

Citation for published version:
Drugowitsch, J 2007, Learning classifier systems from first principles. Computer Science Technical Reports, no.
CSBU-2007-12, Department of Computer Science, University of Bath.

Publication date:
2007

Link to publication

©The Author October 2007

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Dec. 2019

https://researchportal.bath.ac.uk/en/publications/learning-classifier-systems-from-first-principles(bce069ef-0f7d-4f23-bdb1-4f562d0c6212).html

Department of
Computer Science

Technical Report

PhD. Dissertation: Learning Classifier Systems from First
Principles

Jan Drugowitsch

Technical Report 2007-12 October 2007
ISSN 1740-9497

Copyright c©October 2007 by the authors.

Contact Address:
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

LEARNING CLASSIFIER SYSTEMS

FROM FIRST PRINCIPLES

A PROBABILISTIC REFORMULATION OF LEARNING CLASSIFIER SYSTEMS

FROM THE PERSPECTIVE OF MACHINE LEARNING

Submitted by Jan Drugowitsch

for the degree of

Doctor of Philosophy

of the University of Bath

August, 2007

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who con-

sults it is understood to recognise that its copyright rests with its author and

no information derived from it may be published without the prior written

consent of the author.

This thesis may be made available for consultation within the University li-

brary and may be photocopied or lent to other libraries for the purposes of

consultation.

Abstract

Learning Classifier Systems (LCS) are a family of rule-based machine learn-

ing methods. They aim at the autonomous production of potentially human-

readable results that are the most compact generalised representation whilst

also maintaining high predictive accuracy, with a wide range of application

areas, such as autonomous robotics, economics, and multi-agent systems.

Their design is mainly approached heuristically and, even though their perfor-

mance is competitive in regression and classification tasks, they do not meet

their expected performance in sequential decision tasks despite being initially

designed for such tasks. It is out contention that improvement is hindered by

a lack of theoretical understanding of their underlying mechanisms and dy-

namics.

To improve this understanding, our work proposes a new methodology for

their design that centres on the model they use to represent the problem struc-

ture, and subsequently applies standard machine learning methods to train

this model. The LCS structure is commonly a set of rules, resulting in a para-

metric model that combines a set of localised models, each representing one

rule. This leads to a general definition of the optimal set of rules as being

the one whose model represents the data best and at a minimum complexity,

and hence an increased theoretical understanding of LCS. Consequently, LCS

training reduces to searching and evaluating this set of rules, for which we

introduce and apply several standard methods that are shown to be closely

related to current LCS implementations.

The benefit of taking this approach is not only a new view on LCS, and the

transfer of the formal basis of the applied methods to the analysis of LCS, but

i

also the first general definition for what it means for a set of rules to be optimal.

The work promises advances in several areas, such as developing new LCS

implementations with performance guarantees, to improve their performance,

and foremost their theoretical understanding.

ii

Acknowledgements

I first and foremost would like to thankmy parents, Elsbeth andKnut Drugow-

itsch, for their general moral and generous financial support, without which

I would have been unable to fully focus on my work. With equal emphasis I

would like to thankmy supervisor, Alwyn Barry, for providingmewith a chal-

lenging research subject. His guidance, his constructive comments, and his

initiative were essential in the realisation of this thesis. I would also like to ac-

knowledge my examiners, Larry Bull and Dan Richardson, and their thought-

ful criticism and discussion of my thesis submission.

I would like to express my gratitude to all people that shapedmywork and life

in the three years that I have spent in Bath, in particular Will Lowe for intro-

ducing me to the model-based machine learning perspective, for offering his

stance on various machine learning topics, and for comments on an early draft

of this thesis. Joanna Bryson supported me morally through general Artificial

Intelligence discussions, and financially by providing me with programming

jobs. Special thanks also go to Hagen Lehmann and Tristan Caulfield for com-

ments on early drafts of my thesis and for discussions about my work, life, the

universe and everything.

My communication with several LCS researchers has contributed to the con-

tent of this thesis. In particular, I would like to thank Pier Luca Lanzi and

Daniele Loiacono for their frequent comments and motivating appreciation of

my work, and the stimulating discussions at various conferences. Addition-

ally, I would like to acknowledge the comments of Martin Butz and Lashon

Booker on some of my published work, and those of Will Browne on the first

draft of this thesis.

iii

Due to the nature of my work and my previous education I am grateful for

any mathematical support that was given to me during the completion of this

thesis, in particular byMarelee Hurnwith respect to some statistical questions,

and my lab colleagues Jonty Needham and Mark Price.

Various researchers from the machine learning community have also pro-

vided their help: Christopher Bishop, Markus Svensén, Matthew Beal, and

Tommi Jaakkola answered my questions regarding the application of vari-

ational Bayesian inference; Gavin Brown pointed me to relevant ensemble

learning literature; Lei Xu supported my attempts at applying Bayesian Ying

Yang to LCS; Peter Grünwald and Arta Doci clarified some MDL-related is-

sues; Michael Littman discussed my queries regarding intelligent exploration

methods and performance guarantees in reinforcement learning.

Finally, I thank Odali Sanhueza for making my Ph.D.-free time as good as it

can get.

iv

Contents

1 Introduction 1

1.1 Machine Learning . 2

1.1.1 Common Machine Learning Tasks 2

1.1.2 Designing an Unsupervised Learning Algorithm 3

1.2 Learning Classifier Systems . 6

1.2.1 A Brief Overview . 7

1.2.2 Applications and Current Issues 8

1.3 About this Work . 9

1.3.1 The Initial Approach . 9

1.3.2 Taking a Model-Centred View 10

1.3.3 Summarising the Approach 11

1.3.4 Contributions . 12

1.4 How to Read this Thesis . 12

v

1.4.1 Chapter Overview . 13

2 Background 17

2.1 A General Problem Description 18

2.2 Early Learning Classifier Systems 20

2.2.1 Initial Idea . 20

2.2.2 The General Framework 21

2.2.3 Interacting Subsystems 22

2.2.4 The Genetic Algorithm in LCS 23

2.2.5 The Problems of Early LCS 24

2.3 The LCS Renaissance . 25

2.3.1 Computing the Prediction 26

2.3.2 Localisation and Representation 27

2.3.3 Classifiers as Localised Maps from Input to Output . . . 27

2.3.4 Recovering the Global Prediction 28

2.3.5 Michigan-style vs. Pittsburgh-style LCS 28

2.4 Existing Theory . 29

2.4.1 The Holistic View . 29

2.4.2 Approaches from the Genetic Algorithm Side 30

2.4.3 Approaches from the Function Approximation Side . . . 32

vi

2.4.4 Approaches from the Reinforcement Learning Side . . . 33

2.5 Discussion and Conclusion . 33

3 A Learning Classifier Systems Model 37

3.1 Task Definitions . 38

3.1.1 Expected Risk vs. Empirical Risk 39

3.1.2 Regression . 41

3.1.3 Classification . 42

3.1.4 Sequential Decision . 43

3.1.5 Batch vs. Incremental Learning 44

3.2 LCS as Parametric Model . 47

3.2.1 Parametric Models . 49

3.2.2 LCS Model . 49

3.2.3 Classifiers as Localised Models 50

3.2.4 Recovering the Global Model 52

3.2.5 Finding a Good Model Structure 52

3.2.6 Considerations for Model Structure Search 53

3.2.7 Relation to the Initial LCS Idea 54

3.3 Summary and Outlook . 55

vii

4 A Probabilistic Model for LCS 57

4.1 The Mixtures-of-Experts Model 58

4.1.1 Likelihood for Known Gating 59

4.1.2 Parametric Gating Network 60

4.1.3 Training by Expectation-Maximisation 62

4.1.4 Localisation by Interaction 64

4.1.5 Training Issues . 65

4.2 Linear Expert Models . 65

4.3 Generalising the MoE Model . 67

4.3.1 An Additional Layer of Forced Localisation 67

4.3.2 Updated Expectation-Maximisation Training 69

4.3.3 Implications on Localisation 69

4.3.4 Relation to Standard MoE Model 70

4.3.5 Relation to LCS . 70

4.3.6 Training Issues . 73

4.4 Independent Classifier Training 74

4.4.1 The Origin of Local Maxima 74

4.4.2 What does a Classifier Model? 75

4.4.3 Introducing Independent Classifier Training 76

viii

4.4.4 Training the Gating Network 77

4.4.5 Implications on Likelihood and

Assumptions about the Data 78

4.5 Discussion and Summary . 78

5 Training the Classifiers 83

5.1 Linear Classifier Models and

Their Underlying Assumptions 84

5.1.1 Linear Models . 85

5.1.2 Gaussian Noise . 86

5.1.3 Maximum Likelihood and Least Squares 87

5.2 Batch Learning Approaches . 88

5.2.1 The Weight Vector . 88

5.2.2 The Noise Precision . 90

5.3 Incremental Learning Approaches 91

5.3.1 The Principle of Orthogonality 92

5.3.2 Steepest Gradient Descent 93

5.3.3 Least Mean Squared . 96

5.3.4 Normalised Least Mean Squared 98

5.3.5 Recursive Least Squares 99

5.3.6 The Kalman Filter . 104

ix

5.3.7 Incremental Noise Precision Estimation 111

5.3.8 Summarising Incremental Learning Approaches 116

5.4 Empirical Demonstration . 116

5.4.1 Experimental Setup . 117

5.4.2 Weight Vector Estimate 120

5.4.3 Noise Variance Estimate 120

5.5 Discussion and Summary . 122

6 Mixing Independently Trained Classifiers 127

6.1 Using the Generalised Softmax Function 129

6.1.1 Batch Learning by Iterative Reweighted Least Squares . 130

6.1.2 Incremental Learning by Least Squares 132

6.2 Alternative Heuristics . 134

6.2.1 Properties of Weighted Averaging Mixing 135

6.2.2 Inverse Variance . 138

6.2.3 Prediction Confidence . 139

6.2.4 Maximum Prediction Confidence 140

6.2.5 XCS . 141

6.3 Empirical Comparison . 142

6.3.1 Experimental Design . 143

x

6.3.2 Results . 145

6.3.3 Discussion . 147

6.4 Relation to our Previously Published Work 149

6.5 Summary and Outlook . 151

7 The Optimal Set of Classifiers 155

7.1 What is Optimal? . 156

7.1.1 Current LCS Approaches 157

7.1.2 Model Selection . 159

7.1.3 Bayesian Model Selection 160

7.1.4 Applying Bayesian Model Selection to

Finding the Best Set of Classifiers 161

7.1.5 The Model Structure Prior p(M) 161

7.1.6 The Myth of No Prior Assumptions 162

7.2 A Fully Bayesian LCS . 164

7.2.1 Data, Model Structure, and Likelihood 164

7.2.2 Multivariate Regression Classifiers 167

7.2.3 Priors on the Classifier Model Parameters 167

7.2.4 Mixing by the Generalised Softmax Function 169

7.2.5 Priors on the Mixing Model 170

xi

7.2.6 Joint Distribution over Random Variables 171

7.3 Evaluating the Model Evidence 172

7.3.1 Variational Bayesian Inference 172

7.3.2 Classifier Model q∗W,τ (W , τ) 174

7.3.3 Classifier Weight Priors q∗α(α) 177

7.3.4 Mixing Model q∗V (V) . 179

7.3.5 Mixing Weight Priors q∗β(β) 181

7.3.6 Latent Variables q∗Z(Z) . 182

7.3.7 Required Moments of the Variational Posterior 183

7.3.8 The Variational Bound L(q) 186

7.3.9 Independent Classifier Training 190

7.3.10 How to Get p(M|D) for SomeM 192

7.4 Predictive Distribution . 193

7.4.1 Deriving p(y′|x′,D) . 194

7.4.2 Mean and Variance . 196

7.5 Alternative Model Selection Methods 197

7.5.1 Minimum Description Length 197

7.5.2 Structural Risk Minimisation 198

7.5.3 Bayesian Ying-Yang . 199

xii

7.5.4 Training Data-based Approaches 199

7.6 Discussion and Summary . 200

8 An Algorithmic Description 203

8.1 Computing p(M|D) . 204

8.1.1 Model Probability and Evidence 206

8.1.2 Training the Classifiers . 207

8.1.3 Training the Mixing Model 209

8.1.4 The Variational Bound . 216

8.1.5 Scaling Issues . 218

8.2 Two Alternatives for Model Structure Search 219

8.2.1 Model Structure Search by a Genetic Algorithm 220

8.2.2 Model Structure Search by Markov Chain Monte Carlo . 223

8.2.3 Building Blocks in Classifier Sets 226

8.3 Empirical Demonstration . 227

8.3.1 Representations . 228

8.3.2 Generated Function . 232

8.3.3 Sparse, Noisy Data . 234

8.3.4 Function with Variable Noise 235

8.3.5 A Slightly More Complex Function 237

xiii

8.4 Summary . 239

9 Towards Reinforcement Learning with LCS 243

9.1 Problem Definition . 245

9.1.1 Markov Decision Processes 246

9.1.2 The Value Function, the Action-Value Function and

Bellman’s Equation . 247

9.1.3 Problem Types . 249

9.1.4 Matrix Notation . 249

9.2 Dynamic Programming and

Reinforcement Learning . 250

9.2.1 Dynamic Programming Operators 250

9.2.2 Value Iteration and Policy Iteration 251

9.2.3 Approximate Dynamic Programming 252

9.2.4 Temporal-Difference Learning 253

9.2.5 SARSA(λ) . 254

9.2.6 Q-Learning . 254

9.3 Reinforcement Learning with LCS 255

9.3.1 Approximating the Value Function 257

9.3.2 Bellman’s Equation in the LCS Context 258

9.3.3 Asynchronous Value Iteration with LCS 259

xiv

9.3.4 Q-Learning by Least Mean Squares 260

9.3.5 Q-Learning by Recursive Least Squares 262

9.3.6 XCS with Gradient Descent 263

9.4 Stability Issues . 266

9.4.1 LCS Training on the

Structure and the Parameter Level 267

9.4.2 Stability on the Structure Learning Level 267

9.4.3 Stability on the Parameter Learning Level 269

9.5 Long Path Learning . 272

9.5.1 XCS and Long Path Learning 272

9.5.2 Using the Relative Error 274

9.5.3 Where it Fails . 275

9.5.4 A Possible Alternative? 275

9.6 Discussion and Summary . 277

10 Future Work and New Horizons 281

10.1 The Optimal Set of Classifiers . 281

10.1.1 Determining Optimality 282

10.1.2 Overlapping Classifiers 283

10.1.3 Default Hierarchies . 284

xv

10.2 Approximating or Changing the

Mixing Model . 285

10.3 An LCS Model for Classification 287

10.4 Improving Model Structure Search 288

10.5 Empirical Validation of Optimality Criterion 291

10.6 Incremental Implementation . 292

10.6.1 Incremental Model Parameter Update 292

10.6.2 Incremental Model Structure Search 293

10.7 Matching by Degree . 295

10.8 Advancing in Reinforcement Learning 296

10.9 Conclusions . 297

11 Summary and Concluding Remarks 299

11.1 Contributions . 299

11.2 Future Possibilities . 305

11.3 Concluding Remarks . 306

A Notation 309

B XCS and XCSF 315

B.1 Classifier Model and Mixing Model 316

xvi

B.2 Model Structure Search . 317

Index 321

Bibliography 325

xvii

List of Figures

1.1 Two different interpretations for clustering a set of data points

into two distinct clusters. The circles and squares are data

points that are assign to different clusters. The dashed circle and

square represent the centres of the identified clusters. (a) Iden-

tifying clusters by minimising the distance between the data

points within a cluster, and reassigning data points to the clus-

ter to whose centre they are closest to. The dashed lines indicate

the assignment of data points to cluster centres, given by the

mean of all data points within the cluster. (b) Interpreting the

data points as being generated by Gaussians that are centred on

the cluster centres. The two dashed circles around the centres

represent the first and the second standard deviation of the gen-

erating Gaussian. 5

4.1 Directed graphical model of the Mixtures-of-Experts model . . . 61

4.2 Plot of the softmax function for 2 experts 62

4.3 Directed graphical model of the generalised Mixtures-of-

Experts model . 68

4.4 Plot of the generalised softmax function for 2 classifiers and

φ(x) = x . 71

4.5 Plot of the generalised softmax function for 2 classifiers and

φ(x) = 1 . 72

xix

4.6 Directed graphical model for training classifiers independently 77

5.1 Comparison of linear model training methods on data sampled

from N (5, 1) . 117

5.2 Comparison of linear model training methods on modelling

part of a sinusoid . 126

6.1 Prediction plots of different mixing model for the Blocks function 148

6.2 Prediction plots of differentmixingmodels for the Bumps function149

6.3 Prediction plots of different mixing models for the Doppler

function . 150

6.4 Prediction plots of different mixing models for the Heavisine

function . 151

7.1 Directed graphical model of Bayesian LCS 166

7.2 Histogram plot of prior densities 169

8.1 Complexity of the different functions 218

8.2 Matching by radial basis functions 229

8.3 Matching by soft intervals . 231

8.4 Classifiers and mixed model for generated function 232

8.5 Model structure for generated function using GA 233

8.6 Model structure for generated function using MCMC 234

8.7 Waterhouse et al. (1996) function and available data 235

xx

8.8 Model structure for Waterhouse et al. (1996) function using GA 236

8.9 Model structure for Waterhouse et al. (1996) function using

MCMC . 236

8.10 Function with variable noise and available data 237

8.11 Model structure for function with variable noise using GA . . . 238

8.12 Model structure for function with variable noise using MCMC . 238

8.13 Noisy sinusoidal function and available data 239

8.14 Model structure for noisy sinusoidal function using GA 240

8.15 Model structure for noisy sinusoidal function using MCMC . . 241

9.1 Transition graph of 5-step corridor finite state world 273

9.2 Optimal value function for 15-step corridor finite state world . . 274

9.3 Update noise variance for value iteration on 15-step corridor fi-

nite state world . 277

xxi

List of Tables

5.1 Summary of linear model training methods 125

6.1 Set of functions used to evaluate performance of mixing models 143

6.2 Performance-wise comparison of different mixing models . . . 146

6.3 p-values for Tukey’s HSD post-hoc test applied to comparing

the performance of different mixing models 147

7.1 Bayesian LCS model . 165

8.1 Systems parameters and constants used in the algorithmic de-

scription . 205

8.2 Operators and global functions 206

xxiii

List of Algorithms

1 ModelProbability(M ,X,Y ,Φ) 207

2 TrainClassifier(mk,X , Y) . 208

3 TrainMixing(M ,X,Y ,Φ,W ,Λ−1,aτ , bτ ,aα, bα) 210

4 Mixing(M ,Φ,V) . 211

5 Responsibilities(X,Y ,G,W ,Λ−1,aτ , bτ) 212

6 TrainMixWeights(M ,X,Y ,Φ,W ,Λ−1,aτ , bτ ,V ,aβ, bβ) 213

7 Hessian(Φ,G,aβ, bβ) . 215

8 TrainMixPriors(V ,Λ−1
V) . 216

9 VarBound(M ,X,Y ,Φ,θ) . 216

10 VarClBound(X,Y ,Wk,Λ
−1
k , aτk

, bτk
, aαk

, bαk
, rk) 217

11 VarMixBound(G,R,V ,Λ−1
V ,aβ, bβ) 217

12 Crossover(Ma,Mb) . 222

xxv

Chapter 1

Introduction

This thesis will show how acquiring a model-centred view to reformulating

Learning Classifier Systems (LCS), a rule-based method for machine learning,

provides an holistic approach to their design, analysis and understanding. The

immediate contributions are a newmethodology for their design and analysis,

a probabilistic model of their structure that reveals their underlying assump-

tions, a formal definition of when they perform optimally, new approaches to

their analysis, and strong links to other machine learning methods that have

not been available before. The work opens up the prospects of advances in

several areas, such as the development of new LCS implementations that have

formal performance guarantees, the derivation of representational properties

of the solutions that they aim for, and improved performance.

To introduce the work, let us initially give a short overview of machine learn-

ing, its applications and the most common problem types that it is concerned

with. An example that follows highlights the difference between ad-hoc and

model-centred approaches to designing machine learning algorithms and em-

phasises the advantages of the latter. This is followed by a short introduction

to LCS, their applications and current issues. Thereafter, we introduce our re-

search objective, the approach that we will take to reach this objective, and a

short overview of the chapters that are to follow.

1

1.1 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence (AI) that is con-

cerned with methods and algorithms that allow machines to learn. Thus,

rather than instructing a computer explicitly with regards to which aspects

certain data is to be classified, about relations between entities, or with which

sequence of actions to achieve certain goals, machine learning algorithms al-

low this knowledge to be inferred from a limited number of observations, or a

description of the task and its goal.

Their use is manifold, including speech and handwriting recognition, object

recognition, fraud detection, path planning for robot locomotion, game play-

ing, natural language processing, medical diagnosis, and many more [19, 170].

There is no universal method to handle all of these tasks, but a large set of

different approaches exist that are specialised for particular problem classes.

Probably the most distinct differences between the numerous machine learn-

ing methods is the type of task that they can handle, the approach that they

are designed with, and the assumptions that they are based upon. Consider-

ing firstly a set of commonmachine learning task types, let us then, based on a

simple example, introduce two common approaches to how one can develop

machine learning algorithms.

1.1.1 Common Machine Learning Tasks

The most common problem types of tasks that machine learning deals with

are:

Supervised Learning. In such tasks a set of input/output pairs are available,

and the function between the inputs and the associated outputs is to be

learned. Given a new input, the learned relation can be used to predict

the corresponding output. An example for a supervised learning task is

a classification task: given several examples of a set of object properties

and the type of this object, a supervised learning approach can be taken

2

to find the relation between the properties and the associated type, which

subsequently allows us to predict the object type for a set of properties.

Unsupervised Learning. Unsupervised learning is similar to supervised

learning, with the difference that no outputs are available. Thus, rather

than learning the relationship between inputs and associated outputs,

the learner builds amodel of the inputs. Consider a clustering taskwhere

several examples of the properties of some object are given and we want

to group the objects by the similarity of their properties: this is an un-

supervised learning task because the given examples only contain the

object properties, but not the group assignment of these objects.

Sequential Decision Tasks. Such tasks are characterised by a set of states, and

a set of actions that can be performed in these states, causing a transition

to another state. The transitions are mediated by a scalar reward and the

aim of the learner is to find the action for each state that maximises the re-

ward in the long run. An example for such a task is in a labyrinth to find

the shortest path the goal by assigning each step (that is, each transition)

a reward of -1. As the aim is to maximise the reward, the number of steps

is minimised. The most common approach to sequential decision tasks is

that of dynamic programming and reinforcement learning: to learn the

optimal value of a state, which is the expected sum of rewards when al-

ways performing the optimal actions from that state, and subsequently

to derive the optimal actions from these values.

There exists a wide range of different machine learningmethods that deal with

each of the problem types. As we are interested in their design, let us consider

two possible design approaches to an unsupervised learning task.

1.1.2 Designing an Unsupervised Learning Algorithm

Let us consider the well-known Iris dataset [84] that contains 150 instances of

four scalar attribute values and a class assignment each. Each of the four at-

tributes refer to a particular measure of the physical appearance of the flower.

Each instance belongs to one of the three possible classes of the plant.

3

Assume that we do not know which class each instance belongs to and want

to design an algorithm that groups the instances into three classes, based on

their similarity of appearance that we infer from the similarity of their attribute

values. This task is an unsupervised learning task with the inputs given by the

attribute values of each instance.

Ad-Hoc Design of an Algorithm

Let us firstly approach the task intuitively by designing an algorithm that aims

at grouping the instances such that the similarity of any two instances within

the same group or cluster is maximised, and between different clusters is min-

imised. We measure the similarity of two instances by the inverse squared

Euclidean distance1 between the points that represent these instances in the

four-dimensional attribute space, spun by the attribute values.

Starting by randomly assigning each instance to one of the three clusters, we

compute the centre of these clusters by the average attribute values of all in-

stances assigned to the corresponding cluster. To group similar instances into

the same cluster, let us now re-assign each instance to the cluster to whose cen-

tre it is closest, and subsequently re-compute the centres of these clusters. It-

erating these two steps causes the distance between instances within the same

cluster to be minimised, and between clusters to be maximised. Thus, we

have reached our goal. The concept of clustering by using the inverse dis-

tance between the data points as a measure of their similarity is illustrated in

Figure 1.1(a).

This clustering algorithm is the well-known K-means algorithm, which is guar-

anteed to converge, but not always to the optimal solution [161, 19]. While

it is a functional algorithm, it leaves open many question: is the squared Eu-

clidean distance indeed the best distancemeasure to use? What are the implicit

assumptions that are made about the data? How should we handle data where

the number of classes is unknown? In which cases would the algorithm fail?

1The squared Euclidean distance between two equally-sized vectors a = (a1, a2, . . .)
T and

b = (b1, b2, . . .)
T is given by

∑

i(ai − bi)
2 and is thus proportional to the sum of squared

differences between the vectors’ elements (see also Section 5.2). Therefore, two instances are
considered as being similar if the squared differences between their attribute values is small.

4

(a) (b)

Figure 1.1: Two different interpretations for clustering a set of data points into
two distinct clusters. The circles and squares are data points that are assign
to different clusters. The dashed circle and square represent the centres of the
identified clusters. (a) Identifying clusters byminimising the distance between
the data points within a cluster, and reassigning data points to the cluster to
whose centre they are closest to. The dashed lines indicate the assignment
of data points to cluster centres, given by the mean of all data points within
the cluster. (b) Interpreting the data points as being generated by Gaussians
that are centred on the cluster centres. The two dashed circles around the
centres represent the first and the second standard deviation of the generating
Gaussian.

Design of Algorithm by Modelling the Data

Let us approach the same problem from a different perspective: assume that

for each Iris class there is a virtual standard instance — something like a pro-

totypical Iris — and that all instances of a class are just noisy instantiations of

the standard instance. In other words, assume the attribute values of each in-

stance of a particular class to be generated by sampling from a Gaussian that is

centred on the attribute values of the standard instance of this class, where we

havemodelled the noisy instantiation process by a Gaussian (for an illustration

see Figure 1.1(b)). Furthermore, let us assume that each class has generated all

instances with a certain probability.

The model we have just described is completely specified by it parameters,

which are the centre of the Gaussians and their covariance matrices, and the

probability that is assigned to each class. We can train this model by the princi-

ple of maximum likelihood by adjusting its parameters such that the probabil-

ity of having generated all observed instances is maximised; that is, we want

to find the model parameters that best explain the data. This can be achieved

by using a standard machine learning algorithm known as the expectation-

5

maximisation (EM) algorithm [70]. In fact, assuming that each dimension of

each Gaussians is independent and has equal variance in each of the dimen-

sions, the resulting algorithm provides the same results as the K-means algo-

rithm [19]; so why take effort of specifying a model rather than using K-means

directly?

Reconsidering the questions that we have posed in the previous section makes

the benefit of having a model clear: it makes explicit the assumptions wemake

about the data. This also allows us to specify when the method is likely to fail,

which is when we apply it to data that does not conform to the assumptions

that the model makes. Furthermore, in this particular example, instances are

not assigned to single clusters, but their probability of belonging to either clus-

ter is given. Also, we can find the best number of clusters by facilitating tech-

niques from the field ofmodel selection that select the number of clusters that are

most suitable to explain the data. Additional advantages are that if Gaussians

do not describe the data well, we can easily change them to other distributions

and use the same techniques to train the model; and if new training methods

for that model type become available, they can be used as a drop-in replace-

ment for the ones that are currently used.

Clearly, due to the many advantages of the model-based approach, it should

always be preferred to the ad-hoc approach, as the example in this section has

demonstrated.

1.2 Learning Classifier Systems

Learning Classifier Systems are a family of machine learning algorithms that

are usually designed by the ad-hoc approach. Generally, they can be charac-

terised as handling sequential decision tasks with a rule-based representation

and by the use of evolutionary computation methods (for example, [169, 93]),

although some variants also perform supervised learning (for example, [162])

or unsupervised learning (for example, [215]), or do not rely on evolutionary

computation (for example, [87]).

6

1.2.1 A Brief Overview

Based on initial ideas by Holland [110, 111, 112, 110] to handle sequential de-

cision tasks and to escape the brittleness of expert systems of that time, LCS

initially did not provide the required operational stability that was hoped for

[86, 198, 134], until Wilson introduced the simplified versions ZCS [239] and

XCS [240], which solved most of the problems of earlier LCS and caused most

of the LCS community to concentrate on these two systems and their variants.

Learning Classifier Systems are based on a population of rules (also called the

classifiers) formed by a condition/action pair, that compete and cooperate to

provide the desired solution. In sequential decision tasks, classifiers whose

condition matches the current states are activated and promote their action.

One or several of these classifiers are selected, their promoted action is per-

formed, and the received reward is assigned to these classifiers, and addition-

ally propagated to previously active classifiers that also contributed to receiv-

ing the current reward. Occasionally, classifiers of low quality are removed

from the current population, and new ones are induced, with their condition

and action based on current high-quality classifiers. The aim of replacing clas-

sifiers is to improve the overall quality of the classifiers in the population.

Different LCS differ in how they select classifiers, in how they distribute the re-

ward, in whether they additionally maintain an internal state, and in how they

evaluate the quality of classifiers. The latter is the most significant difference

between early LCS, which based the quality of a classifier on the reward that

it contributed to receiving, and the currently most popular LCS, XCS [240],

that evaluates the quality of a classifier by how accurate it is at predicting its

contribution to the reward.

Shifting from strength-based to accuracy-based LCS also allowed them to be di-

rectly applied to regression tasks [243, 244], which are supervised learning

tasks where the output is of interval scale. That also changed the perspective

of how LCS handle sequential decision tasks: they act as function approxima-

tors for the value function that map the states and actions into the long-run

reward that can be expected to be received when performing the action in this

state, where the value function estimate is updated by reinforcement learning.

By replacing classifiers in the population, LCS aim at finding the best repre-

7

sentation of this value function [139].

1.2.2 Applications and Current Issues

Learning Classifier Systems are applied in many areas, such as autonomous

robotics (for example, [74, 99]), multi-agent systems (for example, [85, 61]),

economics (for example, [224, 171, 3]), and even traffic light control [39]. Par-

ticularly in classification tasks, which are supervised learning tasks where the

output is of nominal scale, their performance has been found to be competitive

with other state-of-the-art machine learning algorithms [97, 153, 8].

Nonetheless, even modern LCS are not free of problems, the most significant

being the following:

• Even though initially designed for such tasks, LCS are still not partic-
ularly successful in handling sequential decision tasks [11, 12]. This is

unfortunate, as “there is a lot of commonality in perspective between

the RL community and the LCS community” and more communication

between the two communities would be welcome [150].

• Most LCS feature a high number of system parameters, and while the
effect of some of them is ill-understood, setting others requires a spe-

cialised knowledge of the system. XCS, for example, has 20 partially

interacting system parameters [57].

• No LCS features any formal performance guarantees, and even if such
guarantees might not always seem particularly important in applica-

tions, the choice between a method with such guarantees and an equally

powerful method without them will be for the one that features such

guarantees.

• There is no knowledge about the assumptions made about the data, and
as a result there is also hardly any knowledge about when some LCS

might fail.

• Very few direct links between LCS and other machine learning methods
are established, which makes the transfer of knowledge for mutual gain

hard, if not impossible.

8

• The general lack of rigour in the design of LCS leads to a lack of their
acceptance in the field of machine learning. Together with the previous

point this inhibits the exchange of ideas between possibly closely related

methods.

These problems concern both practitioners and theoreticians, and solving

them should be a top priority in LCS research. Many of them are caused by

designing LCS by an ad-hoc approach, with all the disadvantages that we

have described before. This was justified when insufficient links were drawn

between LCS and other approaches, and in particular when the formalisms

were insufficiently developed within other machine learning methods, but

now such a position is difficult to argue for.

1.3 About this Work

This work arises from the lack of theoretical understanding of LCS, and the

missing formality when developing them. Its objective is to develop a formal

framework for LCS that lets us design, analyse, and interpret LCS. In that

process we focus on related machine learning approaches and techniques to

gain from their understanding and their relation to LCS.

The immediate aim of this work is not to develop a new LCS. Rather it is to

give a different perspective on LCS, to increase the understanding and perfor-

mance of current LCS, and to lay the foundations for a more formal approach

to developing new LCS. Although we initially concentrate exclusively on re-

gression, the resulting framework also forms the basis for sequential decision

tasks, as shown in Chapter 9, and only requires small modifications to be ap-

plied to classification (see Section 10.3).

1.3.1 The Initial Approach

Our initial approach was to concentrate on an LCS structure similar to XCSF

[243] and to split it conceptually into its function approximation, reinforce-

9

ment learning and classifier replacement component. Each of these was to be

analysed separately but with subsequent integration in mind, and resulted in

[77, 82, 156] for the function approximation component and [78, 79, 80] for the

reinforcement learning component.

In the analysis of these components we have pragmatically and successfully

followed a goal-centred approach: firstly we have defined formally what is to

be learned, and then have concentrated on how methods from machine learn-

ing can be applied to reach that goal. The algorithms resulting from this ap-

proach are equivalent or improve over the ones in XCSF, with the additional

gain of having a goal definition, a derivation of the method from first princi-

ples, and a strong link to associated machine learning methods fromwhich we

can borrow their theoretical analysis.

When concentrating on classifier replacement, however, taking this approach

was hindered by the lack of a formal definition of what set of classifiers the

process of classifier replacement should aim at. Even though some studies

aimed at defining the optimal set for limited classifier representations [131,

134, 136], the was still no general definition available. But without having a

formally expressible definition of the goal it was impossible to define amethod

that reaches it.

1.3.2 Taking a Model-Centred View

The definition of the optimal set of classifiers is at the core of LCS: given a

certain problem, most LCS aim at finding the set of classifiers that provides

the most compact competent solution to the problem.

Fortunately, taking the model-centred view to finding such a definition simpli-

fies its approach significantly: a set of classifiers can be interpreted as a model

for the data. With such a perspective, the aim of finding the best set of clas-

sifiers becomes that of finding the model that explains the data best. This is

the core problem of the field of model selection, and many methods have been

developed to handle it, such as structural risk minimisation (SRM) [221], min-

imum description length (MDL) [100], or Bayesian model selection [160].

10

The advantage of taking the model-centred approach is not only to be able to

provide a formal definition for the optimal classifier set. It also reveals the

assumptions made about the data, and hence gives us hints about the cases

in which the method might excel the performance of other related methods.

Also, the model is independent of the method to train it, and therefore we

can choose amongst several to perform this task and also acquire their perfor-

mance guarantees. Furthermore, it makes LCS directly comparable to other

machine learning methods that explicitly identify their underlying model.

To define the model underlying a set of classifiers we have borrowed the prob-

abilistic formulation of the related Mixtures-of-Experts model [121, 122] and

extended it such that it can describe such a set. This process was simplified by

having already analysed the function approximation and reinforcement learn-

ing component which allowed the integration of related LCS concepts into the

description of the model. In fact, with the resulting model we were able to ex-

press both function approximation and reinforcement learning, which makes

the model-centred approach for LCS holistic — it integrates function approxi-

mation, reinforcement learning and classifier replacement.

1.3.3 Summarising the Approach

In summary, the approach we take is the following: firstly, we give a formal

description of the problem types we are interested in, and formulate a proba-

bilistic model that describes a set of classifiers. We continue by describing how

such a model can be trained by methods from adaptive filter theory [106] and

statistical machine learning [19, 167], given some data.

To define the optimal classifier set we use Bayesian model selection [19, 120],

which requires a Bayesian LCS model. We get this model by extending the

probabilistic LCS model to include prior information. By applying variational

Bayesian inference and introducing two methods of searching the space of

classifier sets, we introduce a method that allows us to demonstrate the viabil-

ity of our optimality criterion, as our preliminary results in [81] have already

shown.

As handling sequential decision tasks requires the merger of our LCS model

11

with methods from reinforcement learning, we suggest how such a combi-

nation can be derived from first principles. One of the major issues of such

combinations is their algorithmic stability, and so we discuss how this can be

analysed. In addition, we provide some new insight into tasks which require

learning of long action sequences — that is, tasks in which XCS is known to

struggle [11, 12].

1.3.4 Contributions

The main contributions of this work are a new methodology for the design

and analysis of LCS, a probabilistic model of their structure that reveals their

underlying assumptions, a formal definition of when they perform optimally,

new approaches to their analysis, and strong links to other machine learning

methods that have not been available before.

Themethodology is based on taking themodel-centred approach to describing

the model underlying LCS, and applying standard machine learning methods

to train it. It supports the development of new LCS by modifying their model

and adjusting the training methods such that they conform to the new model

structure. Thus, the introduced approach, if widely adopted, will ensure a

formal as well as empirical comparability between approaches. In that sense,

it defines a reusable framework for the development of LCS.

A more detailed discussion of the contributions can be found in Chapter 11.

1.4 How to Read this Thesis

Many concepts that are frequently used in this work are introduced through-

out the text whenever they are required. Therefore, this work is best read

sequentially, in the order that the chapters are presented. However, this might

not be an option for all readers, and so we will emphasise some chapters that

might be of particular interest for people with a background in LCS and/or

ML.

12

Anyone new to both LCS and ML might want to first do some introductory

reading on LCS (for example, [42, 134]) and ML (for example, [19, 103]) be-

fore reading this work from cover to cover. LCS workers who are particularly

interested in our definition of the optimal set of classifiers should concentrate

on Chapters 3 and 4 for the LCS model, Chapter 7 for its Bayesian formulation

and the optimality criterion, and Chapter 8 for its application. Thosewhowant

to know how the introduced model relates to currently used LCS should read

Chapters 3 and 4 for the definition of the model, Chapters 5 and 6 for training

the classifiers and how they are combined, and Chapter 9 for reinforcement

learning with LCS. People who know ML and are most interested in the LCS

model itself should concentrate on the second half of Chapter 3, Chapter 4,

and Chapter 7 for its Bayesian formulation.

1.4.1 Chapter Overview

Chapter 2 gives an overview of the initial LCS idea, the general LCS frame-

work, and the problems of early LCS. It also describes how the role of

classifiers changed with the introduction of XCS, and how this influences

the structure of the LCS model. As our objective is also to advance the

theoretical understanding of LCS, the chapter gives a brief introduction

to previous attempts that analyse the inner workings of LCS and com-

pares them with the approach that we have chosen to take.

Chapter 3 begins with a formal definition of the problem types, interleaved

with what it means to build a model to handle these problems. It then

gives a high-level overview of the LCS model by characterising it as a

parametric ML model, continuing by discussing how such a model can

be trained, and relating it back to the initial LCS idea.

Chapter 4 concentrates on formulating a probabilistic basis for the LCS model

by first introducing the Mixture-of-Experts model after [122], and subse-

quently modifying it such that it can describe a set of classifiers in LCS.

Certain training issues are resolved by training the classifiers indepen-

dently. The consequences of this independent training and its relation to

current LCS are discussed at the end of this chapter.

Chapter 5 is concerned with the training of a single classifier, either when all

data is available at once, or when it is acquired incrementally. For both

13

cases we define what it means for a classifier to perform optimally, based

on training the LCS model with respect to the principle of maximum

likelihood, and introduce methods from adaptive filter theory to handle

its training. We concentrate on gradient-based methods and methods

that directly track the optimum, and derive a new incremental approach

to track the variance estimate of the classifier model. That this approach

outperforms currently based methods, and that gradient-based methods

might suffer from bad performance is shown empirically. The content of

this chapter is strongly related, but not equivalent, to our work in [77].

Chapter 6 shows how the local model of several classifiers can be combined to

a global model, based onmaximum likelihood training of the LCS model

from Chapter 4. As the approach turns out to be computationally expen-

sive, we additionally introduce a set of heuristics that are shown to fea-

ture competitive performance in a set of experiments. How the content

of this chapter differs from our previous work in [82] is also discussed.

Chapter 7 deals with the core question of LCS: what is the best set of classi-

fiers for a given problem? Relating this question to model selection, we

introduce a Bayesian LCS model for use within Bayesian model selec-

tion. The model is based on the one elaborated in Chapter 4, but is again

discussed in detail with special emphasis on the assumptions that are

made about the data. To provide an approach to evaluate the optimality

criterion, the second half of this chapter is concerned with deriving an

analytical solution to the Bayesian model selection criterion by the use

of variational Bayesian inference. Throughout this derivation, obvious

similarities to the methods used in Chapters 5 and 6 are highlighted.

Chapter 8 describes two simple prototype algorithms for using the optimality

criterion to find the optimal set of classifiers, one based onMarkov Chain

Monte Carlo (MCMC) methods, and the other based on GA’s. Their core

is formed by evaluating the quality of a set of classifiers, for which we

give a detailed algorithmic description based on the variational Bayesian

inference approach from Chapter 7. Based on these algorithms, the vi-

ability of the optimality criterion is demonstrated on a set of regression

tasks that highlight some of its features and how they relate to current

LCS.

Chapter 9 returns to the treatment of sequential decision tasks after having ex-

14

clusively dealt with regression tasks in Chapters 4 to 8. It firstly gives a

formal definition of these tasks and their goal, together with an introduc-

tion to methods from dynamic programming and reinforcement learn-

ing. Then, the exact role of LCS in handling such tasks is defined, and

a possible method is partially derived from first principles. This deriva-

tion clarifies some of the current issues of how to correctly perform RL

with XCS(F), which is discussed in more detail. Based on the LCS model,

we also show how the stability of LCS with RL can be studied, and shed

some new light on the issues of learning long action sequences in XCS.

Chapter 10 is fully devoted to discussing the wide range of future work that

our approach has made possible, together with the new routes of re-

search that it has opened up. From the practical side we concentrate on

how new LCS can be implemented, based on the classifier set optimality

criterion introduced in Chapter 7, and how this criterion can be further

empirically validated. From the theoretical point of view we describe

how the optimality criterion can give us more insight into the property

of an optimal set of classifiers, and how our discussion about stability in

Chapter 9 might allow us to approach the question of whether an LCS

implementation converges to the desired solution.

Chapter 11 finally summarises the work, points out its contributions, and

puts it into the perspective of our initial objective.

15

Chapter 2

Background

To give the reader a perspective on what characterises LCS exactly, and to

which level they are theoretically understood, we give in this chapter some

background on the initial ideas behind designing LCS, and describe what we

can learn from their development over the years and the existing theoretical

description. As an example of a current LCS we will concentrate on XCS [240]

— not only because it is currently the most used and best understood LCS, but

also because it is in its structure similar to howwe will design our LCS model.

Therefore, when discussing the theoretical understanding of LCS we will also

put a special emphasis on XCS and its variants, in addition to describing gen-

eral approaches that have been used to analyse LCS.

Even though our work borrows numerous concepts and methods from sta-

tistical machine learning, we will not describe them and their background in

this chapter, as this would cause us to deviate too much from our main topic

of interest. However, whenever using new concepts and applying new meth-

ods we give a short discussion about their background throughout the text. A

more thorough description of the methods used in this work can be found in

[17, 19, 103, 106, 166, 167], of which we particularly recommend [17, 19].

In general, LCS describe a very flexible framework that differs from other ma-

chine learning methods in its generality. It can potentially handle a large num-

ber of different problem types and can do so by using a wide range of different

representations. In particular, LCS have the potential of handling the complex

17

problem class of POMDPs (as described below) that even the currently most

powerful machine learning algorithms still struggle with. Another appealing

feature is the possible use of human-readable representations that simplify the

introspection of found solutions without the requirement of converting them

into a different format. Their flexibility comes from the use of evolutionary

computation techniques to search for adequate substructures of potential so-

lutions. In combination, this makes LCS an interesting target for theoretical

investigation, in particularly to promote a more principled approach to their

design.

We begin this chapter by giving a general overview of the problems that were

the prime motivator for the development of LCS. This is followed by a review

of the ideas behind LCS, describing the motivation and structure of Holland’s

first LCS, the CS-1 [117]. Many of the LCS that followed had a similar struc-

ture, so instead of describing them in detail we focus on some of the prob-

lems that they struggled with in Section 2.2.5. With the introduction of XCS

[240] many of these problems disappeared and the role of the classifier within

the population was redefined, as discussed in Section 2.3. However, as our

theoretical understanding even of XCS is still insufficient, and as we aim at

advancing this understanding with our work, we provide an overview over

significant theoretical approaches to LCS in Section 2.4, before putting our ap-

proach into the general LCS context in Section 2.5.

2.1 A General Problem Description

Consider an agent that interacts with an environment. At each discrete time

step the environment is in a particular hidden state that is not observable by the

agent. Instead, the agent senses the observable state of the environment that is

stochastically determined by its hidden state. Based on this observed state, the

agent performs an action that changes the hidden state of the environment and

consequently also the observable state. The hidden state transitions conform

to theMarkov property, such that the current hidden state only depends on the

previous hidden state and the performed action. For each such state transitions

the agent receives a scalar reward or payoff that can depend on the previous

hidden and observable state and the chosen action. The aim of the agent is to

18

learn which actions to perform in each observed state (called the policy) such

that the received reward is maximised in the long run.

Such a task definition is known as a Partially Observable Markov Decision

Process (POMDP) [123]. It is able to describe a large number of seemingly

different problems types. Consider, for example, a rat that needs to find the

location of food in a maze: in this case the rat is the agent and the maze is

the environment, and a reward of -1 is given for each movement that the rat

performs until the food is found, which leads the rat tominimise the number of

required movements to reach the food. A game of chess can also be described

by a POMDP, where the white player becomes the agent, and the black player

and the chess board define the environment. Further examples include path

planning, robot control, stock market prediction, and network routing.

While the POMDP framework allows the specification of complex tasks, find-

ing their solution is equally complicated. Thus, most of the recent work in LCS

has focused on a special case of POMDP problems that treat the hidden and

observable states of the environment as equivalent. Such problems are known

as Markov Decision Processes (MDPs) and are dealt with in more detail in

Chapter 9. They are approached by LCS by the use of reinforcement learning

which is centred on learning the expected sum of rewards for each state when

following the optimal policy. Thus, the intermediate aim is to learn a value

function that maps the states into their respective expected sum of rewards,

which is a univariate regression problem.

Even though the ultimate aim of LCS is to handle POMDPs, this work focusses

on an intermediate step, which is to perform univariate regression and multi-

variate regression with LCS, and discusses how an equal approach can lead to

LCS that are specialised on classification tasks. In addition, a separate chap-

ter describes how the same approach can be potentially extended to handle

MDPs, and which additional considerations need to be made. Nonetheless,

when introducing LCS we still consider their original motivation, which is to

deal with POMDPs.

19

2.2 Early Learning Classifier Systems

The primary problems that LCS were designed to handle are sequential de-

cision tasks that are defined by POMDPs, as described above. In LCS it is

assumed that each observed state is a composite element that is identified by

the collection of its features, such that the agent is able to associate the choice

of action with certain features of the state. This allows the agent to generalise

over certain features and possibly also over certain states when defining its

choice of action for each of the states.

2.2.1 Initial Idea

Although some of Holland’s earlier work [110, 111, 112] had already intro-

duces some ideas for LCSs, a more specific framework was finally defined in

[115]. The motivation was to escape the brittleness of popular expert systems

of that time by evolving a set of cooperative and competing rules in a market-

inspired economy. In particular, Holland addressed the following three prob-

lems [116]:

Parallelism and coordination. Complex situations are to be decomposed into

simpler building blocks, called rules, that handle this situation coopera-

tively. The problem is to provide for the interaction and coordination of

a large number of rules that are active simultaneously.

Credit assignment. To decide which rules in a rule-based system are respon-

sible for its success, one needs to have a mechanism which accredits

each rule with its responsibility to that success. Such mechanism become

particularly complex when rules act collectively, simultaneously and se-

quentially. Furthermore, complex problems do not allow for exhaustive

search over all possible rule combinations, and so this mechanism has to

operate locally rather than globally.

Rule discovery. Only in toy problems can one evaluate all possible rules ex-

haustively. Real-world problems require the search for better rules based

on current knowledge to generate plausible hypotheses about situations

that are currently poorly understood.

20

Holland addressed these questions by proposing a rule-based system that can

be viewed as a message processing system acting on a current set of messages,

either internal or generated by a set of detectors to the environment and thus

representing the environment’s observable state. Credit assignment is handled

by a market-like situation with bidders, suppliers and brokers. Rule discov-

ery facilitates an evolutionary computation-based process that discovers and

recombines building blocks of previously successful rules.

While we do not aim to replicate the original framework in full detail, the fol-

lowing section gives an overview of the most common features among some

of the LCS implementations derived from this framework. For a detailed

overview and comparison of different early LCS, see [10, Ch. 2].

2.2.2 The General Framework

In LCS the agent’s behaviour is determined by a set of classifiers (Holland’s

rules), each consisting of at least one condition and an action. On sensing the

state of the environment though a detector, the sensor reading of the agent is

injected as a message into an internal message list, containing both internal

and external messages. Classifier conditions are then tested for matching any

of the messages on the message list. The matching classifiers are activated,

promoting their actions by putting their message on the message list. The

message on the list can be either interpreted to perform actions or to be kept

on the list to act as an input for the next cycle. If several actions are promoted

at the same time, a conflict resolution subsystem decides which action to perform.

Once this is completed, the cycle starts again by sensing the new state of the

environment.

All of the messages are usually encoded using binary strings. Hence, to allow

matching of messages by classifier conditions, we are required to encode con-

ditions and actions of classifiers as binary strings as well. However, to allow

for a classifier to generalise over several different input messages, the string

representing its conditions can contain the don’t care symbol “#” that matches

both 1’s and 0’s in the corresponding position of the input message. Simi-

larly, actions of the same length as classifier conditions can also contain the

“#” symbol (in that case called pass-through), which implies that specific bits

21

of the matching message are passed though to the actions, allowing a single

classifier to perform different actions depending on the input message. The

latter feature of generalisation in the classifier actions is much less frequently

used than generalisation in the classifier condition.

The description above covers how the agent decides which actions to perform

(called the performance subsystem) but does not explain how such an agent can

react to external reward to optimise its behaviour in a given environment.

Generally, the behaviour is determined by the population of classifiers and

the conflict resolution subsystem. Hence, considering that the functionality of

the conflict resolution subsystem is determined by properties of the classifiers,

learning can be achieved by evaluating the quality of each classifier and aiming

at a population that only contains classifiers of high quality. This is achieved

by a combination of the credit allocation subsystem and the rule induction sub-

system. The role of the former is to distribute externally received reward to

classifiers that promoted the actions responsible for receiving this reward. The

latter system creates new rules based on classifiers with high credit to promote

the ones that are assumed to be of good quality.

2.2.3 Interacting Subsystems

To summarise, LCS aim at maximising external reward by an interaction of the

following subsystems:

Performance Subsystem. This subsystem is responsible for reading the input

message, activating the classifiers based on their condition matching any

message in the message list, and performing actions that are promoted

by messages that are posted by the active classifiers.

Conflict Resolution Subsystem. If the classifiers promote several conflicting

actions, this subsystem decides for one action, based upon the quality

rating of the classifiers that promote these actions.

Credit Allocation Subsystem. On receiving external reward, this subsystem

decides how this reward is credited to the classifiers that promoted the

actions causing the reward to be given.

22

Rule Induction Subsystem. This subsystem creates new classifiers based on

current high-quality classifiers in the population. As the population size

is usually limited, introducing new classifiers into the population re-

quires the deletion of other classifiers from the population, which is an

additional task of this subsystem.

Although the exact functionality for each of the systems was given in the orig-

inal paper [115], further developments introduce changes to the operation of

some subsystems, which is why we only give a general description here. In

Section 2.2.5 we discuss some properties of these LCS, and point out the major

problems that led theway to a new class of LCS that featuremajor performance

improvements.

2.2.4 The Genetic Algorithm in LCS

Holland initially introduced Learning Classifier Systems as an extension of

Genetic Algorithms to Machine Learning. GA’s are a class of algorithms that

are based on the principles of evolutionary biology, driven by mutation, selec-

tion and recombination. In principle, a population of candidate solutions is

evolved and, by allowing more reproductive opportunities to fitter solutions,

the whole population is pushed towards higher fitness. Although GA’s were

initially applied as function optimisers (for example [93]), Holland’s idea was

to adapt them to act as the search process in Machine Learning, giving rise to

LCS.

In an LCS, the GA operates as the core of the rule induction subsystem, aiming

at replicating classifiers of higher fitness to increase the quality of the whole

population. New classifiers are created by selecting classifiers of high quality

from the population, performing cross-over of their conditions and actions and

mutating their offspring. The offspring is then reintroduced into the popula-

tion, eventually causing deletion of lower quality classifiers due to bounded

population size. Together with the credit allocation subsystem, which is re-

sponsible for rating the quality of the classifiers, this process was intended to

generate a set of classifiers that promote optimal behaviour in a given environ-

ment.

23

2.2.5 The Problems of Early LCS

In most earlier classifier systems1 each classifier in the population had an as-

sociated scalar strength. This strength was assigned by the credit allocation

subsystem and acted as the fitness and hence quality rating of the classifier.

On receiving external reward, this reward contributed to the strength of all

classifiers that promoted the action leading to that reward. Learning immedi-

ate reward alone is not sufficient, as sequential decision tasks might require a

sequence of actions before any reward is received. Thus, reward needs to be

propagated back to all classifiers in the action sequence that caused this reward

to be received. The most popular scheme to perform this credit allocation was

the Implicit Bucket Brigade [113, 188, 189].

Even though this schema worked fairly well, performance in more compli-

cated tasks was still not satisfactory. According to Kovacs [134, 133], the main

problem was the use of classifier strength as its reproductive fitness. This

causes only high-reward classifiers to be maintained, and thus the information

about low-rewarding areas of the environment is lost, and with it the knowl-

edge about if the performed actions are indeed optimal. A related problem

is that if the credit assignment is discounted, that is, if classifiers that are far

away from the rewarding states receive less credit for causing this reward, then

such classifiers have a lower fitness and are more likely to be removed, causing

sub-optimal action selection in areas distant to rewarding states. Most funda-

mentally, however, is the problem that if the classifier strength is not shared

between the classifiers, then environments with layered payoff will lead to

the emergence of classifiers that match a large number of states, despite them

not promoting the best action in all of those states. Examples for such en-

vironments are the ones that describe sequential decision tasks. It needs to

be pointed out that Kovacs does not consider fitness sharing in his investiga-

tions, and that according to Bull and Hurst [34] optimal performance can be

achieved even with strength-based fitness as long as fitness sharing is used,

but “[...] suitable system parameters must be identified for a given problem”,

and how to do this remains open to further investigation.

It has also been shown by Forrest and Miller [86] that the stochastic selection

1See [10, Ch. 2] for a description and discussion of earlier LCS

24

of matching classifiers can lead to instabilities in any LCS that after each per-

formed action reduces the strength of all classifiers by a life tax and has a small

message list such that not all active classifiers can post their messages at once.

In addition to these problems, Smith [198] investigated the emergence of para-

sitic classifiers that do not directly contribute to action selection but gain from

the successful performance of other classifiers in certain LCS types with inter-

nal message lists.

Even though various taxation techniques, fitness sharing [34], and other meth-

ods have been developed to overcome the problems of overly general and par-

asitic classifiers, LCS still did not feature satisfactory performance in more

complex tasks. A more drastic change was required.

2.3 The LCS Renaissance

Before introducing XCS, Wilson developed ZCS [239] as a minimalist classi-

fier systems that aimed through its reductionist approach to provide a better

understanding of the underlying mechanisms. ZCS still uses classifier fitness

based on strength by using a version of the implicit bucket brigade for credit

assignment, but utilises fitness sharing to penalise overly general classifiers.

Only a year after having published ZCS, Wilson introduced his XCS [240] that

significantly influenced future LCS research. Its distinguishing feature is that

the fitness of a classifier is not its strength anymore, but its accuracy in pre-

dicting the expected reward2. Consequently, XCS does maintain information

about low-rewarding areas of the environment and penalises classifiers that

match overly large areas, as their reward prediction becomes inaccurate. By

using a niche GA that restricts the reproduction of classifiers to the currently

observed state and promote the performed action, and removing classifiers in-

dependent of their matching, XCS prefers classifiers that match more states as

2Using measures different than strength for fitness was already suggested before but was
never implemented in the form of pure accuracy. Even in the first LCS paper, Holland sug-
gested that fitness should be based not only on the reward but also on the consistency of the
prediction [112], which was implemented in [117]. Later, however, Holland focused purely
on strength-based fitness [240]. A further LCS that uses some accuracy-like fitness measure is
Booker’s GOFER-1 [21].

25

long as they are still accurate, thus aiming towards optimally general classi-

fiers3. More information about Wilson’s motivation for the development, and

an in-depth description of its functionality can be found in [134]. A short in-

troduction to XCS from the model-based perspective is given in Appendix B.

After its introduction, XCS was frequently modified and extended, and its the-

oretical properties and exact working analysed. This makes it, up until the

time of this writing, the most used and best analysed LCS available. These

modifications also enhanced the intuitive understanding of the role of the clas-

sifiers within the system, and as the LCS model we propose borrows much of

its design and intuition from XCS, we will in the following sections give fur-

ther background on the role of a classifier in XCS and its extensions. We will

only consider single-step tasks where a reward is received after each action,

and postpone the description of multi-step tasks until Chapter 9.

2.3.1 Computing the Prediction

Initially, each classifier in XCS only provided a single prediction for all states

that it matches, independent of the nature of these states [240, 241, 242].

In XCSF [243, 244], this was extended such that each classifier represents a

straight line and thus is able to vary its prediction over the states that it

matches, based on the numerical value of the state. This concept was soon

picked up by other researchers andwas quickly extended to higher-order poly-

nomials [142, 143, 144], to the use of neural networks to compute the prediction

[35, 177, 178, 157], and even Support Vector Machines (SVMs) [158].

What became clear was that each classifier approximates the function that is

formed by a mapping from the value of the states to their associated payoffs,

over the states that it matches [244]. In other words, each classifier provides

a localised model of that function, where the localisation is determined by

the condition and action of the classifier — even in the initial XCS, where the

model is provided by a simple averaging over the payoff of all matched states

[77].

3Wilson in [240] calls optimally general classifiers maximally general, which could lead to the
misinterpretation that these classifiers match all states.

26

2.3.2 Localisation and Representation

Similar progress was made in how the condition of a classifier can be repre-

sented: while XCS initially used ternary strings for that task [240, 241], the

representational repertoire was soon increased to real-numbered interval rep-

resentations to handle real-valued states [242], as a prerequisite to function

approximation with computed predictions [243, 244]. Amongst other repre-

sentations used with XCS(F) to determine the matching of a classifier are now

hyper-ellipsoids [41, 41], neural networks [38], S-expressions [145], and convex

hulls [148]. Fuzzy classifier representations [60] additionally introduce match-

ing by degree which — despite a different approach to their design – makes

them very similar to the model that is presented here.

The possibility of using arbitrary representations in XCS(F) to determine

matching of a classifier was highlighted in [244]. In fact, classifiers that model

the payoff for a particular set of states and a single action can conceptually be

seen as performmatching in the space of states and actions, as they only model

the payoff if their condition matches the state, and their action is the one that

is performed. Similarly, classifiers without actions, such as the ones used in

[243, 244] for function approximation, perform matching in the space of states

alone.

2.3.3 Classifiers as Localised Maps from Input to Output

To summarise, classifiers in XCS are localisedmodels of the function that maps

the value of the states to their associated payoffs. The localisation is deter-

mined by the condition/action pair that specifies which states and which ac-

tions of the environment are matched.

When LCS are applied to regression tasks we prefer to follow standard ter-

minology and call the state/action pair the input and the associated payoff

the output, as already done in [243]. Thus, the localised model of a classifier

provides a mapping from the input to the output, and its localisation is deter-

mined by the input alone.

27

We can map sequential decision tasks onto the same concept by specifying an

input by the state/action pair, and its associated output by the payoff. Simi-

larly, in classification tasks the input is given by the attributes, and the output

is the class label, as used in UCS [162], which is a variant of XCS specialised for

classification tasks. Therefore, the concept of classifiers providing a localised

model that maps inputs to outputs generalises over all LCS tasks, which we

will exploit when developing the LCS model.

2.3.4 Recovering the Global Prediction

Several classifiers can match the same input but each might provide a different

predictions for its output. To get a single output prediction for each input, the

classifiers’ output predictions need to be combined, and in XCS and all its

variants this is done by a weighted average of these predictions, with weights

proportional to the fitness of the associated classifiers [240, 241].

The component responsible for combining the classifier predictions in XCS and

LCS has mostly been ignored, until we have shown in [82] that combining

the classifier predictions in proportion to the inverse variance of the classifier

models gives a lower prediction error than when using the inverse fitness. At

the same time, Brown, Kovacs and Marshall have demonstrated that the same

component can be improved in UCS by borrowing concepts from ensemble

learning [29].

Even though rarely discussed, we consider the necessity of combining the clas-

sifier predictions as important as having classifiers provide localised models,

as will become apparent when the LCS model is introduced.

2.3.5 Michigan-style vs. Pittsburgh-style LCS

In Michigan-style LCS all classifiers within a population cooperate to collec-

tively provide a solution. Examples are the first LCS, Cognitive System 1 (CS-

1) [117], SCS [93], ZCS [239] and XCS [240]. In the less common Pittsburgh-

style LCS several sets of classifiers compete against each other to provide a

28

solution with a single fitness value for the set, with examples for such systems

given by LS-1 [200, 201, 202], GALE [152] and CCS [154, 155].

Even though “Michigan and Pittsburgh systems are really quite different ap-

proaches to learning [. . .]” [134], they share the common goal of finding sets of

classifiers that provide a solution to the task at hand. Consequently, we assert

that their classifier populations can be represented by the same LCS model,

but their way of improving that model is different.

In developing the LCS model we do not distinguish between the two styles,

not even when defining the optimal set of classifiers in Chapter 7, in order

to emphasise that they are just two different implementations that have the

same goal. We will distinguish between them as soon as we start discussing

implementational details in Chapter 8, but attempt to build a bridge between

the two styles in Chapter 10.

2.4 Existing Theory

As with the creation of a model for LCS we also aim at advancing the theoret-

ical understanding of LCS in general, let us review some previous theoretical

work in LCS. We first start with theoretical approaches that consider all LCS

subsystems at once, and then concentrate on the GA in LCS, followed by dis-

cussing approaches that have analysed the function approximation and RL

side of LCS.

2.4.1 The Holistic View

The first and currently only LCS model that allows studying the interaction

with the environment and generalisation in the same model was developed

by Holland just after the introduction of the LCS framework [114].

He describes the set of states that the system can take by combining all possible

environmental states and internal states of the LCS, and defines a transition

29

matrix that describes the Markov chain probabilities of transiting from one

system state to another. Thus, changes in the environment and the LCS are

tracked simultaneously.

Environmental similarities are exploited in the model by partitioning the

Markov matrix into equivalence classes to get a sub-Markov matrix that col-

lapses similar states into one. From this, reset times, upper bounds on expected

experiment repetition times and other properties can be derived.

The model was created before the emergence of modern RL4 and so cannot

refer to its theoretical advances, and was not updated to reflect those. Ad-

ditionally, the inclusion of the LCS state into the model causes the number of

states to be uncountable due to the real-valued parameterisation of LCS. Thus,

it is unclear if the model will provide significant advances in the understand-

ing of LCS. We rather propose to rely on RL theory to study the performance

of LCS in sequential decision tasks, as discussed in Chapters 9 and 10.

2.4.2 Approaches from the Genetic Algorithm Side

As many researchers consider LCS as Genetic-based Machine Learners

(GBML), they are most frequently analysed from the GA perspective. Particu-

larly when considering single-step problems, when each action is immediately

mediated by a reward, the task is a regression task and does not require an RL

component. Due to its similarity to our LCS model, we will mainly consider

the analyses performed on XCS. Note, however, that none of these analyses is

of direct importance to the work presented here, as they study a single algo-

rithm that performs a task which we only define by its aim, rather than by how

it is performed. Nonetheless, the analysis of XCS has given valuable insights

into the set of classifiers that XCS aims at evolving — a topic that we come

back to in Section 7.1.1.

4By the “emergence of modern RL” we refer to Sutton’s development of TD [211] and
Watkin’s Q-Learning [231]

30

Single-Step Tasks

Single-step problems are essentially regression tasks where XCS aims at learn-

ing a complete mapping from the input space to the output space. In XCS,

such problems are handled by an RL method that for these tasks reduces

to a gradient-based supervised learning approach, as will be shown in Sec-

tions 5.3.3 and 5.3.4.

Most of the analysis of XCS in single-step tasks has been performed by Butz

et al. in an ongoing effort [51, 53, 44, 56, 49, 46, 50, 58] restricted to binary

string representations, and using a what they call facet-wise approach. Their ap-

proach is to look at single genetic operators, analyse their functionality and

then assemble a bigger picture from the operators’ interaction, sometimes tak-

ing simplifying assumptions to make the analysis tractable.

In [53] they analyse the various evolutionary pressures in XCS, showing that

the set pressure pushes towards less specific classifiers, as already conjectured

inWilson’s Generalization Hypothesis [240]. Mutation is shown to push towards

50% or 66% specificity, and no quantitative values are derived for the fitness

and subsumption pressure. Overall, it is qualitatively shown that XCS pushes

towards optimally general classifiers, but the quantitative results should be

treated with care due to their reliance of several significant assumptions.

In a subsequent series of work [51, 44, 46, 58], Butz et al. derive various time

and population bounds to analyse how XCS scales with the size of the input

and the problem complexity, where the latter expresses how strongly the val-

ues of various input bits depend on each other. Combining these bounds, they

show that the computational complexity of XCS grows linearly with respect to

the input space size and exponentially with the problem complexity. Thus they

state in [58] that XCS is a Probably Approximately Correct (PAC) learner (for

example [128]). While this claim might be correct, the work that is presented

is certainly not sufficient to support it — in particular due to the simplifying

assumptions made to derive these bounds. More work is required to formally

support this claim.

