pl

make

make test

make install (provided “make test” passed without errors).

When installing XML::Parser, Makefile.pl has to be run with two flags to specify
the custom paths to “libexpat” and “expat.h” from the Expat C++ library.

Finally, LWP module requires installation of the following modules:

o libwww

APPENDIX A. DEVELOPMENT NOTES 99

e MIME::Base64
e URI
e HTML::Parser

e libnet

Digest::MD5

I tested the required software infrastructure using my own Mac computer that
runs Mac OS X (which is fully compatible UNIX operating system based on
FreeBSD).

A.2.2 Installing on Windows

As mentioned in Resources section 3.2.4 on page 21, I decided to have my
OpenMath system convertor running on MS Windows PCs for the purpose
of public demonstration. The installation of everything required to get the
system up and running was extremely easy. I downloaded and ran ActivePerl
installer. After that I downloaded Perl Package Manager (ppm from command
line) and typed the command: “install XML-DOM?”. This automatically installed
the module of my choice for processing XML data, XML::DOM and all it’s pre-
requisites. After these easy to do steps, the system was up and running on MS
Windows PC.

A.3 Content Dictionaries

It was not easy to get fluency with the structure of the CD archive. The major
difficulty was to decide which versions of CDs to use and what are the main
locations for these CDs. Although there is a separate CD page with the three
subsections (Core, Public, Extra), there was no index page that would just list
all files from the selected directory. Some CDs contained errors and turned out
to be out of date. Later, I received updated versions of those from my project
supervisor.

A.4 User interface

Before embedding HTML markup in the program code, I decided to produce
a draft of the design as a sample HTML page. Then, I could do appropriate
adjustments to get rid of some minor problems in layout. Once I was happy
with the created design, I could use parts of HTML sample code in the script
that produces the user interface.

APPENDIX A. DEVELOPMENT NOTES 60

A.5 Algorithms

A.5.1 Signature files

Signature files were the first first objects I started to work with. The first task
was to parse XML in a sensible manner that is best suitable for my project.
The first algorithm for extracting unit type information from STS files was built
using many nested “if”’ loops to check for the right pattern of element tags. This
approach not only introduced unnecessary code complications but also assumed
that the structure of signature files is uniquely defined. Slight diversions from
the structure would make the program fail to extract information.

As a result of mastering programming techniques,a second version of the al-
gorithm was developed that was based on processing children recursively by a
specially created subroutine. To ensure that element tags are occurred in correct
order the subroutines have several parameters passed (father element names and
attribute values). This simplified the code a lot, greatly reduced the indentation
(nesting) volume and ensured that any valid STS file would be processed fully
and correctly. This algorithm is described in more detail in the main project
write-up in section 3.3.2 on page 25.

A.5.2 Parsing CDs

Prefix processing was done before the unit conversion part of the code. There-
fore, I had to produce the code for opening and parsing of CDs and for jumping
to the <FMP> tag of the needed object in a particular CD. Later it was dis-
covered that the similar code was required in the unit processing section of the
program so these two parts were extracted into separate subroutines in Unit-
Converter.pm.

A.5.3 Doing conversions

When thinking about the conversion algorithms, it was set out to produce a
conversion type classification scheme that would then assist in creating the best
possible algorithms for unit conversions. Initially, the classification was done
by listing all possible types of conversions. This turned out to be a very bad
approach that was really confusing and so another classification method has
been used. The old classification scheme is listed below.

1. Same system conversions

(a) base to non-base

(b) non-base to base

APPENDIX A. DEVELOPMENT NOTES

(c) non-base to non-base
2. Non-SI unit to SI unit conversions

(a) base non-SI to non-base SI
(b) non-base non-SI to base SI

(¢) non-base non-SI to non-base SI
3. SI unit to non-SI unit conversions

(a) base SI to non-base non-SI
(b) non-base SI to base non-SI

(¢) non-base SI to non-base non-SI
4. Non-SI unit to non-SI unit

(a) base non-SI to non-base non-SI

(b) non-base non-SI to base non-SI

(c) non-base non-SI to non-base non-SI

61

Appendix B

User manual

One of the requirements of this OpenMath converter system was “ease of use”.
This requirement has successfully been met. As a result the interface is intuitive
to use. Consequently, the user manual for this system is extremely short.

B.1 To install the system

Before installing, make sure that you have a web server, Perl and XML::DOM
module installed.

To install the system, unpack the unit converter archive (can be found on the
CD that is attached to this dissertation) into a directory that is configured to
be accessible from the browser by the web server. Configure “dev” subdirectory
to be a CGI directory on the web server. Set executable permissions for all files
within “dev” directory apart from “locations.cfg”. Installation is now complete
and you can access the system using your browser. The address that you type
into the address bar of a browser depends on how you configured your web server
to process the unit converter directory. Note that if you have SSI enabled on the
web server, then you can load the converter by accessing the main extraction
directory from a web server. If SSI is not enabled, then you need to access the
converter using the following address: http://path_to_unit_converter_dir/
dev/show.pl.

Pre-installed version of this system can be accessed at: http://ccpc-jh2.
bath.ac.uk/

62

APPENDIX B. USER MANUAL 63

B.2 To perform a unit conversion

Use your browser open a Unit Converter main page, located online at: http:
//ccpc-jh2.bath.ac.uk/ (can only be accessed within the University campus
network). The page should come up listing interfaces for all possible measure
conversions. To browse to the specific measure section, just find the measure
you are looking for in the menu at the top (labeled as “Convert:”) and click on
the appropriate measure type.

Once you are at the required measure section, type the amount of the original
unit in the “Amount” input box. Then choose original and output prefixes and
units using provided listboxes that are labeled appropriately. Once you have
selected the correct values in listboxes, just click “Convert” button to perform
the desired conversion. New page will appear showing results of the selected
conversion.

B.3 To add a new unit

To add a new unit that will be available in the unit converter, two steps has to
be performed:

1. Add the signature for the new unit to the appropriate STS file. Guidelines
on this process are given in [22] and in [3];

2. Add the definition for this unit to the appropriate CD file. Guidelines on
this process are given in [22] in [4] and in [2];

New units should appear automatically in the appropriate measure section if the
above steps have been done and the additions comply with XML and OpenMath
DTDs for CDs and STSs. Note that in order to see the changes, you have to
refresh an interface page in browser. Also note that CDs and STSs that are
modified must be in the configuration directory path. Otherwise the converter
will not know about the existence of these CDs and STSs.

B.4 To add a new system

To add a new measure system to the unit converter, e.g. “units_usl” you have
to perform the following steps:

1. Create new CD and STS files for the new measure system;

APPENDIX B. USER MANUAL 64

2. Put newly created files in the directory that is referenced by the converter
for CDs and STSs (i.e. put new files in the directories specified by the
configuration file, “locations.cfg”);

If new CDs and STSs are valid, the system will find them and add all units
defined by them into appropriate measure sections. Note that changes will not
take effect until the interface page is refreshed in the browser.

B.5 To change the location of unit definition files

To change the paths to either the directory that stores all STS files or to the
directory that stores all CD files, edit these paths in the configuration file,
“locations.cfg”.

B.6 To view the available CD and units informa-
tion

Information on available CDs and units defined by them is displayed on the
information page. This page can be accessed by clicking on the “Information”
link which is at the top of the main interface page. Information page will also
show the version, author and credits information.

HOnmhondQWolm®I™in s oo e =gnn g vhonw™”Q@on @™n 5 g o i z
QOO OOY ST OON T 1ol nedel Q00 0dRO0DY S I Q00 il I o = 25N
WY E-<"Y QO I B3% I Xich o830 0cdln®e-<B QO 3T 1 ol It .-8@ a o =
A0 Oo0Od0oOOR® i Q0 T o Qi Q20 a0l OO0 ®RO® Y1 Q0 Il Tl I ..U‘UN
IHESRRBOWQH®I ER I« Q1O =R D IHERRBOWQH®I HR I« 1 = =+ < =
Rl cnrkrEa0o0aQl ocdil Xl B RER I ROIECnDEEQAQ0TQIll Ol I Q = & B =)
Qg Il (fee crcr & R oo ot Il B I =B I CI I 3 B o S T M = I SN o o A = TP o S T B T IR [T S0 25 a (¢°)
Qo KK AN L [O A o 1 I d e il Qg B NN AN ol BN It 2 o 2 o~
F-3 00 R I el g E R R I VRS - S [=R~ B o P 1 g i o = (=] =]
BB o’ I [l S It 30 [e [o 1 g I Q s © N =y
Bt P I [l ol B0 B [P- 1 [o) B C - S =)
o Il [I ol a0 R o o - 1 o [o A o o
Qo I [I Qo B = Qo [1 oo I S 2L 0 S
ol (54 I oot [e Qo (54 1 oot - B 94
o] ~ 1 [T =T LR =g Il o] ~ il [[= g 50 =h (¢”]
1 . I [l [T | 1 1 . 1 [l B = = O
1 I [[T ol [} 1 1 1 [T ® “2 o = =
1 I Qi (S 9] 1 1 1 Qi o < n = = []
1 I [l I I 1 1 1 [l = 4 —_
1 I [=T} [l = 1 1 1 g o e -
i il [ST i i i oAl <y s > o
1 I [N} [o 1 1 1 [N} B =, 4
1 I I é 1 LW = 1 1 1 I 15 1 Lo 5 1721
1 I I 1 [N) 1 1 1 I 1 =
1 I @ I I o 1 1 1 [l E — UQ g‘ i o
1 I [l W B 1 1 1 [l o =
Il 1 o w9 It It Il o = o = o
1 I o [N =} 1 1 it o [¢] o & (1)}
Coll MEB M JoOl O o I X1 I I w cllhool mMRBrmMJoOl ®o I X1 c o
Uil E-0O0 D OB I cc Il 30 I I B Bl OOl 000D OD I CC 2 > £ e n 1
X DB E o0 lQ@Q I @ I I = Bl X030 To0 Q@@ BUQCDV’
Holl OO0 OOl 0®n Bl I I - PRI OO0 dY OB I OO0 31 S 4 I = =p
L o N S i ORI BB 0ot I I [N T TR o R <] ORI BB Nt = o &
[<] T ORI | I 1 £ oo < K0 G IO e E a8 = o =1
ool [0} o Wt [l I I 5l ool [0} o © Il oo 2. 0o © —~
! Q = [N 1 I [ol [Q =] [Nl @ =T = e
1 I < I 1 Q 3 1 1 < ~ o 5 =
o al B I I = O | al 0B ~ = -
W o Il 5o o I I B 5o o > o <
el Pl =T I [T < YR R Bl [T o 5 O [¢7}
o Rl ool [I I o ol Wwi oo i Q& = &)
o w 1] o | Il 0] Q Il I o =B = o
1 Qll [=R} I I 1] Qi 1 Qll co =} = o (=}
W oIl Qi 1 1 =] I W oIl Qi o 15
w0 Sl] | 1 - gl o 50 o g © =] -
H < g l I w0 < g S o & = -
1 (O] [T I I o 1 (O] Qo o o $ © 17,4
1 ol Qi I I o w I 1 Rl Qi w8 »n &
1 ol o I 1 » 1 1 ol o — b 5
1 o Il [i I [| 1 o Il [> 8
1 Ko g I 1 0 5o 1 Ko g =T — o
1 I I g 1 I I ot g 1 1 1 I 'g 1 S o = =
1 I 1 it I I . 1 1 1 I 1
1 I ool 1 I Q 1 1 1 [l 7B} 8 =
1 I I i 1 H 1 1 1 b < o O o
1 I [l I I ad Ql 1 1 oo S o
1 Il [Tl | Il g 1 1 [Tl c 2T &
1 I Qi I I 0 1 1 1 Qo = =8 B
1 I [T I 1 =3 1 1 1 [T 38 09 -
1 I ol I 1] 1 1 1 ol o o =
1 I ol I I e 1 1 1 ol 1) ©“ o
1 1 ol I I = 1 1 1 ol s 8
1 I ol I 1 Q 1 1 1 ol o = &2 ©
1 I ol I I 1 1 1 I ol © o <
1 1 s I 1 B 1 1 1 (Il A [%)
1 I Wl I I =} 1 1 1 I o Il = o <
1 I 1 it I I 7] 1 1 1 I 1 x @
1 I I 1 1 I o 1 1 1 I 1 = E
g 1 I I 1l I I o 1 1 1 I I =
] 1 I I 1 I 1 o 1 1 1 I 1 O o
Q it I I 1 l I Q 1 1 it 1 I QB
® 2N =N
5 o
o 8 1)
5 8
— [
A ™o 1 A A A A bl 1 QN h+++++++++H0O0cHHOWI
Ll Q1o ~~ 0 Q1o O 1 M L= = B OB R
n = [oTR I = QOA nNR= [oTRN I = QB ol oQudoo l 3 nkHEO®n 3l
ofm" O 1 Q1 g =2~ om™Mm 1@ 1 BFHh 1 QI @000H0ODDHECOT a3l
ARV Qoo goon A A ANZV YV Q1o 10O RQCCBQ D BRI
o P A (= 0O o=~ O~ OO WA (= [=T HRB B3R KKK P H- M H-HB ol
2VO o QO A AAAEOA/\AEK\/OH [N O |2 0 o0 O O®O0O0on n TN
n 2 o I }—‘-\/VE\ [eNeNe} Eooo n = 5o I Qo Y| 0w nl ot
o o 1o B A OANNEZEV 2RV o [oI e T | A R = B N R . o B N
=} w I 1 E~ V20QQ»rHMNn VvnnH® B w ® oo I = 1 I oD Q- o R ®n [} o 1
@ g Fh 1 O 1 o] PRV YV \ @ 4gQ =21 o Qo ol [V ™ O DO QB Il
2 v o 1 U < vV H®n® =} =3 =} 2 v R g, B o 5Qn =R KRB =R o 1
0] oo o d \Y ow IS 0] 0] [c [l K 0 Ql | vz oo 1
] HooR 8 v BB -3 3 3 1] [0) =T n g1 ol [0] H-10 W o D [URe) Il
= O I K 1 Vv w o e [0 o A D = | O 1 v I ~mom R B [BB n o Il
o s 0 [S=18=1 (L] [} o TR Qg oo =3 wQaQ Q o 0 1
Q H- 1 o1 o O o= =0O = Q V) 1o o~ 1 ol 0] [e}Ne) V) (0]]
= 5o A o Q= = oMo e [te} S| B [e=Ns1 0 Q. 1
Q ! ~ = = H- D H k-] Qo | K g I [[af oo] n I
Q (= oQz=z =1 Q v 3 Q [0] S oc | ~ H O]
o) n oo 20 R N0 R [0} ol B B 1w ® 1ol Q. w =X I
1 el HQ 3 on o 4] Il 5o e | el [ote} o o 1
= Q 1o vV K g = = o = = 0] 500 =B ook QR g =) I
H 51 w0 [OR) 5] | [a} - 1 o1 MO vl B Qo 0} [si=] Il
o [V 1 o = Vv aQ mooQ o [B i oo 1 o =] E- 0 1
. oW | [} o Q- 1w < o] [1
@ c o QQ I =y [@ I PO/ I H-Qor i | =~ 0 I
t = o Q = I = t = S0 1 30 =~ =g s] 1]
- o | = @ 0] ju) - o | | Qo Il [0) 1) =2
o] 1 1 n = R B [o] . I I B 1 = e [l
a} ot 1 [} - 5 ok B [l I i Q1 1 < th ot Hhw ol
= o 1 ! c R o [0} o = [yl 1 I o 1 I - o w
= R | [=y - =y = o | ! Qo I =] [3 O Bl
~ 1 | =t = (s B ~ o 1 1 1 Il = c g =3l
\ [l I =g = = = \ * | 1 s 1 Il [e] n o wQ 1
50 1 Q ~ ~ — 1 1 5o 1] = B I
o 1 ! Q= v Q \ = | I @ I H- = Ql
! ! I~ [o}) | | | (a2] ja) Q g
o 1 =V] w 1 1 |] [te} o 1]
(SR I c = N 1 1 [1] [Olg=3 Qo
oo 1 =) c — I I o 1 1 0 o1
Ko | - =} | I | Il w) Qo Fhol
o 1 Ind H- Q I I Q1 1 w (O Bl
by ! \ s [0 ' ' o FhoEe B
LRl 1 | [Q I] I 1 1] e |
R o | 3 | H 1 1 s 1 I t B (el
[1 [0} H- 0] | | H- 1] - o Q Bl
o 1 r 3 [I 1 o 1] [Qg o
O ! H o] 0 | I = I [9] s
o ! - [0 | ! 1 1] w
o 1 Q [a] Q ! ! o] =] H- 0 I
o | = - [0) | | B Il (1) B Il
1 1 = o = I i o 1 [0}) 1
I 1 ~ = Q I I o I Qoo 1
| | v = B- I I o I o o I
1 I = o I 1 | | Il t B 0 Il
| I ~ 0] | 1 Lol Il (o] 3]
1 1 Vv | 1 B Il n 1]
I ' A | I o 1 1 o =2 I
| 1 ~ | 1 o] 0] o o I
| 1 Q I l © I 1 Fhoct 1
1 | = 1 1 o] Q Il
I 1 g I I N 1 o n e 1
| | \ 1 1 ! Il h o I
1 I | 1 [OR] 1] H- 3 1]
1 | | | B] ja) o 0 Il
' | 1 ! Qo] o (o] 1]
| 1 I 1 | I el =] 1
g I 1 I] I 1 - P 1
@ | | ! ! !] ja] I
Q 1 | ! ! ! I Q o [
[