In additional to analysing the genetic pressures and deriving various bounds, a

wide range of further work has been performed, like the empirical and theoret-

31

ical analysis of various selection policies in XCS (for example [56, 49, 83, 183]),

or improving the XCS and UCS performance of classification problems with

strong class imbalance [180, 181, 182]. None of these studies is directly related

to our work and therefore will not be discussed in detail.

Multi-Step Tasks

Very little work been has performed to analyse the GA in multi-step prob-

lems, where a sequence of action rather than a single action lead to the reward

that is to be maximised. The only relevant study might be [31], where Bull

has firstly shown in single-step tasks that overly general classifiers are sup-

ported in strength-based LCS but not in accuracy-based LCS. The model is

then extended to a 2-step task, showing that “effective selection pressure can

vary over time, possibly dramatically, until an equilibrium is reached and the

constituency of the co-evolving match sets stop changing” [31]. The model

even shows a pressure towards lower payoff rules in some cases, although

this might be an artifact of the model.

2.4.3 Approaches from the Function Approximation Side

XCS was, for the first time, used for function approximation in [243] by allow-

ing classifiers to compute their predictions from the values of the inputs. In

[143, 144] it has been shown that such classifiers might only converge slowly to

the correct model, and a training algorithm based on Recursive Least Squares

(RLS) [106] was proposed to improve their speed of convergence. A simi-

lar, but more in-depth, analysis was also provided in [77], where further ap-

proaches, including the Kalman filter [124], were proposed.

How classifiers are combined to form the global prediction is essential to func-

tion approximation but has been mostly ignored since it was defined in [240].

Only [82] and [29] have recently shed a new light on this component, but there

is certainly still room for advancing its understanding.

32

2.4.4 Approaches from the Reinforcement Learning Side

Again concentrating on XCS, its exact approach to performing reinforcement

learning has been discussed in [139] and [45]. In the latter study, Butz et al.

show the parallels between XCS and Q-Learning and aim at adding gradi-

ent descent to XCS’s update equations. This modification is additionally pub-

lished in [47], andwas later analysed in [226, 227, 143, 78, 141, 140], with mixed

results. Due to the current controversy about this topic we postpone its de-

tailed discussion to Section 9.3.6, where we show that XCS(F) does not need be

modified to perform Q-Learning with gradient descent.

Another study that is directly relevant to RL is the limits of XCS in learning

long sequences of actions [11, 12]. As this limitation emerges from the type of

classifier set model that XCS aims at, it is also relevant to our work, and thus

will be discussed in more detail in Section 9.5. Let us just note here that we will

show that the solution proposal given in [12] might not apply to all sequential

decision task definitions, but that our proposed model might be able to handle

them.

There has been no work on the stability of XCS when used for sequential de-

cision tasks, even though such stability is not guaranteed (for example, [25]).

Wada et al. claim in [226, 227] that XCS does not perform Q-Learning correctly

— a claim that we question in Section 9.3.6 — and consequently introduce a

modification of ZCS in [227] that makes it equivalent to Q-Learning with linear

function approximation. They demonstrate its instability in [225], and present

a stable variant in [227]. As described in Section 4.5, their LCS model is not

compatible with XCS, as they do not train their classifiers independently. As

we favour the XCS approach, we consider its stability in Section 9.4, indepen-

dent of the approach presented in [226, 227, 225].

2.5 Discussion and Conclusion

From this historical overview of LCS and in particular XCS we can see that

LCS are traditionally approached algorithmically and also analysed as such.

33

Even in the first LCS, CS-1, most of the emphasis is put on how to approach

the problem, and little on the problem itself. Given that many non-LCS ap-

proaches handle the same problem class (for example, [17, 213]), an algorith-

mic description of LCS emphasises the features that distinguishes LCS from

non-LCS methods. But even with such statements one needs to be careful:

considering the series of 11 short essays under the title “What is a Learning

Classifier System?” in [116] it becomes clear that there is no common agree-

ment about what defines an LCS.

Based to these essays, Kovacs discusses in [135] if LCS should be seen as GA’s

or algorithms that perform RL. He concludes that while strength-based LCS

are more similar to GA’s, accuracy-based LCS shift their focus more towards

RL. Thus, there is no universal concept that applies to all LCS, particularly

when considering that there exist LCS that cannot handle sequential decision

tasks (for example, UCS [162]), and others that do not have a GA (for example,

MACS [90, 87]).

The extensive GA-oriented analysis in recent years has shed some light into

which problems XCS can handle and where it might fail, and how to set some

of its extensive set of system parameters. Nonetheless, questions still emerge

if accuracy-based fitness is indeed better than strength-based fitness in all sit-

uations, or if we even need some definition of fitness at all [22]? Furthermore,

the correct approach to reinforcement learning in LCS is still not completely

clear (see Section 9.3.6). In any case, we would like to emphasise that both the

GA and RL in LCS are just methods to reach some goal, and without a clear

definition of this goal it is impossible to determine if any method is ever able

to reach it.

This is why the approach we propose for the analysis of LCS differs from look-

ing further at existing algorithms and figuring out what they actually do and

how they might be improved. Rather, as already alluded to in the previous

chapter, we prefer to take a step back and concentrate firstly on the problem it-

self before considering an approach to find its solution. This requires us to give

a clear definition of the problem(s) that we aim to solve, followed by defining a

model that determines the assumptions that we have about the problem struc-

ture. To ensure that the resulting method can be considered as an LCS, the

design of this model is strongly inspired by the structure of LCS, and in par-

34

ticular XCS.

Having a problem and an explicit model definition allows us to apply standard

machine learning methods to train this model. The model in combination with

its training defines the method, and as we will see, the resulting algorithms

are indeed close to the ones of XCS, but with all the advantages that we have

already described in the previous chapter. Additionally, we do not need to

explicitly handle questions about possible fitness definitions or the correctness

of the reinforcement learning method used, as they emerge naturally through

deriving training methods for the model. From that perspective, the proposed

approach handlesmany of the current issues in LCSmore gracefully and holis-

tically than previous attempts.

35

Chapter 3

A Learning Classifier Systems

Model

Specifying the model that is formed by a set of classifiers is central to our ap-

proach. On one hand it explicitly defines the assumptions that we make about

the problem that we want to solve, and on the other hand it determines the

training methods that can be used to provide a solution. This chapter gives a

conceptual overview over the LCS model, which is turned into a probabilistic

formulation in the next chapter.

As specified in Chapter 1, the tasks that LCS are commonly applied to are

regression tasks, classification tasks, and sequential decision tasks. The under-

lying theme of providing solutions to these tasks is to build a model that as-

sociates a set of observed inputs to their outputs. Taking the generative view,

we assume that the observed input/output pairs are the result of a possibly

stochastic process that generates an output for each associated input. Thus,

the role of the model is to provide a good representation of the data-generating

process.

As the number of available observations is generally finite and the observa-

tions themselves possibly noisy, and we do not have direct access to the data-

generating process, we need to induce its properties from these finite obser-

vations. Therefore, we are required to make assumptions about the nature of

the data-generating process which are expressed through the model that we

37

assume.

Staying close to the LCS philosophy, this model is given by a set of localised

models that are combined to a global model. In LCS terms the localised mod-

els are the classifiers with their localisation being determined by which inputs

they match, and the global model is determined by how the classifier predic-

tions are combined to provide a global prediction. Acquiring such a model

structure has several consequences on how it is trained, the most significant

being that it is conceptually separable into a two-step procedure: firstly, we

want to find a good number of classifiers and their localisation, and secondly

we want to train this set of classifiers to be a seemingly good representation of

the data-generation process. Both steps are closely interlinked and need to be

dealt with in combination.

A more detailed definition of the tasks and the general concept of modelling

the data-generating process is given in Section 3.1, after which we introduce

themodel that describes a set of classifiers as a member of the class of paramet-

ric models in Section 3.2. This includes an introduction to parametric models

in Section 3.2.1, together with a more detailed definition of the localised classi-

fier models and the global classifier set model in Sections 3.2.3 and 3.2.4. After

discussing how the model structure influences its training and how the model

itself relates to the Holland’s initial LCS idea in Sections 3.2.6 and 3.2.7, we

provide a brief overview of how the concepts introduced in this chapter prop-

agate through the chapters to follow.

3.1 Task Definitions

In previous sections we have already informally described the different prob-

lem classes that LCS are applied to. Here we give amore formal task definition

that acts as the basis for further formal development. We differentiate between

regression tasks, classification tasks, and sequential decision tasks.

Let us assume that we have a finite set of observations generated by noisymea-

surements of a stochastic process. All tasks have at their core the formation of

a model that describes a hypothesis for the data-generating process. The pro-

38

cess maps an input space X into an output space Y , and so each observation
(x, y) of that process is formed by an input x ∈ X that occurred and the associ-
ated measured output y ∈ Y of the process in reaction to the input. The set of
all inputs X = {x1, x2, . . . } and associated outputs Y = {y1, y2, . . . } is called
the training set or data D = {X,Y }.

A model of that process provides a hypothesis for the mapping X → Y , in-
duced by the available data. Hence, given a new input x, the model can be

used to predict the corresponding output y that the process is expected to gen-

erate. Additionally, an inspection of the hypothesis structure can reveal regu-

larities within the data. In sequential decision tasks the model represents the

structure of the task and is employed as the basis of decision-making.

Before we describe the similarities and differences between the regression,

classification and sequential decision tasks, we further discuss the difficulty

of forming good hypotheses about the nature of the data-generating process

from only a finite number of observations. For this purpose we assume batch

learning, that is, the whole training set withN observations of the form (xn, yn)

is available at once. In a later section, we contrast this approach with incremen-

tal learning, where the model is updated incrementally with each observation.

3.1.1 Expected Risk vs. Empirical Risk

In order to be able to model a data-generating process, we need to be able to

express this process by a smooth stationary function f : X → Y that generates
the observation (x, y) by y = f(x)+ ǫ, where ǫ is a zero-mean random variable.

We require it to be given by a function such that the same expected output is

generated for the same input. That is, given two inputs x, x′ such that x = x′,

the expected output of the process needs to be the same for both inputs. Were

this not the case, then we would be unable to detect any regularities within the

process and so we could not build a meaningful model.

Smoothness of the function is required to express that the process generates

similar outputs for similar inputs. That is, given two inputs x, x′ that are close

in X , their associated outputs y, y′ on average need to be close in Y . This prop-

39

erty is required in order to make predictions: if it did not hold, then we could

not generalise over the training data, as relations between inputs do not trans-

fer to relations between outputs, and thus we would be unable to predict the

output for an input that is not in the training set. There are several ways of

ensuring the smoothness of a function, such as by limiting its energy of high

frequencies in the frequency domain [92]. We do not rely on any particular for-

mal definition but rather deal with smoothness from an intuitive perspective.

As discussed before, the process may be stochastic and the measurements of

the output may be noisy. This stochasticity is modelled by the random variable

ǫ, which has zero mean, such that for an observation (x, y) we have E(y) =

f(x). The distribution of ǫ is determined by the process stochasticity and the

measurement noise.

With this formulation we can see that a model with structureM has to provide
a hypothesis of the form f̂M : X → Y . In order to be a good model, f̂M has
to be close to f . To be more specific, let L : Y × Y → R

+ be a loss function

that describes a distance metric in Y , that is L(y, y′) > 0 for all y 6= y′, and

L(y, y′) = 0 otherwise. To get a hypothesis f̂M close to f we want to minimise

the expected risk
∫ X

L(f(x), f̂M(x))dp(x), (3.1)

where p(x) is the probability density of having input x. In other words, our aim

is to minimise the distance between the output of the data-generating process

and our model of it, for each input xweighted by the probability of observing

it.

We cannot directly minimise the expected risk as f is only accessible by a finite

set of observations. Thus, when constructing the model we need to rely on an

approximation of the expected risk, called the empirical risk and defined as

1

N

N
∑

n=1

L(yn, f̂M(xn)), (3.2)

which is the average loss of the model over all available observations. De-

pending on the definition of the loss function, minimising the empirical risk

can result in least squares learning or the principle of maximum likelihood

[221]. By the law of large numbers, the empirical risk converges to the ex-

40

pected risk almost surely with the number of observations tending to infinity,

but for a small set of observations the two measures might be quite different.

How to minimise the expected risk based on the empirical risk forms the ba-

sis of statistical learning theory, for which a good introduction with slightly

different definitions can be found in [221].

We could simply proceed byminimising the empirical risk. That this approach

will not lead to an adequate result is shown by the following observation: the

model that minimises the empirical risk is the training set itself. However, as-

suming noisy measurements, the data is almost certainly not completely cor-

rect. Hence, we want to find a model that represents the general pattern in

the training data but does not model its noise. The field that deals with this

issue is known as model selection. Learning a model such that it perfectly fits

the training set but does not provide a good representation of f is known as

overfitting. The opposite, that is, learning a model where the structural bias of

the model dominates over the information included from the training set, is

called underfitting.

While in LCS several heuristics have been applied to deal with this issue, it

has never been characterised explicitly. In this and the following chapters we

consider our aim to be the minimisation of the empirical risk. In Chapter 7

we come back to the topic of model selection, and show how we can handle it

with respect to LCS it in a principled manner.

3.1.2 Regression

Both regression and classification tasks aim at finding a hypothesis for the

data-generating process such that some risk measure is minimised, but dif-

fer in the nature of the input and output space. We characterise a regression

task by a multidimensional real-valued input space X = R
DX with DX di-

mensions and a multidimensional real-valued output space Y = R
DY with

DY dimensions. Thus, the inputs are column vectors x = (x1, . . . , xDX
)T and

the corresponding outputs are column vectors y = (y1, . . . , yDY
)T . In the case

of batch learning we assume that N observations (xn,yn) are available in the

41

form of the input matrixX and output matrix Y

X ≡

−xT
1−
...

−xT
N−

, Y ≡

−yT
1 −
...

−yT
N−

. (3.3)

The loss function is commonly the L2 norm, also known as the Euclidean dis-

tance, and is defined by L2(y,y
′) ≡ ‖y,y′‖2 = (

∑

i(y
′
i − yi)

2)
1/2
. Hence, the loss

increases quadratically in all dimensions with the distance from the desired

value. Alternatively, the L1 norm, also known as the absolute distance, and

defined as L1(y,y
′) ≡ ‖y,y′‖1 =

∑

i |y′i− yi|, can be used. The L1 norm has the

advantage that it only increases linearly with distance and is therefore more

resilient to outliers. Using the L2 norm, on the other hand, makes analytical

solutions easier.

All LCS developed so far only handle univariate regression, which is charac-

terised by a 1-dimension output space, that is Y = R. Consequently, the output

vectors y collapse to scalars y ∈ R and the output matrix Y becomes a column

vector y ∈ R
N . For now we will also follow this convention, but will return to

multivariate regression with DY > 1 in Chapter 7.

3.1.3 Classification

The task of classification is characterised by an input space that is mapped into

a subset of a multidimensional real-valued space X ⊆ R
DX of DX dimensions,

and an output space Y that is a finite set of labels, mapped into a subset of the
natural numbers Y ⊂ N. Hence, the inputs are again real-valued column vec-

tors x = (x1, . . . , xDX
)T , and the outputs are natural numbers y. The elements

of the input vectors are commonly referred to as attributes, and the outputs are

called the class labels.

XCS approaches classification tasks by modelling them as regression tasks:

each input vector x is augmented by its corresponding class label y to get the

new input vector x′ = (−xT−, y)T that is mapped into some positive scalar

that we can without loss of generality assume to be 1. Furthermore, each input

42

vector in the training set is additionally augmented by any other valid class

label except for the correct one (that is, as given by y) and maps into 0. Hence,

the new input space becomes X ′ ⊂ R
DX × N, and the output space becomes

Y ′ = [0, 1]. Consequently, the correct class for a new input x can be predicted

by augmenting the input by each possible class label and choosing the class

for which the prediction of the model is closest to 1.

We will proceed in the same way as XCS and therefore will not need to con-

sider the classification task explicitly. Nonetheless, this procedure is not partic-

ularly efficient, and alternative LCS approaches to classification have already

been devised (for example, UCS [162]). We will discuss these alternatives in

Section 10.3 in the light of later presented work.

3.1.4 Sequential Decision

A sequential decision task requires a learner to maximise the long-term reward

it receives through the interaction with an environment. At any time, the envi-

ronment is in a certain state within the state space X . A state transition occurs
when the learner performs an action from the action set A. Each of these state
transitions is mediated by a scalar reward. The aim of the learner is to find a

policy, which is a mapping X → A that determines the action in each state,
that maximises the reward in the long run.

While it is possible to search the space of possible policies directly, a more

efficient approach is to compute the value function X ×A → R that determines

for each state which long-term reward to expect when performing a certain

action. If we have a model of the state transitions and rewards, we can use

Dynamic Programming (DP) to compute this function. Reinforcement Learning

(RL), on the other hand, deals with finding the value function if no suchmodel

is available. As the latter is commonly the case, Reinforcement Learning is also

the approach employed by LCS.

We can differentiate two approaches to RL: either we learn a model of the

transitions and rewards by observations and then use dynamic programming

to find the value function, calledmodel-based RL, or we estimate the value func-

tion directly while interacting with the environment, called model-free RL.

43

In the model-based case, we consequently need to derive a model of the state

transitions and rewards from the given observations, both of which are regres-

sion tasks. If we want to compute the policy while sampling the environment

we need to update the model incrementally and therefore need an incremental

learner.

In the model-free case, the function to model is the estimate of the value func-

tion, again leading to a regression task that needs to be handled incrementally.

Additionally, the value function estimate is also updated incrementally, and

as it is the data-generating process, this process is slowly changing. As a re-

sult, there is a dynamic interaction between the RL algorithm that updates the

value function estimate and the incremental regression learner that models it,

which is not in all cases stable and needs special consideration [25]. These

are additional difficulties that need to be taken into account when performing

model-free RL.

Clearly, although the sequential decision task was the prime motivator for

LCS, it is also the most complex to tackle. Therefore, we deal with standard

regression tasks first, and come back to sequential decision tasks in Chapter 9.

Even then we will only deal with it from the theoretical perspective of stability,

as it requires an incremental learning procedure that we will not develop.

3.1.5 Batch vs. Incremental Learning

In batch learning, we assume that the whole training set is available at once,

and that the order of the observations in that set is irrelevant. Thus, we can

train the model with all data at once and in any order.

Incremental learning methods differ from batch learning in that the model is

updated with each additional observation separately, and as such can handle

observations that arrive sequentially as a stream. Revisiting the assumption of

Section 3.1.1, that the data-generating process f is expressible by a function,

we can differentiate between two cases:

f is stationary. If the data-generating process does not change with time and

44

the full training set is available at once, any incremental learning method

is either only an incremental implementation of an equivalent batch

learning algorithm, or an approximation to it.

f is non-stationary. Learning a model of a non-stationary generating process

is only possible if the process is only slowly varying, that is, if it changes

slowly with respect to the frequency that it is observed. Hence, we can

assume its stationarity at least within a limited time-frame. It is modelled

by putting more weight on later observations, as earlier observations do

give general information about the process but might reflect it in an out-

dated state. Such recency-weighting of the observations is very naturally

achieved within incremental learning by assigning the current model a

lower weight than new observations.

The advantage of incremental learning methods over batch learning meth-

ods are that the former can handle observations that arrive sequentially as

a stream, and that they more naturally handle non-stationary processes, even

though the second feature can also be simulated by batch learning methods

by weighting the different observations according to their temporal sequence.

On the downside, when compared to batch learning, incremental learners are

generally less transparent in what exactly they learn, and dynamically more

complex.

With respect to the different tasks, incremental learners are particularly suited

to model-free RL, where the value function estimate is learned incrementally

and therefore changes slowly. Given that all data is available at once, regres-

sion and classification tasks are best handled by batch learners.

From the theoretical perspective, incremental learners can be derived from a

batch learner that is applied to solve the same task. This has the advantage

of preserving the transparency of the batch learning method and acquiring

the flexibility of the incremental method. We illustrate this principle with the

following example.

Example 3.1.1 (Relating Batch and Incremental Learning). Wewant to es-

timate the probability of a tossed coin showing head, without any initial

bias about its fairness. We perform N experiments with no input X = ∅

45

and outputs Y = {0, 1}, where 0 and 1 stand for tail and head respec-

tively. Adopting a frequentist approach, we can estimate the probability

of tossing a coin resulting in head by

pN (H) =
1

N

N
∑

n=1

yn, (3.4)

where pN (H) stands for the estimated probability of head after N exper-

iments. This batch learning approach can be easily turned into an incre-

mental approach by

pN (H) =
1

N
yN +

1

N

N−1
∑

n=1

yn = pN−1(H) +
1

N
(yN − pN−1(H)), (3.5)

starting with p1(H) = y1. Hence, to update the model pN−1(H) with the

new observation yN , we only need to maintain the number N of experi-

ments so far. When comparing Eqs. (3.4) and (3.5) we can see that, whilst

the incremental approach yields the same results as the batch approach, it

is far less transparent in what it is actually calculating.

Let us now assume that the coin changes its properties over time, and

we therefore trust recent observations more. Hence, we will modify our

incremental update to

pN (H) = pN−1(H) + γ(yN − pN−1(H)), (3.6)

where 0 < γ ≤ 1 is the recency factor that determines the influence of

past observations to our current estimate. Recursive substitution of pn(H)

results in the batch learning equation

pN (H) = (1− γ)Np0(H) +
N
∑

n=1

γ(1− γ)N−nyn. (3.7)

Inspecting this equation reveals that observations n experiments back in

time are weighted by γ(1 − γ)n. Additionally, we can see that an initial

bias p0(H) is introduced that decays exponentially with the number of

available observations. Again, the batch learning formulation has led to

greater insight and transparency.

46

Are LCS Batch Learners or Incremental Learners?

LCS are often considered to be incremental learners. While they are usually

implemented as such, there is no reason not to design them as batch learners

when applying them to regression or classifications tasks, given that all data is

available at once. Indeed, Pittsburgh-style LCS usually require an individual

representing a set of classifiers to be trained on the full data, and hence we can

interpret them as incrementally implemented batch learners when applied to

regression and classification tasks.

Even Michigan-style LCS can acquire batch learning when the classifiers are

trained independently: each classifier can be trained on the full data at once

and is later only queried for its fitness evaluation and its prediction.

As we aim at understanding what LCS are learning, we — for now — prefer

transparency over performance. Hence, we will predominantly describe LCS

from a batch learning perspective, although, throughout Chapters 5, 6 and

7, we will also discuss how to get similar results with incremental learning.

Still, the prototype system we develop is only fully described from the batch

learning perspective. How to turn this system into an incremental learner is

left as the topic of future research.

3.2 LCS as Parametric Model

While the term modelmay be used in many different ways, we will define it as

a collection of possible hypotheses about the data-generating process. Hence,

the choice of model determines the available hypotheses and therefore biases

our expressiveness about this process. Such a bias represents the assumptions

that we make about the process and its stochasticity. Understanding the as-

sumptions that are introduced with the model allows us to make statements

about its applicability and performance.

Example 3.2.1 (Different Linear Models and their Assumptions). A lin-

ear relation between inputs and outputs with constant-variance Gaussian

47

noise ǫ leads to least squares (that is, using the L2 loss function) linear

regression. Alternatively, assuming the noise to have a Cauchy distribu-

tion results in linear regression using the L1 loss function. As a Cauchy

distribution has a longer tail than a Gaussian distribution, it is more re-

silient to outliers. Hence it is considered as being more robust, but the L1

norm makes it harder to train [66]. This shows how an assumption of a

model about the data-generating process can give us information about

its expected performance.

Training a model means finding the hypothesis that is closest to what we as-

sume is the data-generating process. For example, in a linear regression model

the space of hypotheses is all hyper-planes in the input/output space, and per-

forming linear regression means picking the hyper-plane that best explains the

available observations.

The choice of model strongly determines how hard it is to train. While more

complex models are usually able to express a larger range of possible hypothe-

ses, this larger range also makes it harder for them to avoid overfitting and

underfitting. Hence, very often, overfitting by minimising the empirical risk is

counterbalanced by reducing the number of hypotheses that a model can ex-

press, thus making the assumptions that a model introduces more important.

Example 3.2.2 (Avoiding Overfitting in Artificial Neural Networks). Re-

ducing the number of hidden neurons in a feed-forward neural network

is a popular measure of avoiding overfitting the training data. This mea-

sure effectively reduces the number of possible hypothesis that it is able

to express and as such introduces a stronger structural bias. Another ap-

proach to avoiding overfitting in neural networks training is weight decay

that exponentially decays the magnitude of the weight of the neural con-

nections in the network. While not initially designed as such, weight de-

cay is equivalent to assuming a zero mean Gaussian prior on the weights

and hence biasing them towards smaller values. This prior is again equiv-

alent to assuming smoothness of the target function. [107].

Having underlined the importance of knowing the underlying model of a

method, we continue by introducing the family of parametric models and de-

scribing LCS as a member of that family. Our description is based on reflec-

48

tions on what classifiers actually are and do, and how they cooperate to form

a model. While we give a general overview of how the model described by

LCS can be trained, more details have to wait until after we have developed a

formal probabilistic model of LCS in the following chapter.

3.2.1 Parametric Models

The choice of hypothesis during model training is usually determined by a set

of adjustable parameters θ. Models for which the number of parameters is

independent of the training set and remains unchanged during model train-

ing are commonly referred to as parametricmodels. In contrast, non-parametric

models are models for which the number of adjustable parameters either de-

pends on the training set, changes during training, or both.

Another property of a parametric model is its structureM (often also referred
to as scale). Given a model family, the choice of structure determines which

model to use from this family. For example, considering the family of feed-

forward neural networks with a single hidden layer, the model structure is

the number of hidden neurons and the model parameters are the weights of

the neural connections. Hence, the model structure is the adjustable part of

the model that remain unchanged during training but might determine the

number of parameters.

With these definitions we can re-formulate our aims: Firstly, we want to pick

an adequate model structureM that provides the model hypotheses f̂M(x; θ),

and secondly, we want to find the values for the model parameters θ such that

we minimise the expected risk for our choice of loss function.

3.2.2 LCS Model

An LCS forms a global model by the combination of local models, represented

by the classifiers. The number of classifiers can change during the training

process, and so can the number of adjustable parameters by action of the GA.

Hence, an LCS is not a parametric model per se.

49

We can turn an LCS into a parametric model by assuming that the number of

classifiers is fixed, and each classifier represents a parametric model. While

this choice seems arbitrary at first, it becomes useful for later development. Its

consequences are that both the number of classifiers and how they are located

in the input space are part of the model structure M and are not modified

while adjusting the model parameters. The model parameters θ are the pa-

rameters of the classifiers and those required to combine their local models.

Consequently, training an LCS is conceptually split into two parts: We want

to find a good model structureM, that is, the adequate number of classifiers
and their location, and for that structure the values for the model parameters

θ. This interpretation justifies calling LCS adaptive models.

Before providing more details on how to find a good model structure, let us

first assume a fixed model structure withK classifiers and investigate in more

detail the components of such a model.

3.2.3 Classifiers as Localised Models

In LCS, the combination of condition and action of a classifier determines the

inputs that a classifier matches. Hence, given the training set, one classifier

matches only a subset of the observations in that set. Thus, we can say that a

classifier is localised in the input space, where its location is determined by the

inputs that it matches.

Matching

Let Xk ⊆ X be the subset of the input space that classifier k matches. The
classifier is trained by all observations that it matches, and hence its aim is

to provide a local model f̂k(x; θk) that maps Xk into Y , where θk is the set of

parameters of the model of classifier k. More flexibly, we can define matching

by a matching functionmk : X → [0, 1] specific to classifier k, and given by the

50

indicator function for the set Xk,

mk(x) =

{

1 if x ∈ Xk,

0 otherwise.
(3.8)

The advantage of using a matching functionmk rather than a set Xk is that the

former allows for degrees of matching in-between 0 and 1, a feature that we

will make use of in a later section. Also note, that representing matching by Xk

or the matching functionmk makes it independent of the choice of representa-

tion of the condition/action of a classifier. Thus, all future developments are

valid for all choices of representation.

Local Classifier Model

The local model of a classifier is usually a regression model with no particular

restrictions. As we have discussed in Section 2.3.1, initially only simple aver-

aging predictions were used, but more recently, classifiers have been extended

to use linear regression models, neural networks, and SVM regression. While

averagers are just a special case of linear models, neural networks might suffer

from the problem of multiple local optima [105], and SVM regression has no

clean approach to incremental implementations [158]. Hence, we will restrict

ourselves to the well-studied class of linear models as a good tradeoff between

expressive power and complexity of training. We will discuss them in depth

in Chapters 4 and 5.

Input to Matching and Local Models

Note that in LCS the input given to thematching function and that given to the

classifier’s model usually differ in that the input to the model is often formed

by applying a transfer function to the input given to the matching mechanism.

Nonetheless, to keep the notation uncluttered we assume that the given input

x contains all available information and both matching and the local model

selectively choose and modify the components that they require by an implicit

transfer function.

51

Example 3.2.3 (Inputs to Matching and Local Model). Let us assume that

both the input and the output space are 1-dimensional, that is, X = R and

Y = R, and that we perform interval matching over the interval [lk, uk],

such that mk(x) = 1 if lk ≤ x ≤ uk, and mk(x) = 0 otherwise. Applying

the linear model f̂(x; wk) = xwk to the input, withwk being the adjustable

parameter of classifier k, we can only model straight lines through the

origin. However, applying the transfer function φ(x) = (1, x)T allows us

to introduce an additional bias to get f̂(x; wk) = wT
k φ(x) = wk1 + xwk2,

with wk = (wk1, wk2)
T ∈ R

2, which is an arbitrary straight line. In such a

case, we assume the input to be x′ = (1, x)T , and the matching function to

only operate on the second component of the input. Hence, we can apply

both matching and the model to the same input. We give a more detailed

discussion about different transfer functions and their resulting models in

Section 5.1.1.

3.2.4 Recovering the Global Model

To recover the global model from K local models, we need to combine these

local models in some meaningful way. For inputs that only a single classifier

matches, the best model we have available is the matching classifier’s model.

However, there are no restrictions on how many classifiers can match a single

input. Therefore, in some cases, it is required to mix the local models of several

classifiers that match the same input.

There are several possible approaches to mixing classifier models, each cor-

responding to different assumptions about the data-generating process. We

will introduce a standard approach in Chapter 4 and investigate alternatives

in Chapter 6.

3.2.5 Finding a Good Model Structure

The model structureM is given by the number of classifiers and their localisa-
tion. As the localisation of a classifier k is determined by its matching function

mk, the model structure is completely specified by the number of classifiers K

52

and their matching functionsM = {mk}, that is,M = {K,M}.

To find a good model structure means to find a structure that allows for hy-

potheses about the data-generating process that are close to the process sug-

gested by the available observations. Thus, finding a good model structure

implies dealing with over and underfitting of the training set. We will post-

pone a detailed treatment of this topic to Chapter 7 and will for now proceed

by assuming that a good model structure is known.

3.2.6 Considerations for Model Structure Search

The space of possible model structures is potentially huge, and hence to search

this space, evaluating the suitability of a single model structureM to explain
the data needs to be efficient to keep searching the model structure space com-

putationally tractable. Additionally, we want to guide our search by using the

information we gain about the quality of the classifiers within a certain model

structure by fitting this model structure to the data.

Each classifier in the LCS model represents some information about the in-

put/output mapping, limited to the subspace of the input space that it

matches. Hence, while preserving classifiers that seem to provide a good

model of the matched data, we want to refine the model structure in areas

of the input space for which none of the current classifiers provides an ad-

equate model. This can be achieved by either modifying the localisation of

current classifiers that do not provide an adequate fit, removing those classi-

fiers, or adding new classifiers to compare their goodness-of-fit to the current

ones. Intuitively, interpreting a classifier as a localised hypothesis for the data-

generating process, we want to change or discard bad hypotheses, or add new

hypotheses to see if they are favoured in comparison to already existing hy-

potheses.

In terms of the model structure search, the search space is traversed by modi-

fying the current model structure rather than discarding it at each search step.

By only modifying part of the model, we have satisfied the aim of facilitat-

ing knowledge of the suitability of the current model structure to guide the

structure search. Additionally, if only few classifiers are changed in their lo-

53

calisation in each step of the search, we only need to re-train the modified or

added classifiers, given that the classifiers are trained independently. This is

an important feature that makes the search more efficient, and that we will

revisit in Section 4.4.

Such a search strategy clearly relates to how current LCS traverse the search

space: In Michigan-style LCS, such as XCS, new classifiers are added either

if no classifier is localised in a certain area of the input space, or to provide

alternative hypotheses by merging and modifying the localisation structure of

two other current classifiers with a high goodness-of-fit. Classifiers in XCS

are removed with a likelihood that is proportional to on average how many

other classifiers match the same area of the input space, causing the number

of classifiers that match a particular input to be about the same for all inputs.

Pittsburgh-style LCS also traverse the structure search space by merging and

modifying sets of classifiers of two model structures that were evaluated to

explain the data well. However, few current Pittsburgh-style LCS retain the

evaluation of single classifiers to improve the efficiency of the search — a fea-

ture that we use in our prototype implementation.

3.2.7 Relation to the Initial LCS Idea

Recall that originally LCS addressed the problems of parallelism and coordi-

nation, credit assignment, and rule discovery, as described in Section 2.2.1. We

will now describe how these problems are addressed in the proposed model.

Parallelism is featured by allowing several classifiers to be overlapping, that

is, to be localised partially in the same areas of the input space. Hence, they

compete locally by providing different models for the same data, and cooper-

ate globally by providing a global model only in combination. Coordination

of the different classifiers is handled on one hand by the model component

that combines the local models into a global model, and on the other hand by

the model structure search that removes or changes classifiers based on their

contribution to the full model.

Credit assignment is to assign external reward to different classifiers, and is

mapped to regression and classification tasks that fit the model to the data, as

54

the reward is represented by the output. In sequential decision tasks, credit

assignment is additionally handled by the reinforcement learning algorithm,

which will be discussed in detail in Chapter 9.

Lastly, the role of discovering new rules, that is, classifiers with a better lo-

calisation, is performed by the model structure search. How to use current

knowledge to introduce new classifiers depends strongly on the choice of rep-

resentation for the condition and action of a classifier. As the presented work

does not make any assumptions about the representation, it does not deal with

this issue in detail, but rather relies on the body of prior work (for example,

[41, 38, 165, 145, 148, 206]) that is available on this topic.

3.3 Summary and Outlook

We have identified that the task of LCS is to find a good model that forms a

hypothesis about the form of the data-generating process, based on a finite set

of observations. The process maps an input space into an output space, and

themodel provides a possible hypothesis for this mapping. The task of finding

a good model is made more complex as only a finite set of observations of the

input/output mapping are available that are perturbed by measurement noise

and the possible stochasticity of the process, and this task is dealt with by the

field of model selection. We have differentiated between minimising the ex-

pected risk, which is the difference between the real data-generating process

and our model, and minimising the empirical risk, which is the difference be-

tween the observations available of that process and our model.

Regression, classification and sequential decision tasks differ in the form of

the input and output spaces and in the assumptions made about the data-

generating process. For both regression and classification tasks we have as-

sumed the process to be representable by a smooth function with an additive

zero-mean noise term, and have reduced the classification tasks in an XCS-like

manner to regression tasks. While sequential decision tasks as handled by RL

also have a regression task at their core, they have special requirements on the

stability of the learning method and therefore receive a separate treatment in

Chapter 9.

55

We have characterised a model as being a collection of possible hypotheses

about the nature of the data-generating process, and training a model as find-

ing the hypothesis that is best supported by the available observations of that

process. We have introduced the class of parametric models that are charac-

terised by an unchanging number of model parameters while the model is

trained, in contrast to the model structure of a parametric model, which is the

part of the model that is adjusted before training it, and determines the num-

ber of adjustable parameters during model training.

We have described LCS as a model that combines a set of local models (that

is, the classifiers) to a global model. While LCS are not parametric models

per se, we have characterised them as such by defining the model structure

as the number of classifiers and their localisation, and the model parameters

as the parameters of the classifiers and the ones required for combining the

local models. As a result, the task of training LCS is conceptually split into

finding a good model structure, that is, a good set of classifiers, and training

these classifiers with the available training set.

Finding a good model structure requires us to deal with the topic of model

selection and the tradeoff between overfitting and underfitting. As we require

a good understanding of the LCS model itself before attacking this issue, we

postpone the problem of evaluating the quality of a model structure to Chap-

ter 7. Until then, we assume the model structureM as a constant.

In the next chapters we discuss how to train an LCS model given a certain

model structure, that is, how to adjust the model parameters in the light of

the available data. Our temporary aim at this stage is to minimise the em-

pirical risk. Even though this might lead to overfitting, it still gives us valu-

able insights into how to train the LCS model, and its underlying assumptions

about the data-generating process. We proceed by formulating a probabilistic

model of LCS in Chapter 4 based on a generalisation of the related Mixtures-

of-Experts model. Furthermore, we give more details on training the classi-

fiers in Chapter 5, and alternatives for combining the local classifier models

to a global model in Chapter 6, assuming that the model structure remains

unchanged. After that we come back to developing a principled approach to

finding a good set of classifiers, that is, a good model structure.

56

Chapter 4

A Probabilistic Model for LCS

Having conceptually defined the LCS model, we continue by embedding this

model in a formal setting. The formal model will be initially designed for a

fixed model structureM; that is, the number of classifiers and where they are
localised in the input space is constant during training of the model. Even

though we could proceed by characterising the LCS model by its functional

form, as we have done in [77], we instead develop a probabilistic model. Its ad-

vantage is that rather than getting a point estimate for the output y given some

input x, the probabilistic model provides the probability distribution p(y|x,θ)

that for some input x and model parameters θ describes the probability den-

sity of the output having value y. From this distribution we can recover the

point estimate from its mean or its mode, and additionally we get information

about the certainty of the prediction by the spread of the distribution.

In this chapter we concentrate on modelling the data by the principle of max-

imum likelihood: given a set of observations, we want to tune the model pa-

rameters such that the probability of the observations given the model pa-

rameters is maximised. As described in the previous chapter this might lead

to overfitting the data, but nonetheless it gives us a first idea about how the

model can be trained, and relates it closely to XCS, where overfitting is con-

trolled on the model structure level rather than the model parameter level.

In Chapter 7 we generalise this model and introduce a training method that

avoids overfitting.

57

In developing the probabilistic model we were guided by the formulation

of a related machine learning model: the Mixtures-of-Expert (MOE) model

[121, 122] fits the data by a fixed number of localised experts. Even though not

identified by previous LCS research, there are strong similarities between LCS

and MOE when relating the classifiers of LCS to the experts of MOE. How-

ever, they differ in that the localisation of the experts in MOE is changed by

a gating network that assigns observations to experts, whereas in LCS the lo-

calisation of classifiers is defined by the matching functions and is fixed for a

constant model structure. To relate these two approaches we modify the MOE

model such that it acts as a generalisation to both the standard MOE model

and LCS. Furthermore, we solve difficulties in training the emerging model

by detaching expert training from training the gating network.

We first introduce the standard MOE model as described in [122], which we

will build on in later developments, and discuss its training and how it lo-

calises the experts, followed by a discussion of the properties of linear expert

models in Section 4.2. To relate MOE to LCS, we generalise the MOE model

in Section 4.3 and again describe how it can be trained. Identifying the dif-

ficulties in training of this model, we propose a modification to the model in

Section 4.4 that simplifies its training.

4.1 The Mixtures-of-Experts Model

The MOE model is probably best explained from the generative point-of-view:

given a set of K experts, each observation in the training set is assumed to be

generated by one and only one of these experts. Let z = (z1, . . . , zK)T be a

random binary vector, where each of its elements zk is associated with an ex-

pert and indicates whether that expert generated the given observation (x, y).

Given that expert k generated the observation, then zj = 1 for j = k, and zj = 0

otherwise, resulting in a 1-of-K structure of z. The introduced random vector

is a latent variable, as its values cannot be directly observed. Each observation

(xn, yn) in the training set has such a random vector zn associated with it, and

we denote Z = {zn} the set of latent variables corresponding to each of the
observations in the training set.

58

Each expert provides a mapping X → Y that is given by the conditional prob-
ability density p(y|x,θk), that is, the probability of the output taking value y

given the input vector x and the model parameters θk of expert k. Depending

on whether we deal with regression or classification tasks, experts can repre-

sent different parametric models. Leaving the expert models unspecified for

now, we will introduce linear regression models in Section 4.2.

4.1.1 Likelihood for Known Gating

A common approach to training probabilistic models is to maximise the like-

lihood of the outputs given the inputs and the model parameters, a principle

known as maximum likelihood. As we will later show, maximum likelihood

training is equivalent to minimising the empirical risk, with a loss function

depending on the probabilistic formulation of the model.

Following the standard assumptions of independent observations, and addi-

tionally assuming knowledge of the values of the latent variables Z, the likeli-

hood of the training set is given by

p(Y |X,Z,θ) =
N
∏

n=1

p(yn|xn,zn,θ), (4.1)

where θ stands for the model parameters. Due to the 1-of-K structure of each

zn, the likelihood for the nth observation is given by

p(yn|xn,zn,θ) =
K
∏

k=1

p(yn|xn,θk)
znk , (4.2)

where znk is the kth element of zn. As only one element of zn can be 1, the

above expression is equivalent to the jth expert model such that znj = 1.

As the logarithm function is monotonically increasing, maximising the loga-

rithm of the likelihood is equivalent to maximising the likelihood. Combining

Eqs. (4.1) and (4.2), the log-likelihood ln p(Y |X,Z,θ) results in

ln p(Y |X,Z,θ) =
N
∑

n=1

K
∑

k=1

znk ln p(yn|xn,θk). (4.3)

59

Inspecting Eq. (4.3) we can see that each observation n is assigned to the single

expert for which znk = 1. Hence, it is maximised by maximising the likelihood

of the expert models separately, for each expert based on its assigned set of

observations.

4.1.2 Parametric Gating Network

As the latent variables Z are not directly observable, we do not know the val-

ues that they take and therefore cannot maximise the likelihood introduced in

the previous section directly. Rather, we introduce a parametric model for Z,

known as the gating network, that is trained in combination with the experts.

The gating network used in the standard MOE model is based on the assump-

tion that the probability of an expert having generated the observation (x, y)

is log-linearly related to the input x. This is formulated by

gk(x) ≡ p(zk = 1|x,vk) ∝ exp(vT
k x), (4.4)

stating that the probability of expert k having generated observation (x, y) is

proportional to the exponential of the inner product of the input x and the

gating vector vk of the same size as x. Normalising p(zk = 1|x,vk), we get

gk(x) ≡ p(zk = 1|x,vk) =
exp(vT

k x)
∑K

j=1 exp(vT
j x)

, (4.5)

which is the well-known softmax function, and corresponds to the multinomial

logit model in Statistics that is often used to model consumer choice [167]. It is

parameterised by one gating vector vk per expert, in combination forming the

set V = {vk}. Figure 4.1 shows the directed graphical model that illustrates
the structure and variable dependencies of the Mixtures-of-Experts model.

To get the log-likelihood l(θ;D) ≡ ln p(Y |X,θ), we use the 1-of-K structure

of z to express the probability of having a latent random vector z for a given

input x and a set of gating parameters V by

p(z|x,V) =
K
∏

k=1

p(zk = 1|x,vk)
zk =

K
∏

k=1

gk(x)zk . (4.6)

60

yn

xn

znk

vk

θk

K

experts

N

data

Figure 4.1: Directed graphical model of the Mixtures-of-Experts model. The
circular nodes are random variables (znk), which are observed when shaded
(yn). Labels without nodes are either constants (xn) or adjustable parameters
(θk, vk). The boxes are “plates”, comprising replicas of the entities inside them.
Note that znk is shared by both boxes, indicating that there is one z for each
expert for each observation.

Thus, by combining Eq. (4.2) and (4.6), the joint density over y and z is given

by

p(y, z|x,θ) =
K
∏

k=1

gk(x)zkp(y|x,θk)
zk . (4.7)

By marginalising over z, the output density results in

p(y|x,θ) =
∑

z

K
∏

k=1

gk(x)zkp(y|x,θk)
zk =

K
∑

k=1

gk(x)p(y|x,θk), (4.8)

and subsequently, the log-likelihood l(θ;D) is

l(θ;D) = ln
N
∏

n=1

p(yn|xn|θ) =
N
∑

n=1

ln
K
∑

k=1

gk(xn)p(yn|xn,θk). (4.9)

Example 4.1.1 (Gating Network for 2 Experts). Let us consider the input

space DX = 3, where an input is given by x = (1, x1, x2)
T . Assume

two experts with gating parameters v1 = (0, 0, 1)T and v2 = (0, 1, 0)T .

Then, Figure 4.2 shows the gating values g1(x) for Expert 1 over the range

−5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5. As can be seen, we have g1(x) > 0.5 in the

input subspace x1 − x2 < 0. Thus, with the given gating parameters,

Expert 1 mainly models observations in this subspace. Overall, the gating

network causes a soft linear partitioning of the input space along the line

61

-4

-2

 0

 2

 4

x1
-4

-2
 0

 2
 4

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

g1(x)

Figure 4.2: Plot of the softmax function g1(x) by Eq. (4.5) with inputs x =
(1, x1, x2)

T , and gating parameters v1 = (0, 0, 1), v2 = (0, 1, 0).

x1 − x2 = 0 that separates the two experts.

4.1.3 Training by Expectation-Maximisation

Rather than using gradient descent to find the experts and gating network

parameters θ that maximise the log-likelihood Eq. (4.9), as done in [121],

we can make use of the latent variable structure and apply the expectation-

maximisation (EM) algorithm [70, 122]. It begins with the observation that

maximisation of the likelihood is simplified if the values of the latent vari-

ables were known, as in Eq. (4.3). Hence, assuming that Z is part of the

data, D = {X,Y } is referred to as the incomplete data, and D ∪ {Z} =

{X,Y ,Z} is known as the complete data. The EM-algorithm proceeds with
the expectation step, by finding the expectation of the complete data log-

likelihood EZ(l(θ;D∪{Z}))with the current model parameters θ fixed, where
l(θ;D ∪ {Z}) ≡ ln p(Y ,Z|X,θ) is the logarithm of the joint density of the

outputs and the values of the latent variables. In the maximisation step the

above expectation is maximised with respect to the model parameters. When

iterating this procedure, the incomplete data log-likelihood l(θ;D) increases

monotonically until a maximum is reached, as proved in [176]. More details

on the application of the EM-algorithm to train the MOE model are given in

[122]. Now we will consider each step in turn.

62

The Expectation Step

Using Eq. (4.7), the complete-data log-likelihood is given by

l(θ;D ∪ {Z}) ≡ ln p(Y ,Z|X,θ)

= ln
N
∏

n=1

p(yn,zn|xn,θ)

=
N
∑

n=1

K
∑

k=1

znk (ln gk(xn) + ln p(yn|xn,θk)) (4.10)

where θ is the set of expert parameters {θ1, . . . ,θK} and gating parameters
V . When fixing these parameters, the latent variables are the only random

variables in the likelihood, and hence its expectation is

EZ (l(θ;D ∪ {Z})) =
N
∑

n=1

K
∑

k=1

rnk (ln gk(xn) + ln p(yn|xn,θk)) , (4.11)

where rnk ≡ E(znk) is commonly referred to as the responsibility of expert k for

observation n [19] and by the use of Bayes’ rule and Eq. (4.8) evaluates to

rnk ≡ E(znk) = p(znk = 1|xn, yn,θ)

=
p(znk = 1|xn,vk)p(yn|xn,θk)

p(yn|xn,θ)

=
gk(xn)p(yn|xn,θk)

∑K
j=1 gj(xn)p(yn|xn,θj)

. (4.12)

Hence, the responsibilities are distributed according to the current gating and

goodness-of-fit of an expert in relation to the gating and goodness-of-fit of the

other experts.

The Maximisation Step

In the maximisation step we aim at adjusting the model parameters to max-

imise the expected complete data log-likelihood. gk(xn) and p(yn|xn,θk) do

not share any parameters, and so maximising Eq. (4.11) results in the two in-

63

dependent maximisation problems

max
V

N
∑

n=1

K
∑

k=1

rnk ln gk(xn), (4.13)

max
θ

N
∑

n=1

K
∑

k=1

rnk ln p(yn|xn,θk). (4.14)

Note that the responsibilities are evaluated with the previous model parame-

ters and are not considered as being functions of these parameters. The func-

tion concerning the gating parameters V can be maximised by the Iteratively

Re-weighted Least Squares (IRLS) algorithm as described in Chapter 6 (see

also [122, 19]). The expert parameters can be modified independently, and the

method depends on the expert model. We will describe the maximisation step

when introducing the linear expert model in Section 4.2.

To summarise, we can maximise l(θ;D) by iterating over the expectation and

the maximisation steps. In the expectation step, the responsibilities are com-

puted for the current model parameters. In the maximisation step, the model

parameters are updated with the computed responsibilities. Convergence of

the algorithm can be determined by monitoring the result of Eq. (4.9).

4.1.4 Localisation by Interaction

The experts in the standard MOE model are localised in the input space

through the interaction of expert and gating network training: after the gating

is randomly initialised, the responsibilities are calculated by Eq. (4.12) accord-

ing to how well the experts fit the data in the areas of the input space that they

are assigned to. In the maximisation step, performing Eq. (4.13) tunes the gat-

ing parameters such that the gating network fits best the previously calculated

responsibilities. Equation (4.14) causes the experts to be only trained on the

areas that they are assigned to by the responsibilities. The next expectation

step re-evaluates the responsibilities according to the new fit of the experts,

and the maximisation step adapts the gating network and the experts again.

Hence, iterating the expectation and the maximisation step causes the experts

to be distributed according to their best fit to the data.

64

The pattern of localisation is determined by the form of the gating model. As

previously demonstrated, the softmax function causes a soft linear partition

of the input space. Thus, the underlying assumption of the model is that the

data was generated by some processes that are linearly separated in the input

space. The model structure becomes richer by adding hierarchies to the gating

network, as done in [122]. However, adding hierarchies to MOE moves them

away from LCS, and thus we will not discuss this extension.

4.1.5 Training Issues

The likelihood function of MOE is neither convex nor unimodal [20]. Hence,

training it by using a hill-climbing procedure such as the EM-algorithm will

not guarantee that we find the global maximum. Several approaches have

been developed to deal with this problem (for example, [20, 5]), all of which

are either based on random restart or stochastic global optimisers. Hence, they

require several training epochs and/or a long training time. While this is not

an issue for MOE where the global optimum only needs to be found once,

it is not an option for LCS where the model needs to be (at least partially)

re-trained for each change in the model structure. A potential LCS-related

solution will be presented in Section 4.4.

4.2 Linear Expert Models

Even though experts can be used for both regression and classification, we are

only concerned with regression and therefore will only deal with the standard

expert regression model for MOE which is the linear model [122], and in our

LCS-related case the univariate linear model. For each expert k, it is charac-

terised by a linear relation of the input x and the adjustable parameter wk,

which is a vector of the same size as the input. Hence, the relation between

the input x and the output y is modelled by a hyper-plane. Additionally, the

stochasticity and measurement noise are modelled by a Gaussian. Overall, the

65

probabilistic model for expert k is given by

p(y|x,wk, τk) = N (y|wT
k x, τ−1

k) =
(τk

2π

)1/2

exp
(

−τk
2

(wT
k x− y)2

)

, (4.15)

where N stands for a Gaussian, and the model parameters θk = {wk, τk} are
the DX -dimensional weight vector wk and the noise precision (that is, inverse

variance) τk. The distribution is centred on the inner product wT
k x, and its

spread is inversely proportional to τk and independent of the input.

As we give a detailed discussion about the implications of assuming this ex-

pert model and various forms of its incremental training in Chapter 5, let us

here only consider how it specifies the maximisation step of the EM-algorithm

for training the MOE model, in particular with respect to the weight vectorwk:

Combining Eqs. (4.14) and (4.15), the term to maximise becomes

N
∑

n=1

K
∑

k=1

rnk ln p(yn|xn,wk, τk) =
N
∑

n=1

K
∑

k=1

rnk

(

1

2
ln
τk
2π
− τk

2
(wT

k xn − yn)2

)

= −
K
∑

k=1

τk
2

N
∑

n=1

rnk(w
T
k xn − yn)2 + const.,

where the constant terms absorbs all terms that are independent of the weight

vectors. Considering the experts separately, the aim for expert k is to find

min
wk

N
∑

n=1

rnk(w
T
k xn − yn)2, (4.16)

which is a weighted linear least squares problem. This shows how the assump-

tion of a Gaussian noise locally leads to minimising the empirical risk with the

L2 loss function.

While the concepts introduced in the following sections are valid for any form

of expert models, a detailed description of how to train linear expert models

to find both the weight vector and the model precision are postponed to Chap-

ter 5.

66

4.3 Generalising the MoE Model

The standard MOE model assumes that each observation was generated by

one and only one expert. In this section we will make the model more LCS-

like by replacing the term “expert” with “classifier”, and by introducing the

additional assumption that a classifier can only have produced the observation

if it matches the corresponding input. The following sections implement this

assumption and discuss its implications.

4.3.1 An Additional Layer of Forced Localisation

Let us recall that for a certain observation (x, y), the latent variable z deter-

mines which classifier generated this observation. The generalisation that is

introduced assumes that a classifier k can have only generated this observa-

tion, that is, zk = 1, if it matches the corresponding input.

Let us introduce an additional binary random vectorm = (m1, . . . ,mK)T , each

element being associated with one classifier 1. The elements ofm are 1 if and

only if the associated classifier matches the current input x, and 0 otherwise.

Unlike z,m does not comply to the 1-of-K structure, as more than one classi-

fier can match the same input. The elements of the random vector are linked

to the matching function by

p(mk = 1|x) = mk(x), (4.17)

that is, the value of a classifier’s matching function determines the probability

of that classifier matching a certain input.

To enforce matching, we re-define Eq. (4.4), that is, the probability for classifier

k having generated observation (x, y), to be

p(zk = 1|x,vk,mk) ∝
{

exp(vT
k φ(x)) ifmk = 1 for x,

0 otherwise,
(4.18)

1While the symbol m also refers to the matching function, its use as either the matching
function or the random variable that determines matching is apparent from its context.

67

where φ is a transfer function, whose purpose we will explain later and which

we can for now assume to be the identity function. Thus, the differences from

the previous definition Eq. (4.4) are the additional transfer function and the

condition on mk that locks the generation probability to 0 if the classifier does

not match the input. We remove the condition onmk by marginalising over it,

to get

gk(x) ≡ p(zk = 1|x,vk) ∝
∑

m∈{0,1}

p(zk = 1|x,vk,mk)p(mk = m|x)

= 0 + p(zk = 1|x,vk,mk)p(mk = 1|x)

= mk(x) exp(vT
k φ(x)). (4.19)

Adding the normalisation term, the gating network is now defined by

gk(x) ≡ p(zk = 1|x,vk) =
mk(x) exp(vT

k φ(x))
∑K

j=1mj(x) exp(vT
j φ(x))

. (4.20)

As can be seen when comparing it to Eq. (4.5), the additional layer of lo-

calisation is specified by the matching function, which reduces the gating to

gk(x) = 0 if the classifier does not match x, that is, ifmk(x) = 0.

yn

xn

znk

mnk

mk

vk

θk

K

classifiers

N

data

Figure 4.3: Directed graphical model of the generalised Mixtures-of-Experts
model. See the caption of Figure 4.1 for instructions on how to read this graph.
When compared to the Mixtures-of-Expert model in Figure 4.1, the latent vari-
ables znk depends additionally on the matching random variablesmnk, whose
values are determined by the mixing functionsmk and the inputs xn.

As classifiers can only generate observations if they match the corresponding

68

input, the classifier model itself does not require any modification. Addition-

ally, Eq. (4.9) is still valid, as zk = 1 only if mk = 1 by Eq. (4.18). Figure 4.3

shows the graphical model that, when compared to Figure 4.1, illustrates the

changes that are introduces by generalising the MoE model.

4.3.2 Updated Expectation-Maximisation Training

The only modifications to the standard MOE are changes to the gating net-

work, expressed by gk. As Eqs. (4.12), (4.13) and (4.14) are independent of the

functional form of gk, they are still valid for the generalised MOE. Therefore,

the expectation step of the EM-algorithm is again performed by evaluating the

responsibilities by Eq. (4.12), and the gating and classifier models are updated

by Eqs. (4.13) and Eqs. (4.14). Convergence of the algorithm is againmonitored

by Eq. (4.9).

4.3.3 Implications on Localisation

Localisation of the classifiers is achieved on one hand by thematching function

of the classifiers, and on the other hand by the combined training of gating

networks and classifiers.

Let us first consider the case when the nth observation (xn, yn) is matched by

one and only one classifier k, that is mj(xn) = 1 only if j = k, and mj(xn) = 0

otherwise. Hence, by Eq. (4.20), gj(xn) = 1 only if j = k, and gj(xn) = 0

otherwise, and consequently by Eq. (4.12), rnj = 1 only if j = k, and rnj = 0

otherwise. Therefore, full responsibility for the observation is given to the one

and only matching classifier, independent of its goodness-of-fit.

On the other hand, let us assume that the same observation (xn, yn) is matched

by all classifiers, that ismj(xn) = 1 for all j ∈ {1, . . . , K}, and assume the iden-
tity transfer function φ(x) = x. In that case, Eq. (4.20) reduces to the standard

MOE gating network Eq. (4.5) and we perform a soft linear partitioning as

described in Section 4.1.4.

69

In summary, localisation by matching determines for which areas of the input

space the classifiers attempt to model the observations. In areas where they

match, they are distributed by soft linear partitions as in the standard MOE

model. Hence, we can acquire a two-layer intuition on how localisation is

performed: Matching determines the rough areas where classifiers are respon-

sible to model the observations, and the softmax function then performs the

fine-tuning in areas of overlap between classifiers.

4.3.4 Relation to Standard MoE Model

The only difference between the generalised MOE model and the standard

MOE model is the definition of the gating model gk. Comparing the standard

model Eq. (4.5) with its generalisation Eq. (4.20), we can see that the standard

model is recovered from the generalisation by having mk(x) = 1 for all k and

x, and the identity transfer function φ(x) = x for all x. Defining the matching

functions in such a way is equivalent to having each classifier match all inputs.

Hence, we have a set of classifiers that all match the whole input space, and

localisation is performed by soft linear partitioning of the gating network.

4.3.5 Relation to LCS

This generalised MOE model satisfies all characteristics of LCS that we have

outlined in Section 3.2: Each classifier describes a localised model with its lo-

calisation determined by the model structure, and the local models are com-

bined to form a global model. So given that we can train the model efficiently,

and have a goodmechanism for searching the space ofmodel structures, dowe

already have an LCS?While some LCS researchers might disagree— partially

because there is no universal definition of what an LCS is and LCS appear to

us to be mostly thought of in algorithmic terms rather than in terms of the

model that they describe — we believe that this is the case.

However, the generalised MOE model has a feature that no LCS has ever used:

beyond the localisation of classifiers by their matching function, the responsi-

bilities of classifiers that share matching inputs is further distributed by the

70

softmax function. While this feature might lead to a better fit of the model to

the data, it blurs the observation/classifier association by extending it beyond

the matching function. Nonetheless, we can use the introduced transfer func-

tion φ to level this effect: when defined as the identity function φ(x) = x, then

by Eq. (4.19) the probability of a certain classifier generating an observation

for a matching input is log-linearly related to the input x. However, by setting

φ(x) = 1 for all x, the relation is reduced to gk(x) ∝ mk(x) exp(vk), where the

gating parameter vk reduces to the scalar vk. Hence, the gatingweight becomes

independent of the input (besides thematching) and only relies on the constant

vk through exp(vk). In areas of the input space that several classifiers match,

classifiers with a larger vk have a stronger influence when forming a prediction

of the global model, as they have a higher gating weight. To summarise, set-

ting φ(x) = 1, makes gating independent of the input (besides the matching)

and the gating weight for each classifier is determined by a single scalar that

is independent of the current input x that it matches. We will discuss further

details and alternative models for the gating network in Chapter 6.

Note that φ(x) = 1 is not applicable in the standard MOE model, that is, when

all classifiers match the full input space. In this case, we have neither locali-

sation by matching nor by the softmax function. Hence, the global model is

not better at modelling the data than a single local model applied to the whole

data.

-4

-2

 0

 2

 4

x1
-4

-2
 0

 2
 4

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

g1(x)

-4

-2

 0

 2

 4

x1
-4

-2
 0

 2
 4

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

g2(x)

(a) (b)

Figure 4.4: Plots showing the generalised softmax function Eq. (4.20) for 2 clas-
sifiers with inputs x = (1, x1, x2)

T and φ(x) = x, where Classifier 1 in plot (a)
has gating parameters v1 = (0, 0, 1)T and matches a circle of radius 3 around
the origin, and Classifier 2 in plot (b) has gating parameters v2 = (0, 1, 0)T and
matches all inputs.

71

Example 4.3.1 (Localisation byMatching and the Softmax Function). Con-

sider the same setting as in Example 4.1.1, and additionally φ(x) = x for

all x and the matching functions

m1(x) =

{

1 if
√

x2
1 + x2

2 ≤ 3,

0 otherwise,
(4.21)

and m2(x) = 1 for all x. Therefore, classifier 1 matches a circle of ra-

dius 3 around the origin, and classifier 2 matches the whole input space.

The values for g1(x) and g2(x) are shown in Figures 4.4(a) and 4.4(b), re-

spectively. As can be seen, the whole part of the input space that is not

matched by Classifier 1 is fully assigned to Classifier 2 by g2(x) = 1. In the

circular area where both classifiers match, the softmax function performs

a soft linear partitioning of the input space, just as in Figure 4.2.

The effect of changing the transfer function to φ(x) = 1 is visualised in

Figure 4.5, and shows that in such a case no linear partitioning takes place.

Rather, in areas of the input space that both classifiers match, Eq. (4.20) as-

signs the generation probabilities input-independently in proportion the

exponential of the gating parameters v1 = 0.7 and v2 = 0.3.

-4

-2

 0

 2

 4

x1
-4

-2
 0

 2
 4

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

g1(x)

-4

-2

 0

 2

 4

x1
-4

-2
 0

 2
 4

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

g2(x)

(a) (b)

Figure 4.5: Plots showing the generalised softmax function Eq. (4.20) for 2 clas-
sifiers with inputs x = (1, x1, x2)

T and φ(x) = 1, where Classifier 1 in plot (a)
has gating parameters v1 = 0.7 and matches a circle of radius 3 around the
origin, and Classifier 2 in plot (b) has gating parameters v2 = 0.3 and matches
all inputs.

Besides localisation beyond matching, the generalised MOE model has an-

other feature that distinguishes it from any previous LCS 2: it allows formatch-

2While Butz seems to have experimented with matching by a degree in [41], he does not

72

ing by a degree of the range [0, 1] rather than by just specifying where a clas-

sifier matches and where it does not (as, for example, specified by set Xk and

Eq. (3.8)). Additionally, by Eq. (4.17), this degree has the well-defined mean-

ing of the probability p(mk = 1|x) of classifier k matching input x. Alter-

natively, by observing that E(mk|x) = p(mk = 1|x), this degree can also be

interpreted as the expectation of the classifier matching the corresponding in-

put. Overall, matching by a degree allows the specification of soft boundaries

of the matched areas which can be interpreted as the uncertainty about the

exact area to match3, justified by the limited number of data available. This

might solve issues with hard classifier matching boundaries when searching

for good model structures, which can occur when the input space X is very
large or even infinite, leading to a possibly infinite number of possible model

structures. In that case, smoothing the classifier matching boundaries makes

fully covering the input space with classifiers easier. A more detailed investi-

gations of the advantages of matching by degree is left as future research.

4.3.6 Training Issues

If each input is only matched by a single classifier, each classifier model is

trained separately, and the problem of getting stuck in local maxima does not

occur, analogous to the discussion that we will present in Section 4.4.3. Classi-

fiers with overlappingmatching areas, on the other hand, cause the same train-

ing issues as already discussed for the standard MOE model in Section 4.1.5,

which causes the model training to be time-consuming.

LCS training is, in our approach, conceptually split into two parts: training the

model for a fixed model structure, and searching the space of possible model

structures. To do the latter, evaluation of a single model structure by training

the model needs to be efficient. Hence, the current training strategy is hardly

a viable option. However, identifying the cause for local maxima allows us

describe how it is implemented and only states that “Preliminary experiments in that re-
spect [. . .] did not yield any further improvement in performance”. Furthermore, his hyper-
ellipsoidal conditions [41, 52] might look like matching by degree on initial inspection, but as
he determines matching by a threshold on the basis function, matching is still binary. Fuzzy
LCS (for example, [60]), on the other hand, provide matching by degree but are usually not
developed from the bottom up which makes modifying the parameter update equations diffi-
cult.

3Thanks to Dr. Dan Richardson, University of Bath, for this interpretation.

73

to modify the model to avoid those and therefore make model training more

efficient, as we will show in the next section.

4.4 Independent Classifier Training

The assumption of the standard MOE model is that any observation is gener-

ated by one and only one classifier. We have generalised this model by adding

the restriction that any classifier can only have generated an observation if it

matches the input associated with this observation, thereby adding an addi-

tional layer of forced localisation of the classifiers in the input space.

Here we introduce a change rather than a generalisation to the model assump-

tions: as before we assume that the data is generated by a combination of

localised processes, but the role of the classifiers is changed from cooperating

with other classifiers in order to locally model the observations that it matches

to modelling all observations that it matches, independent of the other clas-

sifiers that match the same inputs. This distinction becomes clearer once we

have discussed the formal differences in Sections 4.4.2 and 4.4.3.

The motivation behind this change is twofold: firstly, it removes local maxima

and thus simplifies classifier training, and secondly, it simplifies the intuition

behind what a classifier models. We start by discussing these motivations in

more detail in the following section, followed by their implication on training

the model and the assumptions about the data-generating process.