4

Администратор
Next few pages will list the bugs that have been found in both the system and data (CD and STS) files during the development process. These pages are extracts from the bug tracking system. The bug tracker can be accessed online at: http://www.bath.ac.uk/~ma1eo/mantis/ (login: guest, password: guest)

Администратор
Appendix C
Development testing - bug reports

<OMA>
<OMS name="times" cd="arithl"/>
<OMI> 1 </OMI>
<OMS name="litre_prel964" cd="units_metricl"/>
</OMA>
<OMA>
<OMS name="times" cd="arithl"/>
<OMF> 1.000 028 </OMF>
<OMS name="litre" cd="units_metricl"/>
</OMA>
</OMA>
</OMOBJ></FMP>

This complies with the definition given in the CMP.

eugene - 05-11-04 11:55 BST

The following FMP has been added for metric speed:

<FMP><OMOBJ >
<OMA>
<OMS name="eq" cd="relationl"/>
<OMS name="metres per second" cd="units metricl"/>
<OMA>
<OMS name="divide" cd="arithl"/>
<OMS name="metre" cd="units metricl"/>
<OMS name="second" cd="units_timel"/>
</OMA>
</OMA>
</OMOBJ></FMP>

This is fully inline with imperial speed.

eugene - 05-11-04 11:59 BST

The following FMP has been added to "units_metricl" for acceleration:

<FMP><OMOBJ >
<OMA>
<OMS name="eqg" cd="relationl"/>
<OMS name="metres per second sqrd" cd="units metricl"/>
<OMA>
<OMS name="divide" cd="arithl"/>
<OMS name="metres per_second" cd="units_metricl"/>
<OMS name="second" cd="units_timel"/>
</OMA>
</OMA>
</OMOBJ></FMP>

This is fully inline with acceleration defined in "units_imperiall".

As far as the decision about the SI base unit for temperature goes, I

Page:

3

think we should choose "degree Celcius" for the following reason:

It is more sensible to express units from other systems in terms of
base SI units. This is exactly what happened with "degree_ Fahrenheit™".
Most (if not all) scientific texts define "degree Fahrenheit" in terms
of "degree_Celcius", so it is fair to think that the world has chosen
the base SI unit to be "degree_Celcius".

It is important to note that scientists use "degree Kelvin" most of the
time as it is an absolute scale of temperature based on laws of heat
rather than the freezing/boiling-points of water.

We therefore leave the deinition of "degrees Celcius" untouched, but
add the following FMP section to "degree_ Kelvin":

<FMP><OMOBJ >
<OMA>
<OMS name="eqg" cd="relationl"/>
<OMA>
<OMS name="times" cd="arithl"/>
<OMI> 1 </OMI>
<OMS name="degree_ Kelvin" cd="units_metricl"/>
</OMA>
<OMA >
<OMS name="minus" cd="arithl"/>
<OMS name="degree_ Celsius" cd="units metricl"/>
<OMF> 273.15 </OMF>
</OMA>
</OMA>
</OMOBJ></FMP>

eugene - 05-11-04 12:32 BST
The following FMP definition has been added to "pint" signature in
"units_imperiall":

<FMP><OMOBJ >
<OMA>
<OMS name="eqg" cd="relationl"/>
<OMA >
<OMS name="times" cd="arithl"/>
<OMI> 1 </OMI>
<OMS name="pint" cd="units_imperiall"/>
</OMA>
<OMA>
<OMS name="times" cd="arithl"/>
<OMF> 0.568 </OMF>
<OMS name="litre" cd="units metricl"/>
</OMA>
</OMA>
</OMOBJ></FMP>

eugene - 05-11-04 12:41 BST

The following FMP definition has been added for "pound mass" in
"units_imperiall":

<FMP><OMOBJ >

Page:

4

<OMA> </OMOBJ></FMP>
<OMS name="eq" cd="relationl"/>
<OMA> S s o o oo o——o——-oo-----
<OMS name="times" cd="arithl"/> eugene - 05-11-04 13:00 BST
<OMI> 1 </OMI> e e e -
<OMS name="pound mass" cd="units_imperiall"/> All necessary non-base SI units are now correctly defined.
</OMA>
<OMA > ===
<OMS name="times" cd="arithl"/> http://www.bath.ac.uk/~maleo/mantis/view_bug_page.php?f id=0000057
<OMF> 453.59 </OMF> ===
<OMS name="gramme" cd="units_metricl"/> Reporter: eugene
</OMA> Handler: eugene
</OMA> ===
</OMOBJ></FMP> Project: OpenMath Unit Converter
Bug ID: 0000057
\\\ Category: Data
eugene - 05-11-04 12:50 BST Reproducibility: always
... Severity: feature
The following FMP definition has been added for "pound force" in Priority: none
"units_imperiall": Status: resolved
Resolution: fixed
<FMP><OMOBJ > === EEs=SSS=SS
<OMA> Date Submitted: 05-10-04 21:30 BST
<OMS name="eq" cd="relationl"/> Last Modified: 05-10-04 21:30 BST
<OMA > ===
<OMS name="times" cd="arithl"/> Summary : Typo in units_imperiall.ocd
<OMI> 1 </OMI> Description:
<OMS name="pound_force" cd="units_imperiall"/> FMP for miles per hour squared includes the following line:
</OMA> <OMS name="mile per_hr" cd="units_ imperiall"/>
<OMA> mile per hr does not exist, the tag should be:
<OMS name="times" cd="arithl"/> <OMS name="miles_per hr" cd="units_imperiall"/>
<OMF> 4.448 </OMF>
<OMS name="Newton" cd="units metricl"/> ===
</OMA> eugene - 05-10-04 21:30 BST
</OMAS> e o
</OMOBJ></FMP> Fixed now.
eugene - 05-11-04 12:54 BST http://www.bath.ac.uk/~maleo/mantis/view bug_page.php?f id=0000056
The following FMP definition has been added for "bar" in Reporter: eugene
"units_imperiall": Handler: eugene
<FMP><OMOBJ > Project: OpenMath Unit Converter
<OMA> Bug ID: 0000056
<OMS name="eq" cd="relationl"/> Category: Data
<OMA> Reproducibility: always
<OMS name="times" cd="arithl"/> Severity: feature
<OMI> 1 </OMI> Priority: none
<OMS name="bar" cd="units_ imperiall"/> Status: resolved
</OMA> Resolution: fixed
<OMA > ===
<OMS name="times" cd="arithl"/> Date Submitted: 05-09-04 15:37 BST
<OMI> 100000 </OMI> Last Modified: 05-09-04 20:05 BST
<OMS name="Pascal" cd="units_metricl"/> ===
</OMA> Summary: Litre definition in units_metricl might be wrong
</OMA> Description:
Page: 5 Page: 6

[N = B T R i | Qo A A ANQW AN AN =]
o oI ol o IO BN BN Om™MO 000D N~ o =y
[= B o B e] Q1 OOA AN /\/\EZSS [l O OoOA AN I\/\EZ [0
Qo I 81 Q1 2R O~~~ [eNe] oo 0 H- 0 2= [ORN [eNe] g
=81« 1 Q1 o1l OpPOA AANZROAAANARZV YV HOOB [CR=NOIA AANZROAANANZRZEV YV Q
o OBl wWwyVv 2~ Q0O P=0O000OFN AN DO F- - wyv 2>~ Q0O P 000N A e
B O I~ Qo oIg POAAAEZZVDZZZV QO _ kB3 adun S D’O/\I\/\EZZ\/D’ZKZV o o}
[A 1 v v 2000 T 0 vV .onnH® =] 280 - \ v 2000 H 0 vV n H” B = 2]
I g B8 o0o0 0 A P22V oV v @ OrHWQ oW A P22V YV \%) @) 0]
I s o 1 I~ vV H®nn B B =] 3 Wt =53 ~ vV H”n®n ja] =] B 3 W =}
1 [} £ 1 o0 v o9 QLo [0} Q- F-0g] \Y =] [T 0] [
1 o P T [alia] - 2 3 1 v 850 = jal=} 3 3 o3 1 v
I oo [wo o o0 ® A D = =3aQ Il =] wo A D Do = &
1 oot oV 3 3 ol >~ [0} = S Y 33 X o o) =2
1 =g ol A DD o= =0 = \Q OO H0 ADD o = = = Q S|
1 e [l S o =R = R = Q ~ = H A =
1] o Lol Q = = A B H-H B Q o a3 Q = = H - He S - Q.
I Qo | 23" N3 v 3 Q O HhE O K =3° v 3 s eR=] Q 0]
I e 1 I H® O o 0] (0] [oN 8 0 k- H® O [0} B0 Qu rh
1 e [] vors 20 o 9] 1 3R a5 Vot g 9] o Hn® il B
1] I Lol B O o= = = = OO KROMDS K ® = =v = = =]
1 [N el [ol] v I} 5} O] (U I P
1] e ol = = Q Q Q 0] H = = = Q Q Q [0 e
1 [T} g Q Q Q& h w e Q o QK B
1 oo I 1 QQ 1 1 It o 0 £ QL Q QQ Il It 1] o]
1 [l o Q. 2 = =t KO 03 QO = = =T B
I o L w TR 0l = o == 3 c Hi-O (] o =) -
1 o o = = R B R o N k] = = = =] R o] B
oo I I 1 c o B BB B 4B o0 =] H- [= = | 0]
[L = = T~ I I 1 SH o) [s) ~ H-R B B R o [L .} .
hrQQ i o1 1 I He - =y 0 =y = n = He - =g 0] =y =
oo s I I oo = | = = R) ot = | = =
([== T} I 1 n = = 3 =~ oQ o =R w5 = 3 =~
oo I P I 1 [~ o~ v QB o | P ~ oD ~ Vv
1 nwn i 1 I 3 = \ o v H- @ ~ 3 = \ I3 \
1 I~ I 1 D~ R w0 ol 0~ [
1 < I 1 v - 0O v H-
1 - 1 I [Q £ e rh g R Q
1 o I 1 B = 0 QW k-t B =]
1 = I 1 Q = o0 B Q =
I il 1 1 = ~ HQ w0 e e P ~
I o 1 I = \ QB o ot = \Y
1 e I 1 ~ Q [~
1 Qi I 1 v 8 E- =0 k- v
1 [I 1 OB rBun
I (el I 1 £Q on
1 oo I 1 o 3
1 hQ I 1 g omoOo
1 o I 1 o= a
1 e I 1 - 'O
I oo l I cRQ
1 [[= I 1 HB 00
1 I3 I 1 H- B0 B
1 [I 1 ot on
I IFhol I I R 0 -
1 o I 1 [0} =0
1 [l I 1 B
1 Q. I 1 Q-
1 [T I 1 ownes
1 ol I I B
1 ol I 1 [
1 ol I 1 i a4 =
1 ol I 1 H- H-
1 ol I 1 tQ H-
1 o I 1 ==
1 o I 1 oo
1 1 1 I 1 500
1 1 It I 1 Q
g I 1 1 I I e o
] 1 1 1 I 1 o0
Q I 1 It I I 00 H+HHK
0]
~
= [I o0 oyl gl nwundQ@o Il ool 50 oo 2 =PRI gl dhdynydQWd
H-1 @01 31 01 BOBSQTQO0O0E Il 0 1 0OFROOYCSHI QO 1Ol OP~—0cl QO 01 0HODYCH
[=S = T =T [I S S e o N) = 1) A B VI S o B (O T T = o B T A Xogon o [R= T I S A T RS L o B g (e i e}
H1@Q 101 QY nn ~n~FQ3 01 a0l 0000 YUl Q0 ITI ® 1 QI HHQB3 1 acd0l OO0 0RO U
O TR 0N 0B a4 B8R DI IS RRBOWQH® I ER I« Q10 QE3RDI Ih=eRKEOWQH®
gr B3 13218301 Q - POoERERERIZODICOEEA0OTQN Ol I B RR H-H 20 S0 E Q0 UJa
[G I B (S I e R~ = = S o S S IO W < T o SRR o A A N A [S A R N [ORI OB o T o IS [O | I BRI o s A = BT o
i Lo [woQ ORIl gl KK AN EEI AT 1 et e I Q0 ke KK aN .
ot o wewokr I3 010 e Bl 1 g0 [T S S [=~ B T[] R
(Sl g oo B = B0 I8 o 1 g 1 I Quwk0 I rhE-1 B o’
X1 o1 mi ol 390~~~ B [i H- 1 [T ol e~ B85 [T | =
(OB EC NN BT BT e s o - oo = 1 o (G I T o o [
Qoo R R O R Hh Qo B 1 oo s nocr Qo -
oo ol 0] I Qo (54 1 It ol B B ([P 54
[< = T IV B TR e~ = I e < 1 [[= | roll B0 Il (O] <
= I R I [= A = h 1 1 . 1 [} 1 oaB 1 1 -
o Ol FhiDFhrh Hh O 1 1 1 oo ol oo 1 1
Sk Q 1 &1 0F0O0 0 0 I I 1 Qo (S [¢] 1 1
o 1 (el I's5®nAQo O I 1 1 [Tl 1 1 Al 1 1
X B k3 ot o= 1 1 1 [=} [SN =t} 1 1
o Fho Wl o R-— - I 1 1 [1ol 0O = 1 1
e e g R B 1 I 1 [N} [T e =] 1 1
o BRI DK@~ ~ 0 I I 1 o ol = - 1 1
w3 0w go o =2 I 1 g s s 1 1
3 (IR 1 B o Pl 1 1 [l 1 I K 1 1
[+« BT o TR v B T R =l A) w Il 1 1 [l LWl kh @ 1 1
o g 03 =3 w Il I 1 oo rono ol 1 1
<1 1o a0 0} 0] @ Il I 1 o A1 Qo0 1 1
o 1 (RS [=] 19} w Qll ool MBBHMO®IJoON @O I I 1 It e R Hill ool KRB YJoo
Ko ! ! I 00 hroul 00 0HY OB I ol 30 ! I = 0 Nelhwuol B0 00 HEHY® o
o [I=] 1 K~ ~ <N X3 s oD lQQ 1 ook "I 11 Xn3wsEdon
[T [ot e Yool OOV O3 I OON 31 1 ([} W Ol ool ®O®MCCdYYOZ
0 1 =1 IBQo -~ HiIl ool AE e ORI BBt 1 B ®n o hrowil Ak €& o=
5 [I -0 k- con oo < B 0 [I O O I T 1 [T T o | IR < R0 [GEY
. I | ([5w 2 o1 ool] [0} Wl Iwon | o = B ool [0} o (LR
i I | - B89 o 0 SIS Q. =] [} 1 Q- [Q. =3
i I I 1 o =& Bl 1 1 i< 1 It o= =l 1
I I I 1 o © R SR al [l 1 1 W B NE c
I 1 I 1 Q0] I owi 8o o 1 Iorh g Bl o vl B
i I I 1 Q- ~ SN el H- ol g 1 I g —g [TR B
i | I I Q. ol oo oo 1 (=T e} w i ool [ad
I | I 1 a3 - W 1 g 1 Qe s
| 1 I 1 o [0} o I Qi ([<A} 1 [3l 1 Q
I 1 I 1 < I W ol Q1 ! I - O Il Wwi o]
i | I 1 (OB} <0 nn i 8o il 1 ([} il nn i B
i I | I £ R0 ORI N < eI 1 [[= IR <
I ' I 1 oun— ol I o Il [1 Il H- Bl 1 o
| I | 1 R w I 1 Rl Qo | 1= Q 1 ol
I 1 ! I KO ~— -l 1 ol o | I Q (=] 1 o
I 1 I I B o1 I o1 [1 [T}] 1 o
i ' I I S I B eI 1 1 H- ol 1 a}
I I I I ® 0 I I 1 [[= o 1 1 ja} Q 1
I | I 1 o' rh o i 1 1 I 1 1 Q Qi 1
i I | 1 o rholl 1 1 ol 1 1) 1 1
i | I I =t I I 1 I 1 1 1 1
| | I 1 ot co I 1 o 1 1 B 1 1
| I I I =3 5o 1 1 [l 1 1 © 1 1
l 1 I 1 ® Bl 1 1 Q. 1 1 o 1 1
i I I 1 ot o 1 1 [T} | 1 =] 1 1
i I | I o w1 1 1 ol 1 1 = 1 1
I 1 I I B - [t 1 1 ol 1 1 . 1 1
I I I 1 n Bl 1 1 ol 1 1 1 1
i I I 1 [} Nl 1 1 ol 1 1 1 1
i | I I Bl 1 1 o 1 1 1 1
| I I 1 h o1 I 1 [T} 1 1 1 1
| I | I o = Rl 1 1 I 1 1 1 1
I 1 I 1 =y -l 1 1 1 1 1 1 1 1
i I I 1 P © I 1 1 1 I 1 1 1 1
g i | I I aQ =l 1 1 1 I 1 1 1 1
o | I I I agi=g Bl 1 1 1 I 1 1 1 1
Q | l l I o I I 1 1 I 1 1 It it
[

8

' g =gl Bty dnyn”QWo Il o©™l 5 oo Qo IscygnInI bty mnwno™QWo Il @™l o

TN O30Sl QYN 0OdRO0Y SR T OO0 O 1 @1 0TI O30e Nl YOI OTEOOYCSHTOOIN T

[=a DRI N0l EITdTQON 3B Il worc B IS EPERI IRl 0O EST QO 3D

rTQ I =rQ3 1 O O0OTOORD S0 0 IT I O 1@ 1 hITQI Q3 a0l OCOORM® -1 QO I3 Il

TOn 23 RRE D IHERRBOWQH® I ER I« I [I O B = S O B T o B I T IlHSRBOWQH®O®II R I Il

P00 ERIE2NIENHEEFQQ0OQ Il Ol S B IR IB IRl ERIZENDIENHEEQQ0OTOQN O I

I CI T B o B S [O W i T o SRR T o A o S i SR S T S B O N SN 10130000V IO N e SRl RO I I

I IR @Q Qo R KK AN EEN AT Q1 1D 8" e il QoI B NN AN L A

09 e P20 0 P 1 el g [< T BT | I S - N S [N =N~ B | o} N 1 ol g0

I I W Q0 IoFh BB jod 1 s 8o | I - « 0 I P8 o 1 [l

ol Ld =8 [g H- 1 [T Or1o1gi1oll 00B IR P I [}

o - oo = 1 o I B I BT o Bo BN o o = I o

o Qo H- 1 [T o [oy oY oo B I [

oKD e Qo (54 1 It ro 1 g ol e Qi (53 1 oot

[[] I coll ~ 1 (1=} oo m o R c 1 el = I [[= '}

ol g 1 1 . 1 [T} g 7] 1 I . I [

oo I 1 1 oo o 1ol 0] 1 I I oo

Ll Q o 1 1 1 Qo [T S|] 1 I I Qi

I o 1 1 1 [Tl 1 I I 1 1 I 1 [}

[N =y 1 1 1 [=J] [] R 1 I I e

1ol QM 1 1 1 [l 1o 1ol o 1 I I [

e | 1 1 1 [N} e el = 1 I I [N}

[T} 1 1 1 [1o N o 1 1 1 o

Wl = 1 1 1 g 1N ol ot 1 I 1 [[=T}

1 - I 1 1 [l 1 I I 1 H- 1 I I o

LWl Q0 I 1 1 [Tl 1w o o 1 I I [l

o= I I 1 oo (I > W =) 1 I I (ROt

= I 1 1 1 o [A 7] 1 I 1 ol

1 1 [0} HlIl ool MR B rme®-goOol ®©0 I I 1 I I 1 P gl ool mEBHYJoOl OO I I

1 i Mool E-0 00 HYOB ool 3 1 1 I 1 . Bl ool r-000HY OB I ool 30

1 1 n "B XD BYETODNQQ I 1 ! I 1 o] Ell 1 X3 es ol @i

I Q Onoonl OOV O3 I OON 31 1 I I 1 Q ool ®OO® VYOI OO N 31

1 1 = Ihoril e e ORI BBt 1 I I 1 Q nillwvwRIl AE S ORI BB ol

i 1 [T < R w0 T BRI | 1 I I 1 [] < R w T BRI CR |

I 1 = Bl ool o [} el Iwo | I I 1 < ol ool [0} o ot I [l

1 1 SIS [o% =] [} 1 I | I [o B S Q, = I~

1 1) e 1 1 i< 1 I I 1 Booon 1 1 <

1 1 =} SN al B | 1 | 1 Q SN E c [l

1 Il Q. H- Il O o Il 8o ol 1 ' 1 I =3 Ol ol [=I] o

1 1 [(TR H- i g 1 I I 1 Q Il el Bl s

1 1 = nloNIl oo [1 I i 1 Q Qi oNI [i

1 1 =T A = 1 g 1 | | 1 19) [N 1 o

1 1 [0} 2l 1 Ql ([=ET} 1 I I 1 10} =1l I Qll e

1 1 & DI wWw ol Qi 1 ! I 1 0 W oIl ww ol hQ

1 1 I} T nnl B [1 I I 1 =] oI wnni 5o o

1 1 [0} R A0 < [N R} 1 1 I 1 - w0 AaAa < (eI

1 1 w Bl 1 o I [| I I 1 ot 1 I o Il oo

1 ([Qi 1 Rl Qo 1 I I 1 £ 1l I ol Qi

I [T o} o 1 ol o | I I 1 o Ll I oo o

1 1 10} s 1 o 1 [T 1 | i 1 % ol I o1 e

1 1 = ®w il 1] I 1 I I 1 BB 1 Kol [Tl

1 ([o 1 1 [[= o 1 I I 1 w Qi I 1 (=g}

| 1 0} w1 1 1 I 1 I I 1 ot 1 I I (R

1 1 [0} 1 1 1 ool 1 I I 1 . Qo I I ool

I 1 Q I I 1 [N 1 I I I (o] I I I

1 1 0o 1 1 1 o 1 I I 1 0 1 I 1 [

1 1 =} 1 1 1 [l 1 I I 1 a3 1 I 1 [l

| 1 Q. 1 1 1 Q. 1 I I 1 0o 1 I I Qi

1 ([1 1 1 [T 1 I | 1 = 1 1 I [T

1 1 9} I I 1 o 1 I I 1 I 1 I I o

1 .Q 1 1 1 ol 1 I I 1 o 1 I 1 ol

1 1 Q. I 1 1 ol 1 I I 1 1 I I ol

I 1 = 1 1 1 ol 1 1 | 1 o 1 I I ol

1 1 I 1 1 o 1 I I 1 0] 1 I I ol

1 1 1 1 1 I 1 I I 1 1 I 1 s

1 1 w 1 1 1 oo 1 I I 1 c 1 I I ol

I 1 =3 1 1 1 1 1 1 | I 1 7] 1 I I I 1

I 1 ¢} I 1 1 1 I 1 I I 1 H- 1 I I I 1
g I 1 c 1 I 1 1 I 1 I I I =3 1 I I I 1
] 1 1 = 1 1 1 1 I 1 I I 1 Q 1 1 1 1 1
Q 1 it Q I I 1 It I 1 l I I it I I I it
0]
©