4.4.1 The Origin of Local Maxima

Following the discussion in Section 4.1.5, local maxima of the likelihood func-

tion are the result of the simultaneous training of the classifiers and the gating

network. In the standard MOE model, this simultaneous training is necessary

to provide the localisation of the classifiers in the input space. In our generali-

sation, on the other hand, a preliminary layer of localisation is provided by the

matching function, and the interaction between classifiers and the gating net-

74

work is only required for inputs that are matched by more than one classifier.

This was already demonstrated in Section 4.3.3, where we have shown that

classifiers acquire full responsibility for inputs that they match alone. Hence,

in the generalised MOE, local maxima only arise when classifiers overlap in

the input space.

4.4.2 What does a Classifier Model?

By Eq. (4.14), a classifier aims at maximising the sum of log-likelihoods of all

observations, weighted by the responsibilities. By Eqs. (4.12) and (4.20), these

responsibilities can only be non-zero if the classifier matches the correspond-

ing inputs, that is, rnk > 0 only ifmk(xn) > 0. Hence, by maximising Eq. (4.14),

a classifier only considers observations that it matches.

Given that an observation (xn, yn) is matched by a single classifier k, we have

established in Section 4.3.3 that rnk = 1 and rnj = 0 for all j 6= k. Hence,

Eq. (4.14) assigns full weight to classifier k when maximising the likelihood

of this observation. Consequently, given that all observations that a classifier

matches are matched by only this classifier, the classifier models these obser-

vations in full, independent of the other classifiers4.

Let us consider how observations are modelled that are matched by more than

one classifier: as a consequence of Eq. (4.12), the non-negative responsibilities

of all matching classifiers sum up to 1, and are therefore between 0 and 1.

Hence, by Eq. (4.14), each matching classifier assigns less weight to modelling

the observation than if it would be the only classifier matching it. Intuitively,

overlapping classifiers “share” the observation when modelling it.

We have now established that i) a classifier only models observations that

it matches, ii) it assigns full weight to observations that no other classifier

matches, and iii) it assigns partial weight to observations that other classifiers

match. Expressed differently, a classifier fully models all observations that it

matches alone, and partially models observations that itself and other clas-

4XCS has the tendency to evolve sets of classifiers with little overlap in the areas that they
match. In such cases, all classifiers model their assigned observations in full, independent of
if they are trained independently or in combination.

75

sifiers match. Consequently, the local model provided by a classifier cannot

be interpreted by their matching function alone, but also requires knowledge

of the gating network parameters. Additionally, when changing the model

structure as discussed in Section 3.2.6 by adding, removing, or changing the

localisation of classifiers, all other overlapping classifiers need to be re-trained

as their model is now incorrect due to changing responsibilities. We can avoid

these problems and make the classifier model more transparent if we train

them independently of each other.

4.4.3 Introducing Independent Classifier Training

Classifiers are trained independently if we replace the responsibilities rnk in

Eq. (4.14) by the matching functionsmk(xn) to get

max
θ

K
∑

n=1

K
∑

k=1

mk(xn) ln p(yn|xn,θk). (4.22)

Hence, a classifier models all observations that it matches, independent of the

other classifiers. We have reached our first goal, which was to simplify the

intuition about what a single classifier models. While this does not cause any

change for observations that are matched by a single classifier, observations

that are matched by several classifiers are modelled by each of these classifiers

independently rather than shared between them. This independence is shown

by the graphical model in Figure 4.6, which illustrates the model of a single

classifier k.

With this change, the classifiers are independent of the responsibilities and

subsequently also of the gating network. Thus, they can be trained completely

independently, and we can modify the model structure by adding, removing,

or changing classifier locations without re-training the other classifiers that

are currently in the model, and thereby make searching the space of possible

model structures more efficient.

An additional consequence of classifiers being trained independently of the re-

sponsibilities is that for standard choices of the local models (see, for example

[122]), the log-likelihood Eq. (4.22) is concave for each classifier. Therefore, it

76

yn

mnk

xnmk

θk

N

data

Figure 4.6: Directed graphical model for training classifier k independently.
See the caption of Figure 4.1 for instructions on how to read this graph. Note
that the values of the matching random variables mnk are determined by the
matching functionmk and the inputs xn.

has a unique maximum and consequently we cannot get stuck in local maxima

when training individual classifiers.

4.4.4 Training the Gating Network

Training the gating network remains unchanged, and therefore is described by

Eqs. (4.12) and (4.13). Given a set of trained classifiers, the responsibilities are

fully specified by evaluating Eq. (4.12). Hence, the log-likelihood of the gating

network Eq. (4.13) is a concave function (for example, [20]), and therefore has

a unique maximum.

Thus, the classifier models have unique optima and can be trained indepen-

dently of the gating network bymaximising a concave log-likelihood function.

Furthermore, the gating network depends on the goodness-of-fit of the classi-

fiers, but as they are trained independently, the log-likelihood function of the

gating network is also concave. Therefore, the complete model has a unique

maximum likelihood, and as a consequence we have reached our second goal,

which was to remove local maxima to ease training of the model.

77

4.4.5 Implications on Likelihood and

Assumptions about the Data

By letting a classifier model match each observation with equal weight, we are

violating the assumption that each observation was generated by one and only

one classifier for observations that are matched by more than one classifier.

Rather we can interpret each classifier as a hypothesis for a data-generating

process that generated all observations of the matched area of the input space.

The gating network, on the other hand, was previously responsible for mod-

elling the probabilities of some classifier having produced some observation,

and the classifiers were trained according to this probability. While the gating

network still has the same purpose when the classifiers are trained indepen-

dently, the estimated probability is not fed back to the classifiers anymore. The

cost of this lack of feedback is a worse fit of themodel to the data, which results

in a lower likelihood of the data given the model structure.

Note, however, that independent classifier training only causes a change in

the likelihood in areas where more than one classifier matches the same input.

Hence, we only get a lower likelihood if classifiers have large areas of over-

lap, and it is doubtful that such a solution is ever desired. Nonetheless, the

potentially worse fit needs to be offset by the model structure search to find

solutions with sufficiently minimal overlap between different classifiers.

As the gating network is not gating the observations to the different classifiers

anymore, but rather mixes the independently trained classifier models to best

explain the available observations we will, in the remaining chapters, refer to

it as the mixing model rather than the gating network.

4.5 Discussion and Summary

Starting with the probabilistic MOE model as given in [122], we have gener-

alised it by adding matching as a form of forced localisation of the experts,

which makes the model similar to LCS. Additionally, we have simplified its

78

training by handling the classifiers independently of the gating network. As a

result, we have a probabilistic model for LCS that can act as the basis of further

development. In fact, solving Eq. (4.22) to train the classifiers forms the basis

of the next chapter. The chapter thereafter deals with the mixing model by

describing how the solution to Eq. (4.13) can be found exactly, and by approx-

imation. Thus, in combination, the following two chapters describe in detail

how the model can be trained by maximum likelihood.

Even thoughwe have approached the LCS model from a different perspective,

the resulting structure is very similar to a currently existing LCS: XCS and its

derivates follow the same path of independently training the classifier models

and combining them by a mixing model. While in XCS it is not explicitly iden-

tified that the classifiers are indeed trained independently, this fact becomes

apparent in the next chapter, where we show that the classifier parameter up-

date equations that result from independent classifier training resemble those

of XCS. The mixing model used by XCS does not conform to the generalised

softmax function but rather relies on heuristics, as we will show in Chapter 6.

ZCS [239], on the other hand, differs from the presented model as its classifier

training is not independent. If we consider single-step tasks where the reward

r is immediately presented after each action is performed, then the classifier

strength wk of each classifier is updated at time t+1 after receiving reward rt+1

by

wk,t+1 = wk,t +mk(xt+1)γ

(

rt+1
∑

j mj(xt+1)
− wk,t

)

, (4.23)

where wk,t is the strength estimate of classifier k at time t, xt+1 is the input at

time t + 1 that is associated with the reward rt+1, and γ is a scalar step size
5.

Themk(xt+1) causes the algorithm to only perform updates when the classifier

matches the input xt+1, as otherwise mk(xt+1) = 0. As we will discuss in the

next chapter, the above is the Least Mean Squared (LMS) algorithm that aims

at minimising

∑

t

mk(xt)

(

wk −
rt

∑

j m(xt)

)2

. (4.24)

Thus, the strength wk of each classifier represents the average shared reward

over all states that it matches, where the reward rt is shared by all classifiers

5In [239], rt is denoted rimm, γ is given by β,
∑

j mj(xt+1) is the size of the current action
set |A|, and wk has no explicit symbol.

79

that match xt. This sharing, known as fitness sharing due to the strength of a

classifier also being its fitness, causes the strength of a classifier to depend on

how many classifiers match the same inputs. Thus, the classifiers are trained

in combination rather than independently. Due to its strong relation to ZCS,

the above discussion also applies to the LCS developed byWada et al. in [227].

In [23], Booker develops a different LCS model based on a tile-coding repre-

sentation whose functional form can be collapsed to a linear model. In that

sense it is similar to ZCS, as for a constant model structure ZCS can also be

described by a linear model [227]. LCS that are for all model structures de-

scribable by linear models are very likely not to train their classifiers indepen-

dently6. For example, consider the linear model f(x; θ) =
∑

k gk(x)θk, and

an input x that is matched by two classifiers. Note, that matching is induced

by gk(x) which is input-dependent and therefore — to keep the model linear

— cannot be a function of the model parameters θ. Given that the state x is

matched by more than one classifier, we have gk(x) > 0 for at least two differ-

ent k. The prediction f(x; θ) is then formed by the linear weighted combina-

tion of θk for these k’s. Therefore, the parameters of several classifiers depend

on each other in providing f(x; θ), and given that the gk(x)’s do not always

sum up to 1, they cannot be trained independently. Even though using linear

models avoids local optima in the training process, another problem emerges:

due to the interdependence of the classifiers, changing the matching function

of one of them requires all other classifiers to be re-trained, whichmakesmodel

structure search less efficient. Also, it becomes harder to determine the quality

of a single classifier to guide the model structure search7. Furthermore, there

is no clear interpretation for the model provided by a single classifier. Despite

linear models being easier to analyse, all these reasons support using indepen-

dent classifier training in LCS.

Independent classifier training moves LCS closer to ensemble learning. This

similarity has been exploited recently in [29, 164] where knowledge from en-

6Possibly the onlyway to use a linearmodel and still train the classifiers independently is to
for each input to average over all matching classifiermodels, as introduced as amodification to
XCS by Wada et al. [226]. In such a case, the mixing model is gk(x) = mk(x)/(

∑

k̄ mk̄(x)) and
is therefore only dependent on the model structure and independent of the model parameters.

7Booker proposed to consider classifiers with low parameter values as bad classifiers, as
“The ones with large weights are the most important terms in the approximation” [24], but
would that also work in cases where low parameter values are actually good parameter val-
ues? One can easily imaging a part of a function that is constantly 0 and thus requires 0
parameter values to model it.

80

semble learning and other machine learning methods has been used to im-

prove the performance of UCS [162]. Even though this direction is very

promising, we will not consider the link between LCS and ensemble learning

in this work.

In summary, amongst currently popular LCS, the presented model is most

similar to XCS(F). It combines independently trained classifiers by a mixing

model to provide a global model that aims at explaining the given observa-

tions. While LCS with independently trained classifiers are only one particu-

lar type of LCS, we have chosen to concentrate on this particular type due to

the obvious advantages discussed above. As classifiers are trained indepen-

dently of each other, we can concentrate on the training of a single classifier, as

we will do in the following chapter.

81

Chapter 5

Training the Classifiers

The model of a set of classifiers consists of the classifiers themselves and the

mixing model. The classifiers are localised linear models that are trained inde-

pendently of each other, and their localisation is determined by the matching

function mk. This chapter is entirely devoted to the training of a single classi-

fier.

We have already introduced the linear model that a classifier assumes in Sec-

tion 4.2, but here we provide more details about its underlying assumptions,

and how it can be trained in both a batch learning and an incremental learn-

ing way. Most of the concepts and methods in this chapter are well known in

statistics (for example, [96]) and adaptive filter theory (for example, [106]), but

have not been put into the context of LCS before.

In training a classifier we focus on solving Eq. (4.22), which emerges from ap-

plying the principle of maximum likelihood to the LCS model. By maximis-

ing the likelihood we minimise the empirical risk rather than the expected risk

which might lead to overfitting. Nonetheless, it provides us with a first ap-

proach to training the classifiers, and results in parameter update equations

that are mostly equivalent to the ones used in XCS(F), which confirms that the

LCS model is in its structure similar to XCS(F). In Chapter 7 we return to deal-

ing with over- and underfitting, andwill derivemethods that are subsequently

related to the methods derived in this chapter.

83

The classifier model parameters we estimate are its weight vector and its noise

variance. The latter is a good indicator of the goodness-of-fit of the model and

is also used in a modified form to estimate the accuracy of a classifier in XCS

and its variants. In general, it is useful to guide the model structure search as

we have already discussed in Section 3.2.6, and thus having a good estimate

of the noise variance is advantageous. Thus, we put special emphasis on how

to estimate it efficiently and accurately.

Since each classifier is trained independently (see Section 4.4), we will in this

chapter only consider training of a single classifier k. To keep the notation un-

cluttered, we will drop the subscript k; that is, the classifier’s matching func-

tion mk is denoted m, the model parameters θk = {wk, τk} become w and τ ,

and the estimate f̂k provided by classifier k is denoted f̂ . For any further vari-

ables introduced throughout this chapter it will be explicitly stated whether

they are local to a classifier.

We start by introducing the linear classifier model and its underlying assump-

tions in the next section, followed in Section 5.2 by how to estimate its param-

eters if all training data is available at once. Incremental learning approaches

are discussed in Section 5.3, where we firstly describe gradient-based methods

to estimate the weight vector and then methods that track the optimal esti-

mate exactly. Estimating the noise variance simultaneously is discussed for

both methods in Section 5.3.7. In Section 5.4, we demonstrate the slow con-

vergence of gradient-based methods empirically, and summarise the chapter

in Section 5.5 by putting what we have introduced in this chapter into the per-

spective of current LCS.

5.1 Linear Classifier Models and

Their Underlying Assumptions

By reducing classification tasks to regression tasks in Section 3.1.3, we can limit

ourselves to using local regression models and, in particular, linear models

as a good balance between the expressiveness of the model and the ease of

training the model (see Section 3.2.3). We have already previously introduced

84

the univariate linear model in Section 4.2, but will here discuss its underlying

assumptions and implications in more detail.

5.1.1 Linear Models

A linear model assumes a linear relation between the inputs and the output,

parameterised by a set of model parameters. Given an input vector xwithDX

elements, the model is parameterised by the equally-sized random vector ω

with realisationw, and assumes that the scalar output random variable υ with

realisation y follows the relation

υ = ωT x + ǫ, (5.1)

where ǫ is a zero-mean Gaussian random variable that models the stochasticity

of the process and the measurement noise. Hence, ignoring for now the noise

term ǫ, we assume that the process generates the output by a weighted sum

of the components of the input, as becomes very clear when considering a

realisation w of ω, and rewriting the inner product

wT x ≡
∑

i

wixi, (5.2)

where wi and xi are the ith element of w and x respectively.

While linear models are usually augmented by a bias term to offset them from

the origin, we assume that the input vector always contains a single constant

element (which is usually fixed to 1), which has the equal effect. For example,

consider the input space to be the set of reals; that is X = R,DX = 1 and both x

and w are scalars. In such a case, the assumption of a linear model implies that

the observed output follows xw, which is a straight line through the origin

with slope w. To add the bias term, we can instead assume an augmented

input space X ′ = {1} × R, with input vectors x′ = (1,x)T , resulting in the

linear model wT x′ = w1 + w2x — a straight line with slope w2 and bias w1.

Equally, the input vector can be augmented by other elements to extend the

expressiveness of the linear model, as shown in the following example:

85

Example 5.1.1 (Common Classifier Models used in XCS(F)). Initially, clas-

sifiers in XCS [240, 241] only provided a single prediction, independent of

the input. Such behaviour is equivalent to having the scalar input xn = 1

for all n, as the weight w then models the output as an average over all

matched outputs. Hence, we call such classifiers averaging classifiers. That

they are really averaging over the matched outputs will be demonstrated

in Example 5.2.1.

Later, Wilson introduced XCSF (the F standing for “function”), that ini-

tially used straight lines as the local models [244]. Hence, in the one-

dimensional case, the inputs are given by xn = (1, in) to model the output

by w1 + w2in, where in is the variable part of the input. This concept was

taken further by Lanzi et al. [142] by applying 2-nd and 3-rd order poly-

nomials, using the input vectors xn = (1, in, i2n)T and xn = (1, in, i2n, i3n)T

respectively. Naturally, the input vector does not need to be restricted

to taking in to some power, but allows for the use of arbitrary functions.

These functions are known as basis functions, as they construct the base

of the input space. Nonetheless, increasing the complexity of the input

space makes it harder to interpret the local models. Hence, if we aim at

understanding the localised model, we should keep these models simple

— such as straight lines.

5.1.2 Gaussian Noise

The noise term ǫ captures the stochasticity of the data-generating process and

the measurement noise. In the case of linear models we assume that inputs

and outputs stand in a linear relation. Every deviation from this relation is

captured by ǫ and is interpreted as noise. Hence, assuming the absence of

measurement noise, the fluctuation of ǫ gives us information about the ade-

quacy of assuming a linear model. In other words, if the variance of ǫ is small,

then inputs and outputs do indeed follow a linear relation. Hence, monitoring

the variance of ǫ gives us a measure of how well the local model fits the data.

For that reason, we aim not only at finding a weight vector that maximises the

likelihood, but also want to estimate the variance of ǫ at the same time.

For linear models it is common to assume that the random variable ǫ repre-

senting the noise has zero mean, constant variance, and follows a normal dis-

86

tribution [96], that is ǫ ∼ N (0, τ−1), where τ is the noise precision (inverse

noise variance). Hence, in combination with Eq. (5.1), and for some realisation

w of ω and input x, the output is modelled by

υ ∼ p(y|x,w, τ−1) = N (y|wT x, τ−1) =
(τ

2π

)1/2

exp
(

−τ
2
(wT x− y)2

)

, (5.3)

which defines the probabilistic model of a classifier and forms the core of our

investigations of this chapter.

That the assumption of Gaussian noise is sensible is discussed at length in [166,

Ch. 1].

5.1.3 Maximum Likelihood and Least Squares

To model the matched observations, a classifier aims at maximising the proba-

bility of these observations given its model, as formally described by Eq. (4.22).

Combined with the linear model Eq. (5.3), the term to maximise by a single

classifier k is given by

N
∑

n=1

m(xn) ln p(yn|xn,w, τ
−1) =

N
∑

n=1

m(xn)

(

−1

2
ln(2π) +

1

2
ln τ − τ

2
(wT xn − yn)2

)

. (5.4)

As already shown in Section 4.2, maximising Eq. (5.4) with respect to the

weight vector w results in the weighted least squares problem,

min
w

N
∑

n=1

m(xn)
(

wT xn − yn

)2
, (5.5)

where the weights are given by the classifier’s matching function. Thus, to de-

termine w by maximum likelihood, we only consider observations for which

m(xn) > 0, that is, which are matched.

To determine the noise precision of the fitted model, we maximise Eq. (5.4)

87

with respect to τ , resulting in the problem

max
τ

(

ln(τ)
N
∑

n=1

m(xn) + τ
N
∑

n=1

m(xn)
(

wT xn − yn

)2

)

, (5.6)

where w is the weight vector determined by Eq. (5.5).

The rest of this chapter is devoted to discussing batch and incremental learning

solutions to Eqs. (5.5) and (5.6). Let us start with the batch learning approach.

5.2 Batch Learning Approaches

When performing batch learning, we assume as described in Section 3.1.5 that

all the data D is available at once. Hence, we have full knowledge of {xn, yn},
N and, knowing the current model structureM, also of the classifier’s match-
ing functionm.

Let us now apply this approach to find the classifier’s model parameters by

solving Eqs. (5.5) and (5.6).

Notation We will use the following notation in this and the remaining sec-

tions and chapters. Let x,y ∈ R
M be vectors, and A ∈ R

M × R
M a diagonal

matrix. Let 〈x,y〉 ≡ xT y be the inner product ofx and y, at let 〈x,y〉A ≡ xT Ay

be the inner product weighted by A, forming the inner product space 〈·, ·〉A.
Then, ‖x‖A ≡

√

〈x,x〉A is the norm associated with the inner produce space
〈·, ·〉A. Any two vectors x, x̄ are said to be A-orthogonal, if 〈x, x̄〉A = 0. Note

that ‖x‖ ≡ ‖x‖I is the Euclidean norm, where I is the identity matrix.

5.2.1 The Weight Vector

Using the matrix notation introduced in Eq. (3.3), and defining the diagonal

N × N matching matrixMk of classifier k byMk = diag(m(x1), . . . ,m(xN)),

88

in this chapter simply denotedM , we can rewrite Eq. (5.5) to

min
w

(

(Xw − y)T M (Xw − y)
)

= min
w
‖Xw − y‖2M . (5.7)

Thus, we want to find the w that minimises the weighted distance between

the estimated outputs Xw and the observed outputs y in the inner product

space 〈·, ·〉M . This distance is convex with respect to w and therefore has a

unique minimum [26]. Note that as we assume the output space to be single-

dimensional, the set of observed outputs is given by the vector y rather than

the matrix Y .

The solution to Eq. (5.7) is found by setting its first derivative to zero, resulting

in

ŵ =
(

XT MX
)−1

XT My. (5.8)

Alternatively, a numerically more stable solution that can also be computed if

XT MX is singular and therefore cannot be inverted, is

ŵ =
(√

MX
)+√

My, (5.9)

whereX+ ≡ (XT X)−1XT denotes the pseudo-inverse of matrixX [19].

Using the weight vector according to Eq. (5.8), the matching-weighted vector

of estimated outputsXŵ evaluates to

Xŵ = X
(

XT MX
)−1

XT My. (5.10)

Note that X(XT MX)−1XT M is a projection matrix that projects the vector

of observed outputs y onto the hyperplane {Xw|w ∈ R
DX } with respect to

〈·, ·〉M . This result is intuitively plausible, as thew that minimises the weighted

distance ‖Xw − y‖M between the observed and the estimated outputs is the
closest point on this hyperplane to y with respect to 〈·, ·〉M , which is the or-
thogonal projection of y in 〈·, ·〉M onto this plane. We will use this concept of
projection extensively in Chapter 9.

89

5.2.2 The Noise Precision

To get the maximum likelihood noise precision we need to solve Eq. (5.6). As

before, we evaluate themaximum of Eq. (5.6) by setting its first derivative with

respect to τ to zero, to get

τ̂−1 = c−1‖Xŵ − y‖2M, (5.11)

where

ck =
N
∑

n=1

mk(xn) = Tr(Mk), (5.12)

is thematch count of classifier k, and is in this chapter simply denoted c. Tr(M)

denotes the trace of the matrixM , which is the sum of its diagonal elements.

Hence, the inverse noise precision, that is, the noise variance, is given by the

average squared error of the model output estimates over all matched obser-

vations.

Note, however, that the precision estimate is biased, as it is based on another

estimate ŵ [96, Ch. 5]. This can be accounted for by using

τ̂−1 = (c−DX)−1‖Xŵ − y‖2M, (5.13)

which is the unbiased estimate of the noise precision.

To summarise, the maximum likelihood model parameters of a classifier us-

ing batch learning are found by first evaluating Eq. (5.8) to get ŵ and then

Eq. (5.13) to get τ̂ .

Example 5.2.1 (Batch Learning with Averaging Classifiers). Averaging

classifiers are characterised by using xn = 1 for all n for their linearmodel.

Hence, we have X = (1, . . . , 1)T , and evaluating Eq. (5.8) results in the

scalar weight estimate

ŵ = c−1
N
∑

n=1

m(xn)yn, (5.14)

which is the outputs yn averaged over all matched inputs. Note that, as

90

discussed in Section 3.2.3, the inputs to the matching function as appear-

ing in m(xn) are not necessarily the same as the ones used to build the

local model. In the case of averaging classifiers this differentiation is es-

sential, as the inputs xn = 1 used for building the local models do not

carry any information that can be used for localisation of the classifiers.

The noise precision is determined by evaluating Eq. (5.13) and results in

τ̂−1 = (c− 1)−1
N
∑

n=1

m(xn)(ŵ − yn)2, (5.15)

which is the unbiased average over the squared deviation of the outputs

from their average, and hence gives us an indication of which prediction

error we can expect from the linear model.

5.3 Incremental Learning Approaches

Having derived the batch learning solution, let us now consider the case where

we want to update our model with each additional observation. In partic-

ular, let us assume that the model parameters ŵN and τ̂N are based on N

observations, and we want to incorporate the knowledge of the new obser-

vation (xN+1, yN+1) to get the updated parameters ŵN+1 and τ̂N+1. The fol-

lowing notation will be used: XN ,yN ,MN , and cN denote the input, output,

matching matrix, and match count respectively, after N observations. Sim-

ilarly, XN+1,yN+1,MN+1, cN+1 stand for the same objects after knowing the

additional observation (xN+1, yN+1).

In this section we describe several methods that can be used to perform

the model parameter update, starting with computationally simple gradient-

based approaches, to more complex, but also more stable methods. Since

quickly obtaining a good idea of the quality of the model of a classifier is im-

portant, and as the noise precision quality measure after Eq. (5.6) relies on

the weight estimate, we will not only consider the computational costs of the

methods, but also emphasise their speed of convergence with respect to esti-

mating both w and τ .

We start by describing a principle from adaptive filter theory that tells us

91

when an incremental linearmodel performs optimally. Thenwe consider some

gradient-based approaches, followed by approaches that recursively track the

least-squares solution. Additionally, we will currently only consider updating

the weight vector parameter w, and will return to estimating the noise preci-

sion τ with similar means in Section 5.3.7.

5.3.1 The Principle of Orthogonality

The Principle of Orthogonality tells us when the weight vector estimate ŵN is

optimal in the weighted least squares sense of Eq. (5.5):

Theorem 5.3.1 (Principle of Orthogonality (for example, [106])). The weight vec-

tor estimate ŵN after N observations is optimal in the sense of Eq. (5.5) if the se-

quence of inputs {x1, . . . ,xN} isMN -orthogonal to the sequence of estimation errors

{(ŵT
Nx1 − y1), . . . , (ŵ

T
NxN − yN)}, that is

〈XN ,XNŵN − yN〉MN
=

N
∑

n=1

m(xn)xn

(

ŵT
Nxn − yn

)

= 0. (5.16)

Proof. The solution of Eq. (5.5) is found by setting the first derivative of

Eq. (5.7) to zero to get

2XT
NMNXNŵN − 2XT

NMNyN = 0.

The result follows by dividing the above by 2 and rearranging the expression.

By multiplying Eq. (5.16) by ŵN , we can make a similar statement about the

output estimates:

Corollary 5.3.2 (Corollary to the Principle of Orthogonality (for example,

[106])). The weight vector estimate ŵN afterN observations is optimal in the sense of

Eq. (5.5) if the sequence of output estimates {ŵT
Nx1, . . . , ŵ

T
NxN} isMN -orthogonal

to the sequence of estimation errors {(ŵT
Nx1 − y1), . . . , (ŵ

T
NxN − yN)}, that is

〈XNŵN ,XNŵN − yN〉MN
=

N
∑

n=1

m(xn)ŵT
Nxn

(

ŵT
Nxn − yn

)

= 0. (5.17)

92

Hence, when having a ŵN that minimises ‖XNŵN−yN‖MN
, both the sequence

of inputs and output estimates are MN -orthogonal to the estimation errors.

In other words, the hyperplane spun by the vectors XN and XNŵN is MN -

orthogonal to the vector of estimation errors (XNŵN − yN), and therefore,

the output estimate is an orthogonal projection onto this hyperplane with re-

spect to 〈·, ·〉MN
. This conforms to the batch learning solution introduced in

Section 5.2.1.

5.3.2 Steepest Gradient Descent

Steepest gradient descent is a well-known method for function minimisation,

based on following the gradient of that function. Applied to Eq. (5.5), we can

use it to find the weight vector that minimises the squared error. However, it

is only applicable if we know all observations at once, which is not the case

when performing incremental learning. Nonetheless, we discuss it here as it

gives valuable insights into the stability and speed of convergence of other

gradient-based incremental learning methods that we will describe in a later

section.

As for batch learning, letX,y,M and c be the output matrix, the input vector,

the matching vector, and the match count respectively, given all N observa-

tions. Then, steepest gradient descent is defined by

wn+1 = wn − γn+1
1

2
∇wn

(

‖Xwn − y‖2M
)

, (5.18)

starting at some arbitrary w0, and hence generating a sequence of weight vec-

tors {w0,w1, . . . } by performing small steps along the gradient of the squared
error. Note that n does in this case refer to the iteration number of the method

rather than to the index of the observation, and γn > 0 is the step size in the

nth iteration. Evaluating the gradient ∇wn
with respect to wn results in the

algorithm

wn+1 = wn − γn+1X
T M (Xwn − y). (5.19)

With each step along the gradient, steepest gradient descent reduces the

squared error. As the error function is convex and hence has a unique min-

imum, following its gradient will lead us to this minimum and hence, solves

93

Eq. (5.5).

Stability Criteria

By definition, the step size γn can change at each iteration. When kept constant,

that is γn = γ for all n > 0, and the gradient is Lipschitz continuous1, then the

steepest gradient descent method is guaranteed to converge to the minimum

Eq. (5.5), if that minimum exists [17, Prop. 3.4]. In our case, the gradient as a

function of w is Lipschitz continuous, and hence, convergence for a constant

step size is guaranteed.

Another condition for the stability of steepest gradient descent, which is easier

to evaluate, is for the step size γ to hold

0 < γ <
2

λmax

, (5.20)

where λmax is the largest eigenvalue of the input correlationmatrix c
−1XT MX

[106, Ch. 4]. Hence, the step size that keeps the algorithm stable depends

highly on the values of the input vectors.

Time Constant Bounds

Similar to the stability of the method, its rate of convergence is also dependent

on the eigenvalues of the input correlation matrix. Let T be the time constant2

of the weight vector update. This time constant is bounded by

1

− ln(1− γλmax)
≤ T ≤ 1

− ln(1− γλmin)
, (5.21)

where λmax and λmin are the largest and the smallest eigenvalue of c
−1XT MX

respectively [106, Ch. 4]. As a low T implies a higher rate of convergence,

1A function f : A→ A is Lipschitz continuous if there exists a finite constant scalarK such
that ‖f(a)−f(b)‖ ≤ K‖a−b‖ for any a, b ∈ A. The magnitudeK is a measure of the continuity
of the function f .

2The time constant is a measure of the responsitivity of a dynamic system. A low time
constant means that the systems response quickly to a changing input. Hence, it is inversely
proportional to the rate of convergence

94

we would prefer λmax and λmin to be close together for a tight bound, and

large such that T is kept small. However, if the eigenvalues are widely spread,

which is an indication of ill-conditioned inputs, then the settling time of the

gradient descent algorithm is limited by λmin [17, Ch. 3]. Therefore, the con-

vergence rate is — as the stability criterion — dependent on the values of the

input vectors.

Example 5.3.1 (Stability Criteria and Time Constant for Steepest Gradient

Descent). Let us start with investigating averaging classifiers, that isX =

(1, . . . , 1)T , matching all inputs, and hence M = I , the identity matrix.

The only eigenvalue of c−1XT MX is λ = 1, and therefore, according to

Eq. (5.20), steepest gradient descent is stable for 0 ≤ γ ≤ 2. Equation (5.21)

results in the time constant T = − ln(1 − γ)−1, and hence the method

converges faster with a larger step size, as we would intuitively expect.

The same analysis can be applied to classifiers with straight line models,

with input vectors xn = (1, in)T with in ∈ R for all n. In that case, the

input vector correlation matrix is given by

c−1XT MX =
1

N

N
∑

n=1

(

1 in

in i2n

)

, (5.22)

with eigenvalues λ1 = 0, λ2 = 1 + N−1
∑

i2n. Hence, the step size has to

obey

0 ≤ γ ≤ 2

1 + N−1
∑

i2n
, (5.23)

which demonstrates that the larger the values of in, the smaller the step

size has to be to still guarantee stability of the algorithm. The time con-

stant is bounded by

−1

ln(1− γ(1 + N−1
∑

i2n))
≤ T ≤ ∞, (5.24)

showing that a large eigenvalue spread |λ2 − λ1| caused by on average
highmagnitudes of in pushes the time constant towards infinity, resulting

in very slow convergence. Therefore, the convergence rate of steepest

gradient descent depends frequently on the range of the inputs3. This

dependency will be demonstrated empirically in Section 5.4.

3A similar LCS-related analysis was done in [143, 144], but there the stability criteria for
steepest gradient descent were applied to the LMS algorithm

95

5.3.3 Least Mean Squared

The Least Mean Squared (LMS) algorithm is an incremental approximation to

steepest gradient descent. Rather than performing gradient descent on the er-

ror function given all observations, it follows the gradient of the error function

given only the current observation. For this reason, it is also known as Stochas-

tic Incremental Steepest Gradient Descent, ADALINE, or, after their developers

Widrow and Hoff [237], theWidrow-Hoff Update.

By inspecting Eq. (5.5), the error function for the (N + 1)th observation based

on the model after N observations is m(xN+1)(ŵ
T
NxN+1 − yN+1)

2, and its gra-

dient with respect to wN is therefore 2m(xN+1)xN+1(ŵ
T
NxN+1 − yN+1). Using

this local gradient estimate rather than the global gradient, the LMS update is

given by

ŵN+1 = ŵN + γN+1m(xN+1)xN+1(yN+1 − ŵT
NxN+1), (5.25)

starting with an arbitrary w0.

As the gradient estimate is only based on the current input, the method suffers

from gradient noise. Due to this noise, a constant step size γ will cause random

motion close to the optimal approximation [106, Ch. 5].

Misadjustment due to Local Gradient Estimate

Let hN(w) = c−1
N ‖XNw − yN‖2 be the mean squared error (MSE) after N ob-

servations as a function of the weight vector. The excess mean square estimation

error is the difference between the MSE of the LMS algorithm and the minimal

MSE after Eq. (5.16). The ratio between the excess MSE and the minimal MSE

error is themisadjustment, which is a measure of how far away the convergence

area of LMS is from the optimal estimate. The estimate error for some small

constant step size can, according to [106, Ch. 5], be estimated by

hN(w∗
N) +

γhN(w∗
N)

2

J
∑

j=1

λj, (5.26)

96

where w∗
N is the weight vector that satisfies Eq. (5.16) and thus, hN(w∗

N) is

the minimal MSE, and λj is the jth of the J eigenvalues of c
−1XT

NMNXN . This

shows that the excess MSE estimate is i) always positive, and ii) is proportional

to the step size γ. Thus, reducing the step size also reduces the misadjust-

ment. Indeed, under the standard stochastic approximation assumptions that
∑∞

n=1 γn = ∞ and∑∞
n=1 γ

2
t < ∞, the Lipschitz continuity of the gradient, and

some Pseudogradient property of the gradient, we can guarantee convergence

to the optimal estimate [17, Prop. 4.1].

Stability Criteria and Average Time Constant

As the LMS filter is a traversal filter of length one, using only the current ob-

servation for its gradient estimate, no concrete bounds for the step size can

be currently given [106, Ch. 6]. However, if the step size is small when com-

pared to the inverse of the largest eigenvalue of the input vector correlation

matrix, then the stability criteria are the same as for steepest gradient descent

Eq. (5.20).

As the gradient changes with each step, we can only give an expression for

the local time constant that varies with time (for more details see [77]). On

average, however, the time constant can be bounded in the same way as for

steepest gradient descent Eq. (5.21), with the same consequences.

This leaves us in a dilemma: we have already established that the misadjust-

ment is proportional to the step size. On the other hand, the time constant is

inversely proportional to it. Hence, we have conflicting requirements and can

either aim for a low estimation error or a fast rate of convergence, but will not

be able to satisfy both requirements with anything other than a compromise.

Relation to Batch Learning

To get a better intuitive understanding of how the LMS algorithm estimates

the weight vector, let us reformulate it as a batch learning approach for the

simplified case of an averaging classifier that matches all inputs, that is xn =

97

1,m(xn) = 1 for all n > 0. In that case, Eq. (5.25) reduces to

ŵN+1 = ŵN + γN+1(yN+1 − ŵN), (5.27)

and by recursive substitution (as in Example 3.1.1) results in the batch learning

formulation

ŵN =
N
∑

n=1

ynγn

N
∏

m=n+1

(1− γm) + w0

N
∏

n=1

(1− γn). (5.28)

Hence, the nth observation yn is weighted by γn

∏N
m=n+1(1 − γm), which, for

0 < γn̄ < 1 for all 0 < n̄ ≤ n, means that the lower n, the less yn contributes to

the weight estimate. Also, w0 introduces a bias that decays exponentially with
∏N

n=1(1−γn). Comparing this insight to the results of Example 5.2.1, where we

have shown that the optimal weight in the least squares sense for averaging

classifiers is the average over all matched outputs, we can see that the LMS

algorithm does not achieve this optimum for arbitrary step sizes. Nonetheless,

it can be applied readily for recency-weighted applications, such as to handle

non-stationary processes, as is required in reinforcement learning applications.

5.3.4 Normalised Least Mean Squared

As we can see from Eq. (5.25), the magnitude of the weight update is directly

proportional to the new input vector xN+1, causing gradient noise amplification

[106, Ch. 6]. Thus, if we have large values in some elements of the feature

vector, the correction based on a local error will be amplified and causes addi-

tional noise. This problem can be overcome by weighting the correction by the

squared Euclidean norm of the input, resulting in the update

ŵN+1 = ŵN + γtm(xN+1)
xN+1

‖xN+1‖2
(yN+1 − ŵT

NxN+1). (5.29)

This update equation can also be derived by calculating the weight vector up-

date that minimises the norm of the weight change ‖ŵN+1 − ŵN‖2, subject to
the constraint m(xN+1)ŵN+1xN+1 = yN+1. As such, the normalised LMS filter

can be seen as a solution to a constrained optimisation problem.

Regarding stability, the step size parameter γ is now weighted by the inverted

98

square norm of the input vector. Thus, stability in the MSE sense is dependent

on the current input. The lower bound is still 0, and the upper bound will be

generally larger than 2 if the input values are overestimated, and smaller than

2 otherwise. The optimal step size, located at the largest value of the mean

squared deviation, is the centre of the two bounds [106, Ch. 6].

As expected, the normalised LMS algorithm features a rate of convergence that

is higher than that of the standard LMS filter, as demonstrated empirically in

[75]. One drawback of the modification is that one needs to check ‖xN+1‖2 for
being zero, in which case no update needs to be performed to avoid division

by zero.

To summarise, both variants of the LMS algorithm have low computational

and space costs O(DX), but only rely on the local gradient estimate and may

hence feature slow convergence and misadjustment. We can adjust the step

size to either improve convergence speed or misadjustment, but cannot im-

prove both at the same time. Additionally, the speed of convergence is by

Eq. (5.21) influenced by the value of the inputs and might be severely reduced

by ill-conditioned inputs, as we will demonstrate in Section 5.4.

Let us recall that to quickly get an idea of the goodness-of-fit of a classifier

model, which we measure by the model variance, we also need a good es-

timate of the weight vector. Despite their low computational cost, gradient-

based methods are known to suffer from low speed of convergence and are

therefore not necessarily the best choice for this task. In the following sections

we describe incremental methods that are computationally more costly, but

are able to recursively track the weight vector that satisfies Eq. (5.16) and are

therefore optimal in the least squares sense.

5.3.5 Recursive Least Squares

The Principle of Orthogonality Eq. (5.16) is satisfied if the normal equation

(

XT
NMNXN

)

ŵN = XT
NMNyN , (5.30)

99

holds. Using the DX ×DX symmetric matrix ΛN = XT
NMNXN , we can relate

ΛN and ΛN+1 by

ΛN+1 = ΛN +m(xN+1)xN+1x
T
N+1, (5.31)

with Λ0 = 0. Similarly, we have

XT
N+1MN+1yN+1 = XT

NMNyN +m(xN+1)xN+1yN+1, (5.32)

which, in combination with Eqs. (5.30) and (5.31), allows us to derive the rela-

tion

ΛN+1ŵN+1 = ΛN+1wN +m(xN+1)xN+1(yN+1 − ŵT
NxN+1). (5.33)

Pre-multiplying the above by Λ
−1
N+1, we get the weight vector update

ŵN+1 = ŵN +m(xN+1)Λ
−1
N+1xN+1(yN+1 − ŵT

NxN+1), (5.34)

which, together with Eq. (5.31) and starting withw0 = 0, defines the recursive

least squares (RLS) algorithm (see, for example, [106, Ch. 9] or [17, Ch. 3]).

Following this algorithm allows us to satisfy the Principle of Orthogonality

with each additional observation, and as such provides an incremental ap-

proach of tracking the optimal weight vector in the least squares sense. This

comes at the cost O(D3
X) of having to invert the matrix Λwith each additional

observation that is to be included into the model. Alternatively, we can utilise

the properties of Λ to derive the following modified update:

Operating on Λ
−1

The Sherman-Morrison formula (also known as the Matrix Inversion Lemma,

e.g. [106, Ch. 6]) provides a method of adding a dyadic product to an invert-

ible matrix by operating directly on the inverse of this matrix. Hence, it is

applicable to Eq. (5.31), and results in

Λ
−1
N+1 = Λ

−1
N −m(xN+1)

Λ
−1
N xN+1x

T
N+1Λ

−1
N

1 +m(xN+1)xT
N+1Λ

−1
N xN+1

, (5.35)

100

which is of cost O(D2
X) rather than O(D3

X) for inverting Λ in Eq. (5.34) at each

update.

The drawback of this approach is that we cannot initialise Λ0 = 0, as the

Sherman-Morrison formula is only valid for invertible matrices, and Λ0 = 0 is

clearly not. This issue is usually handled by initialising Λ
−1
0 = δI , where δ is a

large positive scalar (to keep Λ0 close to 0), and I is the identity matrix. While

this approach introduces an initial bias to the RLS algorithm, this bias decays

exponentially, as we will show in the next section.

Relation to Ridge Regression

It is easy to show that the solution ŵN to minimising

‖XNw − yN‖2MN
+ λ‖w‖2, (5.36)

(λ is the positive scalar ridge complexity) with respect to w requires

(XT
NMNXN + λI)ŵN = XT

NMNyn (5.37)

to hold. The above is similar to Eq. (5.30) with the additional term λI . Hence,

Eq. (5.31) still holds when initialised with Λ0 = λI , and consequently so does

Eq. (5.34). Therefore, initialising Λ
−1
0 = δI to apply Eq. (5.35) to operate on

Λ
−1 rather than Λ is equivalent to minimising Eq. (5.36) with λ = δ−1.

In addition to the matching-weighted squared error, Eq. (5.36) penalises the

size of w. This approach is known as ridge regression and was initially intro-

duced to work around the problem of initially singular XT
NMNXN for small

N , that prohibited the solution of Eq. (5.30). However, minimising Eq. (5.36)

rather than Eq. (5.7) is also advantageous if the input vectors suffer from a

high noise variance, resulting in large w and a bad model for the real data-

generating process. Essentially, ridge regression assumes that the size of w is

small and hence computes better model parameters for noisy data, given that

the inputs are normalised [103, Ch. 3].

To summarise, using the RLS algorithm Eqs. (5.34) and (5.35) with Λ
−1
0 = δI ,

101

a classifier performs ridge regression with ridge complexity λ = δ−1. As by

Eq. (5.36), the contribution of ‖w‖ is independent of the number of observa-
tions N , its influence decreases exponentially with N .

A Recency-Weighted Variant

While the RLS algorithm provides a recursive solution such that Eq. (5.16)

holds, it weights all observations equally. Nonetheless, we might sometimes

require recency-weighting, such as when using LCS in combination with rein-

forcement learning. Hence, let us derive a variant of RLS that applies a scalar

decay factor 0 ≤ λ ≤ 1 to past observations.

More formally, after N observations, we aim at minimising

N
∑

n=1

m(xn)λ
PN

j=n+1
m(xj)(wT xn − yn)2 = ‖XNw − yN‖2Mλ

N
(5.38)

with respect to w, where the λ-augmented diagonal matching matrixMλ
N is

given by

Mλ
N =

m(x1)λ
PN

j=2
m(xj) 0

m(x2)λ
PN

j=3
m(xj)

. . .

0 m(xN)

. (5.39)

Note that we are using λ
PN

j=n+1
m(xj) rather than simply λN−n to only decay past

observations if the current observation is matched. As before, the solution ŵN

that minimises Eq. (5.38) satisfies

(XT
NMλ

NXN)ŵN = XT
NMλ

NyN . (5.40)

Using ΛN = XT
NMλ

NXN and the relations

ΛN+1 = λm(xN+1)
ΛN +m(xN+1)xN+1x

T
N+1, (5.41)

ΛN+1ŵN+1 = λm(xN+1)
ΛNŵN +m(xN+1)xN+1yN+1, (5.42)

102

the recency-weighted RLS weight vector update is given by

ŵN+1 = λm(xN+1)ŵN +m(xN+1)Λ
−1
N+1xN+1(yN+1 − ŵT

NxN+1). (5.43)

The matrix Λ can be updated by either using Eq. (5.41) or by applying the

Sherman-Morrison formula to get

Λ
−1
N+1 = λ−m(xN+1)

Λ
−1
N −m(xN+1)λ

−m(xN+1) Λ
−1
N xN+1x

T
N+1Λ

−1
N

λm(xN+1) +m(xN+1)xT
N+1Λ

−1
N xN+1

.

(5.44)

All equations from this section reduce to the non-recency-weighted equiva-

lents if λ = 1.

In summary, the RLS algorithm recursively tracks the solution according to

the Principle of Orthogonality. As this solution is always optimal in the least

squares sense, there is no need to discuss its convergence to the optimal solu-

tion, as was required for gradient-based algorithms. While the RLS can also

be adjusted to perform recency-weighting, as developed in this section, its

only drawback when compared to the LMS or normalised LMS algorithm is

its higher computational cost. Nonetheless, if this additional cost is bearable,

it should be always preferred to the gradient-based algorithm, as we will also

demonstrate in Section 5.4.

Example 5.3.2 (RLS Algorithm for Averaging Classifiers). Let us consider

averaging classifiers, that is xn = 1 for all n > 0. Hence, we have for

Eq. (5.31)

ΛN+1 = ΛN + m(xN+1), (5.45)

which, when starting with Λ0 = 0 is equivalent to the match count ΛN =

cN . The weight update after Eq. (5.34) reduces to

wN+1 = wN + m(xN+1)c
−1
N+1(yN+1 − wN). (5.46)

Note that this is equivalent to the LMS algorithm Eq. (5.25) for averag-

ing classifiers when using the step size γN = c−1
N . By recursive back-

substitution of the above, and using w0 = 0, we get

wN = c−1
N

N
∑

n=1

m(xN+1)yn, (5.47)

103

which is, as already derived for batch learning Eq. (5.14), the matching-

weighted average over all observed outputs.

Interestingly, XCS applies the MAM update that is equivalent to averag-

ing the input for the first γ−1 inputs, where γ is the step size, and then

tracking the input using the LMS algorithm [240]. In other words, it boot-

straps its weight estimate using the RLS algorithm, and then continues

tracking of the output using the LMS algorithm. Note that this is only

the case for XCS with averaging classifiers, and does not apply for XCS-

derivates that use more complex models, such as XCSF. Even though not

explicitly stated in [244], we assume that the MAM update was not used

for the weight update in those XCS derivates, but is still used when up-

dating its scalar parameters, such as the relative classifier accuracy and

fitness.

5.3.6 The Kalman Filter

In developing the RLS algorithm we have concentrated on following the Prin-

ciple of Orthogonality, without considering the probabilistic structure of the

random variables. While by introducing the Kalman filter in this section we

formally arrive at the same update equations as for the RLS algorithm, we

additionally provide this probabilistic structure, and hence support better un-

derstanding of the method. Furthermore, its use is advantageous as “[. . .]

the Kalman filter is optimal with respect to virtually any criterion that makes

sense” [166, Ch. 1].

Firstly, we introduce the systemmodel, and from this model derive the update

equations in the covariance form and the inverse covariance form. Following

this, we discuss how to estimate the system state and the measurement noise

simultaneously, by following the Minimum Model Error philosophy. Finally,

we relate the resulting algorithm to the RLS algorithm.

The SystemModel

The Kalman-Bucy systemmodel [124, 125] describes how a noisy process mod-

ifies the state of a system, and how this affects the noisy observation of the sys-

104

tem. Both the process and the relation between system state and observation is

assumed to be linear, and all noise is zero-mean white (uncorrelated) Gaussian

noise.

In our case, the process that generates the observations is assumed to be sta-

tionary, which is expressed by a constant system state. Additionally, the ob-

servations are in linear relation to the system state and all deviations from that

linearity are covered by zero-mean white (uncorrelated) Gaussian noise. The

resulting model is

υn = ωT xn + ǫn, (5.48)

where υn is the random variable that represents the observed nth scalar output

of the system, ω is the system state random variable, xn is the known nth

input vector to the system, and ǫn is the measurement noise associated with

observing yn.

The noise ǫn is modelled by a zero-mean Gaussian ǫn ∼ N (0, (m(xn)τn)−1)

with precision m(xn)τn. Here, we utilise the matching function to blur obser-

vations that are not matched. Given, for example, that xn is matched and so

m(xn) = 1, resulting in a measurement noise with variance τ−1
n . However, if

that state is not matched, that is if m(xn) = 0, then the measurement noise

has infinite variance and hence we cannot induce any information from the

associated observation.

For the system state ω we acquire the multivariate Gaussian model ω ∼
N (ŵ,Λ−1) centred on ŵ and with precision matrix Λ. Hence, the output υn is

also Gaussian υn ∼ N (yn, (m(xn)τn)−1), and jointly Gaussian with the system

state ω. More details on the random variables, their relations and distributions

can be found in [166, Ch. 5] and [2, Ch. 1].

Comparing the model Eq. (5.48) to the previously introduced linear model

Eq. (5.1), we can see that the system state corresponds to the weight vector,

and that the only difference is the assumption that the measurement noise

variance can change with each observation. Additionally, the Kalman-Bucy

system model explicitly assumes a multivariate Gaussian model for the sys-

tem state ω, resulting in the output υ also being modelled by a Gaussian.

The aim of the Kalman filter is to estimate the system state that can subse-

105

quently be used to predict the output given a new input. We achieve this

by conditioning a prior ω0 ∼ N (ŵ0,Λ
−1
0) on the available observations. As

before, we proceed by assuming that the current model ωN ∼ N (ŵN ,Λ
−1
N) re-

sults from incorporating the information of N observations, and we want to

add the new observation (xN+1, yN+1, τN+1). Later we will show how to es-

timate the noise precision τN+1, but for now we assume that it is part of the

observation.

Covariance Form

As the system state and the observation are jointly Gaussian, the Bayesian up-

date of the model parameters is given by [2, Ch. 3]

ŵN+1 = E
(

ωN |υN+1 ∼ N (yN+1, (m(xN+1)τN+1)
−1)
)

= E(ωN) + cov(ωN , υN+1)var(υN+1)
−1(yN+1 − E(υN+1)), (5.49)

Λ
−1
N+1 = cov

(

ωN ,ωN |υN+1 ∼ N (yN+1, (m(xN+1)τN+1)
−1)
)

= cov(ωN ,ωN)− cov(ωN , υN+1)var(υN+1)
−1cov(υN+1,ωN).(5.50)

Evaluating the expectations, variances and covariances

E(ωN)=ŵN ,

E(υN+1)=ŵT
NxN+1,

cov(ωN , υN+1)=Λ
−1
N xN+1,

cov(ωN ,ωN)=Λ
−1
N ,

var(υN+1)=xT
N+1Λ

−1
N xN+1 + (m(xN+1)τN+1)

−1,

cov(υN+1,ωN)=xT
N+1Λ

−1
N ,

and substituting them into the Bayesian update results in

ζN+1 = m(xN+1)Λ
−1
N xN+1

(

m(xN+1)x
T
N+1Λ

−1
N xN+1 + τ−1

N+1

)−1
, (5.51)

ŵN+1 = ŵN + ζN+1

(

yN+1 − ŵT
NxN+1

)

, (5.52)

Λ
−1
N+1 = Λ

−1
N − ζN+1x

T
N+1Λ

−1
N . (5.53)

This form of the Kalman filter is known as the covariance form as we are oper-

ating on the covariance matrix Λ
−1 rather than the precision matrix Λ.

The value ζN+1 is known as the Kalman gain and is a temporary measure that

depends on the current model ωN and the new observation. It mediates how

much ωN is corrected, that is, how much the current input xN+1 influences

106

Λ
−1
N+1, and how the output residual yN+1 − ŵT

NxN+1 contributes to computing

ŵN+1.

From the update equations we can see that as the measurement noise variance

τ−1
N+1 approaches zero, the gain ζN+1 weights the output residual more heavily.

On the other hand, as the weight covariance Λ
−1
N approaches zero, the gain

ζN+1 assigns less weight to the output residual [236]. This is the behaviour that

we would intuitively except, as low-noise observations should influence the

model parameters more strongly than high-noise observations. Also, the gain

is mediated by the matching function and in the cases of non-matched inputs

reduced to zero, which causes the model parameters to remain unchanged.

Inverse Covariance Form

Using the Kalman filter to estimate the system state requires the definition of

a prior ω0. In many cases, we do not have any knowledge of what the correct

prior might be, and setting it arbitrarily might introduce an unnecessary bias.

While complete lack of information can be theoretically induced as the limiting

case of certain eigenvalues of Λ−1
0 going to infinity [166, Ch. 5.7], it cannot be

used in practice due to large numerical errors when evaluating Eq. (5.51).

This problem can be dealt with by operating the Kalman filter in the inverse

covariance form rather than the previously introduced covariance form. To up-

date Λ rather than Λ
−1 we substitute ζN+1 from Eq. (5.51) into Eq. (5.53) and

apply the Matrix Inversion Lemma (for example, [106, Ch. 9.2]) to get

ΛN+1 = ΛN +m(xN+1)τN+1xN+1x
T
N+1. (5.54)

The weight update is derived by combining Eq. (5.51) and Eq. (5.53) to get

ζN+1 = m(xN+1)τN+1Λ
−1
N+1xN+1, (5.55)

which, when substituted into Eq. (5.52), gives

ŵN+1 = ŵN +m(xN+1)τN+1Λ
−1
N+1xN+1(yN+1 − ŵT

NxN+1). (5.56)

We get the final update equation by pre-multiplying the above by ΛN+1 and

107

substituting Eq. (5.54) for the first ΛN+1 of the resulting equation, giving

ΛN+1ŵN+1 = ΛNŵN +m(xN+1)τN+1xN+1yN+1. (5.57)

Thus, we are not directly updating ŵ but rather the vector (Λŵ) ∈ R
DX from

which we can recover ŵ by ŵ = Λ
−1(Λŵ). Hence, even though the initial Λ

might be singular and therefore cannot be inverted to calculate ŵ, it can still be

updated by Eq. (5.54) until it is non-singular and can be inverted. This allows

us to use the non-informative priorΛ0 = 0 that cannot be used when applying

the covariance form of the Kalman filter.

MinimumModel Error Philosophy

For deriving the Kalman filter update equations we have assumed knowledge

of the measurement noise variances {τ−1
1 , τ−1

2 , . . . }. In our application of the
Kalman filter that is not the case, and so we have find a method that allows us

to estimate the variances at the same time as the system state.

Assuming a different measurement noise variance for each observation makes

estimating these prohibitive, as it would require us to estimate more parame-

ters than we have observations. To reduce the degrees of freedom of the model

we will make the assumption that τ is constant for all observations, that is

τ1 = τ2 = · · · = τ . In addition, we adopt the Minimum Model Error (MME)

philosophy [172] that aims at finding the model parameters that minimises

the model error, which is determined by the noise variance τ . The MME is

based on theCovariance Constraint condition, which states that the observation-

minus-estimate error variance must match the observation-minus-truth error

variance, that is

(yn − ŵT xn)2 ≈ (m(xn)τ)−1. (5.58)

Given that constraint and the assumption of not having any process noise, the

model error for the nth observation is given by weighting the left-hand side of

Eq. (5.58) by the inverted right-hand side, which, for N observations results in

τ

N
∑

n=1

m(xn)
(

ŵT xn − yn

)2
. (5.59)

108

Minimising the above is independent of τ and therefore equivalent to Eq. (5.5).

Thus, assuming a constant measurement noise variance has led us back to

minimising the error that we originally intended to minimise.

Relation to Recursive Least Squares

In deriving the Kalman filter update we arrived a set of equations that are very

similar but not quite the same as the RLS update equations. Maybe the most

obvious match is the inverse covariance update Eq. (5.54) of the Kalman filter,

and Eq. (5.31) of the RLS algorithm, only differing by the additional term τN+1

in Eq. (5.54). Similarly, Eq. (5.56) and Eq. (5.34) differ by the same term.

In fact, if we substitute all Λ in the RLS update equations by τ−1
Λ, and apply

the assumption τ1 = τ2 = · · · = τ to the Kalman filter equations, these equa-

tions become equivalent. More specifically, the covariance form of the Kalman

filter corresponds to the RLS algorithm that uses Eq. (5.35), and the inverse

covariance form is equivalent to using Eq. (5.31). They also share the same

characteristics: while Eq. (5.35) is computationally cheaper, it cannot be used

with a non-informative prior, just like the covariance form. Conversely, using

Eq. (5.31) allows the use of non-informative priors, but requires a matrix in-

version with every additional update, as does the inverse covariance form to

recover ŵ by ŵ = Λ
−1(Λŵ), making it computationally more expensive.

The information we gain from this relation is manifold:

• The weight vector of the linear model we apply corresponds to the sys-
tem state of the Kalman filter. Hence, it can be modelled by a multi-

variate Gaussian, that, in the notation of the RLS algorithm, is given by

ωN ∼ N (ŵN , (τΛN)−1). As τ is unknown, it needs to be substituted by

its estimate τ̂ .

• Acquiring this model for ω causes the output random variable υ to be-

come Gaussian as well. Hence, using the model for prediction, these

predictions will be Gaussian. More specifically, given a new input x′, the

109

predictive density is

y′ ∼ N
(

ŵT x′, τ̂−1(x′TΛ
−1x′ +m(x′)−1)

)

, (5.60)

and is thus centred on ŵT x′. Its spread is determined on one hand by the

estimated noise variance (m(x′)τ̂)−1 and the uncertainty of the weight

vector estimate x′T (τ̂Λ)−1x. The Λ in the above equations refers to the

one estimated by the RLS algorithm.

Following [103, Ch. 8.2.1], we can get the two-sided 95% confidence of the

standard normal distribution by considering its 97.5% point (as (100%−
2 × 2.5%) = 95%), which is 1.96. Therefore, the 95% confidence interval

of the classifier predictions is centred on the mean of Eq. (5.60) with 1.96

times the square root of the prediction’s variance to either side of the

mean.

• In deriving the Kalman filter update equations, we have embedded
matching as a modifier to the measurement noise variance, that is ǫn ∼
N (0, (m(xn)τ)−1), which gives us a new interpretation for matching: A

matching value between 0 and 1 for a certain input can be interpreted

as reducing the amount of information that the model acquires about

the associated observation by increasing the noise of the observation and

hence reducing its certainty.

• A similar interpretation can be given to RLS with recency-weighting: the
decay factor λ acts as a multiplier to the noise precision of past obser-

vations and hence reduces their certainty. This causes the model to put

more emphasis onmore recent observations due to their lower noise vari-

ance. Formally, modelling the noise for the nth observation after N ob-

servations by

ǫn ∼ N
(

0,
(

m(xn)τλ
PN

j=n+1
m(xj)

)−1
)

(5.61)

causes the Kalman filter to perform the same recency weighting as the

recency-weighted RLS variant.

• The Gaussian prior on ω provides a different interpretation of the ridge

complexity λ in ridge regression: recalling that λ corresponds to initialis-

ing RLS with Λ
−1
0 = λ−1I , it is also equivalent to using the Kalman filter

with the prior ω0 ∼ N (0, (λτ)−1I). Hence, ridge regression assumes the

110

weight vector to be centred on 0with an independent variance of (λτ)−1

of each element of this vector. As the prior covariance is proportional to

the real noise variance τ−1, a smaller variance will cause stronger shrink-

age due to a more informative prior.

What if the noise distribution is not Gaussian? Would that invalidate the ap-

proach taken by RLS and the Kalman filter? Fortunately, the Gauss-Markov

Theorem (for example, [96]) states that the least squares estimate is optimal

independent of the shape of the noise distribution, as long as its variance is

constant over all observations. Nonetheless, adding the assumption of Gaus-

sian noise and acquiring a Gaussian model for the weight vector allows us to

specify the predictive density. Without these assumptions, we would be un-

able make any statements about this density, and are subsequently also unable

to provide a measure for the prediction confidence.

In summary, while we have demonstrated the formal equivalence between

the Kalman filter in our application and the RLS algorithm, relating the two

methods significantly increases the understanding of the assumptions under-

lying the RLS method and provides intuitive interpretations for matching and

recency-weighting by relating them to an increased uncertainty about the ob-

servations.

5.3.7 Incremental Noise Precision Estimation

So far, we have concentrated our discussion of incremental methods on how

to estimate the weight vector that solves Eq. (5.5). Let us now consider how

we can estimate the noise precision by incrementally solving Eq. (5.6).

For batch learning it was already demonstrated that Eqs. (5.11) and (5.13) pro-

vide a biased and unbiased noise precision estimate that solves Eq. (5.6). The

same solutions are valid when using an incremental approach, and thus, after

N observations,

τ̂−1
N = c−1

N ‖XNŵN − yN‖2MN
(5.62)

111

provides a biased estimate of the noise precision, and

τ̂−1
N = (cN −DX)−1‖XNŵN − yN‖2MN

(5.63)

is the unbiased estimate. Ideally, ŵN is the weight vector that satisfies the

Principle of Orthogonality, but if gradient-based methods are utilised, we are

forced to rely on the current (possibly quite wrong) estimate.

Let us firstly derive a gradient-based method for estimating the noise preci-

sion, which is the one applied in XCS. Following that, we introduce a much

more accurate approach that can be used alongside the RLS algorithm to track

the exact noise precision estimate after Eq. (5.63) for each additional observa-

tion.

Estimation by Gradient Descent

We can reformulate the problem of computing Eq. (5.62) as finding the mini-

mum of
N
∑

n=1

m(xn)
(

τ−1 − (ŵT
Nxn − yn)2

)2
. (5.64)

That the minimum of the above with respect to τ is indeed Eq. (5.62) can be

easily shown by the solution of setting its gradient with respect to τ to zero.

This minimisation problem can now be solved with any gradient-based

method. Applying the LMS algorithm, the resulting update equation is given

by

τ̂−1
N+1 = τ̂−1

N + γm(xN+1)
(

(ŵT
N+1xN+1 − yN+1)

2 − τ̂−1
N

)

. (5.65)

While this method provides a computationally cheap approach to estimating

the noise precision, it is flawed in several ways: firstly, it suffers under some

circumstances from slow convergence speed, just as any other gradient-based

method. Secondly, at each step, the method relies on the updated weight vec-

tor estimate, but does not take into account that changing the weight vector

also modifies past estimates and with it the squared estimation error. Finally,

byminimising Eq. (5.64) we are computing the biased estimate Eq. (5.62) rather

than the unbiased estimate Eq. (5.63). Let us now introduce a method that

solves all of these problems.

112

Estimation by Direct Tracking

Let us assume that the sequence of weight vector estimates {ŵ1, ŵ2, . . . } satis-
fies the Principle of Orthogonality, which we can achieve by utilising the RLS

algorithm. In the following, we derive a method for incrementally updating

‖XNŵN −yN‖2MN
, which then allows us to accurately track the unbiased noise

precision estimate Eq. (5.63).

At first, let us derive a simplified expression for ‖XNŵN−yN‖2MN
: based on the

Corollary to the Principle of Orthogonality Eq. (5.17) and −yN = −XNŵN +

(XNŵN − yN)we get

yT
NMNyN = ŵT

NXT
NMNXNŵN − 2ŵT

NXT
NMN(XNŵN − yN)

+(XNŵN − yN)T MN(XNŵN − yN)

= ŵT
NXT

NMNXNŵN + ‖XNŵN − yN‖2MN
, (5.66)

which, for the sum of squared errors, results in

‖XNŵN − yN‖2MN
= yT

NMNyN − ŵT
NXT

NMNXNŵN . (5.67)

To express ‖XN+1ŵN+1−yN+1‖2MN+1
in terms of ‖XNŵN−yN‖2MN

, we combine

Eqs. (5.31), (5.32) and (5.67), and useΛNŵN = XT
NMNyN after Eq. (5.30) to get

‖XN+1ŵN+1 − yN+1‖2MN+1

= yT
N+1MN+1yN+1 − ŵT

N+1X
T
N+1MN+1XN+1ŵN+1

= ‖XNŵN − yN‖2MN
+m(xN+1)y

2
N+1 + ŵT

NΛNŵN − ŵT
N+1ΛN+1ŵN+1

= ‖XNŵN − yN‖2MN
+m(xN+1)y

2
N+1

+ŵT
N

((

ΛN +m(xN+1)xN+1x
T
N+1

)

ŵN+1 −m(xN+1)xN+1yN+1

)

−ŵT
N+1 (ΛNŵN +m(xN+1)xN+1yN+1)

= ‖XNŵN − yN‖2MN
+m(xN+1)y

2
N+1 +m(xN+1)ŵ

T
NxN+1x

T
N+1ŵN+1

−m(xN+1)ŵ
T
NxN+1yN+1 −m(xN+1)ŵ

T
N+1xN+1yN+1

= ‖XNŵN − yN‖2MN

+m(xN+1)(ŵ
T
NxN+1 − yN+1)(ŵ

T
N+1xN+1 − yN+1).