Ihctgn mnognwQWo I mdin ol oo Qo Il = =c"hyUnI Oy QWO Il oIl 5| oo 1 Q

YOI OocdCROOYCHI QOI 1l H-1r 01 010l 22920l Q0N 0OdRO0OYCHET OO0 I F-1 @ 1O

Il QY-8 QO Il 3T I X g3 gclRP-RPQUOURI N0l DT QO N BNl X e B

Ihet®il OccOomR® Y1 Q0 Il ® 1 Q 1 Fho@Q Il Q31 O O0OdTOdR® -1 0.0 1T ® 1 Q 1 Fh

1 IHERRBOWQH®IHER I« Q1O 1 E DD w R IHERRBOWQH®I HR I« QDo

2Ol cnrE-Eao0ogal ocdil I PSR BN D0 ERI RN SN0 0Q Il Ol =R 1

Ihog e cfcrc B ot ll RO IS = I R~ ST (O T T = o T o S | B M B SN o o A = o TR o S T o O T RN B0 3

Qo lkeE KNaN ol BN Q! [INOR 13- @ e Il QoI B KK AN L [| Q! (0]

e300 P 1 g E- I T T A o T T T O B A O S | I =R~ B I o)} P 1 e g S 0o

I FhE-B o 1 g B I | KR 00 Iorh -8 o 1 i S |

noH- o e [=8 I - ro ool | 8B [T e s [(=8 I - o1 O

oo - 1 [o] TR gl Y e o o - 1 o o

Qo [1 [T [= = Qo [1 [TV I

e Qo (53 1 It ro g ol w th I Qo (53 1 It o g

1] ~ 1 [[= o [IC R I = o i o Sl E o} 1 I ~ 1 [T~ oo

1 1 . 1 i g e geQR 1 1 = 1 TR o g

1 1 1 oo [= R A = N A s s =1 1 1 1 oo oo

1 1 1 Qo [T S| n 3 I 1 1 Qo [T

1 1 1 i 1 I I I 0w P 1 1 1 i 1 I

1 1 1 g 1N [= = S 1 1 1 g 1N

1 1 1 I 1o 1ol Q09 1 1 1 I~ 1o

1 1 1 I e e £ g 9} 1 1 1 I~ [

1 1 1 o 1o [=N 1 1 1 o o

1 1 1 IT= T 1o [S e N e T = I o] 1 1 1 [T= T (=

1 1 1 i | I I 1 [S0] 1 1 1 oo ! I

1 1 1 I 1w W oo 3R 1 1 1 I [V

1 1 1 oo [o0 ol I 1 1 oo [I

1 1 1 o =] A =3 1 1 1 o =

Il ool MEB MO OoOIl ®0 I I | I I o= R HiIl ool MEBroJoOl ® 0 I I 1 I

ool 00 0HY OB I ol 30 ! ! 1 I3 = [T B I e B O T B el VIR R o B T i < [= ! I

I xnBesdcolQQ I @1 1 i I 30 B 1 1 1 X3 TodlQWQ I O 1 I

ool ®OO® YOI OO I 31 1 I I [T el S = Ol ool ®ODCE®YOS I OO 31 1 I

horIl e o ORI BB 1 I I hoH horil ar e~ ORI BB | I

oo < K 0 YD e | I | I m o e < B0 T O I T 1 I

ool [0} [0} = iw o | I I 1 n 3 S ool o [0} Wl iw o 1 I

ST Q. =] I 1 | i gl o P S| Q. =T} I~ 1 I

1 1 1 i< | | | oo} =g 1 1 i< | |

[al B | I i KO [0} SR S| al B 1 I

I v ol =a} oo | I | I R KB® Il © o Il 5ol i ! I

e el H- I I 1 I I sl ol [TR H- I TR 1 I

[S oo o 1 I I ([= o] w oIl ool il 1 i

o1 I n o 1 1 | nl K oo | o1 I o 1 |

1 1 Qo e | I I ol R ! 1 Qi e | |

Iuw ol Qo 1 I I Q- 20 Wwn ol Q1 ! I

I nni S} il 1 I | 13,05 QT nul 5o il ! i

([= < [1 | i [[o TR = I) ORI] < I | |

1 1 o I i 1 I I = | Kol 1 o I o | I

1 1 Rl Q1 1 I i e =W ! 1 Rl Qo 1 I

1 1 ol i 1 | I 1 . Q o 1 ol i ! i

1 1 o 1 e | I I 1 =R =l 1 o I e 1 I

I 1 Ko I 1 I I 1 HB3aQ R 1 B I | I

1 1 1 [T o 1 I i 1 B PR 1 1 [T o 1 I

1 1 1 I 1 I i 1 50l 1 1 g ! I

1 1 1 ool | | I 1 n Hh @ Q il 1 1 ool 1 I

1 1 1 I 1 I i 1 0 < Qi 1 1 I 1 I

1 1 1 o | | | 1 QRO 1 1 1 o | I

1 1 1 I | I I 1 o w 1 1 1 I | |

1 1 1 Q. 1 I I 1 B 1 1 1 ool 1 |

1 1 1 [T 1 I | 1 o 1 1 1 [T 1 I

1 1 1 o 1 I I 1 ot I 1 1 ol 1 |

1 1 1 o | I I 1 Qax 1 1 1 ol | I

1 1 1 o | I I 1 TR} 1 1 1 ol | |

1 1 1 o | | I 1 w ®n o 1 1 1 ol 1 I

1 1 1 o | | i 1 o O 1 1 1 o 1 I

I 1 1 TS 1 I I 1 [I 1 1 I | I

1 1 1 I[N 1 I I 1 =} 1 1 1 [T S 1 I

1 1 1 1 1 1 | I 1 - e 1 1 1 1 1 1 |
g 1 1 1 1 1 1 | I 1 o ot 1 1 1 1 1 1 |
o 1 1 1 1 I 1 I | 1 o 1 1 1 1 I 1 I
Q 1 1 1 1 1 1 I i 1 b R 1 1 1 1 1 1 I
o I 1 it it I 1 I | 1 n n n I 1 It it I 1 I

0T

WOl oo s oo g oMyl Bt mwn™QWY Il m™n o [I) IhgadgQns SUnyg I =g gn
RN H-1r Ol O®FE-®OCS !l Q0 0CcHEODYCH I QO 1l I I10OO0OQOoODOrETO I 0OI <30
Qo I 3" oI = T = = T = I Y N B R B o B o B T = B o B (Y A ([0 I CoOOHFHWN®MMMI SN OR®3
e .0 1o O 1 QI Q8N dl OO0 ®OR®M® Y QO IS I It IhaQHEN®D O @ 1 QI Bt 3
HO =R I Q1o EBOoOR I Ih=HEeRRBOQH®DINI ER - o hHEo0oQ—=0nQoad 1 01l 0nko
gaQ i ool B EOERIZNDICNDEEQQ0OTQ I Ol [[=1 (=] Eor B Ql PR
EEE e T o I B TN | [IRCIN U IO e Il e bt e Il KO Il I 1o - QaadQrodr 0l 33K
el B g 0 Qo @O Qg Ik K aN I A 1 Q IQFHE-t B 00 B It @ .
1 o g O+ 1 3o qQk Il k310 PN I g0 ([It R (oI R
1 s B8 Q3 Q0 IoF BB o 1 [oot [= (e} O H-ct 3 I =K O
1 i < 1ol . =} [g P I [o [[0} QuRcdn 1 ol kB3
1 o ® ;i Q0 w - oo - 1 o 1 Q Ih8na o Qe ol Q -
1 oo T = A W = ool B I oo [[e) /[] IO Ll oR
Il oot [(I Ol= i op e ol 54 I ot (I I @ th [oRvINU] ron B
1 [[= [ORE] B I ol < 1 (= [N I o o B =R om0 n
1 e B ool e 1 I . 1 [1 Q. 0 <0 [or
1 [TV roil B Q I I 1 oo 1 S QB0 Qo 1ol on
1 Qo YN | B B I I I Qi 1 o waQ o] R
1 i B It wmoQ I I 1 [I) o | 1 Q
1 e HooRm I I 1 e 1 o Q 0 k- I A)
1 I~ oo R =3 1 I 1 [I oOx BSR40 G I T =)
1 I~ e 23 50 1 I I [N} 1 Q o [aia] foe @b
1 o BP0 0K I I I o I Q rh Q [=}
1 [T= T o 1 o I I 1 [T} I =] Q0o 1ol 0O
1 o £ o B I I I o 1 n o oeQ ! It
1 I PWl Q@ 1 I I [l 1 [C= o9 W
1 oo [=R Nl ~ K I I I oo 1 QB g3 Tl o o=
1 o w oAl I I I o I Oy NN D = T)
ocOoOn ®® I 1 (O3 o oo Ml OOl BB rHh® ool ®O® I I I B o -H 0 ! 1 o] <
o™ I ool 3 ! I . = H-ll ol P-0 0 0N OISl 3 1 OO wadan ! [[= O})
oM IQQ I (S I nQ Bl X039 0no0IlQQ I I 1 =] L= 1 IO O =
oB OO NS =g [P} QI PHEIOO0MdU oS I OO I 31 1 20 Q oR 1 [[R e PR o]
ORIl BBt o 1 1 B Ol PRI < 0o 331 il I [T=] H- g 0] | Q= Q
ae I o oI - | I NN oo o < BRn3a3 o Il OO 10 1 Il t R 5t 1 nw -
ol iw o ot 1 [0} o1 ool o o ot Il [Il 1 St 0 KO0 1 1 g
=] I B 1 0} [ORTSIYSI] Q ol I~ I 5o n 3 1 e N
1 i< Ko 1 K 0 Qi I I < I Ok D ' I o
al B w1 1 [o e = cl e I o0 H- 1 1)
ISI] I o 1 o I 5o o I - o] o t ! I oe =}
Bl o= ' 1 5o W e el Bl o= 1 [o3g=} B3 D 1 o s jeh
oo o oo 1 Q Q R [i I Qf @ 0] ' 1 B-
1 g 2 1 nc oI S0l 1 g I . 0WQ | [T = o
Ql e S 1] I Qll g I wa B RR 1 o Y
ol Qo 1 1 ot I Wi ol Qi 1 0} H0 1 ol I}
S} o Q1 1 £ 0 S0 00l B o 1 o R 3 < 1 I QE 0
< I (O 1 (¢} Ko < (eI 1 5. oc oo 1 1 3 fen
o I oo Fhot 1 ol I o Il oo I = o 1 I +h'Q
Kol Qo B 1 2= = I 1 il Q1 I <d o e | 1o o]
ol i 8o 1 29 Q. I ool o 1 50 o 1 IR K N
o Il i B 1 g < I I o Il [[IC! 1 10} BB Fh 1 1 Ho0
Kol I ! 1 w O 8o I R [I Ala} o ' Qe
1 [T= o B 1 =l I 1 [[= I o O 3 1 o+ Q
1 I o 1 1 3 g I I 1 (R 1 T Hh [¢] 1 1= o)
1 ool 5 1 (o] I I I ool 1 KO — o 1 o - B
1 I Fhol B 1 [o1 I I b I (LA} b B 1 Il H- 0 h
1 o 1 1 oo] I I [I w 0 "o 0 1 ot o
1 I 1 1 =} I I 1 [l I o~ LSNe] B 1 It w 7]
1 Q. | 1 [} o Il I I Qi 1 =] (ST 1 I o
1 TR 1 1 o Fhl I 1 [T 1 a4 e 1 [[= R o PR o7
1 ol 1 1 B I I I o I o - 1 I Q O
1 o 1 1 5o ool I I ol I Q 0 n 0] | Il % Hh
1 o 1 1 B <] I I ol I [| 9] 1 [
1 ol 1 1 [SH} I 1 ol 1 [S0] nn ' 1 =}
1 ol 1 1 0 I I I ol 1 =] el 0] 1 1 [0}
1 o 1 1 o3 ol I I ol I o N0 Q ' 1 »
1 i 1 1 R 0 o Il I I ol I H- 0 o H- ! 1
1 1 1 1 1 3 Q 1 I 1 1 1 1 T Q [S I T] 1 1
g 1 It 1 1 1 @] I I 1 1 1 BB W [1 1
o 1 1 I 1 1 | 1 I 1 1 1 I o Q] = 1 1
Q 1 1 1 1 1 o = I I I 1 1 I w 0 [SEES ! 1
o it It I 1 it rh g I I I I it I DI o TR B SR 1 it
i
[N
PH OO HYgnwmnohdQWonmon oS [s - B 1 G IhTHOLI HEY 1 "Wy noQ
HB5 =0 c Il Q001 0RO 0YCHE I DI - o= K= B0 H1 0l oB80cll 9901 0CdCKD0Y
nE nnI Nl noE-IB QO Il 3T 0l 0} X o1g o Xcn 3”8 ungd nndlneeg"g
o w Q3N Ol OO0 ®dR® -1 QO IS I PSR o 200 Q1 O 1TQuIE"BeQ30Ha®l OO0 0
- TR DI IhHERRBOWQH®I ER I Q Qo 9] Qoo Q10O R D I=eRKBOWQ
e s T < I [I = R o T O B w I o | I I N o nao 3 Q. [=2 S 0B8R R0 IC N0 R Q0
H- 0 RO IO LS I ottt Koo cf Il B O Il 0] c 0 0 B =0 IO T VI o B o B SO A O W = T AT o o S
o Wt QoD R KK AN CO T Q oo e N 1 o [[S A VI SR N o o S I B SISO
e e R I = I [) N I ol 0] =} e R S egRB 03200 R
wrE 30 Iorh - B o I s) s} a4 Ko | (S K ®w o IoFh BB o
o x QB [s | P I [t H- Q 0O 1 o1 rol o3 [g H-
[ol0] o oo - I o Q Q 1 =g QG n R - oo H
3 = Qo [1 oo = i = ot [o 1o~ Qo -
0N [¢] e Qo (53 I o [0} a0 ~ 5 TR [CRE| o I Qo (54
= 1 ol < I [l Q o Q ur 0] A [BT 7 IO [l el <
[1 1 . I e ~ Ao o 1 1 oo I I .
50 = 1 1 I oo R [} e A= 50 ol n I 1
] 1 1 I Qi 0w 3 o O 1 &Il I 1
[SaR ol e} 1 1 I [o] o 0 nw g o 1 S (==} I 1
o} I 1 1 I g] = Hg =R Rl E-0 I I
o o 1 1 1 [= 0 [AR I [IR N 1 I
Do Hh 1 1 I [N} N N Q =} [T Q 1ol I 1
[Ol0) B 1 1 1 o o (Ol 1 e} [Qrol B I 1
Q % 1 1 I (=Tl H KB v I [N D 1ol DQ I I
rh O 1 1 I o o oc o] ' 1 Ll o Q I I
- c Q 1 1 I [=] Q W [v I R e P) I 1
LY g wi 1 1 o Q B P R] [N 0" 1 I
n o w =l 1 I 1o 0] B o= o 0 = N oA aoH 1
ot NI ool MBBHM®MNOON @O I I] 0] El w I | L Il cr Bl ool fKE B rho n
o) ool 000 <ol ool 31 o & n — H- ! ! Ko o Lo BTG N B A O (O B ORI el
20 Q WX BOERnOoO0IlQQ I @ 3 o c - B ! ! [l 1 [0} Sl Xn B s
U QI ool MO TOS I OO 3 I B 20 2 Q@ ! 1 1 I o'Q L e [BB OB S SV s
- 0] BRIl WE I Q- cN Do B3B8 =] Q 3 | | < oo [T oAt a0
B0 w oo < B3 &0 0000 I I 0 ot I 1 S 1 " < R w0 3
5o kEl ool [0} o © Il o a oad o I 1 [IhorHE @I ool o o
=l = B[S Q. =] I~ [¢] rh O B | 1 = < B Q.
@ Q Q. 1 I < R - a+ o | | o 1 I = o w il I
w ke 0 | c 0B o -0 I | n (e} O]
[ags} R I vl A} o = I 1 1 s < B0
—~Q I O Il e el Bl = =3 o 0 I 1 5o O I el
0 O o S0 g ool i 0 1 | 1 o 1 [o T R o P I G I
KR Q ol R ool 1 o Q. I I 1 £ [Tt ol ol
u K o 1 Ql e N I | S 1 [0} o Il I
g o = Iuu ol Qi < QO | 1 I 1 [} w ol oww
A <O BI R 8o o [— | 1 1 1 ~ Iwni
S R < [N el o o B v I 1 | 1 S
1) o I 1 o Il oo) oc w I 1 1 1 g ol 1
~g ol 1 Kol nhQ 3 0} I 1 1 1 c o 1
R el 1 oo o [¢] oo i 1 ! 1 o I I
<0 ®o 1 ol [el 10} 9} I 1 ' 1 ol 1
o Q 1 1 Ko [N 0] R) I | 1 1 aal 1
= 0 Ql 1 I = ot N B I 1 1 1 5oal 1
c o0 g 1 I oo]) I 1 | 1 [0} D Il I
o 0 w I 1 1 ool o 0] =} I 1 1 1 R Dl I
w P 1 1 I b H- 1 | 1 1 1 [} [l 1
=} ool 1 1 o o [0} v | 1 1 1 I 1
o Q O] 1 I [=] Q "o I | 1 1 [0} =l 1
N Kol 1 I Qi [~ o I 1 1 1 ® o 1 1
o O w il 1 1 [T o N ! 1 ! 1 HooQ ol 1
Hh o I 1 I ol (S I 1 | 1 [} [SH] 1
< Qi 1 I ol 3 I 1 1 1 S| 1
R O 1 1 I ol o« = I 1 | 1] I
2 Qi 1 I I ol [} - I 1 1 1 jal < I
T n ol 1 I ol o I 1 1 1 [} (O] 1
ot B 1 I [t 3 | | 1 1 Q 1 I
o Kol 1 I I o Il = 0 I | 1 1 o S 1
8o o Il 1 I I 1 N c I 1 | 1 [l I
g o Qi 1 I I 1 [0} =} I 1 1 1 HeEd 1
o «Q o 1 1 I 1 I o I | 1 1 < =3 1
Q [ol 1 1 I 1 o - | | 1 1 [0} o Il I
o o . Sl 1 I 1 I ER l | | 1 w 1 I

T

’