Thus, we have the following result:

Theorem 5.3.3 (Incremental Sum of Squared Error Update). Let the sequence

113

of weight vector estimates {ŵ1, ŵ2, . . . } satisfy the Principle of Orthogonality
Eq. (5.16). Then

‖XN+1ŵN+1 − yN+1‖2MN+1
(5.68)

= ‖XNŵN − yN‖2MN
+m(xN+1)(ŵ

T
NxN+1 − yN+1)(ŵ

T
N+1xN+1 − yN+1)

holds.

An almost equal derivation reveals that the sum of squared errors for the

recency-weighted RLS variant is given by

‖XN+1ŵN+1 − yN+1‖2MN+1

= λm(xN+1)‖XNŵN − yN‖2MN

+m(xN+1)(ŵ
T
NxN+1 − yN+1)(ŵ

T
N+1xN+1 − yN+1), (5.69)

where, when compared to Eq. (5.68), the current sum of squared errors is ad-

ditionally discounted.

In summary, we can track the unbiased noise precision estimate by directly

solving Eq. (5.63), where the match count is updated by

cN+1 = cN +m(xN+1), (5.70)

and the sum of squared errors is updated by Eq. (5.68). As Theorem 5.3.3

states, Eq. (5.68) is only valid if the Principle of Orthogonality holds. How-

ever, using the computationally cheaper RLS implementation that involves

Eq. (5.35) introduces an initial bias and hence violates the Principle of Orthog-

onality. Nonetheless, if δ in Λ
−1
0 = δI is set to a very large positive scalar,

this bias is negligible, and hence we can still apply Eq. (5.68) with only minor

inaccuracy.

Example 5.3.3 (Noise Precision Estimation for Averaging Classifiers). Let

us assume averaging classifiers, that is xn = 1 for all n > 0. Given that

we utilise a gradient-based method to estimate the weight vector, we are

violating the Principle of Orthogonality, and hence have to use Eq. (5.65)

114

to estimate the noise precision, resulting in

τ̂−1
N+1 = τ̂−1

N + m(xN+1)
(

(ŵN+1 − yN+1)
2 − τ̂−1

N

)

. (5.71)

Alternatively, we can use the RLS algorithm Eq. (5.46) for averaging clas-

sifiers, and use Eq. (5.68) to accurately track the noise precision by

τ̂−1
N+1 = τ̂−1

N + m(xN+1)(ŵN − yN+1)(ŵN+1 − yN+1). (5.72)

Note that while the computational cost of both approaches is equal (in

its application to averaging classifiers), the second approach is vastly su-

perior in its weight vector and noise precision estimation accuracy and

should therefore be always preferred.

Squared Error or Absolute Error?

XCSF (of which XCS is a special case) initially applied the NLMS method

Eq. (5.29) [240], and later the RLS algorithm by Eqs. (5.34) and (5.35) [143, 144]

to estimate the weight vector. The classifier estimation error is tracked by the

LMS update

τ̂−1
N+1 = τ̂−1

N +m(xN+1)
(

|ŵT
N+1xN+1 − yN+1| − τ̂−1

N

)

, (5.73)

to — after N observations — perform stochastic incremental gradient descent

on the error function

N
∑

n=1

m(xn)
(

τ−1 − |ŵT
Nxn − yn|

)2
. (5.74)

Therefore, the error that is estimated is the mean absolute error

c−1
N

N
∑

n=1

m(xn)
∣

∣ŵT
Nxn − yn

∣

∣ , (5.75)

rather than the MSE Eq. (5.62). Thus, XCSF does not estimate the error that

its weight vector estimate aims at minimising, and does not give a justification

for this inconsistency — probably because the errors that are minimised have

never before been explicitly expressed. While there is no systematic study that

compares using Eq. (5.62) rather than Eq. (5.75) as the classifier error estimate

115

in XCSF, we have recommended in [156] to use the MSE for the reason of con-

sistency and easier tracking by Eq. (5.68), and — as shown here — to provide

its probabilistic interpretation as the noise precision estimate τ̂ of the linear

model.

5.3.8 Summarising Incremental Learning Approaches

We have introduced various approaches to estimating the weight vector and

noise precision estimate of the linear model Eq. (5.3). While the gradient-

based models, such as LMS or NLMS, are computationally cheap, they require

problem-dependent tuning of the step size and might feature slow conver-

gence to the optimal estimates. RLS and Kalman filter approaches, on the

other hand, scale at best with O(D2
X), but are able to accurately track both

the optimal weight vector estimate and its associated noise precision estimate

simultaneously.

Table 5.1 gives a summary of all the methods introduced in this chapter (omit-

ting the recency-weighted variants), together with their computational com-

plexity. As can be seen, this complexity is exclusively dependent on the size

of the input vectors for use by the classifier model (in contrast to their use

for matching). Given that we have averaging classifiers, we have DX = 1,

and thus, all methods have equal complexity. In this case, the RLS algorithm

with direct noise precision tracking should always be applied. For higher-

dimensional input spaces, the choice of the algorithm depends on the avail-

able computational resources, but the RLS approach should always be given a

strong preference.

5.4 Empirical Demonstration

Having described the advantage of utilising the RLS algorithm to estimating

the weight vector and tracking the noise variance simultaneously, we will in

this section demonstrate its superiority over gradient-based methods empiri-

cally with two simple experiments. The experiments show on one hand that

116

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50
 0

 0.5

 1

 1.5

 2

 2.5

 3

W
ei

gh
t e

st
im

at
e

N
oi

se
 v

ar
ia

nc
e

es
tim

at
e

Observations

Weight and noise estimat error for sampling from N(5, 1)

LMS weight
RLS weight
LMS noise

RLSLMS noise
RLS noise

Figure 5.1: The graph shows the weight estimate (on the left scale) and noise
variance estimate (on the right scale) of different averaging classifiers when
being presented with observations sampled fromN (5, 1). The weight estimate
of the RLSLMS classifier is not shown, as it is equivalent to the estimate of the
RLS classifier.

the speed of convergence of the LMS and NLMS algorithm is lower than for

the RLS algorithm and depends on the values of the input, and on the other

hand that direct tracking of the noise variance is more accurate than estimating

it by the LMS method.

5.4.1 Experimental Setup

We use the following classifier setups:

NLMS Classifier. This classifier uses the NLMS algorithm Eq. (5.29) to esti-

mate the weight vector, starting with ŵ0 = 0, and a constant step size of

γ = 0.2. For one-dimensional input spaces, DX = 1, with xn = 1 for all

n > 0, the NLMS algorithm is equivalent to the LMS algorithm Eq. (5.25),

117

in which case we use the variable step size

γN =

{

1/cN if cN ≤ 1/γ,

γ otherwise,
(5.76)

which is known as the MAM update [223], and is equivalent to boot-

strapping the estimate by RLS (see Example 5.3.2).

The noise variance is estimated by the LMS algorithm Eq. (5.63), with an

initial τ−1
0 = 0, and a step size that follows the MAM update Eq. (5.76).

Thus, the NLMS classifier uses the same techniques for weight vector

and noise variance estimation as XCS(F), with the only difference that we

are estimating the correct variance, rather than inconsistently the mean

absolute error Eq. (5.75) (see also Section 5.3.7). Hence, the performance

of NLMS classifiers reflects the performance of classifiers in XCS(F).

RLSLMS Classifier. The weight vector is estimated by the RLS algorithm, us-

ing Eqs.(5.34) and (5.35), with initialisation ŵ0 = 0 andΛ
−1
0 = 1000I . The

noise variance is estimated by the LMS algorithm, just as for the NLMS

Classifier. This setup conforms to XCSF classifiers with RLS as first intro-

duced in [143, 144].

RLS Classifier. As before, the weight vector is estimated by the RLS algorithm

Eqs. (5.34) and (5.35), with initialisation ŵ0 = 0 and Λ
−1
0 = 1000I . The

noise variance is estimated by tracking the sum of squared errors ac-

cording to Eq. (5.68) and evaluating Eq. (5.63) for the unbiased variance

estimate.

In both experiments, all three classifiers are used for the same regression task,

with the assumption that they match all inputs, that is,m(xn) = 1 for all n > 0.

Their performance of estimating the weight vector is measured by the MSE of

their model evaluated with respect to the target function f over 1000 inputs

that are evenly distributed over the function’s domain, using Eq. (5.11). The

quality of the estimate noise variance is evaluated by its squared error when

compared to the unbiased noise variance estimate Eq. (5.13) of a linear model

trained by Eq. (5.8) over 1000 observations that are evenly distributed over the

function’s domain.

118

For the first experiment, averaging classifiers with xn = 1 for all n > 0 are

used to estimate weight and noise variance of the noisy target function f1(x) =

5 + N (0, 1). Hence, the correct weight estimate is ŵ = 5, with noise variance

τ̂−1 = 1. As the function output is independent of its input, its domain does

not need to be defined. The target function of the second experiment is the

sinusoid f2(xn) = sin(in) with inputs xn = (1, in), hence, using classifiers that

model straight lines. The experiment is split into two parts, where in the first

part, the function is modelled over the domain in ∈ [0, π/2), and in the second

part over in ∈ [pi/2, π). The classifiers are trained incrementally, by presenting

them with observations that are uniformly sampled from the target function’s

domain.

Statistical significance of difference in the classifiers’ performances of esti-

mating the weight vector and noise variance is evaluated by comparing the

sequence of model MSEs and squared noise variance estimation errors re-

spectively, after each additional observations, and over 20 experimental runs.

These sequences violate the standard analysis of variances (ANOVA) as-

sumption of homogeneity of covariances, and thus we utilise the randomised

ANOVA procedure as introduced in [187], that was specifically designed to

analyse the difference of performance curves of machine learning algorithms.

It is based on estimating the sampling distribution of the null hypothesis (“all

methods feature the same performance”) by sampling the standard two-way

ANOVA F-values from randomly reshuffled performance curves between the

methods, where we use a samples size of 5000. The two factors are the type

of classifier that is used, and the number of observations that the classifier

has been trained on, where performance is measured by the model or noise

variance error. We are only reporting significant difference between classifier

types, and are using Tukey’s HSD post hoc test to determine the direction of

the effect.

Figures 5.1 and 5.2 show one run of training the classifiers on f1 and f2 respec-

tively. Figure 5.1 illustrates how the weight and noise variance estimate differs

for different classifiers when trained on the same 50 observations. Figure 5.2,

on the other hand, does not display the estimates itself, but rather shows the

error of the weight vector and noise variance estimates. Let us first evaluate

the ability of the different classifiers to estimate the weight vector.

119

5.4.2 Weight Vector Estimate

In our discussion of the weight vector estimate we will ignore the RLSLMS

classifier due to its equivalence to the RLS classifier. Figure 5.1 shows that

while both the NLMS and the RLS algorithm estimate the weight to be about

ŵ = 5, the RLS algorithm is more stable in its estimate. In fact, comparing the

model MSEs by the randomised ANOVA procedure reveals that this error is

significantly lower for the RLS method (randomised ANOVA: Falg(2, 2850) =

38.0, F ∗
alg,.01 = 25.26, p < .01). Figure 5.1 also clearly illustrates that utilising

the MAM causes the weight estimates to be initially equivalent to the RLS es-

timates, until 1/γ = 5 observations are reached. As the input to the averaging

classifier is always xn = 1, the speed of convergence of the LMS classifier is

not dependent on these inputs.

The second experiment, on the other hand, demonstrates how ill-conditioned

inputs cause the convergence speed of the NLMS algorithm to deteriorate. The

upper graph of Figure 5.2 shows that while the weight estimate is close to op-

timal after 10 observations for the RLS classifier, the NLMS classifier requires

more than 50 observations to reach a similar performance, when modelling f2

over in ∈ [0, π/2). Even worse, changing the sampling range to in ∈ [π/2, π)

causes the NLMS performance to drop such that it still features an MSE of

around 0.1 after 300 observations, while the performance of the RLS classifier

remains unchanged, as shown by the lower graph of Figure 5.2. This drop

can be explained by the increasing eigenvalues of c−1
N XT

NMNXN that, as dis-

cussed in Section 5.25, reduce the speed of convergence. TheminimalMSE of a

linear model is in both cases approximately 0.00394, and the difference in per-

formance between the NLMS and the RLS classifier is in both cases significant

(randomised ANOVA for in ∈ [0, π/2]: Falg(2, 2850) = 973.0, F ∗
alg,.001 = 93.18,

p < .001; randomised ANOVA for in ∈ [π/2, π]: Falg(2, 17100) = 88371.5,

F ∗
alg,.001 = 2190.0, p < .001).

5.4.3 Noise Variance Estimate

As the noise variance estimate depends by Eq. (5.63) on a good estimate of the

weight vector, we can expect classifiers that perform poorly on estimating the

120

weight vector not to perform any better when estimating the noise variance.

This suggestion is confirmed when considering the noise variance estimate of

the NLMS classifier in Figure 5.1 that fluctuates heavily around the correct

value of 1. While the RLSLMS classifier has the equivalent weight estimate to

the RLS classifier, its noise variance estimate fluctuates almost as heavily as

that of the NLMS classifier, as it also uses LMS to perform this estimate. Thus,

while a good weight vector estimate is a basic requirement for estimating the

noise variance, the applied LMS method seems to perform even worse when

estimating the noise variance than when estimating the weight. As can be seen

in Figure 5.1, direct tracking of the noise variance in combination with the RLS

algorithm for a stable weight estimate gives the least noise and accurate esti-

mate. Indeed, while there is no significant difference in the squared estima-

tion error between the NLMS and RLSLMS classifier (randomised ANOVA:

Falg(2, 2850) = 53.68, F ∗
alg,.001 = 29.26, p < .001; Tukey’s HSD: p > .05), the RLS

classifier features a significantly better estimate than both of the other classifier

types (Tukey’s HSD: for both NLMS and RLSLMS p < .01).

Conceptually, the same pattern can be observed in the second experiment, as

shown in Figure 5.2. However, in this case, the influence of a badly estimated

weight vector becomes more clear, and is particularly visible for the NLMS

classifier. Recall that in this figure we are plotting the estimation errors rather

than the estimates itself, and hence, the upper graph shows that the NLMS

classifier only provides estimates that are comparable to the RLSLMS and RLS

classifier after 30 observations. The performance of NLMS in the case of ill-

conditioned inputs is even worse; its estimation performance never matches

that of the classifiers that utilise the RLS algorithm for their weight vector es-

timate. In contrast to the first experiment there is no significant difference

between the noise variance estimation error of the RLSLMS and RLS classi-

fiers, but in both cases they are significantly better than the NLMS classifier

(for in ∈ [0, π/2]: randomised ANOVA: Falg(2, 2850) = 171.41, F ∗
alg,.001 = 32.81,

p < .001; Tukey’s HSD: NMLS vs. RLSLMS and RLS p < .01, RLSLMS vs.

RLS p > .05; for in ∈ [π/2, π]: randomised ANOVA: Falg(2, 17100) = 4268.7,

F ∗
alg,.001 = 577.89, p < .001; Tukey’s HSD: NLMS vs. RLS and RLSLMS p < .01,

RLSLMS vs. RLS p > .05).

In summary, both experiments in combination demonstrate that to provide a

good noise variance estimate, the method needs to estimate the weight vector

121

well, and that direct tracking of this estimate is better than its estimation by

the LMS algorithm.

5.5 Discussion and Summary

We started this chapter by describing the aim of the local model that is rep-

resented by a classifier as maximising its likelihood, as this follows from the

probabilistic LCS model in the previous chapter. The rest of this chapter was

devoted to describing a batch approach and comparing and contrasting sev-

eral incremental learning approaches to estimating the maximum likelihood

parameter values.

Inmore detail, we have reduced the problem of estimating the weight vector to

a weighted least squares problem Eq. (5.5), that by itself is a well known prob-

lem with a multitude of approaches that goes far beyond the ones described in

this chapter. Nonetheless, the actual contribution of this chapter is to, for the

first time, explicitly identify what a classifier aims at learning, and derive sev-

eral approaches to reach this aim in a principled manner. In addition, we also

provide new LCS-related probabilistic interpretations for i) the linear model

and its noise structure, ii) the model error as the noise variance, iii) an explicit

weight vector model that allows for the specification of a predictive density,

and iv) matching and recency-weighting as uncertainty of the observations.

The weight update of the original XCS conforms to Eq. (5.25) with xn = 1

for n > 0 and hence, as firstly shown here, aims at minimising the squared

error Eq. (5.5). Later, XCS was modified to act as regression model [243], and

extended to XCSF to use model straight lines [244] by using the NLMS update

Eq. (5.29), again without explicitly stating a single classifier’s aim. In a similar

manner, the classifier model was extended to a full linear model [142]4.

Simultaneously, and similar to our discussion in Section 5.3.4, the convergence

of gradient-based methods was identified as a problem [143, 144], but in con-

trast to our discussion, [143] apply the stability criteria of steepest gradient

4Despite the title “Extending XCSF Beyond Linear Approximation” of [142], the underlying
model is still linear.

122

descent to the NLMS method. As an alternative, the RLS algorithm was pro-

posed to estimate the weight vector, but the aim of a classifier was specified

without considering matching, and matching was implemented by only up-

dating the classifier’s parameter if that classifier matches the current input.

While this is a valid procedure from the algorithmic perspective, it does not

make matching explicit in the classifier’s aim, and cannot deal with matching

to a degree. Our formulation of the aim Eq. (5.5), in contrast, provides both

features and thereby leads to a better understanding and greater flexibility of

the classifier model.

At about the same time as the RLS algorithm was introduced to estimate the

weight vector, in addition to deriving the various incremental weight update

equations from first principles, we have applied the Kalman filter for this task

[77], with afore mentioned benefits to the probabilistic interpretation of the

classifier. Here, we have also linked them to maximum likelihood learning,

and — by incorporating matching into the definition of the aim of a classifier

— have provided a principled approach to matching by degree.

While XCSF weight estimation research did not stop at linear models [157,

177], we have decided not to extend our work beyond their realm to avoid the

introduction of multiple local optima that make estimating the globally opti-

mal weight vector significantly more complicated. In addition, there is always

the tradeoff between the complexity of the local models and the global model

to consider: if more powerful local models are used, less of them are necessary

to provide the same level of complexity of the global model, but the increased

complexity and power makes their model usually harder to understand. For

these reasons, we see linear classifier models as a good tradeoff between ease

of training and power of the model, that are still relatively simple to interpret.

In contrast to the large amount of research activity seeking to improve the

weight vector estimation method in XCS, its method of estimating the clas-

sifier model quality based on the absolute rather than the squared error was

left untouched since the initial introduction of XCS until we questioned its

validity in [77] on the basis of the identified model aim, as also discussed in

Section 5.3.7. The modified error measure not only introduces consistency, but

also allows us to accurately track the noise precision estimate with the method

developed in Section 5.3.7, as we have previously published in [77]. Used as

123

a drop-in replacement for the mean absolute error measure in XCSF, we have

shown that it, indeed, improves the generalisation capabilities as it provides

a more accurate and stable estimate of the model quality of a classifier and

subsequently a fitness estimate with the same qualities [156].

Nonetheless, the methods introduced in this chapter are by no means to be

interpreted as the ultimate methods to use to train the classifier models. Al-

ternatively, one can use the procedure deployed in this chapter to adapt other

parameter estimation techniques to their use in LCS. Hence, the further con-

tribution of our work is a method for integrating or replacing alternative ap-

proaches in a formal, predictable, and principled manner. If widely adopted,

this will ensure formal as well as empirical comparability between approaches,

and enables the development of strong statements in regard to complexity,

convergence and efficiency that have not been previously been available for

LCS research in the form of a reusable developmental framework. Still, cur-

rently the RLS algorithm is the best known incremental method to track the

optimal weight estimate while simultaneously accurately estimating the noise

variance. Hence, given that one aims at minimising the squared error Eq. (5.5),

it should be the method of choice.

As an alternative to the squared error that corresponds to the assumption of

Gaussian noise, one can consistently aim at estimating the weight vector that

minimises the mean absolute error Eq. (5.75), as done in [158]. However, this

requires amodification of the assumptions about the distributions of the differ-

ent linear model variables. Additionally, there is currently no known method

to incrementally track the optimal weight estimate, as RLS does for the squared

error measure. This also means that Eq. (5.68) cannot be used to track the

model error, and slower gradient-based alternatives have to applied.

In a later chapter we will reconsider the probabilistic structure of the linear

model and show how the development of a probabilistic approach enables us

to embed it in a fully Bayesian framework that also lends itself to application

tomulti-dimensional output spaces. Before that, let us in the following chapter

discuss another LCS component that, contrary to the weight vector estimate,

has received hardly any attention in LCS research: how the local models pro-

vided by the classifiers are combined to form a global model.

124

Batch Learning

ŵ = (XT MX)−1XT My or ŵ = (
√

MX)+
√

My

τ̂−1 = (c−DX)−1‖Xŵ − y‖2M with c = Tr(M)

Incremental Weight Vector Estimate Complexity

LMS
ŵN+1 = ŵN + γN+1m(xN+1)xN+1(yN+1 − ŵT

NxN+1) O(DX)

NLMS
ŵN+1 = ŵN + γN+1m(xN+1)

xN+1

‖xN+1‖2
(yN+1 − ŵT

NxN+1) O(DX)

RLS (Inverse Covariance Form)
ŵN+1 = ŵN +m(xN+1)Λ

−1
N+1xN+1(yN+1 − ŵT

NxN+1), O(D3
X)

ΛN+1 = ΛN +m(xN+1)xN+1x
T
N+1

RLS (Covariance Form)
ŵN+1 = ŵN +m(xN+1)Λ

−1
N+1xN+1(yN+1 − ŵT

NxN+1), O(D2
X)

Λ
−1
N+1 = Λ

−1
N −m(xN+1)

Λ
−1

N
xN+1xT

N+1
Λ
−1

N

1+m(xN+1)xT
N+1

Λ
−1

N
xN+1

Kalman Filter (Covariance Form)

ζN+1 = m(xN+1)Λ
−1
N xN+1

(

m(xN+1)x
T
N+1Λ

−1
N xN+1 + τ−1

N+1

)−1
,

ŵN+1 = ŵN + ζN+1

(

yN+1 − ŵT
NxN+1

)

, O(D2
X)

Λ
−1
N+1 = Λ

−1
N − ζN+1x

T
N+1Λ

−1
N

Kalman Filter (Inverse Covariance Form)
ΛN+1ŵN+1 = ΛNŵN +m(xN+1)τN+1xN+1yN+1,
ΛN+1 = ΛN +m(xN+1)τN+1xN+1x

T
N+1, O(D3

X)
ŵN+1 = ΛN+1(ΛN+1ŵN+1)

−1

Incremental Noise Precision Estimate Complexity

LMS (for biased estimate Eq. (5.62))
τ̂−1
N+1 = τ̂−1

N +m(xN+1)
(

(ŵT
N+1xN+1 − yN+1)

2 − τ̂−1
N

)

O(DX)

Direct tracking (for unbiased estimate Eq. (5.63))
Only valid in combination with RLS/Kalman filter in Inverse Covariance Form
or in Covariance Form with insignificant prior

‖XN+1ŵN+1 − yN+1‖2MN+1
= ‖XNŵN − yN‖2MN

+m(xN+1)(ŵ
T
NxN+1 − yN+1)(ŵ

T
N+1xN+1 − yN+1), O(DX)

cN+1 = cN +m(xN+1),
τ̂−1
N+1 = (cN+1 −DX)−1‖XN+1ŵN+1 − yN+1‖2MN+1

Table 5.1: A summary of batch and incremental methods presented in this
chapter for training the linear model of a single classifier. The notation and
initialisation values are explained throughout the chapter.

125

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 10 20 30 40 50

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

W
ei

gh
t e

st
im

at
e

M
S

E

N
oi

se
 v

ar
ia

nc
e

es
tim

at
e

sq
ua

re
d

er
ro

r

Observations

Weight and noise estimation error for sinusoid over [0, pi/2]

NLMS weight
RLS weight

NLMS noise
RLSLMS noise

RLS noise

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300

 0

 0.001

 0.002

 0.003

 0.004

 0.005

W
ei

gh
t e

st
im

at
e

M
S

E

N
oi

se
 v

ar
ia

nc
e

es
tim

at
e

sq
ua

re
d

er
ro

r

Observations

Weight and noise estimation error for sinusoid over [pi/2, pi]

NLMS weight
RLS weight

NLMS noise
RLSLMS noise

RLS noise

Figure 5.2: The graphs show the MSE of the weight vector estimate (on the left
scale) and squared noise variance estimate error (on the right scale) of different
classifiers when approximating a sinusoid. The classifiers are presented with
input xn = (1, in)T and output yn = sin(in). In the upper graph, the sinusoid
was sampled from the range in ∈ [0, π/2], and in the lower graph the samples
are taken from the range in ∈ [π/2, π]. The MSE of the weight vector estimate
for the RLSLMS classifier is not show, as it is equivalent to the MSE of the RLS
classifier.

126

Chapter 6

Mixing Independently Trained

Classifiers

An essential part of our model and of LCS in general that hardly any research

has been devoted to is how to combine the local models provided by the classi-

fiers to produce a global model. More precisely, given an input and the output

prediction of all matched classifiers, the task is to combine these predictions to

form a global prediction. We will call this task the mixing problem, and some

model that provides an approach to this task a mixing model.

Whilst some early LCS (for example, SCS [93]) aimed at choosing a single

“best” classifier to provide the global prediction, in modern Michigan style

LCS, predictions of matching classifiers have been mixed to give the “system

prediction”, that is, what we call the global prediction. In XCS, for example,

Wilson [240] defined the mixing model as follows:

“There are several reasonable ways to determine [the global pre-

diction] P (ai). We have experimented primarily with a fitness-

weighted average of the prediction of classifiers advocating ai. Pre-

sumably, one wants a method that yields the system’s “best guess”

as to the payoff [. . .] to be received if ai is chosen”,

and maintains this model for all XCS derivatives without any further discus-

127

sion. As we will discuss in Section 6.2.5, the fitness he is referring to is a com-

plex heuristic measure of the quality of a classifier. While we do not aim at

redefining the fitness of a classifier in XCS, we question if it is really the best

measure to use when mixing the local classifier predictions. The mixing model

has been changed in YCS [33], a simplified version of XCS and accuracy-based

LCS in general, such that the classifier update equations can be formulated

by difference equations, and by Wada et al. [226] to linearise the underlying

model for the purpose of correcting XCS for use with reinforcement learning

(see also Section 9.3.6). In either case the motivation for changing the mix-

ing model differs from the motivation in this chapter, which is to improve the

performance of the model itself, rather than to simplify it or to modify its for-

mulation for the use in reinforcement learning.

A formal treatment of the mixing problem requires a formal statement of the

aim that we want to reach. In a previous study [82] we have defined this aim

to be the minimisation of the mean squared error of the global prediction with

respect to the target function, given a fixed set of fully trained classifiers. As

will be discussed in Section 6.4, this aim does not completely conform to the

LCS model we have introduced in Chapter 4.

Rather than using the mean squared error as a measure of the quality of a

mixing model, we will pragmatically follow the approach we have introduced

with the probabilistic LCS model: each classifier k provides a localised proba-

bilistic input/output mapping p(y|x,θk), and the value of a binary latent ran-

dom variance znk determines if classifier k generated the nth observation. Each

observation is generated by one and only one matching classifier, and so the

vector zn = (zn1, . . . , znK)T has a single element with value 1, with all other

elements being 0. As the values of the latent variables are unknown, they are

modelled by the probabilistic model gk(x) ≡ p(znk = 1|xn,vk), which is the

mixing model. The aim is to find a mixing model that is sufficiently easy to

train and maximises the data likelihood Eq. (4.9), given by

l(θ;D) =
N
∑

n=1

ln
K
∑

k=1

gk(xn)p(yn|xn,θk). (6.1)

One possibility for such a mixing model was already introduced in Chap-

ter 4 as a generalisation of the gating network used in the Mixtures-of-Experts

model, and given by the matching-augmented softmax function Eq. (4.20).

128

Further alternatives will be introduced in this chapter.

We have called the approach “pragmatic”, as by maximising the data likeli-

hood, we ignore the problem of overfitting and the identification of a good

model structure that is essential to LCS. Nonetheless, the methods introduced

here will reappear in only sightly modified form once we deal with these is-

sues, and discussing them here provides us with a better understanding in

later chapters. Additionally, XCS implicitly uses an approach similar to maxi-

mum likelihood to train its classifiers andmixing models, and deals with over-

fitting only at the level of localising the classifiers in the input space (see Ap-

pendix B). Therefore, the methods and approaches discussed here can be used

as a drop-in replacement for the XCS mixing model and for related LCS.

To summarise, we assume to have a set of K fully trained classifier, each of

which provides a localised probabilistic model p(y|x,θk). The aim is to find a

mixing model that provides the generative probability p(znk = 1|xn,vk), that

is, the probability that classifier k generated observation n, given input xn and

model parameters vk, that maximises the data likelihood Eq. (6.1), and that is

sufficiently easy to train and scales well with the number of classifiers.

We will firstly concentrate on the model we have introduced in Chapter 4, and

provide two approaches to training this model. Due to thereafter discussed

weaknesses of these training procedures, we introduce a set of formally in-

spired heuristics that are computationally cheap. In some empirical studies

we show that these heuristics perform competitively when compared to the

optimum. The chapter concludes by comparing the approach of maximising

the likelihood to our previous study [82], where we have minimised the mean

squared error.

6.1 Using the Generalised Softmax Function

By relating the probabilistic structure of LCS to the Mixtures-of-Experts model

in Chapter 4, we defined the probability of classifier k generating the nth ob-

129

servation by the generalised softmax function Eq. (4.20), that is,

gk(xn) =
mk(xn) exp(vT

k φ(xn))
∑K

j=1mj(xn) exp(vT
j φ(xn))

, (6.2)

where V = {vk} is the set of mixing model parameters vk ∈ R
DV , and φ(x)

is a transfer function that maps the input space X into some DV -dimensional

real space R
DV . In LCS, this function is usually φ(x) = 1 for all x ∈ X , with

DV = 1, but to stay general, we assume an arbitrary definition of φ.

Assuming knowledge of the predictive densities of all classifiers p(y|x,θk), the

data likelihood Eq. (6.1) is maximised by the expectation-maximisation algo-

rithm by finding the values for V that maximise Eq. (4.13), given by

N
∑

n=1

K
∑

k=1

rnk ln gk(xn). (6.3)

In the above equation, rnk stands for the responsibility of classifier k for obser-

vation n, given by Eq. (4.12), that is

rnk =
gk(xn)p(yn|xn,θk)

∑K
j=1 gj(xn)p(yn|xn,θj)

. (6.4)

Thus, we want to fit the mixing model to the data by minimising the cross-

entropy −∑n

∑

k rnk ln gk(xn) between the responsibilities and the generative

mixing model.

6.1.1 Batch Learning by Iterative Reweighted Least Squares

The softmax function is a generalised linear model, and specialised tools have

been developed to fit such models [167]. Even though we use a generalisa-

tion of this function, we can still apply the same tools, as we will introduce in

this section. In particular, we will use the Iterative Reweighted Least Squares

(IRLS) to find the mixing model parameters.

The IRLS can be derived by applying the Newton-Raphson iterative optimisa-

130

tion scheme [19] that, for minimising an error function E(V), takes the form

V̂ (new) = V̂ (old) −H−1∇E(V), (6.5)

where H is the Hessian matrix whose elements comprise the second deriva-

tives of E(V), and ∇E(V) is the gradient vector of E(V) with respect to V .

Even though not immediately obvious, its name derives from a reformulation

of the update procedure that reveals that, at each update step, the algorithm

solves a weighted least squares problemwhere the weights change at each step

[19].

As we want to maximise Eq. (6.3), our function to minimise is the cross-

entropy

E(V) = −
N
∑

n=1

K
∑

k=1

rnk ln gk(xn). (6.6)

The gradient of gk with respect to vj is

∇vj
gk(x) = gk(x)(Ikj − gj(x))φ(x), (6.7)

and, thus, the gradient of E(V) evaluates to

∇VE(V) =

∇v1
E(V)
...

∇vK
E(V)

, ∇vj
E(V) =

N
∑

n=1

(gj(xn)− rnj)φ(xn), (6.8)

where we have used
∑

k gk(x) = 1. The Hessian matrix

H =

H11 · · · H1K

...
. . .

...

HK1 · · · HKK

, (6.9)

is constructed by evaluating its DV ×DV blocks

Hkj = Hjk =
N
∑

n=1

gk(xn)(Ikj − gj(xn))φ(xn)φ(xn)T , (6.10)

that result fromHkj = ∇vk
∇vj

E(V).

To summarise the IRLS algorithm, given N observations D = {X,Y }, and

131

knowledge of the classifier parameters {θ1, . . . ,θK} to evaluate p(y|x,θk), we

can incrementally improve the estimate V̂ by repeatedly performing Eq. (6.5),

starting with arbitrary initial values for V̂ . As the Hessian matrix H given

by Eq. (6.9) is positive definite [19], the error function E(V) is convex, and

the IRLS algorithm will approach is unique minimum, although, not mono-

tonically [120]. Thus, E(V) after Eq. (6.6) will decrease, and can be used to

monitor convergence of the algorithm.

Note, however, that by Eq. (6.5), a single step of the algorithm requires us to

compute the gradient ∇VE(V) of size KDV , the KDV ×KDV Hessian matrix

H , and the inversion of the latter. Due to this inversion, the IRLS algorithm

is at least of complexity O(N(KDV)3), which prohibits its application in LCS,

where we require algorithms that preferably scale linearly with the number of

classifiers. Nonetheless, it is of significant theoretical value, as it provides us

with the values for V that maximise Eq. (6.3) and can therefore be used as a

benchmark for other mixing models and their associated methods.

6.1.2 Incremental Learning by Least Squares

Following a similar but slightly modified derivation to the one give in [122],

we can incrementally approximate the maximum of Eq. (6.3) by a recursive

least squares procedure that is of lower complexity than the IRLS algorithm.

Due to the convexity ofE(V), its unique minimum is found where its gradient

is∇VE(V) = 0, that is, when we have V̂ such that

N
∑

n=1

(gk(xn)− rnk)φ(xn) = 0, k = 1, . . . , K. (6.11)

Equally, when substituting Eq. (6.2) for gk, we want to solve

N
∑

n=1

mk(xn)

(

exp(v̂T
k φ(xn))

∑K
j=1mj(xn) exp(v̂T

j φ(xn))
− rnk

mk(xn)

)

φ(xn) = 0 (6.12)

132

Thus, we want the left-hand term inside the brackets to be similar to the right-

hand term, weighted bymk(xn), that is

mk(xn)
exp(v̂T

k φ(xn))
∑K

j=1mj(xn) exp(v̂T
j φ(xn))

≈ mk(xn)
rnk

mk(xn)
, (6.13)

for all n. Solving the above for v̂T
k φ(xn), its desired target values is

ln
rnk

mk(xn)
− lnCn, (6.14)

where Cn =
∑

j mj(xn) exp(v̂T
j φ(xn)) is the normalising term that is common

to all v̂T
k φ(xn) and can therefore be omitted, as it disappears when v̂T

k φ(xn) is

converted to gk(xn). Therefore, the target for v̂T
k φ(xk) is ln rnk

mk(xn)
, weighted by

mk(xn). This allows us to reformulate the problem of finding values for V̂ that

maximise Eq. (6.3) as the K linear least squares problems of minimising

N
∑

n=1

mk(xn)

(

v̂T
k φ(xn)− ln

rnk

mk(xn)

)2

, k = 1, . . . , K. (6.15)

Even though rnk = 0 ifmk(xn) = 0, and therefore rnk

mk(xn)
is undefined in such a

case, this does not cause any problems, as in such a case the weight is equally

zero which makes computing the target superfluous. Also note that each of

these problems operate on an input space of dimensionality DV , and hence,

using the least squares methods introduced in the previous chapter, have ei-

ther complexity O(NKD3
V) for the batch solution or O(KD2

V) for each step of

the incremental solution. Given that we usually have DV = 1 in LCS, this is

certainly an appealing property.

When minimising Eq. (6.15) it is essential to consider that the values for rnk

by Eq. (6.4) depend on the current v̂k of all classifiers. Consequently, when

performing batch learning, it is not sufficient to solve allK least squares prob-

lems only once, as the corresponding targets change with the update values

of V̂ . Thus, again one needs to repeatedly update the estimate V̂ until the

cross-entropy Eq. (6.6) converges.

On the other hand, using recursive least squares to provide an incremental ap-

proximation of V̂ we need to honour the non-stationarity of the target values

by using the recency-weighted RLS variant. Hence, according to Section 5.3.5

133

the update equations take the form

v̂kN+1 = λmk(xn)v̂kN (6.16)

+mk(xN+1)Λ
−1
kN+1φ(xN+1)

(

ln
rnk

mk(xn)
− v̂T

kNφ(xN+1)
T

)

,

Λ
−1
kN+1 = λ−m(xN+1)

Λ
−1
kN (6.17)

−m(xN+1)λ
−m(xN+1) Λ

−1
kNφ(xN+1)φ(xN+1)

T
Λ
−1
kN

λmk(xn) +mk(xN+1)φ(xN+1)TΛ
−1
kNφ(xN+1)

,

where the v̂k’s and Λ
−1
k ’s are initialised to v̂k0 = 0 and Λ

−1
k0 = δI for all k, with

δ being a large scalar. In [122], Jordan and Jacobs initially set λ = 0.99 and

increased a fixed fraction (0.6) of the remaining distance to 1.0 every 1000 up-

dates. While this seems a sensible approach to start with, future work includes

empirical investigation of how to best set λ.

As pointed out in [122], approximating the values of V̂ by least squares does

not result in the same parameter estimates as when using the IRLS algorithm,

due to the use of least squares rather than maximum likelihood. In fact, the

least squares approach can be seen as an approximation to the maximum like-

lihood solution under the assumption that the residual in Eq. (6.15) in small,

which is equivalent to assuming that the LCS model can fit the underlying re-

gression surface and that the noise is small. Nonetheless, empirical results in

[122] demonstrate that the least squares approach provides good results even

when the residual is large in the early stages of training. In any case, in terms

of complexity it is a very appealing alternative to the IRLS algorithm.

6.2 Alternative Heuristics

While the IRLS algorithm minimises Eq. (6.6), it does not scale well with the

number of classifiers. The least squares approximation, on the other hand,

scales well, but minimises Eq. (6.15) instead of Eq. (6.6), which does not al-

ways give good results, as we will show in Section 6.3. Thus, in this section,

we introduce some heuristic mixing models that scale linearly with the num-

ber of classifiers, just like the least squares approximation, and feature better

performance.

134

Before discussing different heuristics, let us define the requirements on gk: to

preserve their probabilistic interpretation, we require gk(x) ≥ 0 for all k and x,

and
∑

k gk(x) = 1 for all x. In addition, we need to honour matching, which

means that if mk(x) = 0, we need to have gk(x) = 0. These requirements are

met if we define

gk(x) =
mk(x)γk(x)

∑K
j=1mj(x)γj(x)

, (6.18)

where {γk : X → R
+} is a set of K functions returning positive scalars, that

implicitly rely on themixingmodel parameters V . Thus, the mixingmodel de-

fines a weighted average, where the weights are specified on one hand by the

matching functions, and on the other hand by the functions γk. The heuristics

differ among each other only in how they define the γk’s.

Note that the generalised softmax function Eq. (6.2) also performs mixing by

weighted average, as it conforms to Eq. (6.18) with γk(x) = exp(vT
k x) and mix-

ing model parameters V = {vk}. The weights it assigns to each classifier are
determined by the log-linear model exp(vT

k x), which needs to be trained sepa-

rately, depending on the responsibilities that express the goodness-of-fit of the

classifier models for the different inputs. In contrast, all heuristic models that

we introduce rely on measures that are part of the classifiers’ models and do

not need to be fitted separately. As they do not have any adjustable parame-

ters, they all have V = ∅.

6.2.1 Properties of Weighted Averaging Mixing

Let f̂k : X → R be given by f̂k(x) = E(y|x,θk), that is, the estimator of classifier

k defined by the mean of the conditional distribution of the output given the

input and the classifier parameters. Equally, let f̂ : X → R be the global

model estimator, given by f̂(x) = E(y|x, θ). As by Eq. (4.8) we have p(y|x, θ) =
∑

k gk(x)p(y|x,θk), the global estimator is related to the local estimators by

f̂(x) =

∫

Y

y
∑

k

gk(x)p(y|x,θk)dy =
∑

k

gk(x)f̂k(x), (6.19)

and, thus, is also a weighted average of the local estimators. From this follows

that f̂ is bounded from below and above by the lowest and highest estimate of

135

the local models, respectively, that is

min
k
f̂k(x) ≤ f̂(x) ≤ max

k
f̂k(x), ∀x ∈ X . (6.20)

In general, we aim at minimising the deviation of the global estimator f̂ from

the target function f that describes the data-generating process. If we measure

this deviation by the difference measure h(f(x)− f̂(x)), where h is some con-

vex function h : R→ R
+, mixing by a weighted average allows us to derive an

upper bound on this difference measure:

Theorem 6.2.1. Given the global estimator f̂ : X → R, that is formed by a weighted

averaging of K local estimators f̂k : X → R by f̂(x) =
∑

k gk(x)f̂k(x), such that

gk(x) ≥ 0 for all x and k, and
∑

k gk(x) = 1 for all x, the difference between the

target function f : X → R and the global estimator is bounded from above by

h
(

f̂(x)− f(x)
)

≤
∑

gk(x)h
(

f̂k(x)− f(x)
)

, ∀x ∈ X , (6.21)

where h : R→ R
+ is a convex function. More specifically, we have

(

f̂(x)− f(x)
)2

≤
∑

gk(x)
(

f̂k(x)− f(x)
)2

, ∀x ∈ X , (6.22)

and
∣

∣

∣f̂(x)− f(x)
∣

∣

∣ ≤
∑

gk(x)
∣

∣

∣f̂k(x)− f(x)
∣

∣

∣ , ∀x ∈ X . (6.23)

Proof. For any x ∈ X , we have

h
(

f̂(x)− f(x)
)

= h

(

∑

k

gk(x)f̂k(x)− f(x)

)

= h

(

∑

k

gk(x)
(

f̂k(x)− f(x)
)

)

≤
∑

k

gk(x)h
(

f̂k(x)− f(x)
)

,

where we have used
∑

k gk(x) = 1, and the inequality is Jensen’s Inequality

(for example, [234]), based on the convexity of h and the weighted average

property of gk. Having proven Eq. (6.21), Eqs. (6.22) and (6.23) follow from the

convexity of h(a) = a2 and h(a) = |a|, respectively.

136

Therefore, we can minimise the error of the global estimator by assigning high

weights, that is, high values of gk(x), to classifiers whose errors of the local

estimator is small. Observing in Eq. (6.18) that the value of gk(x) is directly

proportional to the value of γk(x), a good heuristic will assign high values to

γk(x) if the error of the local estimator can be expected to be small. The design

of all of our heuristics is based on this intuition.

The probabilistic formulation of the LCS model allows us to derive a further

bound, this time on the variance of the output prediction:

Theorem 6.2.2. Given the density p(y|x,θ) for output y given input x and pa-

rameters θ, formed by the K classifier model densities p(y|x,θk) by p(y|x,θk) =
∑

k gk(x)p(y|x,θk), such that gk(x) ≥ 0 for all x and k, and
∑

k gk(x) = 1 for all x,

the variance of y is bounded from above by the weighted average of the variance of the

local models for y, that is

var(y|x,θ) =
∑

k

gk(x)2var(y|x,θk) ≤
∑

k

gk(x)var(y|x,θk), ∀x ∈ X . (6.24)

Proof. To show the above, we again take the view that each observation was

generated by one and only one classifier, and introduce the indicator variable

I as a conceptual tool that takes the value k if classifier k generated the ob-

servation, giving gk(x) ≡ p(I = k|x), where we are omitting the parameters

of the mixing models implicit in gk. We also use p(y|x,θk) ≡ p(y|x, I = k) to

denote the model provided by classifier k. Thus, we have p(y|x,θ) =
∑

k p(I =

k|x)p(y|x, I = k), and, analogously, E(y|x,θ) =
∑

k p(I = k|x)E(y|x, I = k).

However, similarly to the basic relation var(aX+bY) = a2var(X)+b2var(Y)+

2abcov(X,Y), we have for the variance

var(y|x,θ) =
∑

k

p(I = k)2var(y|x, I = k) + 0, (6.25)

where the covariance terms are zero as the classifier models are conditionally

independent given I . This confirms the equality in Eq. (6.24). The inequality

is justified by observing that the variance is non-negative, and 0 ≤ gk(x) ≤ 1

and so gk(x)2 ≤ gk(x).

Here, we not only provide a bound on the variance, but also an exact expres-

sion for the variance of the combined prediction. This gives us a different view

137

on the design criteria for possible heuristics: we want to assign weights that

are in some way inversely proportional to the classifier prediction variance.

As the prediction variance indicates the prediction error we can expect, this

design criterion conforms to the one we have derived from the statement of

Theorem 6.2.1.

Neither Theorem 6.2.1 nor Theorem 6.2.2 assume that the local models are

linear. In fact, they apply in any case when a global model results from a

weighted average of a set of local models. Thus, they can also be used in LCS

when the classifier models are non-linear, such as in [157, 177].

Example 6.2.1 (Mean and Variance of a Mixture of Gaussians). Con-

sider 3 classifiers that, for some input x provide the predictions

p(y|x, θ1) = N (y|0.2, 0.12), p(y|x, θ2) = N (y|0.5, 0.052), and p(y|x, θ3) =

N (y|0.7, 0.22). Using the mixing weights inversely proportional to their

variance, that is g1(x) = 0.20, g2(x) = 0.76, and g3(x) = 0.04, our global

estimator f̂(x), determined by Eq. (6.19), results in f̂(x) = 0.448. Let us

assume that the target function value is given by f(x) = 0.5, resulting in

the squared prediction error (f(x)− f̂(x))2 ≈ 0.002704. This error is cor-

rectly upper-bounded by Eq. (6.22), that results in (f(x)−f̂(x))2 ≤ 0.0196.

We can demonstrate the correctness of Eq. (6.24) by taking 106 sam-

ples from the predictive distributions of the different classifiers, result-

ing in the sample vectors s1, s2, and s3, each of size 106. Thus, we can

produce a sample vector of the global prediction by s =
∑

k gk(x)sk,

which has the sample variance 0.00190. This conforms to — and thus

empirically validates — the variance after Eq. (6.24), which results in

var(y|x, θ) = 0.00191 ≤ 0.0055.

6.2.2 Inverse Variance

The unbiased noise variance estimate of classifier k is, after Eq. (5.13), given by

τ̂−1
k = (ck −DX)−1

N
∑

n=1

mk(xn)
(

ŵT
k xn − yn

)2
, (6.26)

138

and is therefore approximately the mean sum of squared prediction errors.

If this estimate is small, the squared prediction error is, on average, known

to be small and we can expect the predictions to have a low error. Hence,

we define inverse variance mixing by using mixing weights that are inversely

proportional to the noise variance estimates of the according classifiers. More

formally, we use Eq. (6.18) with γk(x) = τ̂k for all x. In the previous chapter

we have shown how to estimate the noise variance of a classifier by batch or

incremental learning.

6.2.3 Prediction Confidence

If the classifier model is probabilistic, we can specify a probabilistic density for

its predictions. Knowing this density allows us to specify an interval on the

output into which 95% of the observations are likely to fall, known as the 95%

confidence interval. The width of this interval therefore gives us a measure

of how certain we are about the prediction made by this classifier. This is the

underlying idea of mixing by prediction confidence.

More formally, the predictive density of the linear classifier model is given for

classifier k by marginalising p(y,θk|x) = p(y|x,θk)p(θk) over the parameters

θk, and results in

p(y|x) = N
(

y|ŵT
k x, τ̂−1

k (xT
Λ
−1
k x + 1)

)

, (6.27)

as already introduced in Section 5.3.6. The 95% confidence interval — indeed

that of any percentage — is directly proportional to the standard deviation of

this density, which is the square root of its variance. Thus, to assign higher

weights to classifiers with a higher confidence prediction, that is, a prediction

with a smaller confidence interval, we use

γk(x) =
(

τ̂−1
k (xT

Λ
−1
k x + 1)

)−1/2
. (6.28)

Compared to mixing by inverse variance, this measure additionally takes the

uncertainty of the weight vector estimate into account and is consequently de-

pendent on the input. Additionally, it relies on the assumption of Gaussian

noise and a Gaussian weight vector model, which might not hold — in partic-

139

ular when the number of observations that the classifier is trained on is small.

Therefore, despite using more information than mixing by inverse variance,

we cannot guarantee its better performance.

6.2.4 Maximum Prediction Confidence

The global model density is by Eq. (4.8) given by a mixture of the densities

of the local models. As for the local models, we can specify a confidence in-

terval on the global model by looking at the spread of its density. In order to

maximise the global prediction confidence we want to minimise the spread of

the global prediction. As we apply mixing by weighted average, the spread of

the global density is bounded from below and above by the smallest and the

largest spread of the contributing classifiers. Thus, in order to minimise the

spread of the global prediction, we only consider the predictive density of the

classifier with the smallest predictive spread.

Using this concept, mixing tomaximise the prediction confidence is formalised

by setting γk(x) to 1 only for the classifier with the lowest prediction spread,

that is,

γk(x) =

{

1 if k = argmaxk mk(x)
(

τ̂−1
k (xT

Λ
−1
k x + 1)

)−1/2
,

0 otherwise.
(6.29)

Note the addition of mk(x) to ensure that we pick the matching highest confi-

dence classifier.

As for mixing by confidence, using only the classifier with the highest predic-

tion confidence relies on several assumptions that might by violated. Thus, we

expect maximum confidence mixing to deliver worse performance than mix-

ing by inverse variance in cases where these assumptions are violated. In such

cases it might even fare worse than mixing by confidence, as it relies on these

assumptions more heavily.

140

6.2.5 XCS

While none of the approaches discussed before are currently used in any

LCS, we will cast — for the sake of comparison — the way in which XCS(F)

performs mixing into the same formal framework. Mixing in XCS(F) has

not changed since it was firstly specified in [240], despite its multiple other

changes and improvements. Additionally, the mixing model in XCS(F) is

closely linked to the fitness of a classifier as used by the genetic algorithm, and

thus — as we will see — is overly complex. Due to the algorithmic descrip-

tion of an incremental method, the aims of XCS(F) are usually not explicitly

specified. Nonetheless, all mixing parameters in XCS(F) are updated by the

LMS method, for which we have already discussed the formally equivalent,

but more intuitive, batch approach in the previous chapter.

Recall, that the LMS algorithm for single-dimensional constant inputs is speci-

fied by Eq. (5.25) to update some scalar estimate ŵ of an output y after observ-

ing the (N + 1)th output by

ŵN+1 = ŵN + γN+1(yN+1 − ŵN), (6.30)

where γN+1 is some scalar step size. As previously shown in Example 5.2.1,

this update equation aims at minimising a sum of squared errors Eq. (5.5),

whose minimum is achieved by

ŵ = c−1
k

N
∑

n=1

m(xn)yn, (6.31)

given all N observations. Hence, Eq. (6.31) is the batch formulation for the

solution that the incremental Eq. (6.30) approximates.

Applying this relation to the XCS update equations for the mixing parameters,

the mixing model employed by XCS(F) can be described as follows: The error

ǫk of classifier k in XCS(F) is the mean absolute prediction error of its local

models, and is given by

ǫk = c−1
k

N
∑

n=1

m(xn)
∣

∣yn − ŵT
k xn

∣

∣ . (6.32)

141

The classifier’s accuracy is some inverse function κ(ǫk) of the classifier error.

This functionwas initially given by an exponential [240], but was later [242, 57]

redefined to

κ(ǫ) =

1 if ǫ < ǫ0,

α
(

ǫ
ǫ0

)−ν

otherwise,
(6.33)

where the constant scalar ǫ0 is known as the minimum error, the constant α is a

scaling factor, and the constant ν is a mixing power factor [57]. The accuracy is

constantly 1 up to the error ǫ0 and then drops off steeply, with the shape of the

drop determined by α and ν. The relative accuracy is a classifier’s accuracy for a

single input normalised by the sum of the accuracies of all classifiers matching

that input. The fitness is the relative accuracy of a classifier averaged over all

inputs that it matches, that is

Fk = c−1
k

N
∑

n=1

mk(xn)κ(ǫk)
∑K

j=1mj(xn)κ(ǫj)
(6.34)

This fitness is the measure of a classifier’s prediction quality, and hence γk is

input-independently given by γk(x) = Fk.

Note that the magnitude of a relative accuracy depends on both the error of

a classifier, and on the error of the classifiers that match the same input. This

makes the fitness of classifier k dependent on inputs that arematched by classi-

fiers that share inputs with classifier k, but are not necessarily matched by this

classifier. This might be a good measure for the fitness of a classifier (where

prediction quality is not all that counts), but we do not expect it to perform

overly well as a measure of the prediction quality of a classifier. This expecta-

tion is confirmed in the following experiments.

6.3 Empirical Comparison

In order to evaluate how well the different heuristics perform with respect to

our aim of maximising Eq. (6.1) we perform a set of experiments that com-

pare the different methods when applied to four regression tasks. The experi-

ments show that i) mixing by inverse variance outperforms the other heuristic

methods, ii) also performs better than the least squares approximation, and iii)

142

mixing as done in XCS(F) performs worse than all other methods.

In all experiments we firstly create a set ofK classifiers such that the number of

classifiers matching each input is about the same for all inputs, and train these

classifiers on all available observations by batch learning. As the next step,

the different mixing models are applied to the previously trained set of clas-

sifiers, and their performance is compared based on the likelihood Eq. (6.1).

This setup was chosen for several reasons: firstly, mixing is only required if

several classifiers match the same input, which is provided by the generated

set of classifiers. Secondly, the classifiers are trained before the mixing models

are applied, as we want to only compare the mixing models based on the same

set of classifiers, and not how training of classifiers and mixing them interacts.

Finally, we use the likelihood measure to compare the performance of the mix-

ing models, rather than some form of squared error or similar, as our aim in

this chapter is to discuss methods that maximise this likelihood, rather than

any other measure.

6.3.1 Experimental Design

Function Definition

Blocks f(x) =
∑

hjK(x− xj), K(x) = (1 + sgn(x))/2,
(xj) = (0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65,

0.76, 0.78, 0.81),
(hj) = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 5.1,−4.2).

Bumps f(x) =
∑

hjK((x− xj)/wj), K(x) = (1 + |x|4)−1,
(xj) = xBlocks,
(hj) = (4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2),
(wj) = (0.005, 0.005, 0.006, 0.01, 0.01,

0.03, 0.01, 0.01, 0.005, 0.008, 0.005).

Doppler f(x) = (x(1− x))1/2 sin(2π(1 + 0.05)/(x+ 0.05))

Heavisine f(x) = 4 sin 4πx− sgn(x− 0.3)− sgn(0.72− x)

Table 6.1: The set of functions used for evaluating the performance of the dif-
ferent mixing models. The functions are taken from [72], and have been pre-
viously used in an LCS-related study in [23]. The functions are samples over
the range [0, 1] and their outputs are normalised to −0.5 ≤ f(x) ≤ 0.5.

Regression Tasks. The mixing models are evaluated on four regression tasks

143

f : R → R, given in Table 6.1. The input range is [0, 1], and the output is

shifted and scaled such that −0.5 ≤ f(x) ≤ 0.5. 1000 observations (in, f(in))

are taken from the target function f at regular intervals, from 0 to 1, to give

the output vector y = (f(i1), . . . , f(i1000))
T . The input matrix for averaging

classifiers is given by X = (1, . . . , 1)T , and for classifiers that model straight

lines by a 1000× 2matrixX with the nth row given by (1, in).

Classifier Generation and Training. For each experimental run K classifiers

are created, where K depends on the experiment. Each classifier matches an

interval [lk, uk] of the input space, that is mk(in) = 1 if lk ≤ in ≤ uk, and

mk(in) = 0 otherwise. Even coverage such that about an equal number of clas-

sifiers matches each input is achieved by splitting the input space into 1000

bins, and localising the classifiers one by one in a “Tetris”-style way: the av-

erage width in bins of the matched interval of a classifier needs to be 1000c/K

such that on average c classifiers match each bin. The interval width of a new

classifier is sampled from B(1000, (1000c/K)/1000), where B(n, p) is a binomial

distribution for n trials and a success probability of p. The minimal width is

limited from below by 3, such that each classifier is at least trained on 3 obser-

vations. The new classifier is then localised such that the number of classifiers

that match the same bins is minimal. If several such locations are possible, one

is chosen at random by sampling from a uniform distribution. Having posi-

tioned all K classifier, they are trained by batch learning using Eqs. (5.9) and

(5.13). The number of classifiers that match each input is in all experiments set

to c = 3.

Mixing Models. We compare the performance of the IRLS algorithm (IRLS)

and its least-squares approximation (LS) on the generalised softmax function

with φ(x) = 1 for all x, the inverse variance (InvVar) heuristics, the mixing by

confidence (Conf) and mixing by maximum confidence (MaxConf) heuristics,

and mixing by XCS(F) (XCS). Additionally, when classifiers model straight

lines, we use the IRLS algorithm (IRLSf) and its least-squares approximation

(LSf) with a transfer function φ(x) = (1, in)T to allow for an additional soft-

linear partitioning beyond the realm of matching (see the discussion in Sec-

tion 4.3.5 for more information). Training by the IRLS algorithm is performed

incrementally according to Section 6.1.1, until the change in cross-entropy

Eq. (6.6) between two iterations is smaller than 0.1%. The least-squares ap-

proximation is performed repeatedly in batches rather than as described in

144

Section 6.1.2, by using Eq. (5.9) to find the vk’s that minimise Eq. (6.15). Con-

vergence is assumed when the change in Eq. (6.6) between two batch updates

is smaller than 0.05% (this value is smaller than for the IRLS algorithm, as the

least squares approximation takes smaller steps). The heuristic mixing models

do not require any separate training and are applied such as described in Sec-

tion 6.2. For XCS we use the standard setting ǫ0 = 0.01, α = 0.1, and ν = 5, as

recommended in [57].

Evaluating the Performance. Having generated and trained a set of classifiers,

each mixing model is trained with the same set to make their performance di-

rectly comparable. It is measured by evaluating Eq. (6.1), where p(yn|xn,θk) is

computed by Eq. (5.3), using the same observations that the classifiers where

trained on, and the gk’s are provided by the different mixing models. As the

IRLS algorithm maximises the data likelihood Eq. (6.1) when using the gener-

alised softmax function as the mixing model, we use it as a benchmark, and re-

port the likelihoods of the other mixing model as a fraction of the one reached

by the IRLS algorithm with φ(x) = 1.

Statistical Analysis. To determine if the performance of the different mixing

models differ significantly, we use a two-way analysis of variances (ANOVA),

with the first factor being the type of mixing model (IRLS, IRLSf, LS, LSf,

InvVar, Conf, MaxConf, XCS) and the second factor being the combination

of regression task and type of classifier (Blocks, Bumps, Doppler, Heavisine,

either with averaging classifiers, or classifiers that model straight lines). The

direction of the difference is determined by Tukey’s HSD post-hoc test. As the

optimal likelihood as measured by IRLS varies strongly with different sets of

classifiers, we measure the performance of the methods as a fraction of the

optimal likelihood rather than the likelihood itself.

6.3.2 Results

In our first experiment, we have compared the performance of all mixing

model when K = 50 classifiers are used. For all functions and both averag-

ing classifiers and classifiers that model straight lines we have performed 50

145

Function Likelihood of Mixing Model as Fraction of IRLS
IRLS IRLSf LS LSf InvVar Conf MaxConf XCS

Blocks 1.00000 0.99473 0.99991 0.99988 0.99973 0.99877
Bumps 1.00000 0.94930 0.98442 0.97740 0.96367 0.94678
Doppler 1.00000 0.94930 0.98442 0.97740 0.96367 0.94678
Heavisine 1.00000 0.96289 0.96697 0.95123 0.95864 0.95807

Blocks lin 1.00000 1.00014 0.99141 0.99559 0.99955 0.99929 0.99956 0.99722
Bumps lin 1.00000 0.99720 0.94596 0.94870 0.98425 0.97494 0.97797 0.94107
Doppler lin 1.00000 0.99856 0.94827 0.98628 0.98723 0.97818 0.98172 0.94395
Heavisine lin 1.00000 0.99523 0.98480 0.96854 0.98448 0.97347 0.99005 0.95739

Table 6.2: The mean likelihoods of the different mixing models, as a fraction of
the mean likelihood of IRLS, averaged over 50 experimental runs per function.
A lin added to the function name indicates the use of classifiers that model
straight lines rather than averaging classifiers. For averaging classifiers, IRLS
and IRLSf, and LS and LSf are equivalent, and so their results are combined.
The results written in bold indicate that there is no significant difference to
the best-performing mixing model for this function. Those results that are sig-
nificantly worse than the best mixing model but not significantly worse than
the best model in their group are written in italics. Statistical significance was
determined by Tukey’s HSD post-hoc test at the 0.01 level.

experimental runs per function1. To give the reader an intuitive idea howmix-

ing is performed, Figures 6.1 to 6.4 show the predictions of the different meth-

ods of a single run when using classifiers that model straight lines. The mean

likelihoods over these 50 runs as a fraction of the mean likelihood of the IRLS

method are shown in Table 6.2. An ANOVA reveals that there is a significant

performance difference between the different methods (F (7, 2744) = 43.0688,

p = 0.0). Comparing the means reveals that the method that performs best is

IRLS, followed by IRLSf, InvVar, MaxConf, Conf, LSf, LS, and last, XCS. The

p-values of Tukey’s HSD post-hoc test are given in Table 6.3. They show that

the performance difference between all methods is significant at the 0.01 level,

except for the ones that are written in italics.

To see if the number of classifiers influence the results we have performed

further experiments with K ∈ {20, 100, 400}. These experiments gave qualita-
tively similar results, which is why we do not report them explicitly.

1In our experience, performing the experiments with fewer runs provided insufficient data
to permit significance tests to reliably detect the differences.

146

IRLS IRLSf InvVar MaxConf Conf LSf LS XCS

XCS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0283 0.5131 -
LS 0.0000 0.0000 0.0000 0.0000 0.0000 0.8574 -
LSf 0.0000 0.0000 0.0000 0.0095 0.0150 -
Conf 0.0000 0.0000 0.1044 0.9999 -
MaxConf 0.0000 0.0000 0.1445 -
InvVar 0.0001 0.0002 -
IRLSf 0.8657 -
IRLS -

Table 6.3: p-values for Tukey’s HSD post-hoc comparison of the different
mixing methods. The performance values were gathered in 50 experimental
runs per function, using both averaging classifiers and classifiers that model
straight lines. The p-values reported are for a post-doc comparison only con-
sidering the factor that determines the mixing method. The methods are or-
dered by performance, with the leftmost and bottom method being the best-
performing one. The p-values in italics indicate that no significant difference
between the methods at the 0.01 level was detected.

6.3.3 Discussion

As can be seen from the results, IRLS is in almost all cases significantly better,

and in no case significantly worse than any other methods that were applied.

IRLSf uses more information than IRLS to mix the classifier predictions, and

thus can be expected to perform better. As can be seen from Table 6.2, how-

ever, it frequently features worse performance, though not significantly. This

worse performance can be attributed to our stopping criterion that is based on

the relative change of the likelihood between two successive iterations. We ob-

served this likelihood to increase more slowly when using IRLSf, which leads

the stopping criterion to abort learning earlier for IRLSf than IRLS, causing it

to perform worse.

InvVar is the best method of the introduced heuristics and constantly outper-

forms LS and LSf. Even though it does not perform significantly better than

Conf and MaxConf, its mean is higher and the method relies on less assump-

tions. Thus, it should be the preferred method amongst the heuristics that

were introduced.

As expected, XCS features a worse performance than all other methods, which

we attribute to the fact that the performance measure of the local model is

147

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Prediction of Blocks function using different mixing models

InvVar
Conf

MaxConf
LS

IRLS
XCS

f(x)

Figure 6.1: Resulting predictions of a single run, using different mixingmodels
for the Blocks function. See the text for an explanation of the experimental
setup.

influenced by the performance of the local models that match the same in-

puts. This might introduce some smoothing, but it remains questionable if

such smoothing is ever advantageous. This doubt is justified by observing

that XCS performs worst even on the smoothest function in the test set, which

is the Heavisine function.

Overall, we have empirically confirmed that IRLS performs best. However,

due to its high complexity and bad scaling properties, it is not recommendable

for applications that require the use of a large number of classifiers. While the

least squares approximation could be used as an alternative in such cases, our

experiments suggest that InvVar provides us with better results. Additionally,

it is easier to implement than LS and LSf, and requires no incremental update.

Thus, it should be the preferred method to use.

148

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Prediction of Bumps function using different mixing models

InvVar
Conf

MaxConf
LS

IRLS
XCS

f(x)

Figure 6.2: Resulting predictions of a single run, using different mixingmodels
for the Bumps function. See the text for an explanation of the experimental
setup.

6.4 Relation to our Previously Published Work

In a previous study [82], we have dealt with a similar problem, but with the

motivation of minimising the mean squared error of the global output predic-

tion rather than relying on a probabilistic model and maximising the likeli-

hood. Thus, we have defined the mixing problem as finding a mixing model

that minimises
N
∑

n=1

(

f̂(xn)− f(xn)
)2

, (6.35)

where f is the target function, and f̂(xn) is the global output prediction for

input xn. We can derive this problem statement with a model that assumes

the relation between f and f̂ to be f̂(x) = f(x) + ǫ, where ǫ ∼ N (0, σ2) is a

zero-mean constant variance Gaussian that represents the random noise. The

maximum likelihood estimate for the parameters of f̂ is found by maximising
∑

n lnN (f(xn)|f̂(xn), σ2), which is equivalent to minimising Eq. (6.35).

In the LCS model introduced in Chapter 4, on the other hand, we assume

149

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Prediction of Doppler function using different mixing models

InvVar
Conf

MaxConf
LS

IRLS
XCS

f(x)

Figure 6.3: Resulting predictions of a single run, using different mixingmodels
for the Doppler function. See the text for an explanation of the experimental
setup.

zero-mean constant variance Gaussian noise on each local model p(y|x,θk)

rather than the global model p(y|x,θ). These models are related by p(y|x,θ) =
∑

k gk(x)p(y|x,θk), and as gk(x)might change with x, the noise variance of the

global model is very likely not constant. As a result, the maximum likelihood

estimate for the LCS model as introduced in Chapter 4 does not conform to

minimising Eq. (6.35).

Therefore, while the study in [82] is valid from the purely functional point-

of-view of minimising the squared global prediction error, it is not compatible

with the assumptions that are the basis of this work. Thus, the additional linear

mixing model that was introduced in [82] and is directly based on Eq. (6.35)

does not apply here, and was therefore skipped. Another difference between

[82] and the work presented in this chapter is that [82] lacks the probabilistic

basis, and does not consider the generalised softmax function as a possible

mixing model. The heuristics, on the other hand, are the same as in [82].

The results of the empirical study in [82], on the other hand, are qualitatively

the same as the ones we have presented here, as they show that the InvVar

150

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Prediction of Heavisine function using different mixing models

InvVar
Conf

MaxConf
LS

IRLS
XCS

f(x)

Figure 6.4: Resulting predictions of a single run, using different mixingmodels
for the Heavisine function. See the text for an explanation of the experimental
setup.

heuristic features competitive performance that is usually better than that of

Conf and MaxConf, and always outperforms XCS. That this same trend is ob-

servable when maximising the likelihood rather than minimising the mean

squared error demonstrates that the developed probabilistic model structure

is compatible — despite different underlying assumptions — to the functional

structure of LCS and the assumption of a constant noise variance at the global

model structure level.

6.5 Summary and Outlook

In this chapter we have approached an essential LCS component that is largely

ignored by LCS research: how to combine a set of localised models, provided

by the classifiers, to provide a global prediction. We have defined the aim

of this “mixing problem” by maximising the data likelihood Eq (6.1) of the

previously introduced LCS model.

151

As we have shown, the IRLS algorithm is a possible approach to finding

the globally optimal mixing parameters V to the generalised softmax mixing

model, but suffers from high complexity, and can therefore act as nothingmore

than a benchmark to compare other approaches to. The least squares approx-

imation, on the other hand, scales well but lacks the desired performance, as

shown in experiments.

As an alternative we have introduced heuristics that are inspired by formal

properties ofmixing byweighted average. Not only do they scale well with the

number of classifiers as they do not have any adjustable parameters other than

the classifier parameters, but they also perform better than mixing by the least

squares approximation. In particular, mixing by inverse variance makes the

least assumptions of the introduced heuristics, and is also the best-performing

one (though not significantly) and therefore our recommended choice.

Themixingmodel in XCSwas never designed tomaximise the data likelihood,

and therefore our comparison to other heuristics might not seem completely

fair. However, we have also shown in [82] that it also performs worst with

respect to the mean squared error measure, and thus is not a good choice for a

mixing model. Rather, mixing by inverse variance should be used as a drop-

in replacement in XCS, but this recommendation is more strongly based on

previous experiments in [82] (see Section 6.4) rather than the empirical results

presented here.

With this chapter we complete our discussion of how to find the LCS model

parameters θ by the principle of maximum likelihood for a fixed model struc-

tureM, and continue by providing a framework that lets us in addition find
a good model structure, that is, a good set of classifiers. As we will see, the

approach we take does not allow us to deal with identifying goodmodel struc-

tures only at the model structure levelM, but requires us to reformulate the
probabilistic model itself to avoid overfitting even when finding the model

parameters for a fixed model structure. With it, we deviate from the principle

of maximum likelihood, which, however, does not completely invalidate the

work that was presented in the last two chapters. Rather, we will discover that

the new update equations for parameter learning are up to small modifica-

tions similar to the ones that provide use with maximum likelihood estimates.

Investigating these differences provide us with the valuable insight of how

152

exactly model selection infiltrates the parameter learning process.

153

Chapter 7

The Optimal Set of Classifiers

In this chapter we deal with the question of what it means for a set of classifiers

to be optimal in the light of the available data, and how to provide a formal so-

lution to this problem. As such, we tackle the core task of LCS, whose ultimate

aim is it to find such a set.

Up until now there is no general definition of what we want to learn in LCS.

Rather, there is an intuitive understanding of what a desirable set of classifiers

should look like, and LCS algorithms are designed around such an under-

standing. However, having LCS that perform according to intuition in simple

problems where the desired solution is known does not mean that they will do

so in more complex tasks. Furthermore, how do we know that our intuition

does not betray us?

While there are a small number of studies on what LCS want to learn and how

that can be measured [131, 134, 136], they concentrate exclusively on the case

where the input is encoded as a binary string, and even then they list several

possible approaches rather than providing a single conclusive answer. How-

ever, considering the complexity of the problem at hand, it is understandable

that approaching it is anything but trivial. The solution structure is strongly

dependent on the chosen representation, but what is the best representation?

Do we want the classifiers to partition the input space such that each of them

independently provides a part of the solution, or do we expect them to cooper-

ate? Should we prefer default hierarchies, where predictions of more general

155

classifiers, that is, classifiers that match larger areas of the input space, are

overridden by more specific ones, in a tree-like structure? Are the predictions

of the classifiers supposed to be completely accurate, or do we allow for some

error? And these are just a few questions to consider.

Rather than listing all possible questions and going through them one by one,

we approach the problem from another side, based on how we have charac-

terised LCS in Chapter 3: a fixed set of classifiers, that is, a fixed model struc-

tureM, provides a certain hypothesis about the data-generating process that
generated the observed data D. Thus, “What do LCS want to learn?” becomes
“Which model structureM explains the available dataD best?”. But, what ex-
actly does “best” mean? Fortunately, evaluating the suitability of a model with

respect to the available data is a common task in machine learning, known as

model selection. Hence, we have reduced the complex problem of defining the

optimal set of classifiers to identifying a suitable model, and to applying it.

This is what we will do for the rest of this chapter.

Firstly, we will spend a bit more time on the question of optimality, and, in

general, which model properties are desirable. We decide for using Bayesian

model selection to identify good sets of classifiers, and therefore will refor-

mulate the LCS model as a fully Bayesian model. Subsequently, in a longer,

more technical section, we apply variational Bayesian inference to find closed-

form approximations to posterior distributions. As a result, we have a closed-

form expression for the quality of a particular model structure that allows us

to compare the suitability of different LCS model structures to explain the

available data. As such, we provide the first general (that is, representation-

independent) definition of optimality for a set of classifiers, and with it an

answer to the question what we want to learn with LCS.

7.1 What is Optimal?

Let us consider two extremes: N classifiers, such that each observation is

matched by exactly one classifier, or a single classifier that matches all inputs.

In the first case, each classifier replicates its associated observation completely

accurately, and so the whole set of classifiers is a completely accurate repre-

156

sentation of the data; it has an optimal goodness-of-fit. Methods that minimise

the empirical risk, such asmaximum likelihood or squared error minimisation,

would evaluate such a set as being optimal. Nonetheless, it does not allow us

to find any generalisation in noisy data, as it does not differentiate between

noise and the pattern in the data. In other words, having one classifier per ob-

servation does not provide us with any additional information than the data

itself, and thus is not a desired solution.

Using a single classifier that matches all inputs, on the other hand, is the sim-

plest LCS model structure, but has a very low expressive power. That is, it can

only express very simple pattern in the data, and will very likely have a bad

goodness-of-fit. Thus, finding a good set of classifiers involves balancing the

goodness-of-fit of this set and its complexity, which determines its expressive

power. This tradeoff must be somehow expressed in each method that avoids

overfitting.

7.1.1 Current LCS Approaches

XCS has the ability to find a set of classifiers that generalises over the available

data [240, 241], and so has YCS [33] and CCS [154, 155]. This means that they

do not simply minimise the overall model error but have some built-in model

selection capability, however crude it might be.

Let us first consider XCS: its ability to generalise is brought about by a combi-

nation of the accuracy-definition of a classifier and the operation of its genetic

algorithm. A classifier is considered as being accurate if its mean absolute

prediction error over all matched observations is below the minimum error1

threshold ǫ0. The genetic algorithm provides accurate classifiers that match

larger areas of the input space with more reproductive opportunity. However,

overly general classifiers, that is, classifiers that match overly large areas of

the input space, will feature a mean absolute error that is larger than ǫ0, and

are not accurate anymore. Thus, the genetic algorithm “pushes” towards more

general classifiers, but only until they reach ǫ0 [53]. In combination with the

1The term minimum error for ǫ0 is a misnomer, as it specifies the maximum error that clas-
sifier can have to still be accurate. Thus, ǫ0 should be called the maximum admissible error or
similar.

157

competition between classifiers that match the same input, XCS can be said to

aim at finding the smallest non-overlapping set of accurate classifiers. From

this perspective we could define an optimal set of classifiers that is dependent

on ǫ0. However, such a definition is not very appealing, as i) it is based on an

algorithm, rather than having an algorithm that is based on the definition; ii) it

is based solely on intuition; iii) the best set of classifiers is fully determined by

the setting of ǫ0 that might depend on the task at hand; and iv) ǫ0 is the same

for the whole input space, and so XCS cannot cope with tasks where the noise

varies for different areas of the input space.

YCS [33] was developed by Bull as a simplified version of XCS such that its

classifier dynamics can bemodelled by difference equations. While it still mea-

sures the mean absolute prediction error of each classifier, it defines the fitness

as being inversely proportional to this error, rather than using any accuracy

concept based on some error threshold. Additionally, its genetic algorithm

differs from the one used in XCS in that it selects classifiers from the whole set

rather than only from the set that matches the current input. Having a fitness

that is inverse to the error will make the genetic algorithm assign a higher re-

productive opportunity to low-error classifiers that match many inputs. How

low this error has to be depends on the error of other competing classifiers in

the set, and on the maximum number of classifiers allowed, as that number

determines the number of classifiers that the genetic algorithm aims at assign-

ing to each input. Due to these dependencies it is difficult to define which set

of classifiers YCS aims at finding, particularly as it depends on the dynamics

of the genetic algorithm and the interplay of several system parameters. Its

pressure towards more general classifiers comes from those classifiers match-

ing more inputs and thus updating their error estimates more quickly, which

gives them an initial higher fitness thanmore specific classifiers. However, this

pressure is implicit and weaker than in XCS, which is easily seen in Figure 1(a)

of [33], where general and specific, but equally accurate, classifiers peacefully

and stably co-exist in the population. We can only state that it supports clas-

sifiers that match larger areas of the input space, but only up until their errors

get too large when compared to other classifiers in the set.

CCS [154, 155], in contrast, has a very clear definition of what types of classi-

fiers win the competition in a classification task: it aims at maximally general

and maximally accurate classifiers by combining a generality measures, given

158

by the proportion of overall examples correctly classified, and an error mea-

sures that is inversely proportional to the number of correct positive classifica-

tions over all classification attempts of a rule2. The tradeoff between generality

and error is handled by a constant γ that needs to be tuned. Thus, as in XCS, it

is dependent on a system parameter that is to be set by the user. Additionally,

in its current form, CCS aims at evolving rules that are completely accurate,

and is thus unable to cope with noisy data [154, 155]. The set of classifiers

it aims for can be described as the smallest set of classifiers that has the best

tradeoff between error and generality, as controlled by the parameter γ.

7.1.2 Model Selection

Due to the shortcomings of the previously discussed LCS, we will not con-

sider them in our definition of the optimal set of classifiers, but rather will use

existing concepts from current model selection methods. Even though most of

the model selection criteria have different philosophical background, they all

result in the principle of minimising a combination of the model error and a

measure of the model complexity. To provide good model selection it is essen-

tial to use a good model complexity measure, and it has been shown in [126]

that, generally, methods that consider the data when judging the model com-

plexity outperform methods that do not. Furthermore, it is also of advantage

to use the full training data rather than an independent test set [13].

Bayesian model selection meets these requirements and has additionally al-

ready been applied to the Mixtures-of-Expert model [230, 20, 219]. This makes

it an obvious choice as a model selection criterion for LCS. We will provide a

short discussion of alternative model selection criteria that might be applicable

to LCS in Section 7.5, later in this chapter.

2In [154, 155], the generality measure is called the accuracy, and the ratio of positive correct
classifications over the total number of classification attempts is the error, despite it being some
inverse measure of the error.

159

7.1.3 Bayesian Model Selection

Given a model structureM and the data D, Bayesian model selection is based
on finding the probability density of the model structure given the data by

Bayes’ rule

p(M|D) ∝ p(D|M)p(M), (7.1)

where p(M) is the prior over the set of possible model structures. The “best”

model structure given the data is the one with the highest probability density

p(M|D).

The data-dependent term p(D|M) is a likelihood known as the evidence for

model structureM, and is for a parametric model with parameters θ evaluated
by

p(D|M) =

∫

θ

p(D|θ,M)p(θ|M)dθ, (7.2)

where p(D|θ,M) is the data likelihood for a given model structureM, and
p(θ|M) are the parameter priors given the same model structure. Thus, in

order to perform Bayesian model selection, one needs to have a prior over

the model structure space {M}, a prior over the parameters given a model
structure, and an efficient way of computing the model evidence Eq. (7.2).

As wewould expect from a goodmodel selectionmethod, an implicit property

of Bayesian model selection is that it penalises overly complex models [160].

This can be intuitively explained as follows: probability distributions that are

more widely spread generally have lower peaks as the area underneath their

density function is always 1. While simple model structures only have a lim-

ited capability of expressing data sets, more complex model structures are able

to express a wider range of different data sets. Thus, their prior distribution

will be more widely spread. As a consequence, conditioning a simple model

structure on some data that it can express will cause its distribution to have a

larger peak than a more complex model structure than is also able to express

this data. This shows that, in cases where a simple model structure is able

to explain the same data as a more complex model structure, Bayesian model

selection will prefer the simpler model structure.

160

7.1.4 Applying Bayesian Model Selection to

Finding the Best Set of Classifiers

Applied to LCS, the model structure is, as previously described, defined by

the number of classifiers K and their matching functions M = {mk : X →
[0, 1]}, givingM = {K,M}. In order to find the best set of classifiers, we need
to maximise its probability density with respect to the data Eq.(7.1), which is

equivalent to maximising its logarithm

ln p(M|D) = ln p(D|M) + ln p(M) + const., (7.3)

where the constant term captures the normalising constant and can be ignored

when comparing the different model structures, as it is shared between them.

Evaluating the log-evidence ln p(D|M) in Eq. (7.3) requires us to firstly specify

a parameter prior p(θ|M), and then to evaluate Eq. (7.2) to get the evidence of

M. Unfortunately, the LCS model described in Chapter 4 is not fully Bayesian
and needs to be reformulated before we can evaluate the evidence. Addition-

ally, the resulting probabilistic model structure does not provide a closed-form

solution to Eq. (7.2). Thus, the rest of this chapter is devoted to i) introducing

a fully Bayesian LCS model, and ii) applying an approximation method called

Variational Bayesian inference that gives us a closed-form expression for the ev-

idence. Before we do so, let us discuss the prior p(M) on the model structure

itself, and why the requirement of specifying parameter and model structure

priors is not an inherit weakness of the method.

7.1.5 The Model Structure Prior p(M)

Specifying the prior for p(M) lets us express our belief about which model

structures are best at representing the data, prior to knowledge of the data.

Recall that M = {M , K} and thus we can decompose p(M) into p(M) =

p(M |K)p(K). Our belief about the number of classifiersK is that this number

is certainly always finite, and thus we need to have p(K) → 0 with K → ∞.
The beliefs about the set of matching functions of M given some K is less

clear. Let us only note thatM containsK matching functions such that the set

161

of possibleM grows exponentially withK.

The question of how to best specify p(M), and if there even is a “best” prior

onM, will be left open as a topic of further research. For now, we will for
illustrative purposes use p(M) ∝ 1/K!, or

ln p(M) = − lnK! + const. (7.4)

This prior can be interpreted as the prior p(K) = (e− 1)−11/K! on the number

of classifiers, where e ≡ exp(1), and a uniform p(M |K) that is absorbed by the

constant term. Such a prior satisfies p(K) → 0 for K → ∞ and expresses that
we expect the number of classifiers in the model to be small3.

7.1.6 The Myth of No Prior Assumptions

A prior in the Bayesian sense is specified by a prior probability distribution

and expresses what is known about a random variable in the absence of some

evidence. For parametric models, the prior usually expresses what we expect

the model parameters to be, in the absence of any observations. As such, it

is part of the assumptions that we make about the data-generating process.

Combining the information of the prior and the data gives us the posterior.

Having the need to specify prior distributions could be considered as a weak-

ness of Bayesianmodel selection, or even Bayesian statistics. Similarly, it could

also be seen as a weakness of our approach to define the best set of classifiers.

This view is justified by the idea that there exist other methods that do not

make any prior assumptions. But is this really the case?

Let us investigate the class of linear models as we have described them in

Chapter 5. Due to linking the recursive least squares algorithm to ridge re-

gression in Section 5.3.5 and the Kalman filter in Section 5.3.6, we have shown

3As pointed out by Dr. Dan Richardson, University of Bath, the prior p(K) ∝ 1/K! has
E(K) < 2 and thus expresses the belief that the number of classifiers is expected to be on
average less than 2. He proposed the alternative prior p(K) = exp(−V)V K/K!, where V is a
constant related to volume, and E(K) increases with V .

162

that the ridge regression problem

min
w

(

‖Xw − y‖2 + λ‖w‖2
)

(7.5)

is equivalent to conditioning amultivariate Gaussian priorω0 ∼ N (0, (λτ)−1I)

on the available data {X,y}, where τ is the noise precision of the linear model
with respect to the data. Such a prior means that we assume each element of

the weight vector to be independent — due to the zero off-diagonal elements

of the diagonal covariance matrix — and zero-mean Gaussian with variance

(λτ)−1. That is, we assume the elements most likely to be zero, but they can

also have other values with a likelihood that decreases with their deviation

from zero.

Setting λ = 0 reduces Eq. (7.5) to a standard linear least squares problem with-

out any prior assumptions— as it seems— besides the linear relation between

the input and the output and the constant noise variance. Let us have a closer

look how λ = 0 influences ω0: As λ→ 0 causes (λτ)−1 →∞, one can interpret
the prior ω0 to be the multivariate Gaussian N (0,∞I) (ignoring the problems

that come with the use of ∞). As a Gaussian with increasing variance ap-
proaches the uniform distribution, the elements of the weight vectors are now

equally likely to take any possible value of the real line. Even though such a

prior seems unbiased at first, let us not forget that the uniform density puts

most of its weight on large values due to its uniform tails [69]. Thus, as linear

least squares is equivalent to ridge regression with λ = 0, its prior assumptions

on the values of the weight vector elements is that they are uncorrelated but

most likely take very large values. Large weight vector values, however, are

usually a sign of non-smooth functions. Thus, linear least squares implicitly

assumes that the function it models is not smooth.

We have discussed in Section 3.1.1 that a prerequisite for generalisation is that

a function is smooth. Thus, we do actually assume smoothness of the function,

and therefore ridge regression with λ > 0 is more appropriate than plain lin-

ear least squares. The prior that is associated with ridge regression is known

as a shrinkage prior [103], as it causes the weight vector elements to be smaller

than without using this prior. Ridge regression itself is part of a family of reg-

ularisation methods that add the assumption of function smoothness to guide

parameter learning in otherwise ill-defined circumstances [217].

163

In summary, even methods that seemingly make no assumptions about the

parameter values are biased by implicit priors, as we have shown by compar-

ing ridge regression with linear least squares. In any case, it is important to be

aware of these priors, as they are part of the assumptions that a model makes

about the data-generating process. Thus, when introducing the Bayesian LCS

model, we put special emphasis on how the introduced parameter priors ex-

press our assumptions.

7.2 A Fully Bayesian LCS

The Bayesian LCS model is equivalent to the one introduced as a generalisa-

tion of the Mixtures-of-Experts model in Chapter 4, with the differences that

we allow classifiers to perform multivariate rather than univariate regression,

and that we put priors and associated hyperpriors on all model parameters.

As such, it is a generalisation of the previous model as it completely subsumes

it. For now we do not assume the classifiers to be trained independently, and

will re-introduce this independence at a later stage, analogous to Section 4.4.

Table 7.2 gives a summary of the Bayesian LCS model, and Figure 7.1 shows

its variable dependency structure as a directed graph. The model is besides

the additional matching similar to the Bayesian MoE model in [230, 229], to

the Bayesian mixture model in [219], and to the Bayesian MoE model in [20].

We will now describe each of its components in more detail.

7.2.1 Data, Model Structure, and Likelihood

To evaluate the evidence of a certain model structureM, we need the data D
and the model structureM to be known. The data D consists of N observa-
tions, each given by an input/output pair (xn,yn). The input vector xn is an

element of theDX -dimensional real input space X = R
DX , and the output vec-

tor yn is an element of theDY-dimensional real output space Y = R
DY . Hence,

xn hasDX , and yn hasDY elements. The input matrixX and output matrix Y

are defined according to Eq. (3.3).

164

Data, Model Structure, and Likelihood

N observations {(xn,yn)}, xn ∈ X = R
DX , yn ∈ Y = R

DY

Model structureM = {K,M}, k = 1, . . . , K
K classifiers
Matching functionsM = {mk : X → [0, 1]}

Likelihood p(Y |X,W , τ ,Z) =
∏N

n=1

∏K
k=1 p(yn|xn,Wk, τk)

znk

Classifiers

Variables Weight matricesW = {Wk},Wk ∈ R
DY × R

DX

Noise precisions τ = {τk}
Weight shrinkage priors α = {αk}
Noise precision prior parameters aτ , bτ
α-hyperprior parameters aα, bα

Model p(y|x,Wk, τk) = N (y|Wkx, τ
−1
k I) =

∏DY

j=1N (yj|wT
kjx, τ

−1
k)

Priors p(Wk, τk|αk) =
∏DY

j=1 (N (wkj|0, (αkτk)
−1I)Gam(τk|aτ , bτ))

p(αk) = Gam(αk|aα, bα)

Mixing

Variables Latent variables Z = {zn}, zn = (zn1, . . . , znK)T ∈ {0, 1}K , 1-of-K
Mixing weight vectors V = {vk}, vk ∈ R

DV

Mixing weight shrinkage priors β = {βk}
β-hyperprior parameters aβ , bβ

Model p(Z|X,V ,M) =
∏N

n=1

∏K
k=1 gk(xn)znk

gk(x) ≡ p(zk = 1|x,vk,mk) =
mk(x) exp(vT

k
φ(x))

PK
j=1

mj(x) exp(vT
j φ(x))

Priors p(vk|βk) = N (vk|0, β−1
k I)

p(βk) = Gam(βk|aβ, bβ)

Table 7.1: Bayesian LCS model, with all its components. For more details on
the model see Section 7.2.

We assume the data to be standardised by a linear transformation such that all

x and y have mean 0 and a range of 1. The purpose of this standardisation

is the same as the one given in [62], which is to make it easier to intuitively

gauge parameter values. For example, with the data being standardised, a

weight value of 2 can be considered large as a half range increase in x would

result in a full range increase in y.

The model structureM = {K,M} specifies on one hand that we haveK clas-
sifiers, and on the other hand, where these classifiers are localised. Each clas-

sifier k has an associated matching function mk : X → [0, 1], that returns for

each input the probability of classifier k matching this input, as described in

165

yn

xn

znk

mnk

vk

Wk

τk

βk

αk

aβ

bβ

aα

bα

aτ

bτ

K

M

classifiers

N

data

Figure 7.1: Directed graphical model of the Bayesian LCS model. See the cap-
tion of Figure 4.1 for instructions on how to read this graph. Note that to train
the model, we assume the data D and the model structure M to be given.
Hence, the yn’s andM are observed random variables, and the xn’s are con-
stants.

Section 4.3.1. We assume that for each input xn we have
∑

k mk(xn) > 0, that

is, that each input is matched by at least one classifier. This needs to be the

case to ensure that we can model all of the inputs. As the model structure is

known, all probability distributions are implicitly conditional onM.

To specify the data likelihood, we again take the generative view that each ob-

servation was generated by one and only one classifier. Let Z = {zn} be the
N latent binary vectors zn = (zn1, . . . , znK)T of size K. We have znk = 1 if clas-

sifier k generated observation n, and znk = 0 otherwise. As each observation

is generated by a single classifier, only a single element of each zn is 1, and

all other elements are 0. Under the standard assumption of independent and

identically distributed data, that gives the likelihood

p(Y |X,W , τ ,Z) =
N
∏

n=1

K
∏

k=1

p(yn|xn,Wk, τk)
znk , (7.6)

166

where p(yn|xn,Wk, τ) is the model for the input/output relation of classifier

k, parameterised by W = {Wk} and τ = {τk}. Let us firstly introduce the
classifier model, and then the model for the latent variables Z.

7.2.2 Multivariate Regression Classifiers

The classifier model for classifier k is given by

p(y|x,Wk, τk) = N (y|Wkx, τ
−1
k I)

=

DY
∏

j=1

N (yj|wT
jkx, τ

−1
k)

=

DY
∏

j=1

(τk
2π

)1/2

exp
(

−τk
2

(yj −wT
kjx)2

)

, (7.7)

where yj is the jth element of y,Wk is the DY × DX weight matrix, and τk is

the scalar noise precision. wT
kj is the jth row vector of the weight matrixWk.

This model assumes that each element of the output y is linearly related to x

with coefficients wkj , that is, yj ≈ wT
kjx. Additionally, it assumes the elements

of the output vector to be independent and feature zero-mean Gaussian noise

with constant variance τ−1
k . Note that the noise variance is assumed to be

the same for each element of this output. It would be possible to assign each

output element its own noise variance estimate, but we have chosen not to do

so to keep the model relatively simple. If we have DY = 1, we return to the

univariate regression model Eq. (5.3) that forms the basis of Chapter 5.

7.2.3 Priors on the Classifier Model Parameters

We assume each element of the output to be related to the input by a smooth

function. Thus, we assume the elements of the weight matrixWk to be small

which we express by assigning shrinkage priors to each row vector wkj of the

weight matrixWk. Additionally, we assume the noise precision to be larger,

but not much larger than 0, and in no case infinite, which is given by the prior

167

Gam(τk|aτ , bτ) on the noise precision. Thus, the prior onWk and τk is given by

p(Wk, τk|αk) =

DY
∏

j=1

p(wkj, τk|αk)

=

DY
∏

j=1

(

N (wkj|0, (αkτk)
−1I)Gam(τk|aτ , bτ)

)

(7.8)

=

DY
∏

j=1

(

(αkτk
2π

)DX /2 baτ
τ τ

(aτ−1)
k

Γ(aτ)
exp

(

−αkτk
2

wT
kjwkj − aττk

)

)

,

where Γ(·) is the gamma function, αk parameterises the variance of the Gaus-

sian, and aτ and bτ are the parameters of the Gamma distribution. This prior

distribution is known as normal inverse-gamma, as the inverse variance param-

eter of the Gaussian is distributed according to a Gamma distribution. Its use

is advantageous, as conditioning it on a Gaussian results again in a normal

inverse-gamma distribution, that is, it is a conjugate prior of the Gaussian dis-

tribution.

The prior assumes that elements of the weight vectors wjk are independent

and most likely zero, which is justified by the standardised data and the lack

of further information. Its likelihood of deviating from zero is parameterised

by αk. τk is added to the variance term of the normal distribution for mathe-

matical convenience, as it simplifies the computation of the posterior and pre-

dictive density.

The noise precision is distributed according to a Gamma distribution, which

we will parameterise as in [20] by aτ = 10−2 and bτ = 10−4 to keep the prior

sufficiently broad and uninformative, as shown in Figure 7.2(a). An alternative

approach would be to set the prior on τk to express the belief that the variance

of the localised models will be most likely smaller than the variance of a single

global model of the same form. We will not follow this approach, but more

information on how to set the distribution parameters in such a case can be

found in [62].

We could specify a value for αk by again considering the relation between the

local models and global model, as in [62]. However, we rather follow [20], and

treat αk as a random variable that is modelled in addition toWk and τk. It is

168

assigned a conjugate Gamma distribution

p(αk) = Gam(αk|aα, bα) =
baα
α α

(aα−1)
k

Γ(aα)
exp(−aααk), (7.9)

which we keep sufficiently broad and uninformative by setting aα = 10−2 and

bα = 10−4. The combined effect of τk and αk on theweight vector prior variance

is shown in Figure 7.2(b).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200

D
en

si
ty

Variance

Prior density for classifier noise variance

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 5000 10000 15000 20000
D

en
si

ty

Variance

Prior density for classifier weight variance

(a) (b)

Figure 7.2: Histogram plot of the density of the (a) noise variance, and (b)
variance of the weight vector prior. The plot in (a) was generated by sampling
from τ−1

k and shows that the prior on the variance is very flat, with the highest
peak at a density of around 0.04 and a variance of about 100. The plot in (b)
was generated by sampling from (αkτk)

−1 and shows an even broader density
for the variance of the zero mean weight vector prior, with its peak at around
0.00028 at a variance of about 10000.

7.2.4 Mixing by the Generalised Softmax Function

As in Chapter 4, the latent variables are modelled by the generalised softmax

function Eq. (4.20), given by

gk(x) ≡ p(zk = 1|x,vk) =
mk(x) exp(vT

k φ(x))
∑K

j=1mj(x) exp(vT
j φ(x))

. (7.10)

It assumes that, given that classifier k matched input x, the probability of clas-

sifier k generating observation n is related to φ(x) by a log-linear function

exp(vT
k φ(x)), parameterised by vk. The transfer function φ : X → R

DV maps

the input into a DV -dimensional real space, and therefore the vector vk is of

169

size DV and also an element of that space. In LCS, we usually have DV = 1

and φ(x) = 1 for all x ∈ X , but to stay general, we will not make any assump-
tions about φ and DV .

To specify the joint probability for the latent vector z we again make use of its

1-of-K structure to get

p(z|x,V) =
K
∏

k=1

gk(x)zk . (7.11)

Thus, the joint probability of all zn becomes

p(Z|X,V) =
N
∏

n=1

K
∏

k=1

gk(xn)znk , (7.12)

which fully specifies the model for Z.

7.2.5 Priors on the Mixing Model

Due to the normalisation, the mixing function gk is over-parameterised, as it

would be sufficient to specifyK−1 vectors vk and leave vK constant [167]. This

wouldmake the values for all vk’s to be specified in relation to the constant vK ,

and causes problems if classifier K is removed from the current set. Thus, we

rather leave gk over-parameterised, and assume all vk’s to be small, which is

again expressed by a shrinkage prior, given by

p(vk|βk) = N (vk|0, β−1
k I)

=

(

βk

2π

)DV /2

exp

(

−βk

2
vT

k vk

)

. (7.13)

Thus, the elements of vk are assumed to be independent and zero-mean Gaus-

sian with precision βk.

Rather than specifying a value for βk, we again model it by the Gamma hyper-

prior

p(βk) = Gam(βk|aβ.bβ) =
b
aβ

β β
(aβ−1)

k

Γ(aβ)
exp(−aββk), (7.14)

with hyper-parameters set to aβ = 10−2 and bβ = 10−4 to get a broad and

170

uninformative prior for the variance of the mixing weight vectors. The shape

of the prior is the same as for τ−1
k , which is shown in Figure 7.2(a).

7.2.6 Joint Distribution over Random Variables

Assuming knowledge ofX andM, the joint distribution over all random vari-
ables decomposes into

p(Y ,U |X) = p(Y |X,W , τ ,Z)p(W , τ |α)p(α)

×p(Z|X,V)p(V |β)p(β), (7.15)

where U collectively denotes the hidden variables U = {W , τ ,α,Z,V ,β}.
This decomposition is also clearly visible in Figure 7.1, where the dependency

structure between the different variables and parameters is graphically illus-

trated. All priors are independent for different k’s, and so we have

p(W , τ |α) =
K
∏

k=1

p(Wk, τk|αk), (7.16)

p(α) =
K
∏

k=1

p(αk), (7.17)

p(V |β) =
K
∏

k=1

p(vk|βk), (7.18)

p(β) =
K
∏

k=1

p(βk). (7.19)

By inspecting Eqs. (7.6) and (7.12) we can see that, similar to the priors, both

p(Y |X,W , τ ,Z) and p(Z|X,V) factorise over k, and therefore the joint dis-

tribution Eq. (7.15) factorises over k as well. We will use this property when

deriving expressions for the evidence p(D|M).

171

7.3 Evaluating the Model Evidence

In this rather technical section we will derive an expression for the model ev-

idence p(D|M) for use in Eq. (7.3). Evaluating Eq. (7.2) does not give us a

closed-form expression. Hence, we will make use of an approximation tech-

nique known as variational Bayesian inference [120, 19] that provides us with

such a closed-form expression.

Alternatively, we could utilise sampling techniques, such as Markov Chain

Monte Carlo (MCMC)methods, that would provide us with an accurate poste-

rior and model evidence. However, as the model structure search is expensive

and requires a quick evaluation of the model evidence for a given model struc-

ture, and therefore the computational burden of sampling techniques makes

approximating the model evidence by variational methods a better choice.

For the remainder of this chapter, we treat all distributions as being implic-

itly conditional on X andM, to keep the notation simple. Additionally, we
will not always explicitly specify the range for sums and products, as they are

usually obvious from their context.

7.3.1 Variational Bayesian Inference

Our goal is, on one hand, to find a variational distribution q(U) that approx-

imates the true posterior p(U |Y) and, on the other hand, to get the model

evidence p(Y). Variational Bayesian inference is based on the decomposition

[19, 119]

ln p(Y) = L(q) + KL(q‖p), (7.20)

L(q) =

∫

q(U) ln
p(U ,Y)

q(U)
dU , (7.21)

KL(q‖p) = −
∫

q(U) ln
p(U |Y)

q(U)
dU , (7.22)

which holds for any choice of q. As the Kullback-Leibler divergence KL(q‖p)
is always non-negative, and zero if and only if p(U |Y) = q(U) [235], the varia-

tional bound L(q) is a lower bound on ln p(Y) and only equivalent to the latter

172

if q(U) is the true posterior p(U |Y). Hence, we can approximate the posterior

bymaximising the lower boundL(q), which brings the variational distribution

closer to the true posterior and at the same time gives us an approximation of

the model evidence by L(q) ≤ ln p(Y).

Factorial Distributions

To make this approach tractable, we need to choose a family of distributions

q(U) that gives an analytical solution. A frequently used approach (for exam-

ple, [20, 230]) that is sufficiently flexible to give a good approximation to the

true posterior is to use the set of distributions that factorises with respect to

disjoint groups Ui of variables

q(U) =
∏

i

qi(Ui), (7.23)

which allows us to maximise L(q) with respect to each group of hidden vari-

ables separately while keeping the other ones fixed. This results in

ln q∗i (Ui) = Ei6=j (ln p(U ,Y)) + const., (7.24)

when maximising with respect to Ui, where the expectation is taken with re-

spect to all hidden variables except for Ui, and the constant term is the loga-

rithm of the normalisation constant of q∗i [19, 119]. In our case, we group the

variables according to their priors by {W , τ}, {α}, {V }, {β}, {Z}.

Handling the Softmax Function

If the model has a conjugate-exponential structure, Eq. (7.24) gives an ana-

lytical solution with a distribution form equal to the prior of the correspond-

ing hidden variable. However, in our case the generalised softmax function

Eq, (7.10) does not conform to this conjugate-exponential structure, and we

need to deal with it separately. A possible approach is to replace the softmax

function by an exponential lower bound on it, which consequently introduces

additional variational variables with respect to which L(q) also needs to be

maximised. This approach was followed in [20, 120] for the logistic sigmoid

173

function, but currently there is no known exponential lower bound function

on the softmax besides a conjectured one in [91]4. Alternatively, we can follow

the approach taken in [230, 229], where q∗V (V) is approximated by a Laplace

approximation. Despite such an approximation invalidating the lower bound

nature of L(q), we have chosen to use it due to the lack of better alternatives.

Update Equations and Model Posterior

To get the update equations for the parameters of the variational distribution,

we need to evaluate Eq. (7.24) for each group of hidden variables in U sepa-

rately, similar to the derivations in [229] and [219]. This provides us with an

approximation for the posterior p(U |Y) and will be shown in the following

sections.

To approximate the model evidence p(Y), we need to find a closed-form ex-

pression for L(q) by evaluating Eq. (7.21), where we can reuse many terms

that have already been used for finding the variational update equations, as

we will see after having derived the update equations.

7.3.2 Classifier Model q∗W,τ (W , τ)

The maximum of L(q) with respect to W and τ is given by evaluating

Eq. (7.24) for qW,τ , which, by using Eqs. (7.15), (7.16) and (7.6) results in

ln q∗W,τ (W , τ) = EZ(ln p(Y |W , τ ,Z)) + Eα(ln p(W , τ |α)) + const.

=
∑

k

∑

n

EZ(znk ln p(yn|Wk, τk))

+
∑

k

Eα(ln p(Wk, τk|αk)) + const., (7.25)

where the constant represents all terms in Eq. (7.15) that are independent of

W and τ , and EZ and Eα are the expectations evaluated with respect to Z and

α respectively. This expression shows that q∗W,τ factorises with respect to k,

4A more general bound was recently developed in [228], but its applicability still needs to
be evaluated.

174

which allows us to handle the qW,τ (Wk, τk)’s separately, by solving

ln q∗W,τ (Wk, τk) =
∑

n

EZ(znk ln p(yn|Wk, τk)) + Eα(ln p(Wk, τk|αk)) + const.

(7.26)

Using the classifier model Eq. (7.7), we get

∑

n

EZ(znk ln p(yn|Wk, τk))

=
∑

n

EZ(znk) ln
∏

j

N (ynj|wT
kjxn, τ

−1
k)

=
∑

n

rnk

∑

j

(

1

2
ln τk −

τk
2

(ynj −wT
kjxn)2

)

+ const.

=
DY

2

(

∑

n

rnk

)

ln τk + const. (7.27)

−τk
2

∑

j

(

∑

n

rnky
2
nj − 2wT

kj

∑

n

rnkxnynj + wT
kj

(

∑

n

rnkxnx
T
n

)

wkj

)

,

where rnk ≡ EZ(znk) is the responsibility of classifier k for observation n, and ynj

is the jth element of yn. The constant represents the terms that are independent

ofWk and τk.

Eα(ln p(Wk, τk|αk)) is expanded by the use of Eq. (7.8) and results in

Eα(ln p(Wk, τk|αk))

=
∑

j

Eα

(

lnN (wkj|0, (αkτk)
−1I) + lnGam(τk|aτ , bτ)

)

=
∑

j

(

DX

2
ln τk −

τk
2

Eα(αk)w
T
kjwkj + (aτ − 1) ln τk − bττk

)

+ const.

=

(

DYaτ −DY +
DXDY

2

)

ln τk

−τk
2

(

2DYbτ + Eα(αk)
∑

j

wT
kjwkj

)

+ const. (7.28)

175

Thus, evaluating Eq. (7.26) gives

ln q∗W,α(Wk, τk) =

(

DYaτ −DY +
DXDY

2
+
DY

2

∑

n

rnk

)

ln τk

−τk
2

(

2DYbτ +
∑

j

(

∑

n

rnky
2
nj − 2wT

kj

∑

n

rnkxnynj

+wT
kj

(

Eα(αk)I +
∑

n

rnkxnx
T
n

)

wkj

))

+ const.

= ln
∏

j

(

N (wkj|w∗
kj, (τkΛ

∗
k)
−1)Gam(τk|a∗τk

, b∗τk
)
)

, (7.29)

with the distribution parameters

Λ
∗
k = Eα(αk)I +

∑

n

rnkxnxT
n , (7.30)

w∗
kj = Λ

∗
k
−1
∑

n

rnkxnynj, (7.31)

a∗τk
= aτ +

1

2

∑

n

rnk, (7.32)

b∗τk
= bτ +

1

2DY

(

∑

j

(

∑

n

rnky
2
nj −w∗

kj
T
Λ
∗
kw

∗
kj

))

. (7.33)

The second equality in Eq. (7.29) can be derived by expanding the final re-

sult and replacing all terms that are independent ofWk and τk by a constant.

The distribution parameter update equations are that of a standard Bayesian

weighted linear regression (for example, [19, 15, 71]).

Note that due to the use of conjugate priors, the variational posterior

q∗W,α(Wk, τk) Eq. (7.29) has the same distribution form as the prior p(Wk, τk|αk)

Eq. (7.8). The resulting weight vector wkj , that models the relation between

the inputs and the jth component of the outputs, is given by a Gaussian with

mean w∗
kj and precision τkΛ

∗
k. The same posterior weight mean can be found

by minimising

‖Xwkj − yj‖2Rk
+ Eα(αk)‖wkj‖2, (7.34)

with respect to wkj , where Rk is the diagonal matrix Rk = diag(r1k, . . . , rNk),

and yj is the vector of jth output elements, yj = (y1j, . . . , yNj)
T , that is, the jth

column of Y . This shows that we are performing a responsibility-weighted

ridge regression with ridge complexity Eα(αk). Thus, the shrinkage is deter-

176

mined by the prior on αk, as we can expect from our specification of the weight

vector prior Eq. (7.8).

The noise precision posterior is the Gamma distribution Gam(τk|a∗τk
, b∗τk

). Us-

ing the relation νλ
χ2

ν
∼ Gam(ν/2, νλ/2) , where νλ

χ2
ν
is the scaled inverse χ2 distri-

bution with ν degrees of freedom, we can interpret Eq. (7.32) as incrementing

the degrees of freedom from an initial 2aτ by
∑

n rnk. Thus, while the prior has

the weight of 2aτ observations, each added observation is weighted accord-

ing to the responsibility that classifier k has for it. By using Eq. (7.30) and the

relation

∑

n

rnk(ynj −w∗
kj

T xn)2

=
∑

n

rnky
2
nj − 2w∗

kj
T
∑

n

rnkxnynj + w∗
kj

T

(

∑

n

rnkxnxT
n

)

w∗
kj,

Eq. (7.33) can be reformulated to give

b∗τk
= bτ +

1

2DY

(

∑

n

rnk‖yn −W ∗
k xn‖2 + Eα(αk)

∑

j

‖w∗
kj‖2

)

. (7.35)

This shows that bτ is updated by the responsibility-weighted sum of squared

prediction errors, averaged over the different elements of the output vector,

and the average size of the wkj’s, weighted by the expectation of the weight

precision prior. Considering that E(Gam(a, b)) = a/b [19], the mean of the

noise variance posterior is therefore strongly influenced by the responsibility-

weighted averaged squared prediction error, given a sufficiently uninforma-

tive prior.

7.3.3 Classifier Weight Priors q∗α(α)

As by Eq. (7.17), p(α) factorises with respect to k, we can treat the variational

posterior q∗α for each classifier separately. For classifier k, this posterior is ac-

cording to Eqs. (7.15), (7.16), (7.17) and (7.24) given by

ln q∗α(αk) = EW,τ (ln p(Wk, τk|αk)) + ln p(αk) + const. (7.36)

177

Using Eq. (7.8), the expectation of weights and noise precision evaluates to

EW,τ (ln p(Wk, τk|αk))

=
∑

j

EW,τ

(

lnN (wkj|0, (αkτk)
−1I) + lnGam(τk|aτ , bτ)

)

=
∑

j

(

DX

2
lnαk −

αk

2
EW,τ (τkw

T
kjwkj)

)

+ const. (7.37)

Also, by Eq. (7.9),

ln p(αk) = (aα − 1) lnαk − bααk + const. (7.38)

Together, that gives the variational posterior

ln q∗α(αk) =

(

DXDY

2
+ aα − 1

)

lnαk

−
(

bα +
1

2

∑

j

EW,τ (τkw
T
kjwkj)

)

αk + const.

= lnGam(αk|a∗αk
, b∗αk

), (7.39)

with

a∗αk
= aα +

DXDY

2
, (7.40)

b∗αk
= bα +

1

2

∑

j

EW,τ (τkw
T
kjwkj). (7.41)

Utilising again the relation between the gamma distribution and the scaled

inverse χ2 distribution, Eq. (7.40) increments the initial 2aα degrees of freedom

by DXDY , which is the number of elements inWk.

The posterior mean of αk is E(αk) = a∗αk
/b∗αk

and thus is inversely proportional

to the size of the weight vectors ‖wkj‖2 = wT
kjwkj and the noise precision τk.

As the element-wise variance in the weight vector prior Eq. (7.8) is given by

(αkτk)
−1, the effect of τk on that prior is diminished. Thus, the weight vec-

tor prior variance is proportional to the expected size of the weight vectors,

which has the effect of spreading the weight vector prior if the weight vec-

tor is expected to be large, effectively reducing the shrinkage. Intuitively, this

is a sensible thing to do, as one should refrain from using an overly strong

shrinkage prior if the weight vector is expected to have large elements.

178

7.3.4 Mixing Model q∗V (V)

We get the variational posterior q∗V (V) on the mixing model parameters by

solving Eq. (7.24) with Eq. (7.15), that is

ln q∗V (V) = EZ(ln p(Z|V)) + Eβ(ln p(V |β)) + const.. (7.42)

Even though q∗V factorises with respect to k, we will solve it for all classifiers

simultaneously due to the Laplace approximation that we apply thereafter.

Evaluating the expectations by using Eqs. (7.12), (7.13) and (7.19) we get

EZ(ln p(Z|V)) =
∑

n

∑

k

rnkgk(xn), (7.43)

Eβ(ln p(V |β)) =
∑

k

Eβ(lnN (vk|0, β−1
k I))

=
∑

k

(

−Eβ(βk)

2
vT

k vk

)

+ const., (7.44)

where we have again used rnk ≡ EZ(znk). Thus, the variational log-posterior

evaluates to

ln q∗V (V) =
∑

k

(

−Eβ(βk)

2
vT

k vk +
∑

n

rnkgk(xn)

)

+ const. (7.45)

Note that the distribution form of this posterior differs from its prior Eq. (7.13),

which would cause problems in further derivations. Thus, we proceed the

same way as Waterhouse et al. in [230, 229] by performing a Laplace approxi-

mation of the posterior.

The Laplace approximation aims at finding a Gaussian approximation to the

posterior density, by centering the Gaussian on the mode of the density and

deriving its covariance by a second-order Taylor expansion of the posterior

[19]. The mode of the posterior is found by solving

∂ ln q∗V (V)

∂V
= 0, (7.46)

which, by using the posterior Eq. (7.45) and the definition of gk Eq. (7.10), re-

179

sults in

∑

n

(rnk − gk(xn))φ(x)− Eβ(βk)vk = 0, k = 1, . . . , K. (7.47)

Note that, besides the addition of the Eβ(βk)vk term due to the shrinkage

prior on vk, the minimum we seek is equivalent to the one of the prior-less

generalised softmax function, given by Eq. (6.11). Therefore, we can find

this minimum by applying the IRLS algorithm Eq. (6.5) with error function

E(V) = − ln q∗V (V), where the required gradient vector and the DV × DV

blocksHkj of the Hessian matrix Eq. (6.9) are given by

∇VE(V) =

∇v1
E(V)
...

∇vK
E(V)

, ∇vj
E(V) =

∑

n

(gj(xn)− rnj)φ(xn) + Eβ(βj)vj,

(7.48)

and

Hkj = Hjk =
∑

n

gk(xn)(Ikj − gj(xn))φ(xn)φ(xn)T + IkjEβ(βk)I. (7.49)

Ikj is the kjth element of the identity matrix, and the second I in the above

expression is an identity matrix of size DV × DV . As the resulting Hessian is

positive definite [175], the posterior density is concave and has a unique max-

imum. We will provide more detail on how to implement the IRLS algorithm

in the next chapter.

Let V ∗ with components v∗k denote the parameters that maximise Eq. (7.45).

V ∗ gives the mode of the posterior density, and thus the mean vector of its

Gaussian approximation. As the logarithm of a Gaussian distribution is a

quadratic function of the variables, this quadratic form can be recovered by

a second-order Taylor expansion of ln q∗V (V) [19], which results in the preci-

sion matrix

Λ
∗
V = −∇∇ ln q∗V (V ∗) = ∇∇E(V ∗) = H|V =V ∗ , (7.50)

whereH is the Hessianmatrix ofE(V) as used in the IRLS algorithm. Overall,

the Laplace approximation to the posterior q∗V (V) is given by the multivariate

Gaussian

q∗V (V) ≈ N (V |V ∗,Λ∗
V
−1), (7.51)

180

where V ∗ is the solution to Eq. (7.47), and Λ
∗
V is the Hessian matrix evaluated

at V ∗.

7.3.5 Mixing Weight Priors q∗β(β)

By Eq. (7.19), p(β) factorises with respect to k, and thus allows us to find q∗β(β)

for each classifier separately, which, by Eqs. (7.15), (7.18) and (7.24), requires

us to evaluate

ln q∗β(βk) = EV (ln p(vk|βk)) + ln p(βk). (7.52)

Using Eqs. (7.13) and (7.14), the expectation and log-density are given by

EV (ln p(vk|βk)) =
DV

2
ln βk −

βk

2
EV (vT

k vk) + const., (7.53)

ln p(βk) = (aβ − 1) ln βk − βkbβ + const. (7.54)

Combining the above, we get the variational posterior

ln q∗β(βk) =

(

aβ − 1 +
DV

2

)

ln βk −
(

bβ +
1

2
EV (vT

k vk)

)

bβ + const.

= lnGam(βk|a∗βk
, b∗βk

), (7.55)

with the distribution parameters

a∗βk
= aβ +

DV

2
, (7.56)

b∗βk
= bβ +

1

2
EV (vT

k vk). (7.57)

As the priors on vk are similar to the ones on wk, they cause the same effect:

as b∗βk
increases proportionally to the expected size ‖vk‖2, the expectation of

the posterior Eβ(βk) = a∗βk
/b∗βk

decreases in proportion to it. This expectation

determines the shrinkage on vk (see Eq. (7.47)), and thus, the strength of the

shrinkage prior is reduced if vk is expected to have large elements, which is an

intuitively sensible procedure.

181

7.3.6 Latent Variables q∗Z(Z)

To get the variational posterior over the latent variablesZ we need to evaluate

Eq. (7.24) by the use of Eq. (7.15), that is,

ln q∗Z(Z) = EW,τ (ln p(Y |W , τ ,Z)) + EV (ln p(Z|V)) + const. (7.58)

We can evaluate the first expectation by combining Eqs. (7.6) and (7.7), to get

EW,τ (ln p(Y |W , τ ,Z))

=
∑

n

∑

k

znk

∑

j

EW,τ (lnN (ynj|wT
kjxn, τ

−1
k))

=
∑

n

∑

k

znk

∑

j

(

−1

2
ln 2π

)

+
∑

n

∑

k

znk

∑

j

1

2
Eτ (ln τk)

−1

2

∑

n

∑

k

znk

∑

j

EW,τ

(

τk(ynj −wT
kjxn)2

)

=
DY

2

∑

n

∑

k

znkEτ (ln τk)

−1

2

∑

n

∑

k

znk

∑

j

EW,τ

(

τk(ynj −wT
kjxn)2

)

+ const., (7.59)

where we have used
∑

k znk = 1. Using Eqs. (7.12) and (7.11), the second

expectation results in

EV (ln p(Z|V)) =
∑

n

∑

k

znkEV (ln gk(xn))

≈
∑

n

∑

k

znk ln gk(x)|vk=v∗
k
, (7.60)

where we have approximated the expectation of ln gk(xn) by the logarithm of

its maximum a-posteriori estimate, that is, ln gk(xn) evaluated at vk = v∗k. This

approximation was applied as a direct evaluation of the expectation does not

yield a closed-form solution. The same approximation was applied in [230,

229] for the MoE model.

Combining the above expectations results in the posterior

ln q∗Z(Z) =
∑

n

∑

k

znkρnk + const., (7.61)

182

with

ln ρnk = ln gk(xn)|vk=v∗
k
+
DY

2
Eτ (ln τk)−

1

2

∑

j

EW,τ

(

τk(ynj −wT
kjxn)2

)

. (7.62)

Without the logarithm, the posterior becomes q∗Z(Z) ∝ ∏n

∏

k ρ
znk

nk , and thus,

under the constraint
∑

k znk = 1, we get

q∗Z(Z) =
∏

n

∏

k

rznk

nk , with rnk =
ρnk
∑

j ρnj

= EZ(znk). (7.63)

As for all posteriors, the variational posterior for the latent variables has the

same distribution form as its prior Eq. (7.12).

Note that rnk gives the responsibility that is assigned to classifier k for mod-

elling observation n, and is proportional to ρnk Eq. (7.62). Thus, the responsi-

bilities are on one hand proportional to the current mixing weights gk(x), and

on the other hand are higher for low-variance classifiers (note that τk is the

inverse variance of classifier k) that feature a low expected squared prediction

error (ynj−wT
kjxn)2 for the associated observation. Overall, the responsibilities

are distributed such that the observations are modelled by the classifiers that

are best at modelling them.

7.3.7 Required Moments of the Variational Posterior

Some of the variational distribution parameters require evaluation of the mo-

ments of one or the other random variable in our probabilistic model. In this

section, we evaluate these moments, and also provide other moments of the

variational distribution that are required at a later stage. Throughout this sec-

tion we will use Ex(x) = x∗ and covx(x,x) = Λ
−1, where x ∼ N (x∗,Λ−1) is

a random vector that is distributed according to a multivariate Gaussian with

mean x∗ and covariance matrix Λ
−1.

Given that we have a random variable X ∼ Gam(a, b), then its expectation

is EX(X) = a/b, and the expectation of its logarithm is EX(lnX) = ψ(a) −
ln b, where ψ(x) = x

dx
ln Γ(x) is the digamma function [19]. Thus we get the

183

following posterior moments for q∗α(αk), q
∗
β(βk), and q

∗
τ (τk):

Eα(αk) =
a∗αk

b∗αk

, (7.64)

Eα(lnαk) = ψ(a∗αk
)− ln bαk

, (7.65)

Eβ(βk) =
a∗βk

b∗βk

, (7.66)

Eβ(ln βk) = ψ(a∗βk
)− ln b∗βk

, (7.67)

Eτ (τk) =
a∗τk

b∗τk

, (7.68)

Eτ (ln τk) = ψ(a∗τk
)− ln b∗τk

. (7.69)

To get the moments of q∗W,τ (Wk, τk) and q
∗
V (vk), we can use var(X) = E(X2)−

E(X)2, and thus, E(X2) = var(X) + E(X)2, to get

E(xT x) =
∑

i

E(x2
i)

=
∑

i

var(xi) +
∑

i

E(xi)
2

= Tr(cov(x,x)) + E(x)T
E(x),

and similarly,

E(xxT) = cov(x,x) + E(x)E(x)T ,

where X is a random variable, and x = (xi)
T is a random vector. Hence, as by

Eq. (7.51), q∗V (V) is a multivariate Gaussian with covariance matrix Λ
∗
V
−1, we

get

EV (vT
k vk) = Tr

(

(Λ∗
V
−1)kk

)

+ v∗k
T v∗k, (7.70)

where (Λ∗
V
−1)kk denotes the kth DV ×DV block element along the diagonal of

Λ
∗
V
−1.

Getting the moments of q∗W,τ (Wk, τk) requires a bit more work. Let us first con-

sider EW,τ (τkwkj), which by Eq. (7.29) and the previously evaluated moments

184

gives

EW,τ (τkwkj)

=

∫

τkGam(τk|a∗τk
, b∗τk

)

(∫

wkjN (wkj|w∗
kj, (τkΛ

∗
k)
−1)dwkj

)

dτk

= w∗
kj

∫

τkGam(τk|a∗τk
, b∗τk

)dτk

=
a∗τk

b∗τk

w∗
kj. (7.71)

For EW,τ (τkw
T
kjwkj)we get

EW,τ (τkw
T
kjwkj)

=

∫

τkGam(τk|a∗τk
, b∗τk

)

(∫

wT
kjwkjN (wkj|w∗

kj, (τkΛ
∗
k)
−1)dwkj

)

dτk

=

∫

τkGam(τk|a∗τk
, b∗τk

)EW (wT
kjwkj)dτk

= w∗
kj

T w∗
kjEτ (τk) + Tr(Λ∗

k
−1)

=
a∗τk

b∗τk

w∗
kj

T w∗
kj + Tr(Λ∗

k
−1). (7.72)

EW,τ (τkwkjw
T
kj) can be derived in a similar way, and results in

EW,τ (τkwkjw
T
kj) =

a∗τk

b∗τk

w∗
kjw

∗
kj

T + Λ
∗
k
−1. (7.73)

The last required moment is EW,τ (τk(ynj −wT
kjxn)2), which we get by binomial

expansion and substituting the previously evaluated moments, to get

EW,τ (τk(ynj −wT
kjxn)2)

= Eτ (τk)y
2
nj − 2EW,τ (τkwkj)

T xnynj + xT
nEW,τ (τkwkjw

T
kj)xn

=
a∗τk

b∗τk

(ynj −w∗
kj

T xn)2 + xT
nΛ

∗
k
−1xn. (7.74)

Now we have all the required expressions to compute the parameters of the

variational posterior density.

185

7.3.8 The Variational Bound L(q)

We are most interested in finding the value for L(q) by Eq. (7.21), as it provides

us with an approximated lower bound on the logarithm of the model evidence

ln p(Y), and is the actual expression that we want to maximise. Evaluating

Eq. (7.21) by using the distribution decomposition according to Eq. (7.15), the

variational bound is given by

L(q) =

∫

q(U) ln
p(Y ,U)

q(U)
dU

= EW,τ,α,Z,V,β(ln p(Y ,W , τ ,Z,V ,β))

−EW,τ,α,Z,V,β(ln q(W , τ ,α,Z,V ,β))

= EW,τ,Z(ln p(Y |W , τ ,Z)) + EW,τ,α(ln p(W , τ |α)) + Eα(ln p(α))

+EZ,V (ln p(Z|V)) + EV,β(ln p(V |β)) + Eβ(ln p(β))

−EW,τ (ln q(W , τ))− Eα(ln q(α))− EZ(ln q(Z))

−EV (ln q(V))− Eβ(ln q(β)), (7.75)

where all expectations are taken with respect to the variational distribution q.

We proceed by evaluating the expectations one by one, using the previously

derived moments of the variational posteriors.

To derive EW,τ,Z(ln p(Y |W , τ ,Z)), we use Eqs. (7.6) and (7.7) to get

EW,τ,Z(ln p(Y |W , τ))

=
∑

n

∑

k

EZ(znk)
∑

j

EW,τ (lnN (ynj|wT
kjxn, τ

−1
k))

=
∑

n

∑

k

rnk

∑

j

(

1

2
Eτ (ln τk)−

1

2
ln 2π − 1

2
EW,τ (τk(ynj −wT

kjxn)2)

)

=
∑

k

(

DY

2

(

ψ(a∗τk
)− ln b∗τk

− ln 2π
)

∑

n

rnk

−1

2

∑

n

rnk

∑

j

(

a∗τk

b∗τk

(ynj −w∗
kj

T xn)2 + xT
nΛ

∗
k
−1xn

)

)

=
∑

k

(

DY

2

(

ψ(a∗τk
)− ln b∗τk

− ln 2π
)

∑

n

rnk

−1

2

∑

n

rnk

(

a∗τk

b∗τk

‖yn −W ∗
k xn‖2 +DYxT

nΛ
∗
k
−1xn

)

)

. (7.76)

186

The classifier model parameters expectation EW,τ,α(ln p(W , τ |α)) can be de-

rived by using Eqs. (7.7) and (7.16), and is given by

EW,τ,α(ln p(W , τ |α)) (7.77)

=
∑

k

∑

j

(

EW,τ,α(lnN (wkj|0, (αkτk)
−1I)) + Eτ (lnGam(τk|aτ , bτ))

)

.

Expanding for the densities and substituting the variational moments results

in

EW,τ,α(ln p(W , τ |α))

=
∑

k

(

DXDY

2

(

ψ(a∗αk
)− ln b∗αk

+ ψ(a∗τk
)− ln b∗τk

− ln 2π
)

−1

2

a∗αk

b∗αk

(

a∗τk

b∗τk

∑

j

w∗
kj

T w∗
kj +DYTr(Λ

∗
k
−1)

)

(7.78)

+DY

(

− ln Γ(aτ) + aτ ln bτ + (aτ − 1)(ψ(a∗τk
)− ln b∗τk

)− bτ
a∗τk

b∗τk

)

)

.

We derive the expression Eα(ln p(α)) − Eα(ln q(α)) in combination, as that al-

lows for some simplification. Starting with Eα(ln p(α)), we get from Eqs. (7.17)

and (7.9), by expanding the densities and substituting the variational mo-

ments,

Eα(ln p(α)) (7.79)

=
∑

k

(

− ln Γ(aα) + aα ln bα + (aα − 1)(ψ(a∗αk
)− ln b∗αk

)− bα
a∗αk

b∗αk

)

The expression for Eα(ln q(α)) can be derived by observing that −Eα(ln q(αk))

is the entropy of q∗α(αk). Thus, using q
∗
α(α) =

∏

k q
∗
α(αk), substituting Eq. (7.39)

for q∗α(αk), and applying the entropy of the Gamma distribution as given in

[19], we get

Eα(ln q(α)) = −
∑

k

(

ln Γ(a∗αk
)− (a∗αk

− 1)ψ(a∗αk
)− ln b∗αk

+ a∗αk

)

(7.80)

Combining the above expressions and removing the terms that cancel out re-

187

sults in

Eα(ln p(α))− Eα(ln q(α)) =
∑

k

(

− ln Γ(aα) + aα ln bα + (aα − a∗αk
)ψ(a∗αk

)

−aα ln b∗αk
− bα

a∗αk

b∗αk

+ ln Γ(a∗αk
) + a∗αk

)

. (7.81)

The expression EZ,V (ln p(Z|V)) − EZ(ln q(Z)) is also derived in combination

by using Eqs. (7.12), (7.11) and (7.63), from which we get

EZ,V (ln p(Z|V))− EZ(ln q(Z)) =
∑

n

∑

k

rnk ln
gk(x)|vk=v∗

k

rnk

, (7.82)

where we have, as previously, approximated EV (ln gk(xn)) by ln gk(xn)|vk=v∗
k
.

The derivation to get EV,β(ln p(V |β)) is again based on simple expansion of

the distribution given by Eqs. (7.18) and (7.13), and substituting the variational

moments, which results in

EV,β(ln p(V |β)) (7.83)

=
∑

k

(

DV

2

(

ψ(a∗βk
)− ln b∗βk

− ln 2π
)

− 1

2

a∗βk

b∗βk

(

v∗k
T v∗k + Tr((Λ∗

V
−1)kk)

)

)

.

We get EV (ln q(V)) by observing that it is the negative entropy of the Gaussian

Eq. (7.51), and thus evaluates, as given in [19], to

EV (ln q(V)) = −
(

1

2
ln |Λ∗

V
−1|+ KDV

2
(1 + ln 2π)

)

. (7.84)

As the priors on βk are of the same distribution form as the ones on αk, the

expectations of their log-density results in a similar expression as Eq. (7.65)

and is given by

Eβ(ln p(β))− Eβ(ln q(β)) =
∑

k

(

− ln Γ(aβ) + aβ ln bβ + (aβ − a∗βk
)ψ(a∗βk

)

−aβ ln b∗βk
− bβ

a∗βk

b∗βk

+ ln Γ(a∗βk
) + a∗βk

)

. (7.85)

188

This completes the evaluation of the expectations required to compute the vari-

ational bound Eq. (7.75).

To simplify the computation of the variational bound, we define

Lk(q) = EW,τ,Z(ln p(Y |Wk, τk,zk)) + EW,τ,α(ln p(Wk, τk|αk))

+Eα(ln p(αk))− EW,τ (ln q(Wk, τk))− Eα(ln q(αk)), (7.86)

which can be evaluated separately for each classifier by observing that all ex-

pectations except for EV (ln q(V)) are sums whose components can be evalu-

ated independently for each classifier. Furthermore, Lk(q) can be simplified by

using the relations

DXDY

2
= a∗αk

− aα, (7.87)

1

2

(

a∗τk

b∗τk

∑

j

w∗
kj

T w∗
kj +DYTr(Λ

∗
k
−1)

)

= b∗αk
− bα, (7.88)

which results from Eqs. (7.40) and (7.41). Thus, the final, simplified expression

for Lk(q) becomes

Lk(q) =
DY

2

(

ψ(a∗τk
)− ln b∗τk

− ln 2π
)

∑

n

rnk

−1

2

∑

n

rnk

(

a∗τk

b∗τk

‖yn −W ∗
k xn‖2 +DYxT

nΛ
∗
k
−1xn

)

− ln Γ(aα) + aα ln bα + ln Γ(a∗αk
)− a∗αk

ln b∗αk
+
DXDY

2
+
DY

2
ln |Λ∗

k
−1|

+DY

(

− ln Γ(aτ) + aτ ln bτ + (aτ − a∗τk
)ψ(a∗τk

)− aτ ln b∗τk
− bτ

a∗τk

b∗τk

+ ln Γ(a∗τk
) + a∗τk

)

. (7.89)

All leftover terms from Eq. (7.75) are assigned to the mixing model, and are

given by

LM(q) = EZ,V (ln p(Z|V)) + EV,β(ln p(V |β)) + Eβ(ln p(β))

−EZ(ln q(Z))− EV (ln q(V))− Eβ(ln q(β)). (7.90)

189

We can again derive a simplified expression for LM(q) by using the relations

DV

2
= a∗βk

− aβ, (7.91)

1

2

(

Tr
(

(Λ∗
V
−1)kk

)

+ v∗k
T v∗k
)

= b∗βk
− bβ, (7.92)

which result from Eqs. (7.56) and (7.57). Overall, this leads to the final simpli-

fied expression

LM(q) =
∑

k

(

− ln Γ(aβ) + aβ ln bβ + ln Γ(a∗βk
)− a∗βk

ln b∗βk

)

(7.93)

+
∑

n

∑

k

rnk

(

ln gk(xn)|vk=v∗
k
− ln rnk

)

+
1

2
ln |Λ∗

V
−1|+ KDV

2
.