"JunmowhowQWo Il ™l o =] IreccnnIl oYl snwnoQWo Il ™l o WP U0 Qo [[BelNg)
OROOYCSHEI QO I QH I OIT™BO0O0E Nl QYOI OEROODYERITOON N TW3IROTOAEO 1 OIKD
noE<B QoI 38l X1 cIBE3n3 Il 0cdlnoEIDB QoI 38 Il QO3 ORI CI OO0
OO M®RO® i 0 Il S0 QunOocdcd®Q3 00l 0000 Y000 T naHmdno s QIQ
HCRBOWQH®DINI RO« I S QR R I PSS RRBOQH® I HKR Il n e QOO 0N
cCnEFEQOoO"QIl ®cd il I (=TI SHRIR2ODICOHEEL0TQN O I I POoOXISHRDEQ B0
[SR s o A~ AT s A o O B [N | [V B I T V= gV o B S I O N < [o o S5 A =L SIRTIN [o B J | I N R QOnnOT 0l nR
B QN ol BN E 80 1 e gl ke KK aN L A QOB 0 (]
o] P I ol g Q1 PSSk 310 R I ol g = acadr 0B 3
B o I [B 8000 IoH P B o I s [I 1QQ
.- P I [t o ol Q [oN=] [T | P I [l jollie -t~ ol
= 1 o SHo G o o = 1 o N Hh H-O0£B8 Uil O
B I oo © 5 1 0 oo B I [- @ rh 50 Rt
(54 I oot Bun ol R B e Qo o I oot [oN w -9 0L ol 0k
e I [=g sl 0B 1 ol = I =g o] o} 50w 2
- I e "o oo ot 1 I . I [0w H-n 0 [()
1 o RY® 1 ol rh ¢ 1 I I o n QP ol 9.
I Qi H-Qoos B 1 1 I aiu 5o S0 OoR 1 SIWQ
I [l =] 1 s o kP 1 I I [-3 O TH O I w
I e o 1 NIl Wt 1 I I g a1} Q00 Q [e |
I [Fhot BRIt 1 I I [B 30 [IC] =
I [N} 9] el [0} 1 I I [N} Q o adTn el 0]
I o [¢] ol HR 1 I I [O OB Fr®0® 1 &l 9]
I = R 1 Wi 0 H- 1 I I = B (Sl =T A =] o
I oo oo [1 I I @ o c 0B I
I [t ®w 1w 1 I I [Q B e «Q wo
I o QS il o8 Yo 1 I I oo [P~ <
I o -3 R OO0 1 1 I 1o ja} Hpnown 1 Al o
BB MO ®NDOON OO0 I I =l [T -3 Gl ool MBBrM®NOoOl ®0 I I K ng R ! I =
0O 0O OoOT I ool 3 MW 1 1 Q. 0 Bl ool r-000E<OTB I ool 30 -0 Q0w N0 1 I =
XNBYEnodlQQIi I ~ 1 1 Ko Ell 1 X3 snodlQQn i cQ o~ n o 1 I 0]
OO croB I OO0 31 n < I Tl ool ®OO®Cd® O3 I OO I B I B =3 0B [l 0
QA SOOI BBl (S 1] LS [o A T IR = I = T = A | - D [0} DY I
< Bon3 o i oo =10 e 1 [SaAl [< H®n3 oo 0o I a0 R aTQN I
[0} o ot ([t Bco 1 8o Bl ool o] ol ([Ot n 1 I 0
Q =] [} o 1 1 (SRS Q. =g} I~ - R — =5 1 I =3
I < 5o 1 c ot I I < =N s 1 0
a [[1 1 el=] N c [U=} 50O _H- I c
5o o n B 1 T O wolR B o 0 Q=0 I =
Bl = 5B 1 Ot Ol el ! s [l = B = i S I Q.
ool i o 1 I} Bl or [nln o o (RO I
I o [1 Qn W I g a0 QB 0ns I
Ql [=Rl ! 1 [Te} o I I Qi [= [0} 5K 1 I o
ol [N [V 1 n K O Il Wl ol Qi 0~ B3 I I =
B I 1 1 o I nnl 8o o o Q w o= I 0]
< [N el 1 1 o [] < [[Ne I 05 ”Q YD I o
ol o w i 1 Q0o B I o Il Qo Q k- DO B0 I
Kol nhQ Q 1 1 =3 1 I R Q1 2R} BoB3 w03 I
ol o SR 1 Q ! I o o B Q Qa I 1 o
o Il [o 1 H- I 1 o Il e =} Ao I 0]
Ll (eI ® 1 £H4d w0l I R [Tl -0 50 1
Il nmsn R 1 [Opg=y (Sl I Il [l BB SN0 O -]
I oo s 1 Bogl I I g Qo 5O rhr 3o I 5
I o 1 1 Q0 ol I I ool . o Q I R
I o Ll 1 ¢} X I I b (OS] 1 I B
I oo e 1 Bl I I [} SoRDPB I I ot
I [l w i 1 w w Il I I [o ® Y0 I of
I (e =gl 1 1} 1 I I (e R ®Qds I o
1 [T 1 1 o 1 1 I [T ==l I =}
I ol [1 g 1 I I ol Q H- [0} I I
I ol =] 1 [aN0] 1 I I ol 5t~ E R oo I
I ol (O 1 - Q 1 I 1 ol o -0 [l I o]
I ol 3 1 (=3} 1 I I ol Q mQ ° 8o I B
I ol 1 1 Qe 1 I I ol A Q9 QaQ oo I =
I ([t B 1 0 1 I I (I & - R [
I ol B 1 o o 1 I I [Q0D © | I
I I 1 [1 [0} 1 I I I 1 = Q3 I I
g I I 1 o 1 1 th 1 I I 1 1 a0 D - I £
o I I 1 1 1 0 0 1 1 I I 1 =2 o I [=3
Q I I 1 1 1 R 3 1 I I I 1 o QB Fhoo 1 o
o I I I [V 1 o O It I I I 1 . ownBR -1 I B
i
w
moWQWY I ™o 9o Ihocr g e =R N e AT I > W v B /2 B B @ W v A o BT« -« I = o roaoaHO®I Yl
OO e K I OO0 K1 oloZ £0@QBOE I QOIOTRKODYSH I OO0 I Q1 Ol QO DE Il ® O
ST @O I 3TN o 1 gl o B OOW3 10l EIB QO Nl 330 Qe w300
OB O <1 Q0 I Q QI Q o Q300 OO0 ®R M Y1 Q0T O QN -<3Q3 0ol
ROWQH®D I =R I - RECE R] o -RER D I 2EE RBOQH® I EKR I Q1o c DRI 1
Q0 QgaQ ol B I~ LUOH%H-HuZM||CmH-H-QOUO||mrrn\H BB ERERIT R0
= IR e B O B N 20001 FQ COOTN I OC I ettt KO Il [= S ORI e =i B o B S| I O R |
KN T 1 [e e} B Em®D - gl KK aN N A o 1 It o e Qg
P 1 PO = =Rl R O QQH B 1R300 R I ol g S [I o= A
o’ 1 [(73 [T i S = -] o [T e (= o I [S I k50 Irh -
=8 1 [O 1ol nad H 03 [T | P I [} ronl s 03 I
= It o wnorwiEE X B0 R I o = 1 o [BC e .- oo
B 1 oo [== -] oo B I [L on Qo
(54 1 o Q1 ol W Qn e Qi 54 I oot ol -2 I Qo
s It [= o 1 &l < B0 C 1 el = 1 (=g} [[Pl 1 e
. 1 e R 5 BrHO 1 I . I [o ot 1 1
1 oo R 1ol I ©»<g>~—aQ 1 1 1 [T ol RO 1 1
1 Qi o &1l 0Q o 1 I I Qi [l B3 1 1
1 [Q 1 50 [0} 1 I I [l I I - 1 1
1 [=Jl [I LW HQ 1 I I e [S I T o PR) o 1
1 [IR I VIR ER PR = B 1 I I [[R TR o] =3 1
It [N} e ko w O 1 I I [N} e 280 (ol 1
1 o Q1 ol oK Qo 1 I I [ol -3 o 1
It (=Tl wowilote rh® O 1 I 1 =Tl U B =gl 1
1 o 2} 1=} rh © 9ol I I o I ([= o Il 1
It [l Pl o0 -0 Qc Kol 1 I [P W oE 0 Ko 1
1 o [N N I A o TR 0 o Il I I oo I 0WHR I 1
1 o Bl 500k Ol I I o a1 B8 Q0 Q 1
MO OOl @M I I Qo = B3 mh B HiIl ool M Bron0oOl ®0 I I I 1w Q 5 ool
O oI ce N 3 ! [N e} Q@ O ol P00 0 HENOTZ I ool 30 I Ih=0oHR [G R
QEnNOoOdNQQ I I Q 1 = w0 S X3S nodIlQQ Il ! I -7 0 Qoo
QoS 1 00030 =g} Iw | [0} Dl ooln @O ctoZ I ®ON 3 I ! I ag Al ool
SOOI BB o 1 ([=10} w e s Wl A S 0o RN B8 I [t [
Bun3 e i ool 10 Q QP B 0 =0 o0 < B0 3 oI 0ol -0 I B n e
o Wl oo A Q- ©BEHEZ Pl ool [0}] o ol [l I I St wm ool
=] I~ w1 o+ Bdso SIS Q =] I~ I I OO0~ S|
1 < 1 w0 Yke =} I I < I () =3 1
a [[It o3 [c [} I Ihnos DI N
s o Q o s H-rQ E QI v 5o o I I o oIl P
Bl [[SR I Q. 0 X o R O 0 e el Bl = i ([] Qull e el
ool i - 1 s el a1 ool [l i I [T =1 oI oWl
1 g (=B [-0 =] ool ool I o I Qo Qv W
Ql e w1 [o’} © R Q Bl I Qi [= I - B0 1 1
ol Qi [IO~ [0} O Il Wi ol Qi I I © 0 Rl wWw
B I 1 < Hh ol 0wl B o I I r B0
< [N el Q1 o g o 0 B3 A < (el I I e 3
o I oo o 1 [T <1 =R = - 1 o Il oo I I K 0 w 1
Ll Qi R 1 ot Q0w [ON] I R hQ I 1 [} ool 1
ol o Ko 1 850 w i I o o I I n o ol 1
o Il [t o 1 1 H- aaqp 1 I o Il [I I [STREN | 1
Ko g Q1 1 o o w Il 1 B g 1 I o 1
1 = [1 E =l I I (=g} I I =g =3 1
1 oo I it < Lo B e ol I I [l I I QT 1
1 ool < 1 H- 0B 1 1 I ool I I e ! 1
1 I S 1 = I H- I I I IFhol i I K Qo 1
1 [t o 1 = (O} =2} I I o I I 5t 3 1
1 [t =2 1 ~ 1 I 1 [l I I o 1 1
It o (O 1 o = = 1 I Qi I I <O~ 1
It [T 1 1 o o O X Ko 1 I [T I I [Cl] s 1
1 ol B 1 Qo I I ol I I Ko 1
1 ol [SI 1 3 <4 R Kol I I ol I I o Q Qo 1
It ol | 1 0 QO o I 1 ol I I 5o< 1
1 ol B 1 N = Qi I I ol I I [0} ol 1
1 ol 1 1 [} =SR] I I ol I I aQQ Ko 1
1 o 1 1 oY g I I [I I [P | 1
1 W | 1 Q] ol I I I ol I I D Il 1
1 I 1 1 1 ¢} 5ot ol I I I 1 I 1 < rh 1 1
g It I 1 1 1 I 200 o I 1 I 1 I I [SINe] w Il 1
o It I 1 1 1 I} - . sl 1 I I 1 i I [e 1
Q 1 I I I 1 [0} g oo I I 1 1 I I c ol 1
o It I I l it Q 5~ 3 3 I I I 1 I I (ORI I
. ot

ian

1obeg

ST

0 MOU PSXTA

susbna

Isd ¥e€:€T %0-60-S0

‘pesn aq pTnoys xTtjyaxd ou 3eyl suesw
*3sTT x132xd 2y3 utr jussaxd jou ST anTea

STU3 osneoaq xtyaad x03J suou Jo anTea e 3dsoode jou ssop xasied jndur Syl

3T 90UTS PITeA ST onfea sIU3l ang

:uot3diaosaq

,2uou,
: Axewuns

jo onTea e 3deodoe jou sao0p xosaed ndur syg

:PSTITPOW 3SeT
:pe33Twgns s3ed

Lsd $€:€T $0-60-50

Lsd S0:LT $0-%0-50

tuoTINTOS{/Y

poxTI
paaTOSax

:snjeas
:A3TI0Tad

[uou
2aInjesy

:K3TI9A8S
:A3t1TqTonpoadsy

skemTe

: Axobsae)

wa23sAs
2500000

I93I9AU0D 3TUN Yaewusado

g1 bng
309 loag

IS TpueH
: x93x0day

susbna
susbna

JT :MON
:seM

)
)

‘MOU POXTJA

Junowes
Junowes

/S$xPé+pPe-,/ ~i

> junowes$

0 =

(

IT

(/a/ ~i

suabna

“€T $0-50-S90

Lsd LE

“T'€z X0 G0 oI sonTea 3deode 3,UsS20p

‘195 I0 g O3TIT senrea xaqunu Toym sideooe 3draos bBurtsaed 3jndur ayg

anq

:uot3diaosag
: Axewwns

:putsaed jndur

swaTqoxd 3ndut junowe

:poTITPOW 3SeT
:po33TUANS 93eq

LS9 LE€*€T $0-50-S0

Lsd 20:ZT $0-50-50

:uoTanTosey

PeXTI
paaTOsSaI

:snjeas
:K3TI0Tad

[uou

Appendix D[]
Unit converter source code

Next few pages list the source code for the main converter functions used by [J
the system.

package UnitConverter;
use XML: :DOM;

BEGIN {

declare a hash that stores a CD name and a reference to the
XML document object for that CD name, every sub in this

module can access this hash

our %cdDocuments;

HFHHHH R R R R
GetPrefixValue receives the prefix name and a reference to the sysData
hash which stores CD names for each object (e.g. for prefixes as well).
it then calculates and returns a value for that prefix
sub GetPrefixvalue {

my $prefixName = shift e@_;

my S$sysDataRef = shift @ ;

if (!SprefixName || ref ($sysDataRef) ne 'HASH') {
print "<brs<bsError: parameters passed to GetPrefixValue are
invalid";
return;
}

parse prefix CD and get a reference to document object back
my $doc = ParseCd(S$$sysDataRef{SprefixName});

find the reference to the needed object
my @prefixData = FindObject ($doc, $prefixName) ;
my $node = shift e@prefixData;
if (!$node){
return;
}

check that prefix definition exists

if (ref ($node) ne 'XML::DOM::Element') {
print "<brs><bs>Error: corrupt definition, no FMP found for prefix";
return;

}

ensuring that the begining of the prefix definition follows the rules
if ($node -> getNodeName () ne 'OMA') {

print "<brs>Error: corrupt FMP definition";

return;

}

my @childNodes = $node -> getChildNodes() ;

Page:

1

my @foundNodes;
foreach $childNode (@childNodes) {
if ($childNode -> getNodeType() == ELEMENT_NODE vﬁ
push (@foundNodes, $childNode) ;
}
1

ensuring that the prefix definition follows the rules

if ($foundNodes[0] -> getNodeName() ne 'OMS' || $foundNodes[1] ->
getNodeName () ne 'OMA' || $foundNodes[2] -> getNodeName () ne 'OMV') {
print "<brs><bs>Error: corrupt FMP definition, looking for OMS, OMA &
OMV tags";
return;
}
if (($foundNodes[0] -> getAttributeNode ("name") -> getValue()) ne
'times' || ($foundNodes[0] -> getAttributeNode("cd") -> getValue()) ne
tarithl') {

print "<brs><bs>Error: corrupt FMP definition, looking for 'times'
operation from 'arithl' CD";
return;

if (($foundNodes[2] -> getAttributeNode ("name") -> getValue()) ne
tunit') {
print "<brs<bsError: corrupt FMP definition, looking for 'unit'
name" ;
return;
}

@childNodes = S$foundNodes[l] -> getChildNodes() ;

S#foundNodes = -1;
foreach $childNode (@childNodes) {
if ($childNode -> getNodeType() == ELEMENT NODE) {
push (@foundNodes, $childNode) ;
}
1
ensuring that the prefix definition follows the rules
if ($foundNodes[0] -> getNodeName() ne 'OMS' || $foundNodes[1] ->
getNodeName () ne 'OMI' || $foundNodes[2] -> getNodeName () ne 'OMI'){
print "<brs><bs>Error: prefix defined incorrectly";
return;

}

checking that prefix def uses arithl to compose a value

if ((sfoundNodes[0] -> getAttributeNode ("cd") -> getValue()) eqg
tarithl' || ($foundNodes[0] -> getAttributeNode ("name") -> getValue())){
my S$operation = $foundNodes[0] -> getAttributeNode ("name") ->
getvValue () ;
my $firstArg = $foundNodes[1l] -> getFirstChild() -> getNodeValue() ;
$firstArg =~ s/ //9;
my S$secondArg = $foundNodes[2] -> getFirstChild() -> getNodeValue() ;

$secondArg =~ s/ //g9;
Svalue = arithl (Soperation, s$firstArg, S$secondArg) ;
if ($value)
return S$value;
}

else {
return;
}

Page: 2

Администратор
Appendix D
Unit converter source code

Администратор
Next few pages list the source code for the main converter functions used by the system.