The get the variational bound of the whole model structure, and with it the

lower bound on the logarithm of the model evidence ln p(Y), we need to com-

pute

L(q) = LM(q) +
∑

k

Lk(q), (7.94)

where Lk(q) and LM(q) are given by Eqs. (7.89) and (7.93) respectively.

Training themodelmeansmaximisingL(q) Eq. (7.94) with respect to its param-

eters {W ∗
k ,Λ

∗
k, a

∗
τk
, b∗τk

, a∗αk
, b∗αk

,V ∗,Λ∗
V , a

∗
βk
, b∗βk
}. In fact, deriving themaximum

of L(q) with respect to each of these parameters separately while keeping the

others constant results in the variational update equations that we have de-

rived in the previous sections [19].

7.3.9 Independent Classifier Training

As we can see from Eq. (7.89), we need to know the responsibilities {rnk} to
train each of the classifiers. The mixing model, on the other hand, relies on

the goodness-of-fit of the classifiers, as embedded in gk in Eq. (7.93). There-

fore, classifiers and mixing model need to be trained in combination to max-

imise Eq. (7.94). Taking this approach, however, introduces local optima in the

training process, as already discussed for the non-Bayesian MoE model in Sec-

tion 4.1.5. Such local optima make evaluating the model evidence for a single

190

model structure too costly to perform efficient model structure search, and so

we need to modify the training process to remove these local optima. We will

proceed the same way as in Section 4.4: we train the classifiers independently

of the mixing model.

More specifically, the classifiers are fully trained on all observations that they

match, independently of other classifiers, and then combined by the mixing

model. Formally, this is achieved by replacing the responsibilities rnk by the

matching functionsmk(xn).

The only required modification to the variational update equations is to

change the classifier model updates from Eqs (7.30) – (7.33) to

Λ
∗
k = Eα(αk)I +

∑

n

mk(xn)xnx
T
n , (7.95)

w∗
kj = Λ

∗
k
−1
∑

n

mk(xn)xnynj, (7.96)

a∗τk
= aτ +

1

2

∑

n

mk(xn), (7.97)

b∗τk
= bτ +

1

2DY

(

∑

j

(

∑

n

mk(xn)y2
nj −w∗

kj
T
Λ
∗
kw

∗
kj

))

. (7.98)

Thus, we are now effectively finding a wkj that minimises

‖Xwkj − yj‖2Mk
+ Eα(αk)‖wkj‖2, (7.99)

as we have already discussed extensively in Section 5.3.5. The weight prior

update Eqs. (7.40) and (7.41), as well as all mixing model update equations

remain unchanged.

Even though we have replaced all rnk’s in the classifier update equations

with mk(xn)’s, the classifier-specific component Lk(q) Eq. (7.89) remains un-

changed. This is justified by observing that the responsibilities enter Lk(q)

through the expectation EW,τ,Z(ln p(Y |W , τ ,Z)), which is based on Eqs. (7.6)

and (7.7). Note that Eq. (7.6) combines the classifier models to form a global

model, and is thus conceptually part of the mixing model rather than the clas-

sifier model. Thus, the rnk’s in Lk(q) specify how classifier k contributes to the

global model and remain unchanged.

191

Consequently, the variational posteriors for the classifiers only maximise the

variational bound L(q) if we have rnk = mk(xn) for all n, k. In all other cases,

the variational bound remains below the one that we could achieve by training

the classifiers according to their responsibilities. This effect is analogous to

the reduced likelihood as discussed in Section 4.4.5. In cases where we only

have one classifier per observation, we automatically have rnk = mk(xn), and

thus making classifier training independent only affects areas where several

classifiers match the same input. Nonetheless, the model structure selection

criterion is proportional to the value of the variational bound and therefore

most likely prefers model structures that do not assign multiple classifiers to a

single observation.

7.3.10 How to Get p(M|D) for SomeM

Recall that rather than finding the model parameters θ for a fixed model struc-

ture, we want to find the model structureM that maximises p(M|D). How-

ever, we will see that the approach we have taken also requires us to train the

model.

Variational Bayesian inference provides us with a lower bound on ln p(D|M)

that is given by maximising the variational bound L(q). As we get p(M|D)

from p(D|M) by Eq. (7.3), we can approximate p(M|D) for a given model

structureM by maximising L(q). Using the assumptions of factorial distri-

butions, L(q) is maximised with respect to a group of hidden variables while

keeping the other ones fixed by computing Eq. (7.24). Therefore, by iteratively

updating the distribution parameters of q∗W,τ (W , τ), q∗α(α), q∗V (V), q∗β(β), and

q∗Z(Z) in a sequential fashion, wemonotonically increase the variational bound

until we reach a maximum [26]. Independent classifier training simplifies this

procedure by making the update of q∗W,τ (W , τ) and q∗α(α) independent of the

update of the other variational densities. Thus, we first train the classifiers

independently, and then update the mixing model parameters accordingly.

To summarise, finding p(M|D) for a given model structure can be done with

the following steps:

192

1. Train the classifiers by iteratively updating the distribution parameters

of q∗W,τ (W , τ) and q∗α(α) until convergence, for each classifier separately.

2. Train the mixing model by iteratively updating the distribution parame-

ters of q∗V (V), q∗β(β), and q∗Z(Z) until convergence.

3. Compute the variational bound L(q) by Eq. (7.94).

4. p(M|D) is then given by Eq. (7.3), where ln p(D|M) is replaced by its

approximation L(q).

Appropriate convergence criteria are introduced in the next chapter.

7.4 Predictive Distribution

An additional bonus of the probabilistic basis we provide for LCS is that we

are able to provide a predictive distribution rather than having to use simple

point estimates. Hence, we can also provide information about the certainty

of the prediction, which allows us to provide confidence intervals, rather than

only its most likely value. In this section we derive the predictive density for

the Bayesian LCS model.

The question we are answering is: in the light of all available data, how likely

are certain output values for a new input? We approach this question formally

by providing the predictive density p(y′|x′,D) ≡ p(y′|x′,X,Y), where x′ is

the new known input vector, and y′ its associated unknown output vector,

and all densities are, as before, implicitly conditional on the current model

structureM.

193

7.4.1 Deriving p(y′|x′,D)

We get an expression for p(y′|x′,D) by using the relation

p(y′|x′,X,Y) (7.100)

=
∑

z′

∫∫∫

p(y′,z′,W , τ ,V |x′,X,Y)dWdτdV

=
∑

z′

∫∫∫

p(y′|x′,z′,W , τ)p(z′|x′,V)p(W , τ ,V |X,Y)dWdτdV

=
∑

z′

∫∫∫

(

∏

k

N (y′|Wkx
′, τ−1

k I)z′
kgk(x

′)z′
k

)

p(W , τ ,V |X,Y)dWdτdV ,

where z′ is the latent variable associated with the observation (x′,y′), and we

have replaced p(y′|x′,z′,W , τ) by Eq. (7.6), and p(z′|x′,V) by Eq. (7.11). As

we do not know the real posterior p(W , τ ,V |X,Y), we approximate it by the

variational posterior, that is, p(W , τ ,V |X,Y) ≈ q∗W,τ (W , τ)q∗V (V). Together

with summing over all z′, this results in

p(y′|x′,X,Y) (7.101)

=
∑

k

(∫

gk(x
′)q∗V (vk)dvk

)∫∫

q∗W,τ (Wk, τk)N (y′|Wkx
′, τ−1

k I)dWkdτk,

where we have utilised the factorisation of q∗V (V) and q∗W,τ (W , τ)with respect

to k, and the independence of the two variational densities.

The first integral
∫

gk(x
′)q∗V (vk)dvk is the expectation EV (gk(x

′)) which does

not have an analytical solution. Thus, as in [219], we approximate it by the

maximum a-posteriori estimate

∫

gk(x
′)q∗V (vk)dvk ≈ gk(x

′)|vk=v∗
k
. (7.102)

The second integral
∫∫

q∗W,τ (Wk, τk)N (y′|Wkx
′, τ−1

k I)dWkdτk is the expecta-

194

tion EW,τ (N (y′|Wkx
′, τ−1

k I)), that, by using Eqs. (7.7) and (7.29), evaluates to

EW,τ (N (y′|Wkx
′, τ−1

k I)dWkdτk

=

∫∫

N (y′|Wkx
′, τ−1

k I)q∗W |τ (Wk|τk)q∗τ (τk)dWkdτk

=

∫

(

∏

j

∫

N (y′j|wT
kjx

′, τ−1
k)N (wkj|w∗

kj, (τkΛ
∗
k)
−1)dwkj

)

q∗τ (τk)dτk

=
∏

j

∫

N (y′j|w∗
kj

T x′, τ−1
k (1 + x′

T
Λ
∗
k
−1x′))Gam(τk|a∗τk

, b∗τk
)dτk

=
∏

j

St

(

y′j|w∗
kj

T x′, (1 + x′
T
Λ
∗
k
−1x′)−1

a∗τk

b∗τk

, 2a∗τk

)

, (7.103)

where St(y′j|w∗
kj

T x′, (1 + x′
T
Λ
∗
k
−1x′)−1a∗τk

/b∗τk
, 2a∗τk

) is the Student’s t distribu-

tion with meanw∗
kj

T x′, precision (1 + x′
T
Λ
∗
k
−1x′)−1a∗τk

/b∗τk
, and 2a∗τk

degrees of

freedom. To derive the above we have used the convolution of 2 Gaussians,

given by

∫

N (y′j|wT
kjx

′, τ−1
k)N (wkj|w∗

kj, (τkΛ
∗
k)
−1)dwkj

= N (y′j|w∗
kj

T x′, τ−1
k (1 + x′

T
Λ
∗
k
−1x′)), (7.104)

and the convolution of a Gaussian with a Gamma distribution,

∫

N (y′j|w∗
kj

T x′, τ−1
k (1 + x′

T
Λ
∗
k
−1x′))Gam(τk|a∗τk

, b∗τk
)dτk

= St

(

y′j|w∗
kj

T x′, (1 + x′
T
Λ
∗
k
−1x′)−1

a∗τk

b∗τk

, 2a∗τk

)

, (7.105)

both of which can be found in [19].

Combining Eqs. (7.101), (7.102), and (7.103) gives the final predictive density

p(y′|x′,X,Y) =
∑

k

gk(x
′)|vk=v∗

k

∏

j

St

(

y′j|w∗
kj

T x′, (1 + x′
T
Λ
∗
k
−1x′)−1

a∗τk

b∗τk

, 2a∗τk

)

,

(7.106)

which is a mixture of Student’s t distributions.

195

7.4.2 Mean and Variance

Given the predictive density, we derive point estimates by its mean, and get

information about the prediction confidence by its variance. As the mixture

of Student’s t distributions might be multi-modal, there exists no clear defini-

tion for the 95% confidence intervals, but a mixture density-related study that

deals with this problem can be found in [118]. Here, we take the variance as a

sufficient indicator of the prediction’s confidence.

Let us first state the mean and variance for arbitrary mixture densities, and

subsequently apply it to Eq. (7.106). Let {Xk} be a set of random variables that
are mixed with mixing coefficients {gk} to give X =

∑

k gkXk. As shown in

[230], the mean and variance of X are given by

E(X) =
∑

k

gkE(Xk), var(X) =
∑

k

gk(var(Xk) + E(Xk)
2)− E(X)2. (7.107)

The Student’s t distributions in Eq. (7.106) have mean w∗
kj

T x′ and variance

(1 + x′
T
Λ
∗
k
−1x′)2b∗τk

/(a∗τk
− 1). Therefore, the mean vector of the predictive

density is

E(y′|x′,X,Y) =

(

∑

k

gk(x
′)|vk=v∗

k
W ∗

k

)

x′, (7.108)

and each element y′j of y
′ has variance

var(y′j|x′,X,Y) (7.109)

=
∑

k

gk(x
′)|vk=v∗

k

(

2
b∗τk

a∗τk
− 1

(1 + x′
T
Λ
∗
k
−1x′) + (w∗

kj
T x′)2

)

− E(y′|x′,X,Y)2
j ,

where E(y′|x′,X,Y)j denotes the jth element of E(y′|x′,X,Y).

In the following chapter we will use these expressions to plot the mean predic-

tions of the LCS model, and will use the variance to derive confidence interval

on these predictions.

196

7.5 Alternative Model Selection Methods

Bayesian model selection is not the only model selection criterion that might

be applicable to LCS. In this section we review a set of alternatives and their

relation to LCS.

As described in Section 7.1.2, model selection criteria might differ in their

philosophical background, but they all result in the principle of minimising a

combination of model error and model complexity. Their main difference lies

in how they define the model complexity. Very crude approaches, like the two-

part MDL, only consider the coarse model structure, whereas more refined cri-

teria, like the refined MDL, SRM, and BYY, are based on the functional form of

the model. However, they usually do not take the training data into consider-

ation when evaluating the model complexity. Recent research has shown that

approaches based on the training data, like cross-validation, Bayesian model

selection, or Rademacher complexity, are usually better in approximating the

target function [126].

7.5.1 Minimum Description Length

The principle of Minimum Description Length (MDL) [190, 191, 192] is based

on the idea of Occam’s Razor, that amongst models that explain the data

equally well, the simplest one is the one to prefer. MDL uses Kolmogorov

complexity as a baseline to describe the complexity of the model, but as that

is uncomputable, coding theory is used as an approximation to find minimum

coding lengths that then represent the model complexity [100].

In its crudest form, the two-part MDL requires a binary representation of both

the model error and the model itself, where the combined representation is

to be minimised [190, 191]. Using such an approach for LCS makes its per-

formance highly dependent on the representation used for the matching func-

tions and the model parameters, and is therefore rather arbitrary. Its depen-

dence on the chosen representation and the lack of guidelines on how to decide

upon a particular representation are generally considered the biggest weak-

ness of the two-part MDL [100].

197

A more refined approach is to use the Bayesian MDL [100] that — despite a

different philosophical background — is mathematically identical to Bayesian

model selection as applied here. In that sense, the approach presented in this

chapter can be said to be using the Bayesian MDL model selection criterion.

The latest MDL approach is theoretically optimal as it minimises the worst-

case coding length of the model. Mathematically, it is expressed as the maxi-

mum likelihood normalised by the model complexity, where the model com-

plexity is its coding length summed over all possible model parameter values

[193]. Therefore, given continuous model parameters, as used here, the com-

plexity is infinite, which makes model comparison impossible. In addition,

the LCS structure makes computing the model complexity even for a finite set

of parameters extremely complicated, which makes us doubt that, in its pure

form, the latest MDL measure will be of any use for LCS.

7.5.2 Structural Risk Minimisation

Structural Risk Minimisation (SRM) is based on minimising an upper bounds

on the expected risk Eq. (3.1), given the sum of the empirical risk Eq. (3.2) and a

model complexity metric based on the functional form of the model [221]. The

functional form of themodel complexity enters SRM in the form of themodel’s

Vapnik-Chervonenkis (VC) dimensions. Having the empirical risk and the VC

dimensions of the model, we can find a model that minimises the expected

risk.

The difficulty of the SRM approach when applied to LCS is to find the VC

dimensions of the LCS model. For linear regression classifiers, the VC dimen-

sions are simply the dimensionality of the input spaceDX . Mixing these mod-

els, however, introduces non-linearity that makes evaluation of the VC dimen-

sions difficult. An additional weakness of SRM is that it deals with worst-case

bounds that do apply to any distribution of the data, which causes the bound

on the expected risk to be quite loose and reduces its usefulness for model

selection [19].

A more powerful approach that provides us with a tighter bound to the ex-

pected risk is to use data-dependent SRM. Such an approach has been applied

198

to the Mixtures-of-Expert model in [6, 5]. It still remains to be seen if this ap-

proach can be generalised to the LCS model, such as we have done with the

Bayesian MoE model to provide the Bayesian LCS model. If this is possible,

data-dependent SRMmight be a viable alternative for defining the optimal set

of classifiers.

7.5.3 Bayesian Ying-Yang

Bayesian Ying Yang (BYY) defines a unified framework that lets one derive

many statistics-based machine learning methods [246]. It describes the prob-

ability distribution given by the data, and the one described by the model,

and aims at finding models that are closest in distribution to the data. Using

the Kullback-Leibler divergence as a distribution comparison metric results

in maximum likelihood learning, and therefore will cause overfitting of the

model. An alternative is Harmony Learning which is based on minimising the

cross entropy between the data distribution and the model distribution, and

prefers statistically simple distributions, that is, distributions of low entropy.

Even though it is very likely applicable to LCS as it has already been applied to

theMixtures-of-Expert model [245], there is no clear philosophical background

that justifies the use of the cross entropy. Therefore, the Bayesian approach that

we have introduced in this chapter seems to be a better alternative.

7.5.4 Training Data-based Approaches

It has been shown that penalising the model complexity based on some struc-

tural properties of the model alone cannot compete on all scales with data-

based methods like cross validation [126]. Furthermore, using the training

data rather than an independent test set gives even better results in minimis-

ing the expected risk [13]. Two examples of such complexity measures are

the Rademacher complexity and the Gaussian complexity [14]. Both of them

are defined as the expected error of the model when trying to fit the data per-

turbed by a sequence of either Rademacher random variables (uniform over

{±1}) or Gaussian N (0, 1) random variables. Hence, they measure the model

199

complexity by the model’s ability to match a noisy sequence.

Using such methods in LCS would require training two models for the same

model structure, where one is trained with the normal training data, and the

other with the perturbed data. It is questionable if such additional space and

computational effort justifies the application of the methods. Furthermore, us-

ing sampling of random variables to find the model complexity makes it im-

possible to find an analytical expression for the utility of the model and thus

provides little insight in how a particular model structure is selected. Nonethe-

less, it might still be of use as a benchmark method.

7.6 Discussion and Summary

In this chapter we have tackled the core question of LCS: what is the best set

of classifiers that explains the given data? Rather than relying on intuition,

we have approached the question formally by aiming to find the best model

structureM that explains the given data D. More specifically, we have used
the principles of Bayesian model selection to define the best set of classifiers to

be the most likely one given the data, that is, the one that maximises p(M|D).

Computing this probability density requires a Bayesian LCS model that we

have introduced by adding priors to the probabilistic model from Chapter 4.

Additionally, we have increased the flexibility of the classifier models from

univariate to multivariate regression. The requirement of specifying prior pa-

rameters is not a weakness of this approach, but rather a strength, as the pri-

ors make explicit the commonly implicit assumptions made about the data-

generating process.

To find a closed-form solution to p(M|D) we have employed variational

Bayesian inference and have used various approximations to handle the gen-

eralised softmax function that is used to combine the local classifier models

to a global model. Whilst variational Bayesian inference usually provides us

with a lower bound L(q) on ln p(D|M) that is directly related to p(M|D), these

approximations invalidate the lower bound nature ofL(q). Evenwithout these

approximations, the use of L(q) for selecting the best set of classifiers depends

200

very much on the tightness of the bound, and if this tightness is consistent for

different model structuresM. Variational Bayesian inference has been shown
to perform well in practice [219, 19], and the same approximations that we

apply were successfully used for the Mixtures-of-Experts model in [229, 230].

Thus, we can also expect our method to feature good performance when ap-

plied to LCS, but sufficient empirical investigation is required before we can

make more definite statements.

We have introduced the first formal and general definition of what it means

for a set of classifiers to be optimal, using the best applicable of the currently

known model selection approaches. The definition is general as i) it is inde-

pendent of the representation of the matching function, ii) it can be used for

both discrete and continuous input spaces, and iii) it can handle matching by

degree. The reader is reminded that the definition itself is independent of the

variational inference, and thus is not affected by the issues that are introduced

through approximating the posterior. A further significant contribution that

comes with the definition of optimality is a Bayesian model for LCS that goes

beyond the probabilistic model as it makes the prior assumptions about the

data-generating process explicit. Additionally, we for the first time provide

classifiermodels that can performmultivariate regression rather than only uni-

variate regression, as it was the case in all previous LCS.

After this rather abstract introduction of the definition of the optimal classifier

set and a method of computing the model probability, we continue by provid-

ing a more concrete description of how it can be implemented, and demon-

strate on the basis of a set of simple experiments that the optimality criterion

is indeed able to identify good sets of classifiers.

201

Chapter 8

An Algorithmic Description

In the previous chapter we have provided a definition for the optimal set of

classifiers given some data D, based on finding the model structureM, that
is, the set of classifiers, that maximises p(M|D). Additionally, we have shown

how one can use variational Bayesian inference to compute p(M|D) for some

givenM and D.

To demonstrate that our definition of the optimal classifier set leads to useful

results, we describe a simple set of algorithms that allows us to demonstrate

its use on a set of regression tasks. We provide two possible approaches to

search the model structure space in order to maximise p(M|D), one based on a

basic genetic algorithm to create a simple Pittsburgh-style LCS, and the other

on sampling from the model posterior p(M|D) by Markov Chain Monte Carlo

(MCMC) methods. These approaches are by no means supposed to act as vi-

able competitors to current LCS, but rather as prototype implementations to

demonstrate the correctness and usefulness of our optimal classifier set defini-

tion. Additionally, when formulating the algorithms in this chapter, we seek

for readability rather than performance. Thus, there might still be plenty of

room for optimisation.

The core of both approaches is the evaluation of p(M|D) and its comparison

for different classifier sets in order to find the best set. We approach the eval-

uation of p(M|D) by variational Bayesian inference, as introduced in the pre-

vious chapter. Thus, with the algorithmic description of how to find p(M|D)

203

we also provide a summary of the variational approach and a better under-

standing of how it can be implemented. The drawback of the algorithm as it

is presented here is that it does not scale well with the number of classifiers,

and that it can currently only operate in batch mode. The reader is reminded,

however, that our algorithmic description is only meant to show that our def-

inition of the optimal set of classifiers is a viable one. Future work, described

in Chapter 10, will show how this definition can be incorporated into current

LCS or can kindle the development of new LCS.

We continue by providing a set of functions that in combination allow us to

compute a measure of the quality of a classifier set given the data. As this

measure can subsequently by used by any global search algorithm that is able

to find its maximum in the space of possible model structures, we keep its al-

gorithmic description separate from the model structure search. For the struc-

ture search we provide two simple alternatives in a later section, one based

on genetic algorithms, and another based on sampling the model posterior

p(M|D) by MCMCmethods. Finally, we use these approaches to demonstrate

on simple regression tasks that our definition of optimality indeed allows us

to identify a good set of classifiers.

8.1 Computing p(M|D)

In this section we introduce a set of functions that allow us to compute an

approximation to p(M|D) for a given data setD andmodel structureM. These
functions rely on a small set of global system parameters and constants that are

given in Table 8.1. The functions are presented in a top-down order, starting

with a function that returns p(M|D), and continuing with the sub-functions

that it calls. The functions use a small set of non-standard operators and global

functions that are described in Table 8.2.

We assume the data to be given by the N × DX input matrix X and the N ×
DY output matrix, as described in Section 7.2.1. The model structure is fully

204

Symbol Recom. Description

aα 10−2 Scale parameter of weight vector variance prior
bα 10−4 Shape parameter of weight vector variance prior
aβ 10−2 Scale parameter of mixing weight vector variance

prior
bβ 10−4 Shape parameter of mixing weight vector variance

prior
aτ 10−2 Scale parameter of noise variance prior
bτ 10−4 Shape parameter of noise variance prior

∆sLk(q) 10−4 Stopping criterion for classifier update
∆sLM(q) 10−2 Stopping criterion for mixing model update

∆sKL(R‖G) 10−8 Stopping criterion for mixing weight update
expmin − lowest real number x on system such that exp(x) >

0
lnmax − ln(x), where x is the highest real number on system

Table 8.1: Description of the system parameters and constants. These include
the distribution parameters of the priors and hyperpriors, and constants that
parameterise the stopping criteria of parameter update iterations. The recom-
mended values specify rather uninformative priors and hyperpriors, such that
the introduced bias due to these priors is negligible.

defined by the N ×K matching matrixM , that is given by

M =

m1(x1) · · · mK(x1)
...

. . .
...

m1(xN) · · · mK(xN)

. (8.1)

Thus, column k of this matrix specified the degree of matching of classifier k

for all available observations. Note that the definition ofM differs from the

one in Chapter 5, whereM was a diagonal matrix that specified the matching

for a single classifier.

In addition to the matching matrix, we also need to define the N ×DV mixing

feature matrix Φ, that is given by

Φ =

−φ(x1)
T−

...

−φ(xN)T−

, (8.2)

and thus specifies the feature vector φ(x) for each observation. In LCS, we

205

Fn. / Op. Description

A⊗B given an a×bmatrix or vectorA, and c×dmatrix or vec-
torB, and a = c, b = d,A⊗B returns an a×bmatrix that
is the result of an element-wise multiplication of A and
B. If a = c, d = 1, that is, if B is a column vector with c
elements, then every column ofA is multiplied element-
wise by B, and the result is returned. Analogously, if
B is a row vector with b elements, then each row of A is
multiplied element-wise byB, and the result is returned.

A⊘B the same asA⊗B, only performing division rather than
multiplication.

Sum(A) returns the sum over all elements of matrix or vectorA.
RowSum(A) given an a × b matrix A, returns a column vector of size

a, where its ith element is the sum of the b elements of
the ith row ofA.

FixNaN(A, b) replaces all NaN elements in matrix or vectorA by b.

Table 8.2: Operators and global functions used in the algorithmic descriptions.

usually have φ(x) = 1 for all x, and thus alsoΦ = (1, . . . 1)T , but the algorithm

presented here also works for other definitions of φ.

8.1.1 Model Probability and Evidence

The Function ModelProbability takes the model structure and the data

as arguments and returns L(q) + ln p(M) as an approximation to the unnor-

malised ln p(M|D). Thus, it replaces the model evidence p(D|M) in Eq. (7.3)

by its approximation L(q). The function assumes that the order of the classi-

fiers can be arbitrarily permutated without changing the model structure and

therefore uses the p(M) given by Eq. (7.4). In approximating ln p(M|D), the

function does not add the normalisation constant. Hence, even though the re-

turn values are not proper probabilities, they can still be used for the compari-

son of different model structures, as the normalisation term is shared between

all of them.

The computation of L(q) + ln p(M) is straightforward: in Lines 2 to 7

we compute and assemble the parameters of the classifiers by calling

TrainClassifier for each classifier k separately, and providing it with the

206

Function ModelProbability(M ,X,Y ,Φ)

Input: matching matrixM , input matrixX , output matrix Y , mixing feature
matrix Φ

Output: approximate model probability L(q) + ln p(M)

getK from shape ofM1

for k ← 1 to K do2

mk ← kth column ofM3

W ∗
k ,Λ

∗
k
−1, a∗τk

, b∗τk
, a∗αk

, b∗αk
← TrainClassifier(mk,X , Y)4

W ,Λ−1 ← {W1, . . . ,WK}, {Λ−1
1 , . . . ,Λ−1

K }5

aτ , bτ ← {aτ1 , . . . , aτK
}, {bτ1 , . . . , bτK

}6

aα, bα ← {aα1
, . . . , aαK

}, {bα1
, . . . , bαK

}7

V ,Λ−1
V aβ, bβ ← TrainMixing(M ,X,Y ,Φ,W ,Λ−1,aτ , bτ ,aα, bα)8

θ ← {W ,Λ−1,aτ , bτ ,aα, bα,V ,Λ−1
V aβ, bβ}9

L(q)← VarBound(M ,X,Y ,Φ,θ)10

return L(q) + lnK!11

data and the matching vector mk for that classifier. After that, the mixing

model parameters are computed in Line 8 by calling TrainMixing, based on

the fully trained classifiers.

Having evaluated all classifiers, all parameters are collected in Line 9 to give

θ and used in Line 10 to compute L(q) by calling VarBound. After that, the

function returns L(q) + lnK!, based on Eqs. (7.3) and (7.4).

8.1.2 Training the Classifiers

The Function TrainClassifier takes the dataX,Y and the matching vec-

tormk and returns all model parameters for the trained classifier k. The model

parameters are found by iteratively updating the distribution parameters of

the variational posteriors q∗W,τ (Wk, τk) and q
∗
α(αk) until the convergence crite-

rion is satisfied. This criterion is given by the classifier-specific components

Lk(q) of the variational bound L(q), as given by Eq. (7.89). However, rather

than evaluating Lk(q)with the responsibilities rnk, as done in Eq. (7.89), we use

the matching functionmk(xn). The underlying idea is that — as each classifier

is trained independently — we assume that the responsibilities are equivalent

to the matching function values. This has the effect that by updating the clas-

sifier parameters according to Eqs. (7.95) – (7.98), we are indeed maximising

207

Function TrainClassifier(mk,X , Y)
Input: matching vectormk, input matrixX , output matrix Y

Output: DY ×DX weight matrixWk, DX ×DX covariance matrix Λ
−1
k , noise

precision parameters aτk
, bτk
, weight vector prior parameters aαk

, bαk

get DX , DY from shape ofX,Y1

Xk ←X ⊗√mk2

Yk ← Y ⊗√mk3

aαk
, bαk

← aα, bα4

aτk
, bτk
← aτ , bτ5

Lk(q)← −∞6

∆Lk(q)← ∆sLk(q) + 17

while ∆Lk(q) > ∆sLk(q) do8

Eα(αk)← aαk
/bαk

9

Λk ← Eα(αk)I + XT
k Xk10

Λ
−1
k ← (Λk)

−1
11

Wk ← Y T
k XkΛ

−1
k12

aτk
← aτ + 1

2
Sum(mk)13

bτk
← bτ + 1

2DY

(

Sum(Yk ⊗ Yk) − Sum(Wk ⊗WkΛk)
)

14

Eτ (τk)← aτk
/bτk

15

aαk
← aα + DXDY

2
16

bαk
← bα + 1

2

(

Eτ (τk) Sum(Wk ⊗Wk) +DYTr(Λ
−1
k)
)

17

Lk,prev(q)← Lk(q)18

Lk(q)← VarClBound(X,Y ,Wk,Λ
−1
k , aτk

, bτk
, aαk

, bαk
,mk)19

∆Lk(q)← Lk(q)− Lk,prev(q)20

assert ∆Lk(q) ≥ 021

returnWk,Λ
−1
k , aτk

, bτk
, aαk

, bαk
22

Lk(q), which is not necessarily given if we have rnk 6= mk(xn), as discussed

in Section 7.3.9. Therefore, every parameter update is guaranteed to increase

Lk(q), until the algorithm converges.

In more detail, in Lines 2 and 3 we compute the matched input vector Xk

and output vector Yk, based on
√

mk(x)
√

mk(x) = mk(x). Note that each

column of X and Y is element-wise multiplied by
√

mk, where the square

root is applied to each element of mk separately. The prior and hyperprior

parameters are initialised with their prior parameter values in Lines 4 and 5.

In the actual iteration, Lines 9 to 14 compute the parameters of the varia-

tional posterior q∗W,τ (Wk, τk) by the use of Eqs. (7.95) – (7.98) and Eq. (7.64).

To get the weight vector covariance Λ−1
k we make use of the equalityXT

k Xk =
∑

nmk(xn)xnx
T
n . The weight matrixWk is evaluated by observing that the jth

208

row of Y T
k XkΛ

−1
k , giving wkj , is equivalent to Λ

−1
k

∑

nmk(xn)xnynj . The up-

date of bτk
uses Sum(Yk⊗Yk) that effectively squares each element of Yk before

returning the sum over all elements, that is
∑

j

∑

nmk(xn)y2
nj .

∑

j wT
kjΛkwkj

in Eq. (7.98) is computed by observing that it can be reformulated to the sum

over all elements of the element-wise multiplication ofWk andWkΛk.

Lines 15 to 17 update the parameters of the variational posterior q∗α(αk), as

given by Eqs. (7.40), (7.41), and (7.72). Here, we use the sum over all squared

elements ofWk to evaluate
∑

j wT
kjwkj .

The function determines convergence of the parameter updates in Lines 18 to

21 by computing the change of Lk(q) over two successive iterations. If this

change drops below the system parameter ∆sLk(q), then the function returns.

The value of Lk(q) is computed by Function VarClBound, which is described

in Section 8.1.4. Its last argument is a vector of responsibilities for classifier k,

which we substitute by the matching function values for reasons mentioned

above. Each parameter update either increases Lk(q) or leaves it unchanged,

which we have specified in Line 21. If this is not the case, then the implemen-

tation is faulty and/or suffers from numerical instabilities. In the experiments

we have performed, convergence was usually reached after 3–4 iterations.

8.1.3 Training the Mixing Model

Training the mixing model is more complex than training the classifiers, as we

need to use the IRLS algorithm to find the parameters of q∗V (V). The function

TrainMixing takes the model structure, data, and the parameters of the fully

trained classifiers, and returns the parameters of the mixing model.

As with training the classifiers, the parameters of the mixing model are found

incrementally, by sequentially updating the parameters of the variational pos-

teriors q∗V (V), q∗β(β) and q∗Z(Z). Convergence of the updates is determined by

monitoring the change of the mixing model-related components LM(q) of the

variational bound L(q), as given by Eq. (7.93). If the magnitude of change of

LM(q) between two successive iterations is lower than the system parameter

∆sLM(q), then the algorithm assumes convergence and returns.

209

Function TrainMixing(M ,X,Y ,Φ,W ,Λ−1,aτ , bτ ,aα, bα)

Input: matching matrixM , input matrixX , output matrix Y , mixing feature
matrix Φ, classifier parametersW ,Λ−1,aτ , bτ ,aα, bα

Output: DV ×K mixing weight matrix V , (KDV)× (KDV)mixing weight
covariance matrix, mixing weight vector prior parameters aβ, bβ

get DX , DY , DV , K from shape ofX,Y ,Φ,W1

V ← DV ×K matrix with elements sampled from N
(

0,
(

aβ

bβ

))

2

aβ ← {aβ1
, . . . , aβK

}, all initialised to aβk
= aβ3

bβ ← {bβ1
, . . . , bβK

}, all initialised to bβk
= bβ4

LM(q)← −∞5

∆LM(q)← ∆sLM(q) + 16

while ∆LM(q) > ∆sLM(q) do7

V ,Λ−1
V ← TrainMixWeights(M ,X,Y ,Φ,W ,Λ−1,aτ , bτ ,V ,aβ, bβ)8

aβ, bβ ← TrainMixPriors(V ,Λ−1
V)9

G← Mixing(M ,Φ,V)10

R← Responsibilities(X,Y ,G,W ,Λ−1,aτ , bτ)11

LM,prev(q)← LM(q)12

LM(q)← VarMixBound(G,R,V ,Λ−1
V ,aβ, bβ)13

∆LM(q)← |LM(q)− LM,prev(q)|14

return V ,Λ−1
V ,aβ, bβ15

The parameters are initialised in Lines 2 to 4 of TrainMixing. The DV × K
mixing matrix V holds the vector vk that corresponds to classifier k in its kth

column. As by Eq. (7.13) the prior on each element of vk is given by a zero-

mean Gaussian with variance β−1
k , we initialise each element of V by sampling

from N (0, bβ/aβ) where we have approximated the value of the random vari-

able βk by its prior expectation. The distribution parameters for qβ(βk) are

initialised by setting them to the prior parameters.

An iteration starts by calling TrainMixWeights in Line 8 to get the param-

eters of the variational posterior q∗V (V). These are subsequently used in Line

9 to update the parameters of q∗β(βk) for each k by calling TrainMixPriors.

Lines 10 to 14 determine the magnitude of change of LM(q) when compared

to the last iteration. This is achieved by computing the N × K mixing ma-

trix G = (gk(xn)) by calling Mixing. Based on G, the responsibility matrix

R = (rnk) is evaluated by calling Responsibilities in Line 11. This allows

us to evaluate LM(q) in Line 13 by calling VarMixBound, and determine the

magnitude of change ∆LM(q) in the next Line, which is subsequently used to

determine if the parameter updated converged. In the experiments we have

210

performed, the function usually converged after 5–6 iterations.

We continue by introducing the Functions TrainMixWeights,

TrainMixPriors, Mixing and Responsibilities that are all used

by TrainMixing to train the mixing model. VarMixBound is described in

the later Section 8.1.4.

Function Mixing(M ,Φ,V)

Input: matching matrixM , mixing feature matrix Φ, mixing weight matrix
V

Output: N ×K mixing matrixG

getK from shape of V1

G← ΦV2

limit all elements ofG such that expmin ≤ gnk ≤ lnmax− lnK3

G← exp(G)⊗M4

G← G⊘ RowSum(G)5

FixNaN(G, 1/K)6

return G7

Starting with Mixing, this function is used to compute the mixing matrix G

that contains the values for gk(xn) for each classifier/input combination. It

takes the matching matrixM , the mixing features Φ, and the mixing weight

matrix V as arguments, and returnsG.

The mixing matrix G is evaluated by computing Eq. (7.10) in several steps:

firstly, in Line 2, vT
k φ(xn) is computed for each combination of n and k. Before

we can take the exponential of these values, we need to make sure that it does

not cause any overflow/underflow. We do this by limiting the values in G in

Line 3 to a certain range, with the following underlying idea [175]: they are

limited from below by expmin to ensure that their exponential is positive, as

we might later take their logarithm. Additionally, they are limited from above

by lnmax− lnK such that summing over K such elements does not cause an

overflow. Once this is done, we can take the element-wise exponential and

multiply each element by the corresponding matching function value, as done

in Line 4. This essentially gives us the nominator of Eq. (7.10) for all combina-

tions of n and k. Normalisation over k is performed in the next line by dividing

each element in a certain row by the element sum of this row. If we have rows

in G that were zero before normalisation, we have performed 0/0, which we

fix in Line 6 by assigning equal weights to all classifiers for inputs that are not

211

matched by any classifier. Usually, this should never happen as we only accept

model structures where
∑

k mk(xn) > 0 for all n. Nonetheless, we have added

this check to ensure that we can even handle these cases gracefully.

Function Responsibilities(X,Y ,G,W ,Λ−1,aτ , bτ)

Input: input matrixX , output matrix Y , gating matrixG, classifier
parametersW ,Λ−1,aτ , bτ

Output: N ×K responsibility matrixR

getK,DY from shape of Y ,G1

for k = 1 to K do2

Wk,Λ
−1
k , aτk

, bτk
← pick fromW ,Λ−1,aτ , bτ3

kth column ofR← exp
(

DY

2
(ψ(aτk

)− ln bτk
)4

−1
2

(aτk

bτk

RowSum((Y −XWk
T)2) +DY RowSum(X ⊗XΛ

−1
k)

)

)

5

R← R⊗G6

R← R⊘ RowSum(R)7

FixNaN(R, 0)8

return R9

Based on the gating matrix G and the goodness-of-fit of the classifiers, the

Function Responsibilities computes the N × K responsibility matrix,

with rnk as its nkth element. Its elements are evaluated by following Eqs. (7.62),

(7.63), (7.69) and (7.74).

The loop from Line 2 to 5 in Responsibilities iterates over all k to fill the

columns of R with the values for ρnk according to Eq. (7.62), but without the

term gk(xn)1. This is simplified by observing that the term
∑

j(ynj −wT
kjxn)2,

which is by Eq. (7.74) part of
∑

j EW,τ (τk(ynj − wT
kjxn)2), is given for each ob-

servation separately in the vector that results from summing over the rows of

(Y − XW T
k)2, where the square is taken element-wise. Similarly, xT

nΛ
−1
k xn

of the same expectation is given for each observation by the vector that re-

sults from summing over the rows of X ⊗ XΛ
−1
k , based on xT

nΛ
−1
k xn =

∑

i(xn)i(Λ
−1
k xn)i. The values of gk(xn) are added to ρnk in Line 6, and the

normalisation step by Eq. (7.63) is performed in Line 7. For the same reason

as in the Mixing function we need to subsequently replace all NaN values in

R by 0 to not assign responsibility to any classifiers for inputs that are not

matched.

1Note that we are operating on ρnk rather than ln ρnk, as given by Eq. (7.62), as we certainly
have gk(xn) = 0 in cases where mk(xn) = 0, which would lead to subsequent numerical
problems when evaluating ln gk(xn).

212

Function TrainMixWeights(M ,X,Y ,Φ,W ,Λ−1,aτ , bτ ,V ,aβ, bβ)

Input: matching matrixM , input matrixX , output matrix Y , mixing feature
matrix Φ, classifier parametersW ,Λ−1,aτ , bτ , mixing weight matrix
V , mixing weight prior parameters aβ, bβ

Output: DV ×K mixing weight matrix V , (KDV)× (KDV)mixing weight
covariance matrix Λ

−1
V

Eβ(β)←row vector with elements
(

aβ1

bβ1

, . . . ,
aβK

bβK

)

1

G← Mixing(M ,Φ,V)2

R← Responsibilities(X,Y ,G,W ,Λ−1,aτ , bτ)3

KL(R‖G)←∞4

∆KL(R‖G)← ∆sKL(R‖G) + 15

while ∆KL(R‖G) > ∆sKL(R‖G) do6

E ← Φ
T (G−R) + V ⊗ Eβ(β)7

e← (E11, . . . ,EDV 1,E12, . . . ,EDV 2, . . . ,E1K , . . . ,EDV K)T
8

H ← Hessian(Φ,G,aβ, bβ)9

∆v ← −H−1e10

∆V ← DV ×K matrix with jkth element11

given by ((k − 1)K + j)th element of v12

V ← V + ∆V13

G← Mixing(M ,Φ,V)14

R← Responsibilities(X,Y ,G,W ,Λ−1,aτ , bτ)15

KLprev(R‖G)← KL(R‖G)16

KL(R‖G)← Sum(R⊗ FixNaN(ln(G⊘R), 0))17

∆KL(R‖G) = |KLprev(R‖G)− KL(R‖G)|18

H ← Hessian(Φ,G,aβ, bβ)19

Λ
−1
V ←H−1

20

return V ,Λ−1
V21

The Function TrainMixWeights approximates the mixing weights varia-

tional posterior q∗V (V) Eq. (7.51) by performing the IRLS algorithm. It takes the

matching matrix, the data and mixing feature matrix, the trained classifier pa-

rameters, the mixing weight matrix, and the mixing weight prior parameters.

As the IRLS algorithm performs incremental updates of the mixing weights V

until convergence, we do not re-initialise V every time TrainMixWeights is

called, but rather use the previous estimates as their initial values to reduce

the number of iterations that are required until convergence.

As we aim at modelling the responsibilities by finding mixing weights that

make the mixing coefficients given by gk(xn) similar to rnk, we determine con-

vergence by the Kullback-Leibler divergencemeasure KL(R‖G) that measures

the distance between the probability distributions given by R and G. For-

213

mally, this is defined by KL(R‖G) =
∑

n

∑

k rnk ln(gk(xn)/rnk), and is repre-

sented in LM(q) Eq. (7.93) by the terms EZ,V (ln p(Z|V) − EZ(ln q(Z)), given

by Eq. (7.82). As the Kullback-Leibler divergence is non-negative and zero if

and only if R = G [235], the algorithm assumes convergence of the IRLS al-

gorithm if the change in KL(R‖G) between two successive iterations is below

the system parameter ∆sKL(R‖G).

TrainMixWeights starts by computing the expectation Eβ(βk) for all k in

Line 1. The IRLS iteration Eq. (6.5) requires the error gradient ∇E(V) and

the Hessian H , which are by Eqs. (7.48) and (7.49) based on the values of

gk(xn) and rnk. Hence, TrainMixWeights continues by computing G and

R in Lines 2 and 3.

The error gradient ∇E(V) by Eq. (7.48) is evaluated in Lines 7 and 8. Line 7

uses the fact that ΦT (G − R) results in a DV × K matrix that has the vector
∑

n(gj(xn)−rnj)φ(xn) as its jth column. Similarly, V ⊗Eβ(β) results in amatrix

of the same size, with Eβ(βj)vj as its jth column. Line 8 rearranges the matrix

E, which has ∇vj
E(V) as its jth column, to the gradient vector e = ∇E(V).

The Hessian H is assembled in Line 9 by calling the Function Hessian, and

is used in the next line to compute the vector∆v by which the mixing weights

need to be changed according to the IRLS algorithm Eq. (6.5). The mixing

weight vector is updated by rearranging ∆v to the shape of V in Line 12, and

adding it to V in the next line.

As the mixing weights have changed, we recompute G and R with the up-

dated weights, to get KL(R‖G), and eventually to use it in the next itera-

tion. The Kullback-Leibler divergence between the responsibilitiesR and their

model G are evaluated in Line 17, and then compared to its value of the last

iteration to determine convergence of the IRLS algorithm. Note that due to the

use of matrix operations, we do not check for elements in R that are rnk = 0

due to gk(x) = 0 when computing G ⊘ R, which might cause NaN entries

in the resulting matrix. Even though these entries are multiplied by rnk = 0

thereafter, we first need to replace all of these entries by zero, as otherwise we

would still get 0× NaN = NaN.

The IRLS algorithm gives us the mean of q∗V (V) by the mixing weights that

minimise the error function E(V). We still need to evaluate its covariance

214

matrix Λ
−1
V , which, by Eq. (7.50), is the inverse Hessian, as evaluated in Line

19. We cannot use the last Hessian computed in the IRLS iteration in Line 9,

because the Hessian depends onGwhich has changed thereafter.

Function Hessian(Φ,G,aβ, bβ)

Input: mixing feature matrix Φ, mixing matrixG, mixing weight prior
parameters aβ, bβ

Output: (KDV)× (KDV)Hessian matrixH

get DV , K from shape of V1

H ← empty (KDV)× (KDV)matrix2

for k = 1 to K do3

gk ← kth column ofG4

for j = 1 to k − 1 do5

gj ← jth column ofG6

Hkj ← −Φ
T (Φ⊗ (gk ⊗ gj))7

kjth DV ×DV block ofH ←Hkj8

jkth DV ×DV block ofH ←Hkj9

aβk
, bβk
← pick from aβ, bβ10

Hkk ← Φ
T (Φ⊗ (gk ⊗ (1− gk))) +

aβk

bβk

I11

kth DV ×DV block along diagonal ofH ←Hkk12

return H13

To complete TrainMixWeights, let us consider how the Function Hessian

assembles the Hessian matrix H : it first creates an empty (KDV) × (KDV)

matrix that is thereafter filled by its block elements Hkj = Hjk, as given by

Eq. (7.49). Here we use the equality

∑

n

φ(xn)
(

gk(xn)gj(xn)φ(xn)T
)

= Φ
T (Φ⊗ (gk ⊗ gj)) (8.3)

for the off-diagonal blocks of H where Ikj = 0 in Eq. (7.49), and a similar

relation to get the diagonal blocks ofH .

The posterior parameters of the prior on the mixing weights are evaluated ac-

cording to Eqs. (7.56), (7.57), and (7.70) in order to get q∗β(βk) for all k. Function

TrainMixPriors takes the parameters of q∗V (V) and returns the parameters

for all q∗β(βk). The posterior parameters are computed by iterating over all k,

and in Lines 5 and 6 by performing a straightforward evaluation of Eqs. (7.56)

and (7.57), where in the latter, Eq.(7.70) replaces EV (vT
k vk).

215

Function TrainMixPriors(V ,Λ−1
V)

Input: mixing weight matrix V , mixing weight covariance matrix Λ
−1
V

Output: mixing weight vector prior parameters aβ, bβ

get DV , K from shape of V1

for k = 1 to K do2

v ← kth column of V3

(Λ−1
V)kk ← kth DV ×DV block along diagonal of Λ

−1
V4

aβk
← aβ + DV

2
5

bβk
← bβ + 1

2

(

Tr
(

(Λ−1
V)kk

)

+ vT
k vk

)

6

aβ, bβ ← {aβ1
, . . . , aβK

}, {bβ1
, . . . , bβK

}7

return aβ, bβ8

8.1.4 The Variational Bound

Function VarBound(M ,X,Y ,Φ,θ)

Input: matching matrixM , input matrixX , output matrix Y , mixing feature
matrix Φ, trained model parameters θ

Output: variational bound L(q)

getK from shape of V1

G← Mixing(M ,Φ,V)2

R← Responsibilities(X,Y ,G,W ,Λ−1,aτ , bτ)3

LK(q)← 04

for k = 1 to K do5

rk ← kth column ofR6

LK(q)← LK(q)7

+ VarClBound(X,Y ,Wk,Λ
−1
k , aτk

, bτk
, aαk

, bαk
, rk)8

LM(q)← VarMixBound(G,R,V ,Λ−1
V ,aβ, bβ)9

return LK(q) + LM(q)10

The variational bound L(q) is evaluated in Function VarBound according to

Eq. (7.94). The function takes the model structure, the data, and the trained

classifier and mixing model parameters, and returns the value for L(q). The

classifier-specific components Lk(q) are computed separately for each clas-

sifier k in Line 8 by calling VarClBound. Note that in contrast to calling

VarClBound with the matching function values of the classifiers, as done

in Function TrainClassifier, we here conform to Eq. (7.89) and provide

VarClBound with the previously evaluated responsibilities. The full varia-

tional bound is found by adding themixingmodel-specific componentsLM(q),

that are computed in Line 8 by a call to VarMixBound, to the sum of allLk(q)’s.

216

Function VarClBound(X,Y ,Wk,Λ
−1
k , aτk

, bτk
, aαk

, bαk
, rk)

Input: input matrixX , output matrix Y , classifier parameters
Wk,Λ

−1
k , aτk

, bτk
, aαk

, bαk
, responsibility vector rk

Output: classifier component Lk(q) of variational bound

get DX , DY from shape ofX,Y1

Eτ (τk)← aτk
/bτk

2

Lk,1(q)← DY

2
(ψ(aτk

)− ln bτk
− ln 2π) Sum(rk)3

Lk,2(q)← −1
2
rT

k

(

Eτ (τk) RowSum((Y −XW T
k)2) +DY RowSum(X ⊗XΛ

−1
k)

)

4

Lk,3(q)← − ln Γ(aα) + aα ln bα + ln Γ(aαk
)− aαk

ln bαk
+ DXDY

2
+ DY

2
ln |Λ−1

k |5

Lk,4(q)← DY

(

− ln Γ(aτ) + aτ ln bτ + (aτ − aτk
)ψ(aτk

)− aτ ln bτk
− bτEτ (τk)6

+ ln Γ(aτk
) + aτk

)

7

return Lk,1(q) + Lk,2(q) + Lk,3(q) + Lk,4(q)8

By evaluating Eq. (7.89), the Function VarClBound returns the components

of L(q) that are specific to classifier k. It takes the data, the trained classifier

parameters, and the responsibilities with respect to that classifier, and returns

the value for Lk(q). This values is computed by splitting Eq. (7.89) into the

components Lk,1(q) to Lk,4(q), evaluating them one by one, and then returning

their sum. To get Lk,2(q) we have used the same matrix simplifications to get

‖yn −Wkxn‖2 and xT
nΛ

−1
k xn as in Line 5 in Function Responsibilities.

Function VarMixBound(G,R,V ,Λ−1
V ,aβ, bβ)

Input: mixing matrixG, responsibilities matrixR, mixing weight matrix V ,
mixing covariance matrix Λ

−1
V mixing weight prior parameters aβ, bβ

Output: mixing component LM(q) of variational bound

get DV , K from shape of V1

LM,1(q)← K (− ln Γ(aβ) + aβ ln bβ)2

for k = 1 to K do3

aβk
, bβk
← pick from aβ, bβ4

LM,1(q)← LM,1(q) + ln Γ(aβk
)− aβk

ln bβk
5

LM,2(q)← Sum(R⊗ FixNaN(ln(G⊘R), 0))6

LM,3(q)← 1
2
ln |Λ−1

V |+ KDV

2
7

return LM,1(q) + LM,2(q) + LM,3(q)8

Finally, Function VarMixBound takes mixing values and responsibilities, and

the mixing model parameters, and returns the mixing model-specific compo-

nents LM(q) of L(q) by evaluating Eq. (7.93). As in VarClBound, the com-

putation of LM(q) is split into the components LM,1(q), LM,2(q), and LM,3(q),

whose sum is returned. LM,1(q) contains the components of LM(q) that de-

pend on the parameters q∗β(β), and is computed in Lines 2 to 5 by iterating

217

Function O(·) Comments

ModelProbability NK3D3
XDYD

3
V K3D3

V from TrainMixing,
D3
X from TrainClassifier

TrainClassifier ND3
XDY D3

X due to Λ
−1
k

TrainMixing NK3D2
XDYD

3
V K3D2

XD
3
V from

TrainMixWeights
Mixing NKDV −
Responsibilities NKD2

XDY D2
X due toXΛ

−1
k

TrainMixWeights NK3D2
XDYD

3
V (KDV)3 due toH−1,

D2
X from Responsibilities

Hessian NK2D2
V K2 due to nested iteration, D2

V due
to Φ

T (Φ⊗ (gk ⊗ gj))
TrainMixPriors KDV −
VarClBound ND2

XDY D2
X due toXΛ

−1
k or |Λ−1

k |
VarMixBound NK2D2

V (KDV)2 due to |Λ−1
V |

Figure 8.1: Complexity of the different functions with respect to the number
of observationsN , the number of classifiersK, the dimensionality of the input
space DX , the dimensionality of the output space DY , and the dimensionality
of the mixing feature space DV .

over all k. LM,2(q) is the Kullback-Leibler divergence KL(R‖G), as given

by Eq. (7.82), which is computed in the same way as in Line 17 of Function

TrainMixWeights.

8.1.5 Scaling Issues

Let us now consider how the presented algorithm scales with the dimension-

ality of the input spaceDX , output spaceDY , the mixing feature spaceDV , the

number N of observations that are available, and the number K of classifiers.

All O(·) are based on the observation that the multiplication of an a × b ma-

trix with a b × c matrix scales with O(abc), and the inversion and getting the

determinant of an a× amatrix have complexity O(a3) and O(a2), respectively.

Table 8.1 gives an overview of how the different functions scale withN ,K,DX ,

DY and DV . Unfortunately, even though ModelProbability scales linearly

withN andDY , it neither scales well withDX , nor withK andDV . In all three

cases, the 3rd polynomial is caused by a matrix inversion.

218

Considering that D3
X is due to inverting the precision matrix Λk, it might be

reducible to D2
X by using the Sherman-Morrison formula, as shown in Sec-

tion 5.3.5. DX is the dimensionality of the input space with respect to the clas-

sifier model, and is given by DX = 1 for averaging classifiers, and by DX = 2

for classifiers that model straight lines. Thus, it is in general not too high and

D3
X will not be the most influential complexity component. In any case, as long

as we are required to maintain a covariance matrix Λ
−1
k of size DX × DX , the

influence of DX is unlikely to be reducible below D2
X

The biggest weakness of the prototype algorithm that we have presented here

is that the number of operations required to find the parameters of the mixing

model scale with K3D3
V . This is due to the inversion of the (KDV) × (KDV)

Hessian matrix that is required at each iteration of the IRLS algorithm. To

apply variational inference to real-world problems, we would require the al-

gorithm to scale linearly with the number of classifiersK. This is best achieved

by approximating the optimal mixing weights by well-tuned heuristics, as we

have already done for the prior-free LCS model in Chapter 6. The mixing

feature space dimensionality, on the other hand, is usually DV = 1, and its

influence is therefore negligible.

In summary, the presented algorithm scales with O(NK3D3
XDYD

3
V). While it

might be possible to reduce D3
X to D

2
X , it still scales super-linearly with the

number of classifiersK. This is due to the use of the generalised softmax func-

tion that requires the application of the IRLS algorithm to find its parameters.

To reduce the complexity, we either replace the softmax function by another

model that is easier to train, or introduce well-tuned heuristics that provide us

with a good approximation. This issue will be discussed further in Chapter 10.

8.2 Two Alternatives for Model Structure Search

Recall that we have defined the optimal set of classifiersM as the set that max-
imises p(M|D). Therefore, in order to find this optimal set we need to search

the space {M} for theM such that p(M|D) ≥ p(M̄|D) for all M̄. This can the-
oretically be approached by any method that is able to find some element in a

set that maximises some function of the elements in that set, such as simulated

219

annealing [220], or genetic algorithms [93, 169].

The two methods that we describe here are the ones we have used to test the

usefulness of our optimality definition. They are conceptually simple and not

particularly intelligent, as neither of them uses any information embedded in

the probabilistic LCS model besides the value proportional to ln p(M|D) to

form the search trajectory through the model structure space. Consequently,

there is still plenty of room for improvement.

The reason we introduce two alternatives is i) to emphasise the conceptual

separation between evaluating the quality of a set of classifiers, and searching

for better ones, and ii) to show that we can in theory use any global optimiser

to perform the task of model structure search. As the aim is independent of

the search procedure, reaching this aim only depends on the compatibility of

the search procedure with the model structure space. After having introduced

the two alternatives, we give a short discussion in Section 8.2.3 about their

differences, and what might in general be good guidelines to improve the ef-

fectiveness of searching for good sets of classifiers.

Note that the optimal set of classifiers strongly depends on the chosen rep-

resentation for the matching functions, as we can only find solutions that

we are able to represent. Nonetheless, to keep the description of the meth-

ods representation-independent, we postpone the discussion of components

of the methods that are representation-dependent to the point where we have

to choose some representation; that is, in Section 8.3.

8.2.1 Model Structure Search by a Genetic Algorithm

Genetic algorithms (GA) are a family of global optimisers that are conceptu-

ally based on Darwinian evolution. We expect the reader to be familiar with

their underlying idea and basic implementations, of which an overview can be

found in [93, 169].

An individual in the population that our GA operates on is defined by

an LCS model structure M, and its fitness is given by the value that
ModelProbability returns for this model structure. As the genetic algo-

220

rithm seeks to increase the fitness of the individuals in the population, its goal

is to find the model structure that maximises p(M|D). An allele of an indi-

vidual’s genome is given by the representation of a single classifier’s match-

ing function, which makes the genome’s length determined by the number of

classifiers of the associated model structure. As this number is not fixed, the

individuals in the population can be of variable length2.

Starting with an initial population of P randomly generated individuals, a

single iteration of the genetic algorithm is performed as follows: firstly, we

determine the matching matrix M after Eq. (8.1) for each individual, based

on its representation of the matching functions and the input matrix X . This

matching matrix is subsequently used to determine each individual’s fitness

by calling ModelProbability. After that, we create a new population by se-

lecting two individuals from the current population and apply crossover with

probability pc and mutation with probability pm. The last step is repeated un-

til the new population again holds P individuals. Then, the new population

replaces the current one, and the next iteration begins.

An individual is initially generated by randomly choosing the number of clas-

sifiers it represents, and then initialising the matching function of each of its

classifiers, again randomly. How these matching functions are initialised de-

pends on the representation and is thus discussed later. To avoid the influence

of fitness scaling, we select individuals from the current population by de-

terministic tournament selection with tournament size ts. Mutation is again

dependent on the chosen representation, and will be discussed later.

As two selected individuals can be of different length, we cannot apply stan-

dard uniform cross-over but have to use different means: we want the total

number of classifiers to remain unchanged, but as the location of the classi-

fiers in the genome of an individual do not provide us with any information,

we allow their location to change. Thus, we proceed as shown in function

Crossover by randomly choosing the new number K ′
a and K

′
b of classifiers

2Variable-length individuals might cause bloat, which is a common problem when using
Evolutionary Computation algorithms with such individuals, as frequently observed in ge-
netic programming [159]. It also plagues some Pittsburgh-style LCS that use variable-length
individuals, such as LS-1 [200] and GAssist [7], and counteracting measures have to be taken
to avoid its occurrence. This is not an issue in our application, as overly complex model struc-
tures will receive a lower fitness due to the preference of the applied model selection criterion
for models of low complexity.

221

Function Crossover(Ma,Mb)

Input: two model structuresMa,Mb

Output: resulting two model structuresM′
a,M′

b after crossover

Ka, Kb ← number of classifiers inMa,Mb1

Ma,Mb matching function sets fromMa,Mb2

M ′
a ←Ma ∪Mb3

K ′
b ← random integerK such that 1 ≤ K < Ka +Kb4

M ′
b ← ∅5

for k = 1 to K ′
b do6

mk ←randomly selected matching function fromM ′
a7

M ′
b ←M ′

b ∪ {mk}8

M ′
a ←M ′

a \mk9

M′
a,M′

b ← {Ka +Kb −K ′
b,M

′
a}, {K ′

b,M
′
b}10

return M′
a,M′

b11

in each of the new individuals M′
a and M′

b such that the sum of classifiers

Ka +Kb = K ′
a +K ′

b remains unchanged, and each new individual has at least

one classifier. Thematching functions of individualM′
b are determined by ran-

domly picking K ′
b matching functions from either of the old individuals. The

other individualM′
a received all the remaining Ka +Kb −K ′

b matching func-

tions. In summary, we perform crossover by collecting the matching functions

of both individuals, and randomly redistributing them.

For our empirical demonstration we have not specified any particular criteria

to determine the convergence of the genetic algorithm. Rather, we pre-specify

the number of iterations that it performs. Additionally, we use an elitist strat-

egy by separately maintaining the highest-fitness model structureM∗ that was

found so far. This model structure is not part of the normal population, but is

replaced as soon as a fitter model structure is found.

This completes the description of the genetic algorithm that we have used. It

is kept deliberately simple to not distract from the task it has to solve, which

is to find the model structure that maximises p(M|D). In the presented form,

it might be considered as being a simple Pittsburgh-style LCS .

222

8.2.2 Model Structure Search by Markov Chain Monte Carlo

Our use of the MCMC algorithm provides a sample sequence M1,M2, . . .

from the model structure space that follows a Markov chain with steady state

probabilities p(M|D), and thus allows us to sample from p(M|D) [19]. As

such a sampling process takes more samples from high-probability model

structures, the sample sequence spends more time in high-probability areas of

p(M|D). Hence, the MCMC algorithm can be seen as a stochastic hill-climber

that aims at finding theM that maximises p(M|D). The algorithm presented

here is based on a similar algorithm developed for CART model search in [63].

The sample sequence is generated by theMetropolis-Hastings algorithm [104],

which is give by the following procedure: given an initial model structureM0,

a candidate model structureM′ is created in step t + 1, based on the current

model structure Mt. This candidate is accepted, that is, Mt+1 = M′, with

probability

min

(

p(Mt|M′)

p(M′|Mt)

p(M′|D)

p(Mt|D)
, 1

)

, (8.4)

and otherwise rejected, inwhich case the sequence continueswith the previous

model, that is,Mt+1 = Mt. p(Mt|M′) and p(M′|Mt) are the probability dis-

tributions that describes the process of generating the candidate modelM′. As

the search procedure tends to prefer model structures that improve p(M|D), it

is prone to spending many steps in areas of the model structure space where

p(M|D) is locally optimal. To avoid being stuck in such areas, we perform ran-

dom restarts after a certain number of steps, which are executed by randomly

reinitialising the current model structure.

The initial model structureM0, as well as the model structure after a random

restart, is generated by randomly initialising K classifiers, where K needs to

be given. We assume that thematching function of a classifier can be initialised

by sampling from the probability distribution p(mk). Thus,M0 is generated by

takingK samples from p(mk). The exact form of p(mk) depends on the chosen

representation, and thus will be discussed later.

A new candidate model structureM′ is created from the current model struc-

tureMt with Kt classifiers similarly to the procedure in [63], by choosing one

of the following actions:

223

change. Picks one classifier of Mt at random, and reinitialises its matching

function by taking a sample from p(mk).

add. Adds one classifier toMt, with amatching function sampled from p(mk),

resulting inKt + 1 classifiers.

remove. Removes one classifier fromMt at random, resulting in Kt − 1 clas-

sifiers.

The actions are chosen by taking samples from the discrete random variable

A ∈ {change, add, remove}, where we assume p(A = add) = p(A = remove)

and p(A = change) = 1− 2p(A = add).

Let us now consider how to compute the acceptance probability Eq. (8.4) for

each of these actions. We have p(M|D) ∝ p(D|M)p(M|K)p(K) by Bayes’ The-

orem, where, different to Eq. (7.3), we have separated the number of classi-

fiers K from the model structureM. As in Eq. (7.4), we assume a uniform
prior over the unique models, giving p(K) ∝ 1/K!. Additionally, every clas-

sifier inM is created independently by sampling from p(mk), which results in

p(M|K) = p(mk)
K . Using variational inference, the model evidence is approx-

imated by the variational bound p(D|M) ∝ exp(LM(q)), where LM(q) denotes

the variational bound of modelM. Thus, in combination we have

p(M′|D)

p(Mt|D)
≈ exp(LM′(q))p(mk)

K′

(K ′!)−1

exp(LMt
(q))p(mk)Kt(Kt!)−1

, (8.5)

whereK ′ denotes the number of classifiers inM′.

We get the model transition probability p(M′|Mt) by marginalising over the

actions A, to get

p(M′|Mt) = p(M′|Mt, A = change)p(A = change)

+p(M′|Mt, A = add)p(A = add)

+p(M′|Mt, A = remove)p(A = remove), (8.6)

and a similar expression for p(Mt|M′). When we choose action add, then

K ′ = Kt + 1, and p(M′|Mt, A = change) = p(M′|Mt, A = remove) = 0,

as neither the action change nor the action remove cause a classifier to be added.

Mt andM′ differ in a single classifier that is picked from p(mk), and there-

224

fore p(Mt|M′, A = add) = p(mk). Similarly, when choosing the action remove

forMt, an arbitrary classifier is picked with probability 1/Kt, and therefore

p(M′|Mt, A = remove) = 1/Kt. The action change requires choosing a clas-

sifier with probability 1/Kt and reinitialising it with probability p(mk), giving

p(M′|Mt, A = change) = p(mk)/Kt. The reverse transitions p(Mt|M′) can be

evaluated by observing that the only possible action that causes the reverse

transition from M′ to Mt after the action add is the action remove, and vice

versa. Equally, change causes the reverse transition after performing action

change.

Overall, the candidate modelM′ that was created by add fromMt is accepted

by Eq. (8.4) with probability

min

(

p(Mt|M′, A = remove)p(A = remove)

p(M′|Mt, A = add)p(A = add)

p(M′|D)

p(Mt|D)
, 1

)

≈ min (exp (LM′(q)− LMt
(q)− 2 ln(Kt + 1)) , 1) , (8.7)

where we have used our previous assumption p(A = add) = p(A = remove),

K ′ = Kt+1, and Eq. (8.5). When choosing the action remove, on the other hand,

the candidate modelM′ is accepted with probability

min

(

p(Mt|M′, A = add)p(A = add)

p(M′|Mt, A = remove)p(A = remove)

p(M′|D)

p(Mt|D)
, 1

)

≈ min (exp (LM′(q)− LMt
(q)− 2 lnKt) , 1) , (8.8)

based on K ′ = Kt − 1, and Eq. (8.5). Note that in case of having K ′ = 0,

the variational bound will be LM′(q) = −∞, and the candidate model will be
always rejected, which confirms that a model without a single classifier is of

no value. Finally, a candidate modelM′ where a single classifier fromMt has

been changed by action change is accepted with probability

min

(

p(Mt|M′, A = change)p(A = change)

p(M′|Mt, A = change)p(A = change)

p(M′|D)

p(Mt|D)
, 1

)

≈ min (exp (LM′(q)− LMt
(q)) , 1) . (8.9)

To summarise, the MCMC algorithm starts with a randomly initialised model

structureM0 with K0 classifiers and at each step t + 1 performs either change,

add, or remove to create a candidate model structureM′ fromMt that is either

accepted (Mt+1 =M′) with a probability that, dependent on the chosen action,

225

is given by Eq. (8.7), (8.8) or (8.9), and otherwise rejected (Mt+1 =Mt).

8.2.3 Building Blocks in Classifier Sets

As apparent from the above descriptions, the most pronounced difference be-

tween the GA and theMCMC search procedures is that theMCMC search only

considers a single model structure at a time, while the GA operates on a pop-

ulation of them simultaneously. This parallelism allows the GA to maintain

several competing model structure hypotheses that might contain valuable

building blocks to form better model structures. In GA, building blocks refer

to a group of alleles that in combination provide a part of the solution [93].

With respect to our model structure search, a building block is a subset of the

classifiers in a model structure that in combination provides a good model for

a subset of the data. A good model structure search maintains such building

blocks and recombines them with other building blocks to form new model

structure hypotheses.

Do such building blocks really exist in the LCS model that we have provided,

and in LCS in general? Let us consider a simple example where the model

structure contains a single classifier that matches all inputs with about equal

probability. The only sensible action that MCMC search can perform is to add

another classifier to see if it improves the model structure, which results in

a classifier that matches all observations about equally, and a possibly more

specific classifier that concentrates on a subset of the data. Only in rare cases

will such a combination provide a better model for the data (see Section 8.3.3

for an example where it does). Rather, the globally matching classifier should

be rearranged such that it does not directly compete with the specific classifier

in modelling its part of the data. The resulting pair of classifiers would then

cooperate to model a part of the data and can be seen as a building block of

a potentially good model structure. Thus, while these building blocks exist,

they are not exploited when using the MCMC algorithm for model structure

search.

When using a GA for model structure search, on the other hand, the pop-

ulation of individuals can contain several potentially useful building blocks,

and it is the responsibility of the crossover operator to identify and recombine

226

them. As shown in [214], uniform crossover generally yields better results

that one-point and two-point crossover. The crossover operator that we use

aims at using uniform crossover for variable-length individuals. Further im-

provement in identifying building blocks can be made by using Estimation of

Distribution Algorithms (EDAs) [185], but as there are currently no EDAs that

directly apply to our problem structure [151] this is a possible topic of future

research.

8.3 Empirical Demonstration

To demonstrate the usefulness of the optimality criterion that we have intro-

duced in the last chapter, we use the previously described algorithms to find

a good set of classifiers for a set of simple regression tasks. These tasks are

kept simple in the sense that the number of classifiers that are expected to

be required are low, such that the O(K3) complexity of ModelProbability

does not cause any computational problems. Additionally, the crudeness of

the model structure search procedures does not allow us to handle problems

where the best solution is given by a complex agglomeration of classifiers. All

regression tasks haveDX = 1 andDY = 1 such that we can visualise the results

easily. The mixing features are given by φ(x) = 1 for all x. Not all functions are

standardised, but their domain is always within [-1:4] and their range is within

[-1:1]. For all experiments we have used classifiers that model straight lines,

and have used uninformative priors and hyperpriors as given in Table 8.1.

Even though the prime problems that most new LCS are tested against are

Multiplexer problems of various lengths [240], we consider them as a challenge

for the model structure search rather than the optimality criterion and thus

have omitted them from our test set. Rather, we add a significant amount of

noise to the data, as our aim is to provide a criterion that provides the minimal

model, and can separate the underlying patterns from the noise, given that

enough data is available.

Firstly, we introduce the two different representations that are used for the

matching functions, and then continue by describing the four regression tasks,

their aim, and our results, one by one.

227

8.3.1 Representations

The two representations that we are using are matching by radial-bases func-

tions, and matching by soft intervals. Starting with matching by radial-basis

functions, we now describe their matching functions, and how these are ini-

tialised and mutated.

Matching by Radial-Basis Functions

The matching function for matching by radial-basis functions is defined by

mk(x) = exp

(

1

2σ2
k

(x− µ)2

)

, (8.10)

which is an unnormalised Gaussian that is parameterised by a scalar µk and

a positive spread σk. Thus, the probability of classifier k matching input x

decreases with the distance from µk, where the strength of the decrease is

determined by σk. If σk is small, then the matching probability decreases

rapidly with the squared distance of x from µk. Note that, as mk(x) > 0 for

all −∞ < x < ∞, all classifiers match all inputs, even if only with a very low
probability. Thus, we always guarantee that

∑

k mk(xn) > 0 for all n, that is,

that all inputs are matched by at least one classifier, as required. Examples for

the shape of the radial-basis matching function are shown in Figure 8.2. We

have chosen this matching function to demonstrate matching by probability

— a feature that has not been available in LCS before.

Rather than declaring µk and σk directly, we specify the matching parameters

0 ≤ ak ≤ 100 and 0 ≤ bk ≤ 50 that give µk = l+(u− l)ak/100 and σ2
k = 10−bk/10,

where [l, u] is that range of the input x. Thus, ak determines the centre of the

classifier, where 0 and 100 specify the lower and higher end of x, respectively.

σk is given by bk such that 10−50 ≤ σ2
k ≤ 1, and a low bk gives a wide spread

of the classifier matching function. A new classifier is initialised by randomly

choosing ak uniformly from [0, 100), and bk uniformly from [0, 50). The two

values are mutated by adding a sample fromN (0, 10) to ak, and a sample from

N (0, 5) to bk, but ensuring thereafter that they still conform to 0 ≤ ak ≤ 100

and 0 ≤ bk ≤ 50. The reason we operate on ak, bk rather than µk, σk is that it

228

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
at

ch
in

g
pr

ob
ab

ili
ty

x

Matching by Radial Basis Functions

cl. 1
cl. 2
cl. 3
cl. 4

Figure 8.2: Matching probability for matching by radial basis functions for
different parameters. Classifiers 1, 2, and 3 all have their matching functions
centred on µ1 = µ2 = µ3 = 0.5, but have different spreads σ1 = 0.1, σ2 = 0.01,
σ3 = 1. This visualises how a larger spread causes the classifier to match a
larger area of the input space with higher probability. The matching function
of classifier 4 is centred on µ4 = 0.8 and has spread σ4 = 0.2, showing that
µ controls the location x of the input space where the classifier matches with
probability 1.

simplifies the mutation operation by making it independent of the range of x

for µk and allows for non-linearity with respect to σk. Alternatively, one could

simply acquire the mutation operator from [52].

Matching by Soft Intervals

Matching by soft intervals is similar to the interval matching that was intro-

duced in XCS by Wilson in [242], with the difference that we are using soft

boundaries on the intervals. We have chosen to represent the interval by soft

boundaries rather than hard boundaries to express the fact that we are never

absolutely certain about the exact location of these boundaries, and to avoid

the need to explicitly care about having each input matched by at least one

classifier.

To avoid the representational bias of the centre/spread representation of [242],

we use the lower/upper bound representation that was introduced and anal-

229

ysed in [206]. The softness of the boundary is provided by an unnormalised

Gaussian that is attached to both sides of the interval within which the classi-

fier matches with probability 1. To avoid the boundaries from being too soft,

we include them partially in the interval. More precisely, when specifying the

interval for classifier k by its lower bound lk and upper bound uk, we want

exactly one standard deviation of the Gaussian to lie inside this interval, and

additionally require 95% of the area underneath the matching function to be

inside this interval. More formally, we need 0.95(b′k +
√

2πσk) = bk to hold to

have the interval bk = uk − lk specify 95% of the area underneath the matching
function, where b′k gives the width of the interval where the classifier matches

with probability 1, and we have used the fact that the area underneath an un-

normalised Gaussian with standard deviation σ is
√

2πσ. The requirement of

the specified interval extending by one standard deviation to either side of the

Gaussian is satisfied by b′k + 0.6827
√

2πσk = bk, based on the fact that the area

underneath the unnormalised Gaussian within one standard deviation from

its centre is 0.6827
√

2πσ. Solving these equations with respect to b′k and σk for

a given bk results in

σk =
1

0.95
− 1

1− 0.6827

1√
2π
bk ≈ 0.0662bk, (8.11)

b′k = bk − 0.6827
√

2πσk ≈ 0.8868bk. (8.12)

Thus, about 89% of the specified interval are matched with probability 1, and

the leftover 5.5% to either side are matched according to one standard devia-

tion of a Gaussian. Therefore, the matching function for soft interval matching

is given by

mk(x) =

exp
(

− 1
2σ2

k

(x− l′k)2
)

if x < l′k,

exp
(

− 1
2σ2

k

(x− u′k)2
)

if x > u′k

1 otherwise,

(8.13)

where l′k and u
′
k are the lower and upper bound of the interval that the classifier

matches with probability 1, and are given by l′k ≈ lk + 0.0566bk and u
′
k ≈ uk −

0.0566bk, such that u
′
k− l′k = b′k. Figure 8.3 shows examples for the shape of the

matching function for soft interval matching.

We perform initialisation of a classifier k by following [206], and sample lk

and uk from a uniform distribution over [l, u], which is the range of x. If lk >

uk, then their values are swapped. While in [206, 242], the boundary values

230

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
at

ch
in

g
pr

ob
ab

ili
ty

x

Matching by Soft Intervals

cl. 1
cl. 2
cl. 3

Figure 8.3: Matching probability for matching by soft interval for different
parameters. Classifiers 1 and 2 are adjacent as l1 = 0, u1 = l2 = 0.2, and
u2 = 0.5. The area where these two classifiers overlap shows that the classifiers
do not match their full interval with probability 1 due to the soft boundaries
of the intervals. Nonetheless, 95% of the area beneath the matching function
are within the specified interval. Classifier 3 matches the interval l3 = 0.7,
u3 = 0.9. Comparing the boundary of classifier 2 and 3 shows that the spread
of the boundary grows with the width of the interval that it matches.

are mutated by a uniform random variable, we rather sample a Gaussian to

make small changes more likely than large changes. Thus, the boundaries

after mutation are given by perturbing both bounds by N (0, (u − l)/10), that

is, a sample from a zero-mean Gaussian with a standard deviation that is a

10th of the range of x. After that we again make sure that l ≤ lk < uk ≤ u by

swapping and bounding their values if required.

Even though both matching functions are only introduced for the case when

DX = 1, they can be easily extended to higher-dimensional input spaces. In

the case of radial-basis function matching, the matching function is specified

by a multivariate Gaussian, analogous to the hyper-ellipsoidal conditions for

XCS [41, 52]. Matching by a soft interval becomes slightly more complex due

to the interval-specification of the matching function, but its computation can

be simplified by defining the matching function as the product of one single-

dimensional matching function per dimension of the input space.

231

8.3.2 Generated Function

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

O
ut

pu
t y

Input x

Classifiers and Mixed Model for Generated Function

mixed model
cl. 1
cl. 2
cl. 3
data

Figure 8.4: Classifier models, mixed model and available data for the gener-
ated function.

To see if the optimality criterion is correct if the data conforms to the un-

derlying assumptions of the model, we firstly test it on a function that was

generated to conform to these assumptions. The data is generated by tak-

ing 300 samples from 3 linear classifiers with models N (y|0.05 + 0.5x, 0.1),

N (y|2 − 4x, 0.1), and N (y| − 1.5 + 2.5x, 0.1) which use radial-basis function

matching with (µ, σ2) parameters (0.2, 0.05), (0.5, 0.01), (0.8, 0.05) and mixing

weights v1 = 0.5, v2 = 1.0, v3 = 0.4, respectively. A plot of the classifiers’

means, their generated function mean, and the available data can be found in

Figure 8.4.

We have tested both the GA and MCMC model structure search, where the

GA is in this and all other experiments initialised with a population of size

P = 20, crossover and mutation probability pc = pm = 0.4, and tournament

size ts = 5. The number of classifiers in each of the individuals is sampled

from the binomial distribution B(8, 0.5), such that, on average, an individual

has 4 classifiers. The performance of the GAmodel structure search is not sen-

sitive to the initial size of the individuals and gives similar results for different

initialisations of its population.

The result after a single run with 250 GA iterations are shown in Figure 8.5.

As can be seen, the model was not correctly identified as the number of

232

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2

-100

-50

 0

 50

 100

 150

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 5

 6

F
itn

es
s

A
ve

ra
ge

 K

GA iteration

Fitness and Average Number of Classifiers

max. fitness
avg. fitness
min. fitness

avg. K

(a) (b)

Figure 8.5: Plots showing the best found model structure for the generated
function using GA model structure search, and fitness and average number
of classifiers over the GA iterations. Plot (a) shows the available data, the
model of the classifiers, and their mixed prediction with 1 standard devia-
tion to either side, and additionally the mean of the generating function. The
matching function parameters of the classifiers are µ1 = 0.09, σ2

1 = 0.063 and
µ2 = 0.81, σ2

2 = 0.006. Plot (b) shows the maximum, average, and minimum
fitness of the individuals in the population after each GA iteration. The mini-
mum fitness is usually below the lower edge of the plot. The plot also shows
the average number of classifiers for all individuals in the current population.

classifiers of the best found individual is 2 rather than the desired 3, with

L(q)− lnK! ≈ 118.81. Nonetheless, the generated function mean is still within

the first standard deviation of the predicted mean.

TheMCMCmodel structure searchwas applied to the same data, using for this

and all further experiments 10 restarts with 500 steps each, and p(A = add) =

p(A = remove) = 1/4. Thus, we use the same number of model structure

evaluations as with the GA. The initial number of classifiers is after each restart

sampled from the binomial distribution B(8, 0.5), resulting in 4 classifiers on

average.

As can be seen in Figure 8.6, MCMC model structure search performed better

than the GA by correctly identifying all 3 classifiers with L(q)− lnK! ≈ 174.50,

indicating a higher p(M|D) than for the one found by the GA. While the dis-

covered model structure is not exactly that of the data-generating process, it is

surprisingly similar, given the rather crude search procedure. The reject rate

of the MCMC algorithm was about 96.9%, which shows that the algorithm

quickly finds a local optimum and remains there.

233

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2
cl. 3

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000
 0

 1

 2

 3

 4

 5

 6

 7

 8

L(
q) K

MCMC step

Variational Bound and Number of Classifiers

L(q)
K

(a) (b)

Figure 8.6: Plots showing the best discovered model structure for the gen-
erated function using MCMC model structure search, and variational bound
and number of classifiers over the MCMC steps. Plot (a) shows the available
data, the model of the classifiers, and their mixed prediction with 1 standard
deviation to either side, and additionally the mean of the generating function.
The matching function parameters of the classifiers are µ1 = 0.16, σ2

1 = 0.01,
µ2 = 0.461, σ2

2 = 0.025, and µ3 = 0.78, σ2
3 = 0.006. Plot (b) shows the variational

bound L(q) for each step of the MCMC algorithm, and clearly visualises the
random restarts after 500 steps. It also shows the number of classifiers K in
the current model structure for each step of the MCMC search.

8.3.3 Sparse, Noisy Data

While the noise of the generated function is rather low and there is plenty of

data available, the next experiment investigates if the optimality criterion can

handle more noise and less data. For this purpose we take a test function from

[230], where it was used to test the performance of the Bayesian MoE model

with a fixedmodel structure. The function is given by f(x) = 4.25(e−x−4e−2x+

3e−3x +N (0, 0.2) over 0 ≤ x ≤ 4, and is shown in Figure 8.7, together with the

200 sampled observations. In [230], the added noise had variance 0.44, but we

have reduced it to 0.2, as otherwise no pattern was apparent in the data. We

assume that the Bayesian MoE model was only able to identify a good model

despite the high noise due to its pre-determined model structure.

Again using radial-basis function matching, the GA and MCMC settings are

the same as in the previous experiment, except for the initial number of clas-

sifiers, which is in both cases sampled from B(4, 0.5). As before, the result is

insensitive to this number. The best discovered model structures are shown in

Figure 8.8 for the GA, with L(q) − lnK! ≈ −159.07, and in Figure 8.9 for the

234

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

O
ut

pu
t y

Input x

Waterhouse et al. (1996) Function and Available Data

f(x) mean
data

Figure 8.7: Plot showing the test function used in [230], and the 200 available
observations.

MCMC, with L(q) − lnK! ≈ −158.55. The MCMC search had a reject rate of

about 97.0% over its 5000 steps.

Both the GA and theMCMC search resulted in about the samemodel structure

which at the first sight seems slightly surprising: looking at Figure 8.7, one

would initially expect the function to be modelled by a flat line over 1.5 < x <

4, and 2 straight lines for the bump at around x = 0.4, requiring altogether

3 classifier. The model structure search, however, has identified a model that

only requires 2 classifiers by having a global classifier that models the straight

line, interleaved by a specific classifier that models the bump. This clearly

shows that our optimality criterion prefers simpler models over more complex

ones, in addition to the ability of handling rather noisy data.

8.3.4 Function with Variable Noise

One of the disadvantages of XCS, as discussed in Section 7.1.1, is that the de-

sired mean absolute error of each classifier is globally specified by the system

parameter ǫ0. Therefore, XCS cannot properly handle data where the noise

level varies significantly over the input space. The optimality criterion we

have devised assumes constant noise variance at the classifier level, but does

235

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

f(x)
cl. 1
cl. 2

-200

-190

-180

-170

-160

-150

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 5

F
itn

es
s

A
ve

ra
ge

 K

GA iteration

Fitness and Average Number of Classifiers

max. fitness
avg. fitness
min. fitness

avg. K

(a) (b)

Figure 8.8: Plots similar to the ones in Figure 8.5, when using a GA for model
structure search applied to the function as given in [230]. The best discovered
model structure is given by µ1 = 0.52, σ1 = 0.016 and µ2 = 3.32, σ2 = 1.000.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2

-200

-190

-180

-170

-160

-150

 0 1000 2000 3000 4000 5000
 0

 1

 2

 3

 4

 5

L(
q) K

MCMC step

Variational Bound and Number of Classifiers

L(q)
K

(a) (b)

Figure 8.9: Plots similar to the ones in Figure 8.6, when using MCMC model
structure search applied to the function as given in [230]. The best discovered
model structure is given by µ1 = 0.56, σ1 = 0.025 and µ2 = 2.40, σ2 = 0.501.

not make such an assumption at the global level. Thus, it can handle cases

where each classifier requires to accept a different level of noise, as we will

show with the following experiment.

Similar, but not equal to [230], we use a function that has two different noise

levels. The function is given for −1 ≤ x ≤ 1 by f(x) = −1 − 2x + N (0, 0.6) if

x < 0, and f(x) = −1 + 2x+N (0, 0.1) otherwise. Thus, the V-shaped function

has a noise variance of 0.6 below x = 0, and a noise variance of 0.1 above

it. Its mean and 200 data points that are used as the data set are shown in

Figure 8.10. To assign each classifier to a clear interval of the input space, we

use soft interval matching functions.

236

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

O
ut

pu
t y

Input x

Function with Variable Noise and Available Data

f(x) mean
data

Figure 8.10: Plot showing the mean of the function with variable noise, and
the 200 observations that are available from this function.

We have again applied both GA and MCMC search with the same settings as

before, and an initial number of classifiers sampled from B(8, 0.5). The best

discovered model structures are shown for the GA in Figure 8.11, with L(q) +

lnK! ≈ −63.12, and for MCMC search in Figure 8.12, with a slightly better

L(q) + lnK! ≈ −58.59. The reject rate of the MCMC search was about 96.6%.

In both cases, the model structure search was able to identify two classifiers

with different noise variance. The difference in the modelled noise variance is

clearly visible in both Figure 8.11 and 8.12 by the plotted prediction standard

deviation. Thus, we have demonstrated that the classifier set optimality crite-

rion is suitable for data where the level of noise differs for different areas of

the input space.

8.3.5 A Slightly More Complex Function

To demonstrate the limitations of the model structure search methods as in-

troduced in this chapter, we perform the last experiment on a slightly more

complex function. The function we have used is the noisy sinusoid given over

the range −1 ≤ x ≤ 1 by f(x) = sin(2πx) +N (0, 0.15), as shown in Figure 8.13.

We are again using soft interval matching to clearly specify the area of the in-

237

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

f(x)
cl. 1
cl. 2

-200

-180

-160

-140

-120

-100

-80

-60

-40

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 5

F
itn

es
s

A
ve

ra
ge

 K

GA iteration

Fitness and Average Number of Classifiers

max. fitness
avg. fitness
min. fitness

avg. K

(a) (b)

Figure 8.11: Plots similar to the ones in Figure 8.5, where GA model struc-
ture search was applied to a function with variable noise. The best discovered
model structure is given by l1 = −0.82, u1 = 0.08 and l2 = 0.04, u2 = 1.00.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2

-200

-180

-160

-140

-120

-100

-80

-60

-40

 0 1000 2000 3000 4000 5000
 0

 1

 2

 3

 4

 5

 6

 7

L(
q) K

MCMC step

Variational Bound and Number of Classifiers

L(q)
K

(a) (b)

Figure 8.12: Plots similar to the ones in Figure 8.6, where MCMCmodel struc-
ture search was applied to a function with variable noise. The best discovered
model structure is given by l1 = −0.98, u1 = −0.06 and l2 = 0.08, u2 = 0.80.

put space that a classifier models. The data set is given by 300 samples from

f(x).

Both GA and MCMC search are initialised as before, with the number of clas-

sifiers sampled from B(8, 0.5). The GA search identified 7 classifiers with

L(q) + lnK! ≈ −155.68, as shown in Figure 8.14. It is apparent that the model

can be improved by reducing the number of classifiers to 5 and moving them

to adequate locations. However, as can be seen in Figure 8.14(b), the GA ini-

tially was operating with 5 classifiers, but was not able to find good interval

placements, as the low maximum fitness shows. Once it increased the num-

ber of classifiers to 7, at around the 60th iteration, it was able to provide a

238

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

O
ut

pu
t y

Input x

Noisy Sinusoid and Available Data

f(x) mean
data

Figure 8.13: Plot showing the mean of the noisy sinusoidal function, and the
300 observations that are available from this function.

fitter model structure, but at the cost of an increased number of classifiers. It

maintained this model up to the 250th iteration without finding a better one,

which indicates that the genetic operators need to be improved and require

better tuning to the representation used in order to make the GA perform bet-

ter model structure search.

That the inappropriate model can be attributed to a weak model structure

search rather than a failing optimality criterion becomes apparent when con-

sidering the result of the MCMC search with a superior L(q)− lnK! ≈ −29.39,

as shown in Figure 8.15. The discovered model is clearly better, which is also

reflected in a higher p(M|D). Note, however, that this model was not discov-

ered after all restarts of the MCMC algorithm. Rather, model structures with

6 or 7 classifiers were sometimes preferred, as Figure 8.15(b) shows. This indi-

cates that a further increase of the problem complexity will very likely cause

the MCMC search to fail as well.

8.4 Summary

In this chapter we have developed simple algorithms that search for the op-

timal set of classifiers given some data, and have used these algorithms to

239

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

f(x)
cl. 1
cl. 2
cl. 3
cl. 4
cl. 5
cl. 6
cl. 7

-400

-350

-300

-250

-200

-150

-100

 0 50 100 150 200 250
 0

 2

 4

 6

 8

 10

F
itn

es
s

A
ve

ra
ge

 K

GA iteration

Fitness and Average Number of Classifiers

max. fitness
avg. fitness
min. fitness

avg. K

(a) (b)

Figure 8.14: Plots similar to the ones in Figure 8.5, using GA model structure
search applied to the noisy sinusoidal function. The best discovered model
structure is given by l1 = −0.98, u1 = −0.40, l2 = −0.78, u2 = −0.32, l3 =
−0.22, u3 = 0.16, l4 = −0.08, u4 = 0.12, l5 = 0.34, u5 = 0.50, l6 = 0.34, u6 = 1.00,
and l7 = 0.60, u2 = 0.68.

demonstrate, on the basis of four regression tasks, the adequacy of our defini-

tion for the optimal classifier set.

As a basis of evaluating the quality of a set of classifiers as specified by

the model structure M, we have provided functions that perform vari-
ational Bayesian inference, as described in the previous chapter, to ap-

proximate the model probability p(M|D). More specifically, the function

ModelProbability takes the model structure M and the data D as argu-
ments and returns an approximation to the unnormalised model probability.

Thus, in addition to the theoretical treatment of variational inference in the

previous chapter, we show in this chapter how it can be implemented. Due to

required complex procedure of finding the mixing weight vectors to combine

the localised classifier models to a global model, the described implementation

scales unfavourably with the number of classifiers K. As a topic of future re-

search, we might reduce this complexity by replacing the generalised softmax

function by well-tuned heuristics.

To emphasise that in theory any global optimisation procedure can be used to

find the best set of classifiers, we have introduced two methods to find theM
that maximises p(M|D). On one hand, we have described a GA that operates

in a Pittsburgh-style LCS way, and on the other hand, we have introduced

a stochastic hill-climber based on MCMC to sample p(M|D). Both methods

240

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2
cl. 3
cl. 4
cl. 5

-250

-200

-150

-100

-50

 0

 0 1000 2000 3000 4000 5000
 0

 2

 4

 6

 8

 10

L(
q) K

MCMC step

Variational Bound and Number of Classifiers

L(q)
K

(a) (b)

Figure 8.15: Plots similar to the ones in Figure 8.6, using MCMC model
structure search applied the noisy sinusoidal function. The best discovered
model structure is given by l1 = −1.00, u1 = −0.68, l2 = −0.62, u2 = −0.30,
l3 = −0.24, u3 = 0.14, l4 = 0.34, u4 = 0.78, and l5 = 0.74, u5 = 0.98.

are rather crude, but sufficient to demonstrate the abilities of our optimality

criterion.

Using the introduced optimisation algorithms, we have shown by a set of re-

gression tasks that our definition of the best set of classifiers i) is able to dif-

ferentiate between patterns in the data and noise, ii) prefers simpler model

structures over more complex ones, and iii) can handle data where the level of

noise differs for different areas of the input space. These features have not been

available in any LCS before, without the requirement of manually tuning sys-

tem parameters that influence not only the model structure search procedure

but also the definition of what resembles a good set of classifiers. Being able

to handle different levels of noise is a feature that has, to our knowledge, not

been available in any LCS before, regardless of how the system parameters are

tuned. While it is certainly useful for regression and classification, it might ad-

ditionally be able to solve the issue of long-path learning in sequential decision

tasks, as we will discuss in the following chapter.

241

Chapter 9

Towards Reinforcement Learning

with LCS

Having until now concentrated on how LCS can handle regression tasks, let

us return to the prime motivator for LCS, which are sequential decision tasks.

There has been little theoretical LCS work that concentrates on these tasks

(for example, [30, 227]) despite some obvious problems that need to be solved

[11, 12, 76]. At the same time, other machine learningmethods have constantly

improved their performance in handling these tasks [127, 28, 207], based on

extensive theoretical advances. In order to catch up with these methods, LCS

need to refine their theory if they want to be able to feature competitive per-

formance. In this chapter we provide a strong basis for further theoretical

development and discuss some currently relevant issues.

Sequential decision tasks are, in general, characterised by having a set of states

and actions, where an action performed in a particular state causes a transition

to the same or another state. Each transition is mediated by a scalar reward,

and the aim is to perform actions in particular states such that the sum of re-

wards received is maximised in the long run. How to choose an action for a

given state is determined by the policy. Even though the space of possible poli-

cies could be searched directly, a more common and more efficient approach is

to learn for each state the sum of future rewards that one can expect to receive

from that state, and derive the optimal policy from that knowledge.

243

The core of Dynamic Programming (DP) is how to learn the mapping between

states and their associated expected sum of rewards, but to do so requires a

model of the transition probabilities and the rewards that are given. Reinforce-

ment Learning (RL), on the other hand, aims at learning this mapping, known

as the value function, at the same time as performing the actions, and as such

improves the policy simultaneously. It can do so either without any model of

the transitions and rewards — known as model-free RL — or by modelling the

transitions and rewards from observations and then using DP methods based

on these models to improve the policy – known asmodel-based RL. In this chap-

ter we mainly concentrate on model-free RL as it is the variant that has been

used most frequently in LCS.

If the state space is large or even continuous then the value function is not

learned for each state separately but rather modelled by some function ap-

proximation technique. However, this limits the quality of the discovered pol-

icy by how close the approximated value function is to the real value function.

Furthermore, the shape of the value function is not known beforehand, and

so the function approximation technique has to be able to adjust its resources

adaptively. Considering that LCS provide such adaptive regression models,

they seem to be a key candidate for approximating the value function of RL

methods; and this is in fact exactly what LCS are used for when applied to

sequential decision tasks: they act as adaptive value function approximation

methods to aid learning the value function of RL methods.

Due to early LCS pre-dating common RL methods, they have not always been

characterised as approximating the value function. In fact, the first comparison

between RL and LCS was done in [73], where Dorigo and Bersini show that a

Very Simple CS without generalisation and a slightly modified implicit bucket

brigade is equivalent to tabular Q-Learning. A more general study shows how

evolutionary computation can be used for reinforcement learning [174], but ig-

nores the development of XCS [240], where Wilson explicitly uses Q-Learning

as the RL component.

Recently, there has been some confusion [47, 226, 143] about how to correctly

implement RL in XCS(F), and this has caused XCS(F) to be modified in various

ways. To prevent further confusion, we show in this chapter how to correctly

derive variants of Q-Learning that use LCS function approximation from first

244

principles. This not only provides a formal basis for combining LCS with RL,

and as such gains from formal developments in RL, but also shows that XCS(F)

already performs correct RL without the need for modifications. Furthermore,

the derivations can act as an example for any LCS that aims at solving sequen-

tial decision tasks as the procedure is conceptually always the same.

To appropriately link LCS into RL we firstly need to introduce the formal ba-

sis for RL, which is formed by various DP methods. We aim at keeping this

introduction brief and provide a longer LCS-related version in [78]. Nonethe-

less, we discuss some stability issues that RL is known to have when the value

function is approximated, as these are particularly relevant — though mostly

ignored — when combining RL with LCS. Hence, after showing how to de-

rive the use of Q-Learning with LCS from first principles in Section 9.3 and

discussing the recent confusion around XCS(F), we show in Section 9.4 how

to analyse the stability of RL when used with LCS. Learning of long action

sequences is another issue that XCS is known to struggle with [11], and even

though a solution is proposed in [12], we show in Section 9.5 that this solution

does not apply to all problem cases. On the upside, the classifier set optimal-

ity criterion from Chapter 7 might not suffer from the same problems, as we

will discuss in Section 9.5.4. But firstly, let us define sequential decision tasks

more formally in Section 9.1, and introduce DP and RL methods that provide

solutions to such tasks in Section 9.2.

9.1 Problem Definition

We will concentrate on problems that are solvable by reinforcement learning

and are therefore describable by a Markov Decision Process (MDP). To stay

close to the notation that is common in the literature [17, 213], we assign to

some of the previously used symbols a new meaning. The definitions given in

this section are similar to the ones in [17, 78].

245

9.1.1 Markov Decision Processes

Let X be the set of states x ∈ X of the problem domain, that we assume to be
of finite size1 N , and hence we will map to the natural numbers N. We have

previously defined X as being the input space, but as the states are identified
by the input that is determined by the environmental state, we use state and

input interchangeably. In every state xi ∈ X we can perform an action a out of
a finite set A that causes a state transition to xj . The probability of getting to

state xj after performing action a in state xi is given by the transition function

p(xj|xi,a), which is a probability distribution over X , conditional on X × A.
Each such transition is meditated by a scalar reward rxixj

(a), defined by the

reward function r : X × X × A → R. The positive discount factor γ ∈ R with

0 < γ ≤ 1 determines the preference of immediate reward over future reward.

Therefore, the MDP that describes the problem is defined by the quintuple

{X ,A, p, r, γ}2. We have previously used γ to denote the step size for gradient-
based incremental methods in Chapter 5. In this chapter, the step size will be

denoted by α to conform to the RL literature [213].

The aim is for every state to choose the action that maximises the reward in

the long run, where future rewards are possibly valued less that immediate

rewards. A possible solution is represented by a policy µ : X → A, which
returns the chosen action a = µ(x) for any state x ∈ X . With a fixed pol-
icy µ, the MDP is reduced to a Markov chain with transition probabilities

pµ(xj|xi) = p(xj|xi, a = µ(xi)), and rewards r
µ
xixj

= rxixj
(µ(xi)). In such cases

we usually operate with the expected reward rµ
xi

=
∑

j p
µ(xj|xi)r

µ
xi,xj
. This

reward expresses what we would expect to receive when in state xi we are

choosing an action according to policy µ.

1Assuming a finite state space simplifies the presentation. Extending it to a continuous state
space requires considerablymore technical work. For examples of an analysis of reinforcement
learning in continuous state spaces see [130, 179].

2The problem definition and with it the solution to the problem changes when the discount
rate γ is changed. Thus, it is important to consider the discount rate γ as part of the problem
rather than a tunable parameter. This fact is ignored in some LCS research, where the discount
rate is modified to make the task seemingly easier to learn, when, in fact, the task itself is
changed.

246

9.1.2 The Value Function, the Action-Value Function and

Bellman’s Equation

The approach taken by dynamic programming (DP) and reinforcement learn-

ing (RL) is to define a value function V : X → R that expresses for each state

howmuch rewardwe can expect to receive in the long run. While we have pre-

viously used V to denote the mixing weight vectors, we will not need to refer

to them in this chapter and hence avoid any ambiguity. Let µ = {µ0, µ1, . . . } be
a sequence of policies where we use policy µt at time t, starting at time t = 0.

Then, the reward that is accumulated after n steps when starting at state x,

called the n-step return V µ
n for state x, is given by

V µ
n (x) = E

(

γnR(xn) +
n−1
∑

t=0

γtrµt

xtxt+1
|x0 = x

)

, (9.1)

where {x0,x1, . . . } is the sequence of states, and R(xn) denotes the expected

return that we will receive when starting from state xn. The return differs from

the reward in that it implicitly considers future reward.

In finite horizon cases, where n < ∞, the optimal policy µ is the one that max-
imises the expected return for each state x ∈ X , giving the optimal n-step re-
turn V ∗

n (x) = maxµ V
µ
n (x). Finite horizon cases can be seen as a special case of

infinite horizon caseswith zero-reward absorbing states [17]. For infinite horizon

cases, the expected return when starting at state x is analogously to Eq. (9.1)

given by

V µ(x) = lim
n→∞

E

(

n−1
∑

t=0

γtrµt

xixi+1
|x0 = x

)

. (9.2)

The optimal policy is the one that maximises this expected return for each

state x ∈ X , and results in the optimal value function V ∗(x) = maxµ V
µ(x).

Therefore, knowing V ∗, we can infer the optimal policy by

µ∗(x) = argmax
a∈A

E (rxx′(a) + γV ∗(x′)|x, a) . (9.3)

Thus, the optimal policy is given by choosing the action that maximises the ex-

pected sum of immediate reward and the discounted expected optimal return

of the next state. This reduces our goal of finding the policy that maximises

the reward in the long run to learning the optimal value function, which is the

247

approach taken by DP and RL. In fact, Sutton conjectures that

“All efficient methods for solving sequential decision problems

determine (learn or compute) value functions as an intermediate

step.”

which he calls the “Value-Function Hypothesis” [210].

In some cases, such as if we do not have a model of the transition function,

we cannot evaluate the expectation in Eq. (9.3). Then, it is easier to work with

the action-value function Q : X × A → R that estimates the expected return

Q(x, a) when taking action a in state x, and is for some policy µ defined by

Qµ(x, a) = lim
n→∞

E

(

rx0x1
(a) + γ

n−1
∑

t=1

γtrµ
xtxt+1

|x0 = x, a

)

= E(rxx′(a) + γV µ(x′)|x, a). (9.4)

We get V µ from Qµ by V µ(x) = Qµ(x, µ(x)). Given that we know the opti-

mal action-value function Q∗, getting the optimal policy µ∗ is simplified from

Eq. (9.3) to

µ∗(x) = argmax
a∈A

Q∗(x, a), (9.5)

that is, by choosing the action a in state x that maximises the expected return

given by Q∗(x, a).

Note that V ∗ and Q∗ are related by V ∗(x) = Q∗(x, µ∗(x)) = maxa∈AQ
∗(x, a).

Combining this relation with Eq. (9.4) gives us Bellman’s Equation

V ∗(x) = max
a∈A

E(rxx′(a) + γV ∗(x′)|x, a), (9.6)

which relates the optimal values of different states to each other, and to which

finding the solution forms the core of DP. Similarly, Bellman’s equation for a fixed

policy µ is given by

V µ(x) = E(rµ
xx′ + γV µ(x′)|x). (9.7)

248

9.1.3 Problem Types

The three basic classes of infinite horizon problems are stochastic shortest path

problems, discounted problems, and average reward per step problems, of

which a description can be found in [17, 78]. We will only consider discounted

problems and stochastic shortest path problems, where for the latter we re-

strict ourself to so-called proper policies that are guaranteed to reach the de-

sired terminal state. As the analysis of stochastic shortest path problems is

very similar to discounted problems, we only deal with discounted problems

explicitly. These are characterised by γ < 1 and a bounded reward function to

make the values V µ(x)well defined.

9.1.4 Matrix Notation

Rather than representing the value function for each state explicitly, it is con-

venient to exploit the finiteness of X and collect the values for each state into
a vector, which also simplifies the notation. Let V = (V (x1), . . . , V (xN))T be

the vector of size N that contains the values of the value function V for each

state xn. Let V ∗ and V µ denote the vectors that contain the optimal value

function V ∗ and the value function V µ for policy µ, respectively. Similarly, let

P µ = (p(xj|xi)) denote the transition matrix of the Markov chain for a fixed

policy µ, and let rµ = (rµ
x1
, . . . , rµ

xN
)T be the vector consisting of the expected

rewards when following this policy. With these definitions, we can rewrite

Bellman’s Equation for a fixed policy Eq. (9.7) by

V µ = rµ + γP µV µ. (9.8)

We will use this notation extensively in further developments.

249

9.2 Dynamic Programming and

Reinforcement Learning

Recall that in order to find the optimal policy µ∗, we aim at learning the optimal

value function V ∗ by Eq. (9.6), or the optimal action-value functionQ∗ for cases

where the expectation in Eqs. (9.6) and (9.3) is hard or impossible to evaluate.

In this section we introduce some common methods in RL that learn these

functions while traversing the state space, without building a model of the

transition and reward function. These methods are simulation-based approx-

imations to DP methods, and their stability is determined by the stability of

the corresponding DP method. Hence, we first introduce the DP methods that

they are based on, from which we derive the RL methods.

9.2.1 Dynamic Programming Operators

Bellman’s Equation (9.6) is a set of equations that cannot be solved analyti-

cally. Fortunately, several methods have been developed that make finding its

solution, all of which are based on the DP operators T and Tµ.

The operator T is given a value vector V and returns a new value vector that

is based on Bellman’s Equation (9.6). The ith element (TV)i of the resulting

vector TV is given by

(TV)i = max
a∈A

∑

xj∈X

p(xj|xi, a)
(

rxixj
(a) + γVj

)

. (9.9)

Similarly, for a fixed policy µ the operator Tµ is based on Eq. (9.7), and is given

by

(TµV)i =
∑

xj∈X

pµ(xj|xi)
(

rµ
xixj

+ γVj

)

, (9.10)

which, in matrix notation, is TµV = rµ + γP µV .

The probably most important property of both T and Tµ is that they form a

contraction mapping to the maximum norm [17]; that is, given two arbitrary

250

vectors V ,V ′, we have

‖TV − TV ′‖∞ ≤ γ‖V − V ′‖∞, and (9.11)

‖TµV − TµV
′‖∞ ≤ γ‖V − V ′‖∞, (9.12)

where ‖V ‖∞ = maxi |Vi| is the maximum norm of V . Thus, every update

with T or Tµ reduces the maximum distance between V and V ′ by at least the

factor γ. Applying them repeatedly will therefore lead us to some fixed point

TV = V or TµV = V , that is, according to the Banach Fixed Point Theorem

[233], unique.

Further properties of the DP operators are that the optimal value vectorV ∗ and

the value vectorV µ for policyV µ are the unique vectors that satisfy TV ∗ = V ∗

and TµV
µ = V µ, respectively, which follows from Bellman’s Equations (9.6)

and (9.7). As these vectors are the fixed points of T and Tµ, applying the opera-

tors repeatedly causes convergence to these vectors, that is, V ∗ = limn→∞ T nV ,

and V µ = limn→∞ T n
µ V for an arbitrary V , where T n and T n

µ denote n applica-

tions of T and Tµ, respectively. A policy µ is optimal if and only if TµV
∗ = TV ∗.

Note that there can be several optimal policies [17].

9.2.2 Value Iteration and Policy Iteration

The method of value iteration is a straightforward application of the contrac-

tion property of T and is based on applying T repeatedly to an initially arbi-

trary value vector V until it converges to the optimal value vector V ∗. Conver-

gence can only be guaranteed after an infinite number of steps, but the value

vector V is usually already close to V ∗ after few iterations.

As an alternative to value iteration, policy iteration will converge after a finite

number of policy evaluation and policy improvement steps. Given a fixed policy

µt, policy evaluation finds the value vector for this policy by solving Tµt
V µt =

V µt . The policy improvement steps generates a new policy µt+1 based on the

current V µt , such that Tµt+1
V µt = TV µt . Starting with an initially random

policy µ0, the sequence of policies {µ0, µ1, . . . } generated by iterating policy
evaluation and policy improvement is guaranteed to converge to the optimal

policy within a finite number of iterations [17].

251

Various variants to these methods exist, such as asynchronous value iteration,

that at each application of T only updates a single state of V . Modified policy

iteration performs the policy evaluation step by approximating V µ by T n
µ V

for some small n. Asynchronous policy iteration mixes asynchronous value

iteration with policy iteration by at each step either i) updating some states

of V by asynchronous value iteration, or ii) improving the policy of some set

of states by policy improvement. Convergence criteria for these variants are

given in [17].

9.2.3 Approximate Dynamic Programming

If N is large, we prefer to approximate the value function rather than repre-

senting the value for each state explicitly. Let Ṽ denote the vector that holds

the value function approximations for each state, as generated by a function

approximation technique as an approximation to V . Approximate value iter-

ation is performed by approximating the value iteration update Vt+1 = TVt

by

Ṽt+1 = ΠT Ṽt, (9.13)

where Π is the approximation operator that, for the used function approxima-

tion technique, returns the value function estimate approximation Ṽt+1 that is

closest to Vt+1 = T Ṽt by Ṽt+1 = argminṼ ‖Ṽ − Vt+1‖. As shown in [25], this
procedure might, due to the nonlinearity of T , diverge when used even with

the most common approximation architectures, such as linear or quadratic re-

gression, local weighted regression, or neural networks. As shown in [95], sta-

bility is guaranteed if the approximation is a non-expansion to the maximum

norm, that is, if for any two V ,V ′ the approximation operator Π conforms

to ‖ΠV − ΠV ′‖∞ ≤ ‖V − V ′‖∞. This requirement is satisfied by the class
of averagers, which contain “[. . .] local weighted averaging, k-nearest neigh-

bour, Bézier patches, linear interpolation, bilinear interpolation on a square

(or cubical, etc.) mesh, as well as simpler methods like grids and other state

aggregations.” [95].

Approximate policy iteration, on the other hand, has less stability problems,

as the operator Tµ used for the policy evaluation step is linear. While the pol-

icy improvement step is performed as for standard policy iteration, the policy

252

evaluation step is based on an approximation of V µ. As Tµ is linear, there are

several possibilities of how to perform the approximation, which are outlined

in [78, 195]. Here, we concentrate on the temporal-difference solution which

aims at finding the fixed point Ṽ µ = ΠTµṼ
µ by the update Ṽ

µ
t+1 = ΠTµṼ

µ
t .

This iteration has been analysed extensively for linear approximation architec-

tures [196, 197]. Nonetheless, as Tµ forms a contraction to the maximum norm,

it is guaranteed to converge even if the approximation is nonlinear, as long as

it forms a non-expansion to the maximum norm.

9.2.4 Temporal-Difference Learning

Even thought temporal-difference (TD) learning is an incremental method for

policy evaluation that was initially developed in [211] as a modification of

the Widrow-Hoff rule [237], we here describe only the TD(λ) operator T
(λ)
µ

as it forms the basis of SARSA(λ), and gives us some necessary information

about Tµ. For more information on temporal-difference learning, we refer the

interested reader to [78] and [17].

The temporal-difference learning operator T
(λ)
µ is parameterised by 0 ≤ λ ≤ 1,

and, when applied to V results in [218]

(T (λ)
µ V)i = (1− λ)

∞
∑

m=0

λm
E

(

m
∑

t=0

γtrµ
xtxt+1

+ γm+1Vm+1|x0 = xi

)

, (9.14)

for λ < 1. The definition for λ = 1 is given in [78]. The expectation in the above

expression is equivalent to the n-step return V µ
n Eq. (9.1), which shows that

the temporal-difference update is based on mixing returns of various lengths,

where the mixing coefficients are controlled by λ. To implement the above

update incrementally, Sutton uses eligibility traces that propagate current tem-

poral differences to previously visited states [211].

Its most interesting property for our purpose is that T
(λ)
µ forms a contraction

mapping with respect to the weighted norm ‖ · ‖D, which is defined as given
in Section 5.2, and the diagonal weight matrix D is given by the steady-state

distribution of the Markov chain P µ that corresponds to policy µ [218, 17].

253

More formally, we have for any V ,V ′,

‖T (λ)
µ V − T (λ)

µ V ′‖D ≤
γ(1− λ)

1− γλ ‖V − V ′‖D ≤ γ‖V − V ′‖D. (9.15)

Note that Tµ ≡ T
(0)
µ , and therefore Tµ also forms a contraction mapping with

respect to ‖ · ‖D, which means that we can guarantee stability of approximate
policy iteration even when the approximation architecture conforms to a non-

expansion with respect to ‖ · ‖D, rather than only ‖ · ‖∞.

9.2.5 SARSA(λ)

Coming to the first reinforcement learning algorithm, SARSA stands for State-

Action-Reward-State-Action, as SARSA(0) requires only information on the

current and next state/action pair and the reward that was received for the

transition. Its name was coined by Sutton [212] for an algorithm that was de-

veloped in [194] in its approximate form, which is very similar toWilson’s ZCS

[239], as discussed by Sutton and Barto in [213, Ch. 6.10].

It conceptually performs policy iteration and uses TD(λ) to update its action-

value function Q. More specifically it performs optimistic policy iteration,

where in contrast to standard policy iteration the policy improvement step

is based on an incompletely evaluated policy. As the value update is based on

the state trajectory of the current policy, this method is an on-policymethod. A

summary of its convergence properties with and without the use of function

approximation are given in [78].

9.2.6 Q-Learning

The much-celebrated Q-Learning was developed by Watkins [231] as a result

of combining TD-learning and DP methods. It is similar to SARSA(0), but

rather than using the Q-value of the next state/action pair to update the Q-

value of the last state/action pair, it uses the Q-value that would result from

following a greedy policy, that is, by choosing the action that maximises the

current estimate of the expected reward. Hence, Q-Learning is called an off-

254

policymethod.

For a sequence of states {x0,x1, . . . } and actions {a0, a1, . . . }, the Q-values are
updated by

Qt+1(xt, at) = Qt(xt, at) + αt

(

rxtxt+1
(at) + γmax

a∈A
Qt(xt+1, a)−Qt(xt, at)

)

,

(9.16)

where αt denotes the step size at time t. Hence, the estimate for Qt(xt, at)

is updated by rxtxt+1
(at) + γV ∗

t (xt+1), where V
∗
t (xt+1) = maxa∈AQt(xt+1, a) is

the current estimate for the expected return of the next state xt+1 when fol-

lowing a greedy policy. This shows that Q-Learning is an approximation to

asynchronous value iteration that performs the update with the actual reward

rather than its expectation. As a result of this, Q-Learning is guaranteed to

converge to the optimal Q∗-values, given that all state/action pairs are visited

an infinite number of times [232].

A variant of Q-Learning, called Q(λ), is an extension that uses eligibility traces

like TD(λ) as long as it performs on-policy actions [232]. As soon as an off-

policy action is chosen, all traces are reset to zero, as the off-policy action

breaks the temporal sequence of predictions. Hence, the performance increase

due to traces depends significantly on the policy that is used, but is usually

marginal. In [76] we have shown that, when used in XCS, it performs even

worse than standard Q-Learning.

As Q-Learning is a step-wise approximation of asynchronous value iteration,

function approximations for which the latter diverges will very likely not work

with Q-Learning either. This also applies for linear approximation architec-

tures, for which Q-Learning was demonstrated to diverge in some cases [27].

9.3 Reinforcement Learning with LCS

Performing RL with LCS means to use LCS to approximate the action-value

function estimate. RL methods upgrade this estimate incrementally, and we

can only use LCS with RL if the LCS implementation can handle incremen-

tal learning. Additionally, while approximating the action-value function is

255

a simple univariate regression task, the function estimate to approximate is

non-stationary due to its sequential update. Thus, in addition to incremental

learning, the LCS implementation needs to be able to handle non-stationary

target functions.

In this section we will show how to derive Q-Learning with the LCS model as

introduced in Chapter 4 to approximate the action-value function. The deriva-

tion is performed from first principles to make explicit the usually implicit

design decisions. As we have not developed an incremental LCS, we assume

the model structureM to be fixed and concentrate purely on how to update

the model parameters θ. In particular, we focus on the classifier parameter

updates, as these are the most relevant with respect to reinforcement learning.

Even though we have derived Bayesian update equations in Chapter 7 that

protect against overfitting, we will in this section fall back to the principle of

maximum likelihood, as was done in Chapter 4, as it forms the basis for the

incremental methods described in Chapters 5 and 6. Using the Bayesian LCS

model for RL is postponed until an incremental implementation is available.

Nonetheless, the underlying principles remain the same, and as given here,

the update equations conform exactly to XCS(F). Thus, we explicitly show the

design principles underlying the use of Q-Learningwith XCS(F), which should

add clarity to some of the confusion about how to implement gradient descent

in XCS(F), as we will discuss in Section 9.3.6. Additionally, it allows us to

derive a more accurate classifier update method for XCS(F) based on the noise

precision estimation methods developed in Chapter 5.

Firstly, we introduce the approximation operator that describes how the LCS

model according to Chapter 4 approximates the value function. This is fol-

lowed by discussing how the principle of independent classifier training re-

lates to how DP and RL update the value and action-value function estimates,

which is essential for the use of LCS to perform RL. As Q-Learning is based

on asynchronous value iteration, we first show how LCS can perform asyn-

chronous value iteration and then derive two Q-Learning variants — one

based on LMS, and the other on RLS. Finally, we relate our derivations to other

work that has been performed on XCS(F) with gradient descent.

256

9.3.1 Approximating the Value Function

Given a value vector V , LCS approximates it by a set of K localised models

{Ṽk} that are combined to form a global model Ṽ . The localised models are
provided by the classifiers, and the mixing model is used to combine these to

the global model.

Each classifier k matches a subset of the state space that is determined by its

matching function mk which returns for each state x the probability mk(x) of

matching it. Let us for now assume that we approximate the value function V

rather than the action-value function Q. Then, classifier k provides the prob-

abilistic model p(V |x,θk) that gives the probability of the expected return of

state x having the value V . Assuming linear classifiers Eq. (5.3), this model is

given by

p(V |x,θk) = N (V |wT
k x, τ−1

k), (9.17)

where we assume x to be the vector of size DX that represents the features of

the corresponding input, wk denotes the weight vector of size DX , and τk is

the scalar non-negative noise precision. As shown in Eq. (5.10), following the

principle of maximum likelihood results in the approximation

Ṽk = ΠkV , (9.18)

where Πk = X(XT MkX)−1XT Mk is the projection matrix that provides the

matching-weightedmaximum likelihood estimate approximation toV , andX

andMk denote the state matrix by Eq. (3.3) and the diagonal matching matrix

Mk = diag(mk(x1), . . . ,mk(x2)), respectively. Thus, Πk can be interpreted as

the approximation operator for classifier k that maps the value function vector

V to its approximation Ṽk.

Given the classifier approximations {Ṽ1, . . . , ṼK}, the mixing model combines
them to a global approximation. For a particular state x, the global approxi-

mation is given by Ṽ (x) =
∑

k gk(x)Ṽk(x), where the functions {gk} are deter-
mined by the chosen mixing model. Possible mixing models and their train-

ing are discussed in Chapter 6, and we will only assume that the used mixing

model honours matching by gk(x) = 0 if mk(x) = 0, and creates a weighted

average of the local approximations by gk(x) ≥ 0 for all x, k, and
∑

k gk(x) = 1

257

for all x. Thus, the global approximation Ṽ of V is given by

Ṽ = ΠV , with ΠV =
∑

k

GkΠkV , (9.19)

where theGk’s are diagonalN×N matrices that specify the mixing model and
are given by byGk = diag(gk(x1), . . . , gk(xN)). The approximation operator Π

in Eq. (9.19) defines how LCS approximate the value function, given a fixed

model structure.

9.3.2 Bellman’s Equation in the LCS Context

Any DP or RL method is based on relating the expected return estimate for

the current state to the expected return estimate of any potential next state.

This can be seen when inspecting Bellman’s Equation (9.6), where the value

of V ∗(x) is related to the values V ∗(x′) for all x′ that are reachable from x.

Similarly, Q-Learning Eq. (9.16) updates the action-valueQ(xt, at) by relating it

to the action-valuemaxa∈AQ(xt+1, a) of the next state that predicts the highest

expected return.

According to the LCS model as given in Chapter 4, each classifier models the

value function over its matched area in the state space independently of the

other classifiers. Let us consider a single transition from state x to state x′

by performing action a. Given that classifier k matches both states, it could

update its local model of the value function Ṽk(x) for x by relating it to its own

local model of the value function Ṽk(x
′) for x′. However, what happens if x′ is

not matched by classifier k? In such a case we cannot rely on its approximation

Ṽk(x
′) as the classifier does not aim at modelling the value for this state. The

most reliable model in such a case is in fact given by the global model Ṽ (x′).

Generally, we will use the global model for all updates, regardless of whether

the classifier matches the next state or not. This is justified by the observation

that the global model is on average more accurate that the local models, as

we have established in Chapter 6. Based on this principle, we can reformulate

258

Bellman’s Equation V ∗ = TV ∗ for LCS with independent classifiers to

Ṽ ∗
k = ΠkT Ṽ ∗ = ΠkT

∑

k

GkṼ
∗

k , k = 1, . . . , K, (9.20)

where Πk expresses the approximation operator for classifier k, that does not

necessarily need to describe a linear approximation. By adding
∑

k Gk to both

sides of the first equality of Eq. (9.20) and using Eq. (9.19), we get the alterna-

tive expression Ṽ ∗ = ΠT Ṽ ∗, which shows that Eq. (9.20) is in fact Bellman’s

Equation with LCS approximation. Nonetheless, we prefer to express this re-

lation by Eq. (9.20), as it shows what the classifiers model rather than what

the global model models. For a fixed model structure M, any method that
performs DP or RL with LCS should aim at finding the solution to Eq. (9.20).

9.3.3 Asynchronous Value Iteration with LCS

Let us describe approximate value iteration before we derive its asynchronous

variant: as given in Section 9.2.3, approximate value iteration is performed by

the iteration Vt+1 = ΠTVt. Therefore, using Eq. (9.19), value iteration with

LCS is given by the iteration

Ṽk,t+1 = ΠkVt+1, with Vt+1 = T
∑

k

Gk,tṼk,t, (9.21)

which has to be performed by each classifier separately. We have split the iter-

ation into two components to show that firstly we find the updated value vec-

tor Vt+1 by applying the T operator to the global model, and then approximate

this value vector for each classifier separately. We have added the subscript ·t
to the mixing models Gk to express that they depend on the current approxi-

mation and therefore change with each iteration. Note that the fixed point of

Eq. (9.21) is the desired Bellman Equation in the LCS context Eq. (9.20).

We get the elements of the updated value vector Vt+1 by Eqs. (9.21) and (9.9),

which results in

Vt+1(xi) = max
a∈A

∑

xj∈X

p(xj|xi, a)

(

rxixj
(a) + γ

∑

k

gk,t(xj)Ṽk,t(xj)

)

, (9.22)

259

where Vt+1(xi) denotes the ith element of Vt+1, and Ṽk,t(xj) denotes the jth

element of Ṽk,t. Subsequently, each classifier is trained by batch learning, based

on Vt+1 and its matching function, as described in Section 5.2. This completes

one iteration of LCS approximate value iteration.

The only modification introduced by the asynchronous variant is that rather

than updating the value function for all states at once, a single state is picked

per iteration, and the value function is updated for this state, as already de-

scribed in Section 9.2.2. Let {xi1 ,xi2 , . . . } be the sequence of states that deter-
mine with state is updated at which iteration. Thus in the tth iteration we com-

pute Vt(xit) by Eq. (9.22), which results in the sequence {V1(xi1), V2(xi2), . . . }
that can be used to incrementally train the classifiers by a method of choice

from Section 5.3. For the asynchronous variant we cannot use batch learning

anymore, as not all elements of Vt+1 are available at once.

9.3.4 Q-Learning by Least Mean Squares

So far we have operated on the value function estimate under the assumption

that the transition and reward functions of the given problem are known. Q-

Learning does not make this assumption and uses the action-value function

instead. This needs to be reflected in the LCS model, by redefining the input

space to be the space of all state/action pairs. Thus, given state x and action

a, the matching probability of classifier k is given by mk(x, a), and the ap-

proximation of its action-value by Q̃k(x, a). Mixing is also based on state and

action, where the mixing coefficient for classifier k is given by gk(x, a). This

results in the global approximation of the action-value for state x and action a

to be given by

Q̃(x, a) =
∑

k

gk(x, a)Q̃k(x, a). (9.23)

As described in Section 9.2.6, Q-Learning approximates asynchronous value

iteration by performing the update of the action-value function with the actual

reward rather than its expectation. The expectation that is referred to is the

260

part of Eq. (9.22) given by

E

(

rxixj
(a) + γ

∑

k

gk,t(xj)Ṽk,t(xj)|xi, a

)

=
∑

xj∈X

p(xj|xi, a)

(

rxixj
(a) + γ

∑

k

gk,t(xj)Ṽk,t(xj)

)

. (9.24)

The approximated value of the next state Ṽt(xj) =
∑

k gk,t(xj)Ṽk,t(xj) is re-

placed by the current estimate for the expected return of the next state xj when

following a greedy policy thereafter, and is given by maxa∈A Q̃t(xj, a), where

Q̃t(xj, a) is the global model’s action-value function estimate Eq. (9.23). Thus,

given a transition from xt to xt+1 under action at, the estimate for the action-

value for state xt and action at is updated by

Qt+1(xt, at) = rxtxt+1
(at) + γmax

a∈A
Q̃t(xt+1, a). (9.25)

As shown in Section 5.1.3, the maximum likelihood weight parameter of

a linear classifier model Q̃k(x, a) = wT
k x can be found by solving the

linear least squares problem Eq. (5.5). Applied to Q-Learning with LCS,

each classifier k aims at modelling the matched elements of the sequence

{Q1(x0, a0), Q2(x1, a1), . . . }, and thus, at time t aims at finding the weight vec-
tor wk that minimises

t
∑

m=0

mk(xm, am)
(

wT
k xm −Qm+1(xm, am)

)2
. (9.26)

We can now apply any incremental learning method for linear models to train

the classifiers. Using the normalised least mean squared (NLMS) algorithm as

described in Section 5.3.4, the weight vector estimate update for classifier k is

given by

ŵk,t+1 = ŵk,t + αmk(xt, at)
xt

‖xt‖2
(

Qt+1(xt, at)− ŵT
k xt

)

, (9.27)

where α denotes the step size, and Qt+1(xt, at) is given by Eq. (9.25). As we

will discuss in more detail in Section 9.3.6, this is the weight vector update of

XCSF.

261

To get the noise variance of the model, we estimate it by the LMS algorithm,

as described in Section 5.3.7. This results in the update equation

τ̂−1
k,t+1 = τ̂−1

k,t + αmk(xt, at)
(

(

ŵT
k,t+1xt −Qt+1(xt, at)

)2 − τ̂−1
k,t

)

,

where α is again the scalar step size, and Qt+1(xt, at) is given by Eq. (9.25).

9.3.5 Q-Learning by Recursive Least Squares

As we have shown in Chapter 5, incremental methods based on gradient de-

scent might suffer from slow convergence rates. Thus, despite their higher

computational and space complexity, methods based on directly tracking the

least squares solution are to be preferred. In this section we will reformulate

Q-Learning with LCS to use recursive least squares (RLS) and direct noise pre-

cision tracking.

The action-value function estimate we approximate is non-stationary, which

we take into account by using the recency-weighted RLS variant that puts

more weight on recent observations. This was not an issue for the NLMS algo-

rithm, as it performs recency-weighting implicitly.

Minimising the recency-weighted variant of the sum of squared errors

Eq. (9.26), the update equations are according to Section 5.3.5 given by

ŵk,t+1 = λmk(xt,at)ŵk,t +mk(xt, at)Λ
−1
k,t+1xt

(

Qt+1(xt, at)− ŵT
k,txt

)

(9.28)

Λ
−1
k,t+1 = λ−mk(xt,at)Λ

−1
k,t , (9.29)

−mk(xt, at)λ
−mk(xt,at)

Λ
−1
k,txtx

T
t Λ

−1
k,t

λmk(xt,at) +mk(xt, at)xT
t Λ

−1
k,txt

,

where Qt+1(xt, at) is given by Eq. (9.25), and ŵk,0 and Λ
−1
k,0 are initialised by

ŵk,0 = 0 and Λk,0 = δI , where δ is a large scalar. λ determines the recency

weighting, which is strongest for λ = 0, where only the last observation is con-

sidered, and deactivated when λ = 1. Even though more empirical experience

is needed, λ = 0.95might be a good starting point.

Using the RLS algorithm to track the least squares approximation of the action-

262

values for each classifier allows us to directly track the classifier’s model noise

variance, as described in Section 5.3.7. More precisely, we track the sum of

squared errors, denoted by sk,t for classifier k at time t, and can the compute

the noise precision by Eq. (5.63). By Eq. (5.69), the sum of squared errors is

updated by

sk,t+1 = λm(xt,at)sk,t +mk(xt, at)(ŵ
T
k,txt −Qt+1(xt, at))(ŵ

T
k,t+1xt −Qt+1(xt, at)),

(9.30)

starting with sk,0 = 0.

Recursive Least Squares has already been introduced in XCS in [143, 144], but

has never been derived from first principles before. Furthermore, there are, to

our knowledge, no studies that apply this XCS variant to sequential decision

problems. We have already investigated the incremental noise precision up-

date as given in this chapter for simple regression tasks [156], but it has not yet

been applied to sequential decision tasks either.

9.3.6 XCS with Gradient Descent

Some recent work [47, 45] has caused a significant amount of confusion over

how XCS performs Q-Learning, and how this can be enhanced by the use of

gradient descent [226, 227, 141, 140]. In this section we aim at clarifying this

issue, based on showing that Eq. (9.27) is exactly the update equation that is

used by XCS(F). We have derived Eq. (9.27) by using the NLMS algorithm to

find the weight vector wk that minimises Eq. (9.26). This algorithm performs

stochastic incremental gradient descent on the error function, as described in

Section 5.3.4. Thus, Eq. (9.27) describes a gradient-based algorithm to make

each classifier model the action-value function, and consequently, XCS(F) al-

ready performs gradient descent and do not need to be modified. As XCSF is

(besides the MAM update) equivalent to XCS ifDX = 1, we will only consider

XCSF in the following discussion.

To show the equivalence between XCSF and Eq. (9.27), let us describe the

operation of XCSF in more detail: upon arriving at state xt, XCSF forms a

match set that contains all classifiers for that mk(xt, a) > 0, independent of

the action a. The match set is then partitioned into one subset per possible

263

action, resulting in |A| subsets. The subset associated with action a contains
all classifiers for that mk(x, a) > 0, and for each of these subsets the action-

value estimate Q̃t(xt, a) =
∑

k gk(xt, a)Q̃k,t(xt, a) is calculated, resulting in

the prediction vector (Q̃t(xt, a1), . . . , Q̃t(xt, a|A|)) that predicts the expected re-

turn for the current state xt and each possible action that can be performed.