}
else {
print "<brs><bs>Error: prefix defined incorrectly, looking for
'arithl' reference";
return;

}

return;
} # end GetPrefixvalue

HH##HHHHHHHH R R
ConvertUnits does the main unit conversion algorithm
sub ConvertUnits {

my Samount = shift @_;

my $inUnitName = shift @ ;

my $outUnitName = shift e@_;

my S$sysDataRef = shift @ ;

my SunitDataRef = shift @_;

if (!Samount || !$inUnitName || !$outUnitName || ref ($sysDataRef) ne
'"HASH' || ref ($unitDataRef) ne 'HASH'){
print "<brs>Error: parameters passed to ConvertUnits are
invalid";
return;

}

getting parsed versions of CDs that contain input and output unit defs.

my $inUnitDoc;

trying to avoid parsing if the CD has already been parsed

if ($cdDocuments{ S$$sysDataRef{$inUnitName} }){
get a reference to the parsed CD from the cdDocuments hash
$inUnitDoc = $cdDocuments{ $$sysDataRef{$inUnitName} };

}

else {
parse CD and get a reference to document object back
$inUnitDoc = ParseCd($$sysDataRef{$inUnitName});

}

my SoutUnitDoc;

trying to avoid parsing if the CD has already been parsed

if ($cdDocuments{ $$sysDataRef{SoutUnitName} }) {
get a reference to the parsed CD from the cdDocuments hash
$outUnitDoc = $cdDocuments{ SsysDataRef{$outUnitName} };

}

else {
parse CD and get a reference to document object back
$outUnitDoc = ParseCd($$sysDataRef{$outUnitName});

}

find the reference to the input object

my @inUnitData = FindObject ($inUnitDoc, $inUnitName) ;

my $inUnitNode = shift @inUnitData;

if (!$inUnitNode) {

return;

}

if (ref($inUnitNode) ne 'XML::DOM::Element' && ($inUnitName ne 'second'
&& $SsysDataRef{$inUnitName} ne 'units_metricl')){

Page: 3

print "<brs><bsError: corrupt definition, no FMP found for the
$inUnitName unit which is not in units_metricl";
return;

check that the second child of OMA is an OMA or OMS tag
if ($inUnitNode != 1 && $inUnitNode -> getNodeName () ne 'OMA' &&
$inUnitNode -> getNodeName () ne 'OMS' vﬁ
print "<brs><bs>Error: corrupt definition, GetObject did not detect
it for some reason";
return;
1

find the reference to the output object
my @outUnitData = FindObject ($outUnitDoc, $outUnitName) ;
my $SoutUnitNode = shift @outUnitData;
if (!SoutUnitNode) {
return;
}

if (ref($outUnitNode) ne 'XML::DOM::Element' && (S$outUnitName ne
'second' && $$sysDataRef{$outUnitName} ne 'units metricl')){
print "<brs>Error: corrupt definition, no FMP found for the
$inUnitName unit which is not in units_metricl";
return;
}

check that the second child of OMA is an OMA or OMS tag
if (SoutUnitNode != 1 && SoutUnitNode -> getNodeName () ne 'OMA' &&
SoutUnitNode -> getNodeName () ne 'OMS' vﬁ
print "
<bs>Error: corrupt definition, GetObject did not detect
it for some reason";
return;
}

FHHH R

classification of conversions here
if ($#outUnitData < 0){
see if input is SI. if yes, produce an error, if not - do a forward
conversion using input
if ($#inUnitData < 0){
print "
Error: one of the definitions corrupt, ConvertUnits
sub found two base SI units";

return;
do a forward conversion
else {
class 1
if ($inUnitDatal[0] eq $outUnitName) {
return ForwProcessOma ($inUnitNode, $outUnitName, Samount) ;
class 2
else {
my S$newAmount = ForwProcessOma ($inUnitNode, $inUnitDatal(0],
$amount) ;
return ConvertUnits (SnewAmount, S$inUnitData[0], $outUnitName,
$sysDataRef, sunitDataRef) ;
elsif ($#HoutUnitData == 0) {

Page: 4

only from base si to some unit uses backwards conversion
class 3 & 4
if ($#inUnitData < 0){
return BackwProcessOma ($SoutUnitNode, $inUnitName, $amount,
$sysDataRef, sSunitDataRef) ;
}
non-base to non-base
else {
check to see if output is defined in terms of input
class 5 part 2
if ($outUnitDatal0] eqg $inUnitName) {
#do a backward conversion
return BackwProcessOma (SoutUnitNode, $inUnitName, S$amount,
$sysDataRef, sunitDataRef) ;
}
else {
this case happens either if input is defined in terms of
output or of the two are not linked directly
class 5 part 1
if ($inUnitDatal0] eg $outUnitName)
return ForwProcessOma ($inUnitNode, $outUnitName, S$amount) ;
}

class 6
else {
my $newAmount = ForwProcessOma ($inUnitNode, $inUnitDatal[0],
Samount) ;
return ConvertUnits (SnewAmount, $inUnitDatal[0], S$SoutUnitName,
$sysDataRef, sSunitDataRef) ;
}
}
}
}
class 7
else {
check if the input is also composite.
if ($#inUnitData > 0){
check that output and input are expressed using the same number of
terms
if ($#outUnitData == $#inUnitData) {
check that type of each pair is the same
for ($i=0; $i < (S#inUnitData + 1); Si++) A
if ($SunitDataRef{ $inUnitData[$i] } ne $SunitDataRef
$outUnitData[$i] }){
print "<brs<bs>Error: illegal set of definitions, each unit
pair for composite conversions must have the same type";
return;
}
}

return CompositeProcessOma ($inUnitNode, S$SoutUnitNode, $amount) ;
else {
print "<brs><bs>Error: illegal conversion, both input and output
need to have the same number of terms that define them";
return;

}

Page:

5

else {
print "
<bsError: illegal conversion, both input and output
need to be composite if at least one of them is";
return;

}

} # end ConverUnits

HHFHHH R R R R R R
This sub will convert two units provided one is expressed in terms of
the other one
sub ForwProcessOma {
recieve a ref to tag
also receive name of the output unit and a value

my StagRef = shift e@_;
my $outUnitName = shift e@_;
my S$amount = shift @_;

if (!SoutUnitName || !$amount || ref ($tagRef) ne 'XML::DOM::Element') {
print "<brs<bsError: parameters passed to ForwProcessOma are
invalid";
return;

}

if ($tagRef -> getNodeName () eg 'OMA') {

get all child nodes of OMA tag
my @childNodes = $tagRef -> getChildNodes () ;
filter out only element nodes from the list of childnoes
my @foundNodes;
foreach $childNode (@childNodes) {

if ($childNode -> getNodeType() == ELEMENT_NODE vﬁ

push (efoundNodes, $childNode) ;
}

}
if ($foundNodes[0] -> getNodeName () ne 'OMS' || $#foundNodes != 2){
print "<brs><bs>Error: first child of OMA tag should always be OMS
tag";
return;
}
call this sub again for second and third child
my $firstValue = ForwProcessOma ($foundNodes[1], S$outUnitName, S$amount) ;
my $secondValue = ForwProcessOma ($foundNodes[2], $outUnitName,
Samount) ;
if (!$firstValue || !$secondvalue)
no need to report an error as this must have been done already
return;
}

perform an op from first child on them
#e.g. <OMS name="times" cd="arithl"/>
if (! ($foundNodes[0] -> getAttributeNode ("name") -> getValue()) ||

i

(

Page:

6

$foundNodes [0] -> getAttributeNode ("cd") -> getValue()) ne 'arithl'){
print "
<bs>Error: corrupt FMP definition, looking for an
operation from 'arithl' CD";
return;

}

my S$opName = $foundNodes[0] -> getAttributeNode ("name") -> getValue() ;

perform an op specified by the OMS tag
my S$result = arithl ($opName, $firstValue, $secondValue) ;
return S$result;

}

elsif ($tagRef -> getNodeName() eg 'OMS' v*
if (! ($tagRef -> getAttributeNode ("name"))) {

print "
Error: corrupt FMP definition, OMS tag doesn't have

a 'nmame' attribute";

return;
}
one unit is expressed in terms of the other unit
if ($tagRef -> getAttributeNode ("name") -> getValue() eg SoutUnitName
){
return S$amount;
}
}
elsif (StagRef -> getNodeName() eq 'OMI' || $tagRef -> getNodeName () eq
"OMF') {
my $value = $tagRef -> getFirstChild() -> getNodeValue() ;

$value =~ s/ //9;
return Svalue;

return;
} # end ForwProcessOma

HHEHHH R R R R R
This sub will convert two units provided one is expressed in terms of
the other one, reversed conversion is done here
sub BackwProcessOma {
recieve a ref to tag
also receive name of the input unit and a value

my $tagRef = shift e_;
my $inUnitName = shift @_;
my Samount = shift @_;
my S$sysDataRef = shift @ ;
my $unitDataRef = shift e@_;

if (!$inUnitName || !Samount || ref ($tagRef) ne 'XML::DOM::Element' ||
ref ($sysDataRef) ne 'HASH' || ref (SunitDataRef) ne 'HASH'){
print "<brs><bsError: parameters passed to BackwProcessOma are
invalid";
return;

}

Page:

7

if ($tagRef -> getNodeName () eqg 'OMA') {

get all child nodes of OMA tag
my @childNodes = $tagRef -> getChildNodes() ;
filter out only element nodes from the list of childnoes
my @foundNodes;
foreach $childNode (@childNodes) {

if ($childNode -> getNodeType () == ELEMENT NODE) {

push (efoundNodes, S$childNode) ;
}

}
if ($foundNodes[0] -> getNodeName() ne 'OMS' || $#foundNodes != 2){
print "<brs><bs>Error: first child of OMA tag should always be OMS
tag";
return;
}
if (! ($foundNodes[0] -> getAttributeNode ("name") -> getValue()) || (
$foundNodes [0] -> getAttributeNode ("cd") -> getValue()) ne 'arithl'){

print "<brs><bs>Error: corrupt FMP definition, looking for an
operation from 'arithl' CD";
return;

now try to get values for two children, make sure that unit name is
not encountered

my SfirstValue = ForwProcessOma ($foundNodes[1], 'none4535435',
Samount) ;

my SsecondValue = ForwProcessOma ($SfoundNodes[2], 'none45353', S$amount) ;

if (!$firstValue && !$secondvalue)

print "<brs><bs>Error: at least one child of OMA tag was expected
to have a value returned";
return;
}
if ($firstvValue && S$secondvalue) {
print "
<bs>Error: both children of OMA tag return values which
is not acceptable";
return;

}

perform an op.
if ($firstValue){

define op

my S$opName = $foundNodes[0] -> getAttributeNode ("name") ->
getvalue () ;

if ($opName eqg 'plus'){
Samount = -$amount;

}

elsif (SopName eq 'minus' Vﬁ
$opName = 'plus';
$amount = -$amount;

}

elsif (SopName eq 'times'){
SopName = 'divide';

}

divide op does not change things

Page: 8

perform an op specified by the OMS tag
my Sresult = arithl (SopName, $Samount, S$firstValue);

continue recursion

return BackwProcessOma ($SfoundNodes[2], $inUnitName, S$result,
$sysDataRef, SunitDataRef) ;

}

elsif ($secondvalue){

define op

my $opName = $foundNodes[0] -> getAttributeNode ("name") ->
getvValue () ;
if ($opName eqg 'plus'){
$amount = -$amount;
1
elsif (SopName eq 'minus’' vﬁ
SopName = 'plus';
1
elsif (SopName eq 'times'){
SopName = 'divide';

}

elsif ($opName eq 'divide'){
SopName = 'times';

}

perform an op specified by the OMS tag
my Sresult = arithl (SopName, $amount, $secondValue) ;

continue recursion
return BackwProcessOma ($foundNodes[1], $inUnitName, S$result,
$sysDataRef, SunitDataRef) ;

}

}

case when OMS tag
elsif (StagRef -> getNodeName () eg 'OMS' Vﬁ
if ($tagRef -> getAttributeNode ("name") -> getValue() eqg $inUnitName
){

case when should return the value together with applying op to it
return S$amount;
}
else {
case when this is not the needed unit
return ConvertUnits ($amount, $inUnitName, S$tagRef ->
getAttributeNode ("name") -> getValue(), $sysDataRef, $unitDataRef) ;
}
}
else {
print "<brs><bs>Error: corrupt FMP definition, OMA or OMS tag
expected, BackwProcessOma sub";
return;

}

Page:

9

} # end BackwProcessOma

HH##HHH R H R R R R R R
ParseCd receives a CD name, tries to open this CD, parse it with XML
parser and return a reference to the document object for that CD
sub ParseCd {
my $cdName = shift e_;

making sure that cdName is passed to this sub

if (!$cdName) {
print "<brs><bsError: no parameters passed to ParseCd function";
return;

}

path to config file

my $ScfigFile = "locations.cfg";
checking that the config file exists and opening it
if (!open(CONFIG, S$cfigFile)){
print "<brs><bs>Error: can't open config file";
return;

}

putting config file data into the array
my %paths;
my (SpathName, S$pathValue);
while (<CONFIG>) {
chomp ;
($pathName, $SpathValue) = split(/::/,$_);
if ($pathName && $pathvalue) { $paths{$pathName} = $pathvalue; }
1
close (CONFIG) ;
if (!$paths{'cd'} || !$paths{'sts'}){
print "<brs><bs>Error: no paths for either CD or STS directories,
check that config file has the correct paths";
return;

1
my ($doc, $node) ;

parse the prefix file
my $parser = new XML::DOM: :Parser;

eval { $doc = $parser -> parsefile($paths{'cd'} . "/" . S$ScdName
".ocd") };
catching "exceptions" here, in case invalid xml file
if (s@) {
print "<brs<bs>Error: $e@";
return;

}

put an entry into our global hash so that same CDs are only parsed
once

$cdDocuments{$cdName} = $doc;

return S$doc;

} # end ParsecCd

HH##HHHE R R R R R
FindObject finds a reference to the first <OMA> tag of the object

Page: 10

definition given a reference to the document object of a CD and a name
of the object, OMA tag of which is required
sub FindObject {
my $doc = shift @_;
my S$objectName = shift @ ;
if (!$doc || !$objectName) {
print "<brs>Error: not enough parameters passed to FindObject
function";
return;
}

find the section of CD which is responsible for representing our object
my @foundNodes = $doc -> getElementsByTagName ("Name") ;
foreach $nodel A®mozduzoamva
if (($nodel -> getFirstChild() -> getNodeValue()) =~ m/SobjectName/
){

$node = $nodel; # S$node points to required <Name> tag
last;
}
}
checking that we have the needed object definition
if (!$node) {
print "<brs><bs>Error: corrupt definition, no definition for
SobjectName found although it is registered in STS file";
return;
}

jump to the begining of the document
$node = $node -> getParentNode () ;
if ($node -> getNodeName () ne _OUUmdeHnHOS_v*
print "<brs<bsError: corrupt definition, CDDefinition tag was not
found";
return;
}

checking that the structure of FMP part is fine and jumping to first
OMA tag
@foundNodes = $node -> getElementsByTagName ('FMP') ;
if ($#foundNodes < 0){
if this happens for a unit CD then this means the object is a base SI

incorrectly defined, for prefixes this means a disaster
return 1;

}

not used anymore - year has two FMPs. need to check the guidelines if
this

is valid, but it seems to be perfectly legal so we use the first FMP
only

as a convention in this system

#elsif ($#foundNodes > 0) {

print "<brs><bs>Error: corrupt definition, wrong number of FMP tags,
only one allowed";

return;

#}

@foundNodes = $foundNodes[0] -> getElementsByTagName ("OMOBJ") ;
if ($#foundNodes != 0){

page: 11

print "<brs<bsError: corrupt definition, wrong number of OMOBJ
tags, only one allowed";
return;

}

@foundNodes = $foundNodes[0] -> getElementsByTagName ("OMA") ;

get all child nodes of first OMA tag
my @childNodes = $foundNodes[0] -> getChildNodes() ;
filter out only element nodes from the list of childnoes of the first
OMA tag

S$#foundNodes = -1;
foreach $childNode (@childNodes) {

if ($childNode -> getNodeType() == ELEMENT_ NODE vﬁ

push (@foundNodes, $childNode) ;
}

}
if ($#foundNodes != 2){
print "<brs><bs>Error: corrupt definition, wrong number of tags
inside OMA tag";
return;

}

my SseekNodeRef = $foundNodes[2];

doing further validation
if ($foundNodes[1] -> getNodeName() eqg 'OMS') {
if (($foundNodes[l] -> getAttributeNode ("name") -> getValue()) ne
$objectName) {
print "<brs><bs>Error: corrupt definition, OMS tag defining the
unit SobjectName has not been found";

return;
}
1
elsif ($foundNodes[1l] -> getNodeName () eqg 'OMA' Vﬁ
S#childNodes = -1;

get a list of OMS children
@childNodes = $foundNodes[1l] -> getElementsByTagName ("OMS") ;

my S$valid;
while ($#childNodes >= 0){
if (($childNodes[0] -> getAttributeNode ("name") -> getValue()) eq
$objectName) {
Svalid = 1;
last;

}

shift echildNodes;

}
if (!$valid){
print "<brsError: corrupt definition, OMS tag defining the
unit SobjectName has not been found";
return;

}

if none found, corrupt definition, return error, else take the first
one

}

else {
print "<brs><bs>Error: corrupt definition for SobjectName, looking

for an OMS tag that defines it";
return;

Page: 12

}

find all other OMS tags and get a list of all other mentioned units
if (sfoundNodes[2] -> getNodeName() eqg 'OMS' vﬁ
my SunitName = $foundNodes[2] -> getAttributeNode ("name") ->
getValue () ;
return S$seekNodeRef, SunitName;
}
elsif ($foundNodes[2] -> getNodeName() eg 'OMA') {
produce a list of OMS tags and create an array of those that are
unit-related
my @unitNames;
@childNodes = $foundNodes[2] -> getElementsByTagName ("OMS") ;
foreach $childNode (@childNodes) {

if ($childNode -> getAttributeNode ("cd") -> getValue() =~
m/"units_/){
push (@unitNames, $childNode -> getAttributeNode ("name") ->
getvValue());

1
}
return ($SseekNodeRef, @unitNames) ;

1
} # end FindObject

HEHHH R R
arithl emulates the 'arithl' CD
sub arithl {

get two values and an operation

if minus before operation then perform its' inverse

my S$opName = shift @_;

my $firstArg = shift @ ;

my $secondArg = shift e@_;

if (!$opName || !$firstArg || !$secondArg) {
print "<brs>Error: not enough arguments supplied to arithl sub";
return;

1

if ($firstArg eq 'zero'){
sfirstArg = 0;

1

if ($secondArg eq 'zero'){
$secondArg = 0;
1

do reverse substitution
if ($opName eq '-plus'){
SopName = 'minus';
my Stemp = $firstArg;
sfirstArg = $secondArg;
S$secondArg = Stemp;

}

elsif ($opName eq '-minus'){
SopName = 'plus';

}

elsif ($opName eq '-times'){
SopName = 'divide';

Page: 13

my Stemp = $firstArg;
sfirstArg = $secondArg;
SsecondArg = Stemp;

}

elsif ($opName eq '-divide'){
SopName = 'times';

}

elsif ($opName eq '-power') {
SopName = 'power';
$secondArg = 1 / $secondArg;

}
S

produce values
my Sresult;
if ($opName eqg 'plus'){
sresult = $firstArg + S$secondArg;
}
elsif ($opName eq 'minus'){
sresult = $firstArg - S$secondArg;

}

elsif (SopName eq 'times'){
Sresult = $firstArg * $secondArg;

}

elsif ($opName eqg 'divide') ({

if ($secondArg == 0) {
print "
Error: in arithl sub: can't divide by zero";
return;

}

Sresult = $firstArg / S$secondArg;

}

elsif ($opName eq 'power') {
Sresult = $firstArg ** S$secondArg;
}
else {
print "<brs><bs>Error: SopName : no such operation defined in arithl
sub";
return;

}

if ($result == 0){
Sresult = 'zero

}

if ($result){
v return S$result;
else {
print "<brs><bs>Error: serious error in arithl sub, but can't
recognise the cause";
return;

}

page: 14

Appendix E[]
Custom CDs

As discussed in the Testing chapter, new custom CD and STS files to represent U.S. [
measures have been created. Next few pages give a listing of the new CD and STS [

files.

<CD>

<CDName> units_usl </CDName>

<CDURL> http://www.openmath.org/cd/units usl.ocd </CDURL>
<CDReviewDate> 2004-05-11 </CDReviewDates>
<CDStatus> experimental </CDStatus>
<CDDate> 2004-05-11 </CDDate>

<CDVersion> 3 </CDVersions>

<CDRevision> 0 </CDRevision>

<CDUses>

<CDNames>arithl</CDName>
<CDName>relationl</CDName>
<CDName>units_metricl</CDName>
<CDName>units_timel</CDName>

<CDName ></CDName >

</CDUses>

<Description>

This CD defines symbols to represent U.S. customary unit measures.

</Descriptions>

<CDDefinitions>

<Name> foot_us_survey </Name>

<Descriptions>

This symbol represents the measure of one U.S. Survey foot.
</Description>

<CMP> 1 U.S. Survey foot = 1200/3937 metres </CMP>

<FMP><OMOBJ >
<OMA>
<OMS name="eqg" cd="relationl"/>
<OMA>
<OMS name="times" cd="arithl"/>
<OMI> 1 </OMI>
<OMS name="foot_us_survey" cd="units_usl"/>
</OMA>
<OMA >
<OMS name="times" cd="arithl"/>
<OMA>
<OMS name="divide" cd="arithl"/>
<OMI> 1200 </OMI>
<OMI> 3937 </OMI>
</OMA>
<OMS name="metre" cd="units_metricl"/>
</OMA>
</OMA>
</OMOBJ></FMP>

</CDDefinition>

<CDDefinition>

<Name> yard us_survey </Name>

<Description>

This symbol represents the measure of one U.S. Survey yard.
</Descriptions>

<CMP> 1 U.S. Survey yard = 3 U.S. Survey feet </CMP>

<FMP><OMOBJ >
<OMA>
<OMS name="eqg" cd="relationl"/>
<OMA>
<OMS name="times" cd="arithl"/>
<OMI> 1 </OMI>
<OMS name="yard us_survey" cd="units_ usl"/>
</OMA>
<OMA >
<OMS name="times" cd="arithl"/>
<OMI> 3 </OMI>
<OMS name="foot_us_survey" cd="units_usl"/>
</OMA>
</OMA>
</OMOBJ></FMP>
</CDhDefinition>

<CDDefinition>

<Name> mile_us_survey </Name>

<Description>

This symbol represents the measure of one U.S. Survey mile.
</Descriptions>

<CMP> 1 U.S. Survey mile = 5280 U.S. Survey feet </CMP>

<FMP><OMOBJ >
<OMA>
<OMS name="eg" cd="relationl"/>
<OMA>
<OMS name="times" cd="arithl"/>
<OMI> 1 </OMI>
<OMS name="mile us_survey" cd="units usl"/>
</OMA>
<OMA>
<OMS name="times" cd="arithl"/>
<OMI> 5280 </OMI>
<OMS name="foot_us_survey" cd="units_usl"/>
</OMA>
</OMA>
</OMOBJ></FMP>
</CDDefinition>

<CDDefinitions>

<Name> acre_us_survey </Name >

<Description>

This symbol represents the measure of one U.S. Survey acre.
</Descriptions>

<CMP> 1 U.S. Survey acre = 4840 square U.S. Survey yards </CMP>

Администратор
Appendix E
Custom CDs

Администратор
As discussed in the Testing chapter, new custom CD and STS files to represent U.S. measures have been created. Next few pages give a listing of the new CD and STS files.

<FMP><OMOBJ >
</CDSignatowmes>

<OMS name="eg" cd="relationl"/>

==========ypEgos========= eof CdHﬁMlCmH.Mﬂm —======================

t <OMS name="times" cd="arithl"/>
<OMI> 1 </OMI>
<OMS name="acre_us_survey" cd="units usl"/>
</OMA>
<OMA>
<OMS name="times" cd="arithl"/>
<OMI> 4840 </OMI>
<OMA >
<OMS name="times" cd="arithl"/>
<OMS name="yard us_survey" cd="units_usl"/>
<OMS name="yard_us_survey" cd="units_ usl"/>
</OMA>
</OMA>
</OMA>
</OMOBJ></FMP>
</CDDefinition>

<CDhDefinition>

<Name> pint us_dry </Name>

<Description>

This symbol represents the measure of one U.S. dry pint.
</Description>

<CMP> 1 U.S. dry pint = 0.5506104713575 litres </CMP>

<FMP><OMOBJ >
<OMA>
<OMS name="eqg" cd="relationl"/>
<OMA >
<OMS name="times" cd="arithl"/>
<OMI> 1 </OMI>
<OMS name="pint us_dry" cd="units usl"/>
</OMA>
<OMA >
<OMS name="times" cd="arithl"/>
<OMF> 0.551 </OMF>
<OMS name="litre" cd="units_metricl"/>
</OMA>
</OMA>
</OMOBJ></FMP>
</CDDefinition>

<CDDefinition>

<Name> pint_us_liquid </Name>

<Description>

This symbol represents the measure of one U.S. liquid pint.
</Description>

<CMP> 1 U.S. liquid pint = 0.473176473 litres </CMP>
<FMP><OMOBJ >

<OMA>
<OMS name="eqg" cd="relationl"/>

Page: page: 3

<OMA>
<OMS name="times" cd="arithl"/>
<OMI> 1 </OMI>
<OMS name="pint us liquid" cd="units usl"/>
</OMA>
<OMA>
<OMS name="times" cd="arithl"/>
<OMF> 0.473 </OMF>
<OMS name="litre" cd="units_metricl"/>
</OMA>
</OMA>
</OMOBJ></FMP>
</CDDefinition>

</CD>

========================= eof CﬁHﬁm\EmH.OOQ —==============

—=—======================= CdHﬁMlCMH.Mﬂm ——=================

<CDSignatures type="sts" cd="units_usl">

<Signature name="foot_us_survey" >
<OMOBJ >

<OMS cd="dimensionsl" name="length"/>
</OMOBJ >
</Signature>

<Signature name="yard us_survey" >
<OMOBJ >

<OMS cd="dimensionsl" name="length"/>
</OMOBJ >
</Signature>

<Signature name="mile_us_survey" >
<OMOBJ >

<OMS cd="dimensionsl" name="length"/>
</OMOBJ >
</Signature>

<Signature name="acre_us_survey" >

<OMOBJ >

<OMS cd="dimensionsl" name="area"/>
</OMOBJ >
</Signatures>

<Signature name="pint us dry" >
<OMOBJ >
<OMS cd="dimensionsl" name="volume"/>
</OMOBJ >
</Signatures>

<Signature name="pint_ us_liquid" >
<OMOBJ >

<OMS cd="dimensionsl" name="volume"/>
</OMOBJ >
</Signature>

</CDSignatures>

—========================= eOf CBHHM|§MH‘mﬁm —==============