Based on this prediction vector, an action at is chosen and performed, lead-

ing to the next state xt+1 and reward rxtxt+1
(at). The subset of the match set

that promoted the chosen action becomes the action set that contains all clas-

sifiers such that mk(xt, at) > 0. At the same time, a new prediction vector

(Q̃t(xt+1, a1), . . . , Q̃t(xt+1, a|A|)) for state xt+1 is formed, and its largest element

is chosen, giving maxa∈A Q̃t(xt+1, a). Then, all classifiers in the action set are

updated by themodified delta rule (which is equivalent to the NLMS algorithm)

with the target value rxtxt+1
(at)+γmaxa∈A Q̃t(xt+1, a). The update in Eq. (9.27)

uses exactly this target value, as given by Eq. (9.25), and updates the weight

vector of each classifier for whichmk(xt, at) > 0, which are the classifiers in the

action set. This shows that Eq. (9.27) describes the weight vector update as it is

performed in XCSF, and therefore XCS(F) performs gradient descent without

any additional modification.

The initial investigation on how to add gradient descent to XCS was done by

Butz, Goldberg and Lanzi in [47, 45], based on Chapter 6.4 of [213]. There,

the action-value update equation differs from the one used in XCS by an addi-

tional gradient term, given by the partial derivative of the action-value func-

tion approximation with respect to the approximation method’s parameters.

In the derivation of [47, 45] Butz et al. do not consider that classifiers are

trained independently, and thus they aim at minimising

t
∑

m=0

(

Q̃t(xm, am)−Qm+1(xm, am)
)2

, (9.31)

rather than

t
∑

m=0

mk(xm, am)
(

Q̃k,t(xm, am)−Qm+1(xm, am)
)2

, (9.32)

for each classifier independently. XCS uses averaging classifiers with local

models Q̃k(x, a) = ŵk, and the global model Q̃(x, a) =
∑

k gk(x, a)Q̃k(x, a),

where gk(x, a) is given by the normalised fitness of classifier k. Thus, the par-

264

tial derivative of Q̃(x, a)with respect to the classifier parameterwk is in [47, 45]

given by

∂Q̃(x, a)

∂wk

= gk(x, a), (9.33)

which is added to the parameter update to result in

ŵk,t+1 = ŵk,t + αmk(xt, at)(Q̃t+1(xt, at)− ŵk,t)gk(xt, at). (9.34)

However, considering that the classifiers are trained independently, one needs

by Eq. (9.32) to add the partial derivate of Q̃k,t(x, a) with respect to wk, which

is 1, rather than gk(x, a). Therefore, the update equation remains unchanged,

which shows from a different perspective that XCS already performs gradient

descent.

Subsequently, Wada et al. [226] correctly point out that the derivation in [47,

45] is incorrect, as when deriving the partial derivative ∂Q̃(x, a)/∂wk, it ignores

that the value of gk(x, a) is a function of wk and thus gk(x, a) also needs to be

differentiated. On the downside, they also ignore that the classifiers are trained

independently and conclude that “[. . .] XCS’s reinforcement process is shown

to be inconsistent with Q-learning with FA [. . .]” [227] and cannot be modified

to conform to it.

In a further study [141], Lanzi and Loiacono suggest that the apparent

gradient-term introduced for XCS in [47, 45] and for XCSF in [143] actually

implements averaging RL rather than standard RL. Averaging RL are charac-

terised by minimising

t
∑

m=0

(

Q̃t(xm, am)−Qm+1(xm, am)
)2

xm, (9.35)

instead of Eq. (9.31), where Q̃t(xm, am) is a linear model of xm. This makes

them being member of the class of averagers (see Section 9.2.3) and therefore

guarantees convergence if used for approximate value iteration [94]. In Lanzi

and Loiacono’s derivation they do not consider the independent training of

the classifiers, and characterise both XCS and XCSF as linear models, where

the global model prediction is formed by a linear combination of the model

parameters and some input-dependent coefficients. These coefficients, how-

ever, are a function of the classifier fitness which subsequently also depend

265

on the model parameters. Therefore, the characterisation of XCS and XCSF as

linear models is formally incorrect, as they are, in fact, nonlinear models. This

also formally invalidates the characterisation of both systems as averaging RL

methods.

Interestingly, the modifications introduced in [47, 45] actually improved the

performance of XCS in sequential decision tasks, even though these modifica-

tions are formally not gradient descent. The performance remains unchanged

for XCSF, as reported in [143]. In [78] we have conjectured without providing

empirical evidence that the performance increase in XCS can be attributed to

a lack of generalisation. Independently, the same conjecture was later given in

[141], and it was shown in a multiplexer task that the initial number of clas-

sifiers is indeed larger than when using standard XCS. A further study [140]

that aimed at testing our conjecture, however, shows that the generality of the

classifiers is about equal when comparing the standard andmodified XCS. The

performance, on the other hand, was always worse for the modified version.

To summarise, we have shown that XCS(F) already performs gradient descent

and do not need to be modified, in contrast to what is presented in [47, 45, 226,

227, 143, 141, 140]. Although the introduced modification seems to be a good

heuristic as it is reported in [41, 45] to improve the performance significantly,

in other studies it seems to decrease the performance [141, 140]. In any case,

calling it “XCS(F) with gradient descent” is formally not correct. Overall, as

there are no conclusive results about its usefulness and it does not fit correctly

into a formulation of XCS(F), we question if it should be used in LCS.

9.4 Stability Issues

We have already pointed out in Section 9.2.3 that some combinations of DP

with function approximation can lead to divergence, and RL suffers from the

same issues, as it is a simulation-based approximation to DP. In fact, conver-

gence of RL with value function approximation is frequently analysed (for ex-

ample, [218, 17, 16, 130]) by showing that the underlying DP method is stable

when used with this function approximation method, and that the difference

between the RL and the DP method converges to zero over time.

266

In this section we investigate whether the LCS approximation architecture is

stable when used with DP. While value iteration is certainly the most critical

method, as Q-Learning is based on it, we will also discuss the use of LCS

with policy iteration. We will not provide conclusive answers, but show initial

results that can lead to such answers.

As we will discuss in the next section, the LCS model is trained on two levels,

each of which can contribute to ensuring stability when using LCS with DP.

Thus, we will discuss the question of stability for each of these layers sepa-

rately.

9.4.1 LCS Training on the

Structure and the Parameter Level

In order to provide an approximation to the action-value function, we want

on one hand to find a good set of classifiers, and on the other hand to find the

correct values for the classifier and mixing model parameters for that set of

classifiers. In other words, we want to find a good model structureM, and
then the correct model parameters θ for that model structure, as discussed in

Chapter 3.

Learning the model structure means to improve it by removing, adding, and

replacing classifiers inM. Before we can do that, we need to evaluate the qual-
ity of each classifier, which requires us to train the model parameters. Thus

LCS training is performed on the model structure level and the model param-

eter level. However, as improving the model structure requires having a good

estimate of the model parameters, learning on the model structure level is al-

ways slower than on the parameter level. We will now discuss the stability of

the interaction of DP with learning on each of these levels separately.

9.4.2 Stability on the Structure Learning Level

Divergence of DP with function approximation is expressed by the values of

the value function estimate rapidly growing out of bounds (for example, [25]).

267

Let us assume that for some fixed LCS model structure, the parameter learning

process diverges when used with DP, and that there exist model structures for

which this is not the case.

Divergence of the parameters usually happens locally, that is, not for all classi-

fiers at once. Therefore, we can detect it by monitoring the model error of sin-

gle classifiers, which, for linear classifier models as given in Chapter 5, would

be the model noise variance. Subsequently, divergent classifiers can be de-

tected and replaced until the model structure allows the parameter learning to

be compatible with the used DP method.

XCSF uses linear classifier models and Q-Learning, but such combinations are

known to be unstable [25]. However, to our knowledge, XCSF has never been

reported to show divergent behaviour. Thus, we conjecture that it provides

stability on the model structure level by replacing divergent classifiers with

potentially better ones.

Would the classifier set optimality criterion that we have introduced in Chap-

ter 7 also provide us with a safeguard against divergence at the model struc-

ture level; that is, would divergent classifiers be detected? In contrast to

XCS(F), the criterion we have presented does not assume a classifier to be a

bad local model as soon as its model error is above a certain threshold. Rather,

the localisation of a classifier is inappropriate if its model is unable to capture

the apparent pattern that is hidden in the noisy data. Therefore, it is not im-

mediately clear if the criterion would detect the divergent model as a pattern

that the classifier cannot model, or if it would assume it to be noise.

In any case, providing stability on the model structure level is to repair the

problem of divergence after it occurred, and relies on the assumption that

changing the model structure does indeed provide us with the required sta-

bility. We do not consider this a satisfactory solution and rather focus on pre-

venting the problem from occurring at all, as discussed in the next section.

268

9.4.3 Stability on the Parameter Learning Level

Given a fixed model structure M, we aim at providing parameter learning
that is guaranteed to converge when used with DP methods. Recall from Sec-

tion 9.2.3 that both value iteration and the policy evaluation step of policy

iteration are guaranteed to converge if the function approximation forms a

non-expansion to the maximum norm ‖ · ‖∞. As by Section 9.2.4, approximate
policy evaluation of policy µ is also stable if the function approximation forms

a non-expansion with respect to the weighted norm ‖ · ‖D whereD is given by
the steady-state probabilities of the Markov chain P µ associated with µ. Let

us now discuss if LCS provide the required non-expansion property, first with

respect to ‖ · ‖∞, and then with respect to ‖ · ‖D.

Observe that having a single classifier that matches all states is a valid model

structure. In order for this model structure to provide a non-expansion, the

classifier model itself must form a non-expansion. Therefore, to ensure that

the LCS model provides the non-expansion property for any model structure,

every classifier model needs to form a non-expansion, and any mixture of a

set of localised classifiers that forms the global LCS model needs to form a

non-expansion as well. Formally, if ‖ ·‖ denotes the norm in question, we need

‖ΠV − ΠV ′‖ ≤ ‖V − V ′‖ (9.36)

to hold for any two V ,V ′, where ΠV =
∑

k GkΠkV by Eq. (9.19). For a single

classifier k = 1 that matches all states we haveG1 = I and consequentlyΠV =

Π1V , as theGk’s need to satisfy
∑

k Gk = I . Thus, the classifier approximation

Πk also needs to satisfy

‖ΠkV −ΠkV
′‖ ≤ ‖V − V ′‖ (9.37)

for any two V ,V ′. Let us now consider for ‖ · ‖∞ and ‖ · ‖D separately if
these requirements hold. Detailed derivations for the results given here are

not replicated as they require the introduction of further concepts that are not

directly related to LCS. The derivations with all details can be found in [78, 79,

80]

269

Non-expansion with respect to ‖ · ‖∞

In [79, 80] we have analysed the convergence of value iteration in LCS when

averaging classifiers, characterised by inputs x = 1, are used. We have shown

that the approximation Πk of such classifiers forms a non-expansion with re-

spect to ‖ · ‖∞, and consequently guarantees stability at the classifier level.
Furthermore, if the mixing weightsGk are stationary, then we have shown the

global model Π also to provide such a non-expansion, expressed by Eq. (9.36)

with respect to ‖ · ‖∞. As a result, we can guarantee convergence of value it-
eration with LCS, given that the mixing weights are stationary. We have also

made some progress for non-stationary mixing weights in the same study, but

final results are still pending. Nonetheless, we have shown by a counterex-

ample that a non-expansion is not guaranteed for arbitrary mixing weights,

showing that the choice of mixing model matters when considering the stabil-

ity of RL with LCS.

Considering general linear classifier models, it was shown by Gordon [95]

that even simple straight line models do not form the required non-expansion,

which possibly leads to divergence when used with value iteration, as demon-

strated by Boyan in [25]. Given that each classifier model in LCS needs by

Eq. (9.37) to form a non-expansion, using general linear classifier models does

not allow us to guarantee their stability when used with value iteration. A

possible alternative would be to use averaging RL [94] at the classifier level,

but whether that can guarantee the global model to also form a non-expansion

still needs to be investigated.

Non-expansion with respect to ‖ · ‖D

Considering ‖ · ‖D, the steady-state distribution D of the Markov chain P µ

can be sampled from by performing actions according to policy µ, and thus

by following this Markov chain. In such a case, it was shown in [218] that

linear models perform a non-expansion with respect to the required norm, as

the observations that the model is fitted to are distributed according to D. We

have shown in [78] that this property also holds if classifiers do not match all

270

states, that is (Lemma 4.3 in [78], using Jensen’s Inequality [234])

‖ΠkV −ΠkV ′‖D ≤ ‖V − V ′‖Dk
≤ ‖V − V ′‖D ≤ ‖V − V ′‖ (9.38)

for any two V ,V ′, whereDk = DMk is the steady-state matrix augmented by

the matching matrixMk = diag(mk(x1), . . . ,mk(xN)) of classifier k. Thus, we

can guarantee stability at the classifier level for policy evaluation for any form

of linear classifier model, not only averaging classifiers.

In addition, we have shown in [78] that for specific stationary mixing weights

the global LCS model also forms a non-expansion with respect to ‖ · ‖D
and therefore is stable when used with policy evaluation. Results for non-

stationary mixing models that readjust themselves to the changing classifier

approximation are still pending, but we have taken first steps in this direction

in the same study by reformulating the policy evaluation update as a matrix

iteration. In that way, the problem is shifted from analysing the non-expansion

property of the global model to analysing the magnitude of eigenvalues of the

core matrix of the iteration, resulting in sufficient and necessary conditions for

convergence of the iteration.

Consequences for XCS and XCSF

Both XCS and XCSF use Q-Learning as their reinforcement learning compo-

nent. To show that this combination is stable, the first step to take is to show

the stability of value iteration with the model structure underlying XCS and

XCSF.

XCS uses averaging classifiers, which we have shown to be stable with value

iteration. Stability at the global model level is very likely, but depends on the

mixing model, and definite results are still pending.

XCSF in its initial implementation [243, 244], on the other hand, uses classifiers

thatmodel straight lines, and suchmodels are known to be unstable with value

iteration. Thus, XCSF does not even guarantee stability at the classifier level,

and therefore neither at the global model level. As previously mentioned, we

conjecture that XCSF provides its stability at the structure learning level in-

271

stead, but we do not see that as a satisfactory solution. Instead, one should

aim at replacing the classifier models such that stability at the parameter level

can be guaranteed. Averaging RL seems to be a good starting point, but how

exactly this can be done is a topic of further investigation.

9.5 Long Path Learning

The problem of long path learning is to find the optimal policy in sequential

decision tasks when the solution requires learning of action sequences of sub-

stantial length. As identified by Barry [11, 12], XCS struggles with such tasks

due to the generalisation method that it uses.

A solution to this problem is proposed in [12], but this solution is only de-

signed to work for a particular problem class, as we will show after having

described why standard XCS fails at long path learning tasks. We also discuss

if the classifier set optimality criterion from Chapter 7 might choose a suit-

able set of classifiers to handle such tasks, but conclude that general long path

learning remains an open problem.

9.5.1 XCS and Long Path Learning

Consider the problem that is shown in Figure 9.1. The aim is to find the policy

that reaches the terminal state x6 from the initial state x1a in the shortest num-

ber of steps. In RL terms, this aim is described by giving a reward of 1 upon

reaching the terminal state, and a reward of 0 for all other transitions3. The

optimal policy is to alternatingly choose actions 0 and 1, starting with action 1

in state x1a.

The optimal value function V ∗ over the number of steps to the terminal state is

for a 15-step corridor finite state world shown in Figure 9.2(a). As can be seen,

3More precisely, we havemodelled the reward 1 that is received upon reaching the terminal
state by adding a transition that, independent of the chosen action, leads from the terminal
state to an absorbing state and is rewarded by 1. Each transition from the absorbing state
leads to itself, with a reward of 0.

272

x1a

x1b

x2a

x2b

x3a

x3b

x4a

x4b

x5a

x5b

x6

0

1

0, 1
1

0

0, 1
0

1

0, 1
1

0

0, 1
0

1

0, 1

Figure 9.1: A 5-step corridor finite state world. The circles represent the states
of the problem, and the arrows the possible state transitions. The numbers
next to the arrows are the actions that cause the transitions, showing that the
only available actions are 0 and 1. The state x1a is the initial state in which the
task starts, and the square state x6 is the terminal state in which the task ends.

the difference of the values of V ∗ between two adjacent states decreases with

the distance from the terminal state.

Recall that, as described in Section 7.1.1, XCS seeks for classifiers that feature

the mean absolute error ǫ0, where ǫ0 is the same for all classifiers. Thus, with

increasing ǫ0, XCS will start generalising over states that are further away from

the terminal state, as due to their similar value they can bemodelled by a single

classifier while keeping its approximation error below ǫ0. On the other hand,

ǫ0 cannot be set too small, as otherwise the non-stationarity of the function to

model would make all classifiers seem inaccurate. Generalising over states xia

for different i’s, however, causes the policy in these areas to be sub-optimal, as

choosing the same action in two subsequent steps in the corridor finite state

world causes at least one sidestep to one of the xib states
4.

To summarise, XCS struggles in learning the optimal policy for tasks where

the difference in value function between two successive states is very small

and might be modelled by the same classifier, and where choosing the same

action for both states leads to a sub-optimal policy. The problemwas identified

and demonstrated by means of different-length corridor finite state worlds in

[11, 12]. We continue by discussing the modification to XCS that was proposed

in the same study to handle this problem.

4It should be noted that while the classifiers in standard implementations of XCS(F) can
match several states, they always match and thus promote a single action.

273

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

O
pt

im
al

 V

Steps from Terminal State

Optimal V for Single Reward 1 at Terminal State

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12 14

O
pt

im
al

 V

Steps from Terminal State

Optimal V for Reward -1 for Each Action

(a) (b)

Figure 9.2: Plots showing the optimal value function for the 15-step corridor
finite state world for γ = 0.9. The value function in (a) results from describing
the task by giving a single reward 1 upon reaching the terminal state, and
a reward of 0 for all other transitions. In (b) the values are based on a task
description that gives a reward of −1 for all transitions. Note that in both
cases the optimal policy is the same, but in (a) all values are positive, and in
(b) they are negative.

9.5.2 Using the Relative Error

Two preliminary approaches were proposed in [12] to handle the problem of

long path learning in XCS, both based on making the error calculation of a

classifier relative to its prediction of the value function. The first approach is

to estimate the distance of the matched states to the terminal state and scale the

error accordingly, but this approach suffers from the inaccuracy of predicting

this distance.

A second, more promising alternative proposed in this study is to scale the

measured prediction error by the inverse absolute magnitude of the predic-

tion. The underlying assumption is that the difference in optimal values be-

tween two successive states is proportional to the absolute magnitude of these

values, as can be see in Figure 9.2(a). Consequently, the relative error is larger

for states that are further away from the terminal state, and overly general clas-

sifiers are identified as such. This modification allows XCS to find the optimal

policy in the 15-step corridor finite state world, which it fails to do without the

modification.

274

9.5.3 Where it Fails

The problem of finding the shortest path to the terminal state can also be de-

fined differently: rather than giving a single reward of 1 upon reaching the

terminal state, one can alternatively punish each transition with a reward of

−1. As the reward is to be maximised, the number of transitions is minimised,

and therefore the optimal policy is the same as before. Figure 9.2(b) shows the

optimal value function for the modified problem definition.

Observe that, in contrast to Figure 9.2(a), all values of V ∗ are negative or zero,

and their absolute magnitude grows with the distance from the terminal state.

The difference in magnitude between two successive state, on the other hand,

still decreases with the distance from the terminal state. This clearly violates

the assumption that this difference is proportional to the absolute magnitude

of the values, as the modified problem definition causes exactly the opposite

pattern. Hence, the relative error approach from [12] will certainly fail, as it

was not designed to handle such cases.

To create a task where the relative error measure fails we had to redefine the

problem such that the value function takes exclusively negative values. While

it might be possible to do the opposite and redefine each problem such that

it conforms to the assumption that the relative error measure is based on, we

rather seek for alternative approaches that do not require us to modify the

problem definition – which might not even be possible in all cases.

9.5.4 A Possible Alternative?

We have shown in Section 8.3.4 that, in contrast to XCS(F), the optimality cri-

terion that we have introduced in Chapter 7 is able to handle problems where

the noise differs in different areas of the input space. Given that it is possible

to use this criterion in an incremental implementation, will such an implemen-

tation be able to perform long path learning?

As previously discussed (see Sections 5.1.2 and 7.2.2), a linear classifier model

attributes all observed deviation from its linear model to measurement noise

275

(implicitly including the stochasticity of the data-generating process). In rein-

forcement learning, and additional component of stochasticity is introduced

by updating the value function estimates which makes them non-stationary.

Thus, in order for the LCS model to provide a good representation of the

value function estimate, it needs to be able to handle both the measurement

noise and the update noise — a differentiation that is absent in [11, 12].

A detailed investigation of the optimality criterion still needs to be performed,

but let us for now assume that the size of the area of the input space that is

matched by a classifier is proportional to the level of noise in the data, such

that the model is refined in areas where the observations are known to accu-

rately represent the data-generating process. Considering only measurement

noise, when applied to value function approximation this would lead to hav-

ing more specific classifiers in states where the difference in magnitude of the

value function for successive states is low, as in such areas this noise is deemed

to be low. Therefore, we expect an incremental LCS that implements our op-

timality criterion to provide an adequate value function approximation of the

optimal value function, even in cases where long action sequences need to be

represented.

Also considering update noise, its magnitude is related to the magnitude of

the optimal value function, as demonstrated in Figure 9.3. Therefore, the noise

appears to be largest where the magnitude of the optimal value function is

large. Due to this noise, the model in such areas will most likely be coarse.

With respect to the corridor finite state world, for which the optimal value

function is shown in Figure 9.2(b), this would have the effect of providing an

overly coarse model for states that are distant from the terminal state, and

thus might cause the policy to be sub-optimal, just as in XCS. However, this

depends heavily on the dynamic interaction between the RL method and the

incremental LCS implementation. Thus, we cannot make definite statements

before such an implementation is available.

Overall, our optimality criterion seems to be a promising approach to handle

long path learning in LCS, when considering only measurement noise. Given

the additional update noise, however, our criterion might suffer from the same

problems as the approach based on the relative error. The significance of its

influence cannot be evaluated before an incremental implementation is avail-

276

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25 30

N
oi

se
 V

ar
ia

nc
e

State

Update Noise for Single Reward 1 at Terminal State

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

N
oi

se
 V

ar
ia

nc
e

State

Update Nosie for Reward -1 for Each Action

(a) (b)

Figure 9.3: Update noise variance for value iteration performed on 15-step cor-
ridor finite state world. Plot (a) shows the variance when a reward of 1 is given
upon reaching the terminal state, and 0 for all other transitions. Plot (b) shows
the same when rewarding each transition with −1. The states are enumerated
in the order x1a, x1b, x2a, . . . , x15b, x16. The noise variance is determined by ini-
tialising the value vector to 0 for each state, and storing the value vector after
each iteration of value iteration, until convergence. The noise variance is the
variance of the values of each state over all iterations. It clearly shows that this
variance is higher for states which have a larger absolute optimal value. The
optimal values are shown in Figure 9.2.

able. Alternatively, it might be possible to seek for RL approaches that allow

for the differentiation between measurement and update noise, which makes

it possible for the model itself to only concentrate on the measurement noise.

If such an approach is feasible still needs to be investigated.

9.6 Discussion and Summary

Despite sequential decision tasks being the prime motivator for LCS, they are

still the ones which LCS handle least successfully. We have shown in the chap-

ter how to approach them from first principles from the RL perspective, and

have dealt with some of the current issues. The introduction to DP and RL is

required to put LCS in their context, as we have done by deriving Q-Learning

with LCS as an incremental approximation to asynchronous value iteration.

An essential concept that is often ignored is that LCS with independently

trained classifiers updates the value function approximation of each classi-

277

fier based on the value function approximation of the global classifier model.

Based on this concept, the resulting Q-Learning update equations are exactly

the ones used by XCS(F). That these are already performing gradient descent

without any modifications to the update equations was shown in Section 9.3.6,

together with a critical discussion of the large body of work that was done in

an attempt to fix what is not broken; that is, by trying to introduce gradient

descent to XCS(F).

Regarding convergencewe have not yet provided conclusive answers but have

shown how to perform first but important steps in their direction. They anal-

ysis is based on investigating if the functional form of the LCS model gives

a non-expansion with respect to some norm. This property is only required

to ensure stability at the parameter learning level, and even though we could

instead concentrate on providing stability on the model structure level by re-

moving diverging classifiers, we prefer to avoid divergent behaviour from the

start rather than repairing the model once divergence occurs.

Related to stability is also the issue of learning long action sequences, which

was shown to cause problems in XCS due to its accuracy definition. While

a preliminary modification to XCS was proposed in [12] to solve this prob-

lem, we have shown that this modification only gives the desired result if a

certain assumption about the value function holds, which is not the case for

all sequential decision tasks. Our previously introduced optimality criterion,

however, might provide a more stable solution, even though some issues re-

garding overly general classifiers need to be investigated once an incremental

implementation is available.

Overall, using LCS to approximate the value or action-value function in RL

is appealing as LCS dynamically adjust to the form of this function and thus

might provide a better approximation than standard function approximation

techniques. It should be noted, however, that the field of RL is moving quickly,

and that Q-Learning is by far not the best method that is currently available.

Hence, in order for LCS to be a competitive approach to sequential decision

tasks, they also need to keep track with new developments in RL.

One significant development in RL that was largely ignored by LCS is to intel-

ligently control the explore/exploit behaviour. Rather then always exploiting

278

current knowledge to choose the seemingly optimal action, sometimes it is

necessary to choose sub-optimal actions to increase that knowledge and ex-

plore all parts of the state space [231, 213]. Traditionally, exploration was per-

formed randomly at regular intervals, but newmethods [127, 28, 207] allow for

a more efficient exploration strategy that find the optimal policy more rapidly.

In fact, these methods have shown to be very efficient in the Probably Approx-

imately Correct (PAC) sense (for example, [207]). Unfortunately, all of them

require a model of the reward and transition function, and thus they have

a larger space complexity than model-free RL methods [208]. Nonetheless,

methods that perform intelligent exploration currently outperform all other

RL methods [150]. Recently, also a model-free methods with intelligent explo-

ration became available [208], but according to [150], it performs “really slow”

when compared to model-based alternatives.

A recent LCS approach aimed at providing such intelligent exploration [168],

but without considering the RL techniques that are available. These techniques

could be used in LCS evenwithout havingmodels of the transition and reward

function by proceeding in amanner similar to [68], and building amodel at the

same time as using it to learn the optimal policy. Anticipatory LCS [205, 48,

40, 89, 88] are already used to model at least the transition function, and can

easily be modified to include the reward function. Such an LCS has already

been developed in [90, 87] to performmodel-based RL, but as it uses heuristics

rather than evolutionary computation techniques for model structure search,

some LCS workers did not consider it as being an LCS. In any case, having

such a model opens the path towards using new exploration control methods

to improve their efficiency and performance.

Bayesian RL also provides some form of intelligent exploration by explicitly

modelling the uncertainty about the true values of the value function by a

probability distribution that is updated when further information becomes

available (for example, [209]). This has the advantage that exploration and ex-

ploitation is elegantly controlled by defining the aim as minimising the uncer-

tainty of the model. Obviously, Bayesian RL is only possible when a Bayesian

model of the value function is available. This was firstly exploited in [1], where

Bayesian classifier models were combined by the standard XCS(F) procedure

to choose actions that provide the largest increase of information, based on

Bayesian Q-Learning [67]. Having provided a fully Bayesian model for LCS

279

in Chapter 7, this approach could be extended to also use a Bayesian formu-

lation to the mixture model, in addition to using other, more recent, Bayesian

RL methods.

In summary, it is obvious that there is still plenty of work to be done in or-

der that LCS can provide the same formal development as RL currently does.

Nonetheless, we have in this chapter provided some initial formal basis upon

which we and hopefully other researchers can build further analysis and im-

provements for using LCS to handle sequential decision tasks effectively, com-

petitively, and with high reliability.

280

Chapter 10

Future Work and New Horizons

Throughout the previous chapters we have frequently alluded to topics of fu-

ture work that arise from the developments we have presented. In this chapter

we summarise some of these topics and provide amore in-depth discussion on

how theymight be approached. Additionally, we present some paths that LCS

can proceed that have not been within reach before.

The order in which the topics are presented might seem arbitrary at first, but it

was chosen such that later topics rely on the work of topics that are presented

earlier in this chapter. The exact relation between the topics and a suggested

sequence in which they are handled is given in the concluding section of this

chapter.

10.1 The Optimal Set of Classifiers

In Chapter 7 we have defined the optimal set of classifiers as being the one that

provides the best model structure for the given data. Using Bayesian model

selection, the best model structure is the one that maximises p(M|D), that is,

its probability density given the data.

Having a formal optimality criterion allows us for the first time to approach

questions like “Has the optimal set of classifiers overlapping classifiers?” and

281

“Are default hierarchies ever an optimal representation for a solution?” from

a formal rather than an intuitive point-of-view. Furthermore, we can aim at

finding theorems that apply to a wide range of problem types rather than pro-

viding empirical evidence for a small problem set.

Additionally, gathering knowledge of the properties of the optimal set of clas-

sifiers allows us to redesign the model structure search: it should aim at pro-

viding sets of classifiers that conform to these properties. Therefore, revealing

properties of the optimal set has the twofold purpose of giving us a better

intuitive understanding of the optimal set and allowing us to increase the effi-

ciency of the model structure search, as we discuss further below.

10.1.1 Determining Optimality

Our optimality criterion is based on the probabilistic LCS model that is sum-

marised in Table 7.2. To get p(M|D) for a given M and D, we first have
to marginalise the joint probability density of data and model parameters

p(D,θ|M) over the parameters to get the model evidence p(D|M) by Eq. (7.2).

This allows us to get the model probability density by Eq. (7.1).

Given that we want to compare model structuresM andM′ with an equal

number of classifiersK we have p(M) = p(M′) by Eq. (7.4), and therefore it is

sufficient by Eq. (7.1) to compare the model structures based on the model ev-

idence rather than the model probability. More explicitly, the set of classifiers

M is at least as good asM′ if p(D|M) ≥ p(D|M′). If this holds for anyM′,

thenM is optimal for a fixed K.

Getting p(D|M) is more complex and requires working through the probabilis-

tic formulation of the model, including its priors. How this can be done has

not been investigated, yet. Alternatively, one can resort to comparing the vari-

ational bound L(q) of different models by Eq. (7.21) that gives a lower bound

on p(D|M). Still, it should be always kept in mind that L(q) is an approxima-

tion and results that are based on it might not reflect the true nature of p(D|M)

in all its details.

282

10.1.2 Overlapping Classifiers

One significant question that we might be able to answer formally is “Is an

overlapping set of classifiers ever better than its non-overlapping counter-

part?”. Overlapping classifiers are classifiers that match inputs that are also

matched by other classifiers. The non-overlapping counterpart of such a set

is one where inputs that are previously matched by several classifiers are as-

signed to only one of them.

Assuming that the optimal set is always non-overlapping, an overlapping set

of classifiers combines several hypothesis of how to partition the input space.

The model structure search has the role of comparing these hypotheses and

deciding on the best one. Thus, having knowledge of some of the properties

of the optimal set allows us to design more efficient model structure search

algorithms that aim towards classifier sets that are non-overlapping.

Allowing for matching by degree such that 0 < mk(x) < 1 for some k and

xmakes finding an intuitive understanding about what “overlapping” means

complicated. Hence, the question is best approached by firstly restricting one-

self to 0/1 matching. Furthermore, it is sufficient to show that given a par-

ticular overlapping set of classifiers, removing the overlap for a single input

increases the model evidence in all cases. Consequently, the optimal set must

be non-overlapping.

To show the opposite it is sufficient to provide a single example where an over-

lapping set is better than a non-overlapping one. Such an example might be

the one given in Section 8.3.3, where a more specific classifier interleaves the

prediction of a global classifier to model a regional feature of the data. Even

though matching by degree was used in such a case, a similar example might

show that 0/1matching also provides such solutions. In any case, formal state-

ments are required, rather than empirical evidence, as the result of Section 8.3.3

might be an anomaly caused by a failing model structure search or the approx-

imation of the model evidence.

283

10.1.3 Default Hierarchies

Default hierarchies are a set of classifiers in which a more specific classifier

matches a subset of the set of inputs matched by a more general classifier, and

in this subset provides an exception to the model of the more general classifier.

Using our formal definition of optimality, it might be possible to answer if

default hierarchies are indeed a better solution representation than one that

does not use default hierarchies.

The first step towards an answer is certainly to investigate if all optimal sets

are non-overlapping. If this is true, then default hierarchies can by definition

not provide an optimal solution.

To proceed further, we require a formal definition of how exactly a classifier

models an exception to another classifier’s model. Given, for example, that

a state x is matched by two classifiers k, k′, and they both contribute to the

output prediction by gk(x) ≈ gk′(x) ≈ 0.5, then neither classifier provides

an exception to the model of the other. Providing a threshold for gk(x) above

which classifier k dominates classifier k′ is arbitrary and should be avoided, es-

pecially since it strongly depends on the mixing model. Using a mixing model

that lets specific classifiers always override the prediction of more general clas-

sifiers firstly requires a probabilistic formulation before it can be analysed.

To summarise, answering whether solutions with default hierarchies are better

than without requires us to first provide a clear probabilistic formulation of

what default hierarchies actually are.

The issues of overlapping classifiers in optimal solutions and default hierar-

chies are only two example of the properties of the optimal set of classifiers

that can be analysed. In any case, such analysis might finally be able to an-

swer some of the essential questions about LCS classifier sets.

284

10.2 Approximating or Changing the

Mixing Model

Deriving the LCS model from the MOE model, we have defined the mixing

model by the generalised softmax function Eq. (7.10). This function models

the probability of classifier k having generated observation n by the log-linear

model p(mk = 1|xn,vn) ∝ mk(xn) exp(vT
k φ(xn)). In LCS we usually have

φ(x) = 1 for all x ∈ X , and thus the model reduces to p(mk = 1|xn, vk) ∝
mk(xn)v′k, where v

′
k = exp(vk); that is, the probability of classifier k having

generated observation n is proportional to its degree of matching xn and some

scalar parameter. To get a good goodness-of-fit of the global model, this pa-

rameter should be proportional to the goodness-of-fit of the local classifier

model.

The softmax function corresponds to the multinomial logit model, which is a

standard model in statistics to model consumer choice [167]. Unfortunately,

its training does not scale well with the number of classifiers K when used as

the mixing model for LCS, as shown in Chapters 6 and 8. To provide an LCS

that can be applied to real-world problems with a potentially large number of

classifiers, we need to either approximate the function or replace it by another

mixing model that can be trained more efficiently.

In Chapter 6 we have already introduced a set of heuristics that approxi-

mate the softmax function when performing maximum likelihood learning.

To evaluate the model evidence for our optimality criterion, on the other

hand, we need to additionally handle the priors on the mixing weight vec-

tors. These influence the solution such that we need to solve Eq. (7.47) rather

than ∇VE(V) = 0 with ∇VE(V) given by Eq. (6.8). The Eβ(βk) in Eq. (7.47) is

the mean of the noise precision prior on vk that expresses the assumption that

the elements of vk are small and independent. In order for an approximation

to be useable within our model, it needs to be devised such that it is able to

express this assumption.

Mixing the prediction of a set of independently trained and potentially lo-

calised models is the core problem of ensemble learning. Hence, the search

for good approximations or other mixing models can be inspired by looking at

285

the ensemble learning literature. Good starting points might be [186], where

Perrone presents a theoretical framework for “combining populations of para-

metric and/or non-parametric regression estimators for classification, density

estimation and regression”, and [102], where neural networks are combined

by linear combinations to improve the mixed prediction.

Alternatively, the mixing model can be based on Bayesian model averaging

(see [108] for a tutorial) that might fit better into our Bayesian model selec-

tion framework. Given that classifier k of model structureMa provides the

localised model Mak with the predictive density p(y
′|x′,D,Mak), Bayesian

model averaging is based on defining the global predictive density by

p(y′|x′,D,Ma) =
∑

k

p(y′|x′,D,Mak)p(Mak|x′,D), (10.1)

where the probability of the classifier model can be computed by

p(Mak|x′,D) =
p(D|Mak)p(Mak|x′)
∑

p p(D|Map)p(Map|x′)
. (10.2)

In contrast to the standard formulation of Bayesian model averaging, wemake

the probability density of the classifier model conditional on the current input

to incorporate matching. How exactly these probabilities are defined and if

the above formulation leads to easily computable results still needs to be in-

vestigated.

To summarise, there are various approaches that can be taken to reformulate

the mixing model, either by a custom heuristic approximation, by borrowing

concepts from ensemble learning, or by using Bayesian model averaging. In

all of these cases, training of the model needs to be efficient and scale well with

the number of classifiers. Additionally, the model needs to take into account

the priors that we have specified in the full LCS model, or needs to adjust

these priors to the new model formulation.

286

10.3 An LCS Model for Classification

The LCS model that we have developed focusses on regression tasks, but can

also handle classification tasks if they are reformulated in the XCS way (see

Section 3.1.3). This focus should not be interpreted as a restriction, as it is

almost trivial to construct a similar model that is specialised exclusively on

classification tasks. The only required change is to use classifier models that

are specialised on classification rather than regression.

A simple but powerful multi-class classification model that is a member of the

class of generalised linear models [167] is the multinomial logit model that we

have already used as the mixing model. Given DY class labels, the probability

of an observation n having class yn ∈ Y = {1, . . . , DY} is defined by

p(yn|xn,Wk) =
exp(wT

kyn
xn)

∑

y exp(wT
kyxn)

, (10.3)

whereWk is theDX×DY weight matrix withwky as its yth row. This model as-

sumes a soft linear partitioning of the input space with each partition being as-

signed to a particular class. As a result, a single classifier can model all classes

within its matched area of the input space. For further information about its

underlying assumptions about the noise distribution see [167, 19]. Its binary

classification counterpart is the binomial logit model that is also described in

[167, 19].

If each classifier is supposed to model only a single class, as is usually the case

in LCS, we can alternatively use the multinomial model

p(yn|xn, wk) = wkyn
, (10.4)

where w = (wk1, . . . , wkDY
)T is the classifier’s weight vector whose DY ele-

ments must satisfy 0 ≤ wkc ≤ 1 and
∑

cwkc = 1. This shows that the proba-

bility of the output being y is modelled by wky, independent of the input. The

multinomial density is in fact similar to the multinomial logit model with in-

puts x = 1, as shown in [122]. Embedding the multinomial model into in the

Bayesian LCS model, its conjugate prior is given by the Dirichlet distribution

[15].

287

Reducing the model further to binary classification with Y = {0, 1}, the classi-
fier model can be given by the Bernoulli density

p(yn|xn,wk) = wyn

k (1− wk)
1−yn , (10.5)

with the scalar parameter wk ∈ [0, 1] that represents the probability of yn = 1.

As shown in [164], this is the classifier model that is implicitly used in UCS

[162] in combination with maximum likelihood learning. For use in the

Bayesian LCS model, its conjugate prior is the Beta distribution [15, 164].

Having specified the classifier model, the full Bayesian LCS model of Chap-

ter 7 can be modified accordingly, and the optimal set of classifiers is again

given by the model structure that maximises p(M|D). Furthermore, a com-

putable approximation to the model evidence can be derived by variational

Bayesian inference, as shown in the same chapter. This results in an LCS

model for classification, similar to the one developed for regression, and addi-

tionally in a formal definition for the optimal set of classifiers for classification

tasks.

In contrast to UCS and XCS, the classifiers are not required to specify the

classes they model by the matching function. Rather, they learn which class

to model when they are trained. Given, for example, a binary classification

problem, then classifier k might predict class 0 with probability 0.95, which

means that it is almost certain that all the inputs that it matches are associated

with class 0. On the other hand, if it assigns class 0 a probability of 0.5, then

the matched area of the input space is associated with both classes and a set of

classifiers that is able to better distinguish between the two classes needs to be

sought.

10.4 Improving Model Structure Search

The algorithms introduced in Chapter 8 were sufficient to demonstrate the

use of the optimality criterion in simple regression tasks, but are not powerful

enough for real-world applications. The two components that need improve-

ment are the mixing model training and the model structure search. We have

288

already discussed possible modifications and approximations of the mixing

model to simplify its training in Section 10.2. Here, we concentrate on how to

improve the model structure search to be able to handle more complex prob-

lems.

In Chapter 8 we have introduced two alternatives to model structure search,

but here we exclusively concentrate on how to improve the GA, as it has the

advantage of exploiting building blocks in the LCS model (see Section 8.2.3 for

a discussion). It can be improved on two levels: we should on one hand use

more information embedded in the LCS model than just the fitness of a model

structure, and on the other hand facilitate current theoretical and practical ad-

vances in evolutionary computation to improve the GA itself. In Chapter 8, we

have kept the GA deliberately naı̈ve so that it does not draw attention away

from the actual goal of maximising p(M|D).

With respect to using the information that is available within the model itself,

model structure search operates on the classifiers and thus we are interested

in getting information about the quality of classifiers within a model structure

Ma. We can exploit the probabilistic model to perform classifier selection in

the same way as we do Bayesian model selection: given thatMak specifies the

model of classifier k, then p(Mak|D) ∝ p(D|Mak)p(Mak) gives the probability

density of this model given the data. The classifier model evidence p(D|Mak)

is similarly to Eq. (7.2) given by

p(D|Mak) =

∫

θk

p(D|θk,Ma)p(θk|Ma)dθk, (10.6)

where one needs to take matching into account when formulating

p(D|θk,Ma). As for good model structures, good classifiers are classifiers for

which p(Mak|D) is large, or equivalently, for which p(D|Mak) is large, given

uniform classifier priors p(Mak). Therefore, we can bias mutation towards

changing bad classifiers, and introduce new genetic operators that construct

new individuals from good classifiers of other individuals, or prune individu-

als by removing bad classifiers.

From the GA side itself, a more principled approach is to be sought from evo-

lutionary computation techniques where variable-length individuals are com-

mon. Genetic programming (GP) is one of them, as the program that each indi-

289

vidual represents is not fixed in size. However, while the fitness of a program

does not necessarily decrease with its complexity, our optimality criterion pe-

nalises overly complex model structures. Thus, GP suffers from the problem

of individuals growing out of bound that is naturally avoided in our approach.

Nonetheless, some of the theoretical results of GP might still be applicable to

improving the GA to search the model structure space.

Another route that can additionally improve the performance of the GA is

to use Estimation of Distribution Algorithms (EDAs) [185] that improve the

crossover operator by detecting and preserving building blocks. They do so by

creating a statistical model of the high-fitness individuals of the current pop-

ulation and draw samples from this model to create new individuals, rather

than using standard crossover operators. Good building blocks are expected

to appear in several individuals and consequently receive additional support

in themodel. The Bayesian Optimization Algorithm (BOA), for example, mod-

els the alleles of selected individuals by a Bayesian network that is samples

thereafter to produce new individuals [184].

Currently, there exists no EDA that can handle variable-length individuals ad-

equately [151]. The problem is that the space of possible classifiers, that is,

the space of possible matching function parameterisations, is too big to fre-

quently have similar classifiers within the population. The chance of having

the same building blocks is even exponentially smaller [43, 151]. Despite these

issues it is still worth trying to construct an EDA that can be used with the

population structure at hand, at least to provide a more principled crossover

operator. What needs to be considered when constructing the statistical pop-

ulation model is the irrelevance of the location of a classifiers within an indi-

vidual. The only thing that matters is the classifier itself, and if it frequently

co-occurs with the same other classifiers. This should allow modelling and

preserving building blocks within a set of classifiers. An additional enhance-

ment of the model is to take the nature of the matching function into account,

as done for Michigan-style LCS in [54, 55]. This will make the model highly

representation-dependent, and so we will firstly concentrate on building mod-

els without considering the matching function explicitly.

290

10.5 Empirical Validation of Optimality Criterion

So far we have shown on a small set of regression tasks that the optimality

criterion that we have devised in Chapter 7 gives the correct results. To ensure

that this criterion also performs well in real-world situations, its performance

needs to be additionally tested on some standard data sets. These tests need to

show that the assumptions underlying the LCS model are actually applicable

in real-world tasks. Naturally, before such testing can take place, we need to

simplify the training of the mixing model and improve the performance of

the GA, to which possible approaches are outlined in Sections 10.2 and 10.4,

respectively.

To test the LCS optimality criterion for regression tasks, an obvious starting

point is the StatLib dataset archive [204] which contains a multitude of real-

world regression tasks that are commonly used in the scientific literature. It

contains the popular Boston Housing data [101], for example, that was used

amongst other studies in [62] to evaluate and compare the performance of the

Bayesian Treed model — a variant of the CART model with linear regression

models at its nodes that is in its structure closely related to the LCS model that

we have presented.

Once an LCS classification model has been built, the performance of its opti-

mality criterion should be evaluated on some of the sets available in the UCI

Machine Learning Repository [4], which contains popular classification tasks,

such as the Iris dataset. Several of its datasets have already been used to test

the classification performance of other LCS approaches [163], which can act as

a benchmark to compare our optimality criterion against.

Tests on large datasets are not feasible without using an improved mixing

model training and the variational Bayesian inference of the model evidence.

To check if these approximations produce results that are close to those of a

non-approximated model, we can utilise sampling techniques to sample the

model posterior directly and get an accurate evaluation of the probability den-

sity of a model structure. It still needs to be evaluated which sampling tech-

niques are applicable to sampling from this posterior. As sampling is compu-

tationally more expensive than using the approximations, the comparison can

291

only be performed on small data sets. Nonetheless, it can show on these sets

if the applied approximations are adequate.

10.6 Incremental Implementation

Probably the most challenging task is to create a Michigan-style incremental

LCS that aims at maximising the overall model structure probability density

p(M|D), as defined by our optimality criterion. The advantages of such an

implementation are that it only needs to maintain a single set of classifiers

rather than many of them in parallel, and that it can be used for RL tasks

which require the value function approximation to be updated incrementally.

As already outlined in Section 9.4.1, every incremental implementation oper-

ates on two levels: on one hand, the model parameters θ for a fixed model

structureM need to be trained, and on the other hand, the model structureM
itself needs to be changed to improve the model structure probability p(M|D).

We continue by discussing possibilities for providing incremental implementa-

tions for each of these levels separately. Dealingwith them separately provides

the first step towards a solution, but combining them needs to be considered

explicitly in a further step.

10.6.1 Incremental Model Parameter Update

Having provided a Bayesian LCS model for a fixed model structureM, one
could assume that it automatically provides us with the possibility of training

its parameters incrementally by using the posterior of one update as the prior

of the next update. However, due to the use of hyperpriors, this does not apply

directly to our case.

The parameters we need to update are those of the classifier model {W , τ ,α},
and those of the mixingmodel {V ,β}. Z represents the latent variables and its
model is completely determined by knowing the other parameter values. We

want to update these parameters with every additional observation, starting

292

with their prior settings.

Let us consider the posterior weight Eq. (7.96) and precision Eq. (7.95) of the

classifier model, which also results from performing matching-weighted ridge

regression with ridge complexity Eα(αk) (see Section 7.3.2). As shown in Sec-

tion 5.3.5, ridge regression can, due to its formal equivalence to RLS, be per-

formed incrementally. Note, however, that the ridge complexity is set by the

expectation of the prior on αk that is modelled by the hyperprior Eq. (7.9) and

is updated together with the classifier model parameters. A direct change of

the ridge complexity after having performed some RLS updates is not feasible.

However, there remain two possibilities for an incremental update of these pa-

rameters: we could fix the prior parameters by specifying αk directly rather

than modelling it by a hyperprior. Potentially good values for αk are given

in Section 7.2.3. Alternatively, we can incrementally update
∑

nm(xn)xnxT
n

and recover Λ∗
k after each update by using Eq. (7.95) directly, which requires

a matrix inversion of complexity O(D3
X) rather than the O(D2

X) of the RLS

algorithm. Thus, we can either increase the bias of the model or the computa-

tional complexity of the update. Using uninformative priors, the first approach

might be the one to prefer. From inspecting Eqs. (7.97) and (7.98) we can see

that both parameters of the noise precision model can be updated incremen-

tally without any modifications.

Even though we could use a least squares approximation to train the mixing

model, analogous to Section 6.1.2, the results in Chapter 6 have shown that we

can design heuristics that outperform this approximation. Additionally, these

heuristics have no parameters besides relying on parameters of the classifier

models. Given that similar parameter-less heuristics for the Bayesian model

exists, they can be immediately used in incremental implementations, as no

parameters need to be updated. We have already outlined possible approaches

to designing such mixing models in Section 10.2.

10.6.2 Incremental Model Structure Search

The GA in Michigan-style LCS has strong parallels to cooperative co-

evolutionary algorithms (for example [238]). In these, the fitness of an indi-

vidual depends on the other individuals in the population. Equally, the fitness

293

of a classifier in a Michigan-style LCS depends on the other classifiers in the

set of classifiers as they cooperate to form the solution. Note that while in

Pittsburgh-style LCS an individual is a set of classifiers that provides a candi-

date solution, in Michigan-style each classifier is an individual and the whole

population forms the solution.

Having defined a fitness for a set of classifiers by the model structure proba-

bility, we want to design an algorithm that is able to increase the fitness of this

population by modifying separate classifiers. Expressed differently, we want

to design a GA for which the fixed point of its operators is the optimal set of

classifiers such that p(M|D) is maximised. While this is not a trivial problem,

an obvious approach is to attempt to design a cooperative co-evolutionary al-

gorithm with such operators, or to modify existing LCS, like XCS(F), to aim

at satisfying our optimality criterion. However, the lack of theoretical under-

standing of either method does not make the approach any simpler [173].

Here, we propose an alternative approach based on Replicator Dynamics (for

example, [109]): assume that the number of possible matching function pa-

rameterisations is given by a finite P (for any finite X and a sensible repre-
sentation this is always the case) and that C1, . . . , CP enumerate each possible

type of matching function. Each Ci stands for a classifier type that is a possible

replicator in a population. Let c = (c1, . . . , cP)T denote the frequency of each of

the classifier types. Assuming an infinite population model, ci gives the pro-

portion of classifiers of Ci in the population. As the ci’s satisfy 0 ≤ ci ≤ 1 and
∑

i ci = 1, c is an element of the P -dimensional simplex SP .

The fitness fi(c) of Ci is a function of all classifiers in the population, described

by c. The rate of increase ċi/ci of classifier type Ci is a measure of its evolution-

ary success and may be expressed as the difference between the fitness of Ci

and the average fitness f̄(c) =
∑

i cifi(c), which results in the replicator equation

ċi = ci
(

fi(c)− f̄(x)
)

. (10.7)

Thus, the frequency of classifier type Ci only remains unchanged if there is

no such classifier in the current population, or if its fitness equals the average

fitness of the current population. The population is stable only if this applies

to all its classifiers.

294

Our aim is to define a fitness function for each classifier such that the sta-

ble population is the optimal population according to our optimality criterion.

Currently L(q) by Eq. (7.94) cannot be fully split into one component per clas-

sifier due to the term ln |Λ∗
V
−1| in LM(q) that results from the mixing model.

Replacing this mixing model by heuristics, as described in Section 10.2, should

make such a split possible. Even then it is for each classifier a function of all

classifiers in the current population, as the mixing coefficients assigned to a

single classifier for some input depend on other classifiers that match the same

input, which conforms to the above definition of the fitness of a classifier type

being a function of the frequency of all classifier types.

The stable state of the population is given if a classifier’s fitness is equal to the

average fitness of all classifiers. This seems very unlikely to result naturally

from splitting L(q) into the classifier components, and thus either Eq. (10.7)

needs to be modified, or the fitness function needs to be tuned so that this is

the case. If and how this can be done cannot be answered before the fitness

function is available. Furthermore, Eq. (10.7) does not allow the emergence of

classifiers that initially have a frequency of 0. As initialising the population

with all possible classifiers is not feasible even for rather small problems, we

need to add new classifier types stochastically periodically. To make this pos-

sible, Eq. (10.7) needs to be modified to take this into account, resulting in a

stochastic equation.

Obviously, a lot more work is required before we can decide if the replicator

dynamics approach can be used to design Michigan-style LCS. If it can, the

approach opens the door to applying the numerous tools designed to analyse

replicator dynamics to the analysis of the classifier dynamics inMichigan-style

LCS.

10.7 Matching by Degree

With the probabilistic LCS model we have made matching by degree possi-

ble. Before that, either a classifier matched an input or it did not. Now, by

Eq. (4.17), the matching function mk(x) returns the probability of classifier k

matching input x.

295

The matching function in LCS is usually represented by the condition

and action of a classifier. Thus, how matching by degree can be used is

representation-dependent, and we have presented two alternatives in Sec-

tion 8.3.1. Interpreting the flexibility of choosing different representation as

a strength of LCS, this strength is further increased by allowing classifiers to

match states to a certain degree.

Let us consider an LCS-related issue that matching by degree might addition-

ally solve: given that XCS(F) is applied to continuous input spaces, there is

an infinite number of ways that the matching function of a classifier can be

specified. Overlapping classifiers in XCS(F) compete in representing the in-

puts that both match, but each input needs to matched such that the classifiers

can provide a model for the whole input space. Overall, it is very unlikely

that classifiers are located in the input space such that they do not overlap but

model all possible inputs. Using matching by degree, on the other hand, one

can define soft boundaries on the subspace of the input space that a classifier

matches, as we have done in Section 8.3.1. This should make it easier for the

model structure search to align classifiers in the input space, as matching all

inputs is simplified by the softness of the boundaries. Naturally, this claim still

needs to be verified empirically, and a modification of the study in [52] seems

to be a particularly suitable approach.

10.8 Advancing in Reinforcement Learning

We have already provided an RL-related discussion of potential future work

in Section 9.6, and will here concentrate on two issues: convergence of the

algorithm, and an incremental LCS that can be used for RL.

Given that we provide stability on the model parameter level in the sense dis-

cussed in Section 9.4.3, convergence of the LCS parameter update to the fixed

point Ṽ ∗ = ΠMT Ṽ ∗ is guaranteed, where ΠM is the LCS approximation op-

erator Eq. (9.19) for model structureM, and T is the dynamic programming
operator Eq. (9.9). At the same time as approximating the current value func-

tion estimate, an incremental LCS also aims at finding a model structureM
that adequately represents this estimate. Changing the model structure, how-

296

ever, changes the fixed point and thus also the optimal model structure. This

shows that there are circular dependencies between approximating the value

function estimate and improvingM. Therefore, analysing the convergence of
both in combination is certainly not trivial.

The first step is to show that LCS converge to a stable set of classifiers if the

target function is stationary, and the approach outlined in Section 10.6.2 might

help in approaching this step. When this is achieved, the interaction between

updating the value function estimate and changing the model structure needs

to be analysed. How this can be done, and if it can be done at all is still un-

clear and very likely depends on how convergence was shown for a stationary

function.

In any case, we need an incremental LCS implementation that can handle non-

stationary functions, because in RLwe deal with a value function estimate that

changes over time. Recency-weighting as shown for the RLS algorithm in Sec-

tion 5.3.5 is a possible approach to handle this non-stationarity, and we can

use its probabilistic interpretation given in Section 5.3.6 to include recency-

weighting into our Bayesian LCS model: the variance of an observation deter-

mines how much weight the classifier model assigns to the information con-

tained within that observation. Thus recency-weighting can be induced by

increasing the variance of past observations along the lines of Eq. (5.61). Based

on this observation, we can re-derive the variational posteriors as shown in

Chapter 7 to get a recency-weighted LCS model and classifier set optimality

criterion. From this model, an incremental version might be derivable as dis-

cussed in Section 10.6.

10.9 Conclusions

As can be seen from this chapter, the developments presented in this work

open up a wide range of future work. Most of it centres on the optimality

criterion and how it can be used for real-world applications in Pittsburgh-style

and Michigan-style LCS. Additionally, we also present new possibilities, like

the theoretical analysis of the optimality criterion to derive properties of the

optimal set of classifiers, and the gains of using matching by degree.

297

What certainly needs to be done firstly is to create a Pittsburgh-style LCS by

Sections 10.2 and 10.4 to evaluate whether the assumptions that the optimality

criterion is based on provide good results on standard datasets. This poten-

tially also leads to an EDA for variable-length individuals and a reformulation

of the mixing model based on Bayesian model averaging or related ensemble

learning methods.

Once the applicability of the definition of an optimal classifier set to real-world

problems has been confirmed, the theoretical properties of such optimal sets

can be analysed theoretically, as described in Section 10.1. On the other hand,

an LCS model for classification can be created by following Section 10.3 and

its performance evaluated by Section 10.5.

A next major step is to turn such a system into a Michigan-style LCS. While

updating the model parameters incrementally is straight-forward, how to do

the same for the model structure is less clear, as discussed in Section 10.6. Once

it is achieved, we have provided a strong link between Pittsburgh-style and

Michigan-style LCS, showing that they are just different implementationswith

the same goal —which is to find the optimal set of classifiers given some data.

Having dealt with the relation between these two LCS styles, we expect to

have gained a better theoretical understanding of Michigan-style LCS that

eventually allows us to make statements about their convergence for station-

ary target functions. Subsequently, this can be used to analyse convergence of

LCS in sequential decision tasks, as described in Section 10.8. Note that before

being able to do so, we need to modify the incremental LCS implementation to

support recency-weighting such that it can handle non-stationary value func-

tion estimates.

To summarise, the theoretical understanding we have gained from the work

presented here allows us to outline how to approach problems for which a

solution seemed to be out of reach. Prime examples are to provide answers to

the properties of optimal solutions, or to analyse the convergence of LCS with

RL. We hope that the outlined approaches will yield useful results, but even if

they do not, they might reveal alternative approaches that do.

298

Chapter 11

Summary and Concluding Remarks

To reflect back on what we have achieved, let us recall that the objective was to

“develop a formal framework for LCS that lets us design, analyse, and inter-

pret LCS” (see Section 1.3). A new LCS interpretation is clearly given through

the model-based view of LCS, and its probabilistic formulation. First steps in

how to design LCS based on this model are shown by the application of ML

methods to training the model for a fixed model structure, and searching the

space of model structures to provide better sets of classifiers with respect to

the given data. Its analysis is implicitly given by revealing the assumptions

that underly the model formed by a set of classifiers and the theoretical foun-

dations of the applied training methods. The formal framework is formed by

the combination of the LCS model and the methods applied to train it. In that

sense, we have evidently reached our objective.

11.1 Contributions

Before we started this work, most of the existing theory built on a facet-wise

approach that investigates the properties of subcomponents of existing LCS

algorithms by means of representing these components by simplified models

(see Section 2.4). The underlying assumption is that one can gain knowledge

about the operation of an algorithm by understanding its components. While

one could question if such an approach is also able to adequately capture the

299

interaction between these components, we see its main limitation as being the

focus on the analysis of existing algorithms, which are always just a means to

an end.

We rather concentrate on the end, which is the solution to the problems that

LCS want to solve, and design algorithms around it, guided by how LCS were

characterised by previous theoretical investigations. The main novelty of this

work is the methodology of taking a model-centred view to specifying the

structure of LCS and their training. All the main contributions follow from

this approach.

The model-centred view is characterised by first formalising a probabilistic

model that represents a set of classifiers, and then using standard machine

learning methods to find the model that explains the given data best. The

main contributions that follow are

• a probabilistic model for a set of classifiers. This model makes explicit the
assumption that are made about the data, gives a better understanding

of the structure of the LCS model, and is easily reformulated to express

different assumptions or to specialise LCS on different tasks.

• a general definition of the optimal set of classifiers. The definition is gen-
eral as it is independent of the representation, suitable for continuous

input and output spaces, and hardly dependent on any system parame-

ters, given that the priors are sufficiently uninformative.

• a strong link to other machine learning methods through utilising gen-
eral machine learning methods for the training of the model. The link

also revealed more detail about the training of current LCS.

Overall, approaching LCS from a different perspective has given us a clearer

view of the problems that need to be solved, which tools can be used to solve

them, and has resulted in a wide range of immediate contributions. In the

order of the chapters they are:

300

Background

• promoted the view of LCS as a particular structure of a model indepen-
dent of their implementation (Section 2.3.5).

A Learning Classifier Systems Model

• characterised LCS as parametric model, conceptually separating the
model structure and the model parameters (Section 3.2.2).

• interpreted classifies as localised models, with their localisation deter-
mined by the matching function (Section 3.2.3).

• defined LCS model structure by global model formed by combination of
localised models (Section 3.2.4).

A Probabilistic Model for LCS

• related the LCS model to the Mixtures-of-Experts model (Chapter 4).

• generalised theMixtures-of-Experts model by adding an additional layer
of localisation (Section 4.3).

• definedmatching by degree as the probability ofmatching a certain input
(Section 4.3.1).

• introduced a localisation method for classifiers that goes beyond what is
defined by their matching function (Section 4.3.5).

• introduced independent classifier training to avoid local optima and to
clarify what a classifier models (Section 4.4)

• clarified that independent classifier training might lead to a worse
goodness-of-fit (Section 4.4.5).

• showed how the LCS model with independent classifier training relates
to XCS [240] and ZCS [239], [227], [23] (Section 4.5).

301

Training the Classifiers

• made the assumptions underlying independently trained linear classi-
fiers explicit (Section 5.1).

• derived the implementation-independent goal of classifiers when trained
according to the principle of maximum likelihood (Section 5.1.3).

• given batch-learning solutions for classifier training (Section 5.2).

• discussed stability, rate of convergence, and convergence criteria for
gradient-based methods of classifier training (Section 5.3).

• introduced the use of the Kalman filter to train linear classifiers, and
linked it to the RLS algorithm and ridge regression (Section 5.3.6).

• gave another interpretation for matching as modulating the variance of
the observed output (Section 5.3.6).

• formulated the problem of estimating the noise precision as a least
squares problem, which allows tracking it by the LMS algorithm (Sec-

tion 5.3.7).

• derived update equations to directly track the optimal noise precision
estimate (Section 5.3.7).

• showed that XCS and XCSF do not estimate the error that they minimise
(Section 5.3.7).

• empirically demonstrated the superior performance of methods that di-
rectly track the optimal estimates over gradient-based methods (Sec-

tion 5.4).

• discussed how XCS and XCSF use gradient-based methods equivalent to
the ones introduced in Chapter 5, and thus train localised linear classifier

models independently (Section 5.5).

Mixing Independently Trained Classifiers

• introduced the IRLS algorithm to train the mixing model, when given by
the generalised softmax function (Section 6.1.1).

302

• derived an incremental least squares approximation to training the
mixing model, when given by the generalised softmax function (Sec-

tion 6.1.2).

• introduced four alternative heuristic mixing model to approximate mix-
ing by the generalised softmax function (Section 6.2).

• derived bounds on the global prediction error as well as the variance of
the global prediction, when mixing by weighted average is used (Sec-

tion 6.2.1).

• introduced a batch formulation to the mixing model used by XCS (Sec-
tion 6.2.5).

• showed empirically that mixing by inverse variance is the best of the
heuristic models and better than the least squares approximation for

training the generalised softmax function mixing model (Section 6.3).

The Optimal Set of Classifiers

• linked finding a good set of classifier to model selection (Chapter 7).

• defined the best set of classifiers as the one that provides the best model
for the given problem (Chapter 7).

• discussed what sets of classifiers XCS [240], YCS [33], and CCS [154] aim
for (Section 7.1.1).

• showed that even methods that seem to be unbiased implicitly make as-
sumptions about the data-generating process (Section 7.1.6).

• introduced a fully Bayesian model for a set of classifiers, making explicit
all the assumptions that such a model makes about the data (Section 7.2).

• introduced classifiers that can perform multivariate regression rather
than the univariate regression that is usually used in LCS (Section 7.2.2).

• showed how to apply variational Bayesian inference to find the posterior
and model evidence of the Bayesian LCS model (Section 7.3).

• derived the predictive density of the Bayesian LCS model (Section 7.4).

303

• discussed the applicability of alternativemodel selection criteria to defin-
ing the optimal set of classifiers in LCS (Section 7.5).

An Algorithmic Description

• described an algorithmic implementation of variational Bayesian infer-
ence to find the model evidence and probability density for a given data

and model structure (Section 8.1).

• showed that the model structure search in LCS can be performed by any
suitable global optimiser, by introducing the Markov Chain Monte Carlo

method as an alternative to searching the optimal model structure by GA

(Section 8.2.2).

• introduced two matching function representations that use matching by
degree: radial basis-function matching and matching by soft interval

(Section 8.3.1).

• showed empirically that the optimality criterion i) is able to separate the
pattern in the data from the noise, ii) prefers simpler model structures of

more complex ones, iii) can handle problems where the noise variance

varies over the input space (Section 8.3).

Reinforcement Learning with LCS

• introduced a formulation of LCS function approximation that charac-
terises them by their value function approximation rather than their

model (Section 9.3.1).

• formulated Bellman’s Equation for LCS as the basis of dynamic pro-
gramming and reinforcement learning with LCS that train their classi-

fiers independently (Section 9.3.2).

• showed how to perform approximate value iteration and approximate
asynchronous value iteration with LCS (Section 9.3.3).

• derived the classifier parameter update when using Q-Learning with
LCS, both when using the LMS and the RLS algorithm (Sections 9.3.4

and 9.3.5).

304

• clarified that XCS and XCSF already perform Q-Learning with gradient
descent, without the need to modify them, contrary to that which is pre-

sented in [47, 45, 226, 227, 143, 141, 140] (Section 9.3.6).

• gave sufficient conditions for the stability of dynamic programming with
LCS for a constant model structure, which is the prerequisite of ensuring

stability of reinforcement learning with LCS (Section 9.4).

• discussed that XCSF using Q-Learning cannot provide stability at the pa-
rameter learning level, and conjectured that it might provide this stability

at the structure learning level instead (Section 9.4).

• provided a counterexample where the relative error method that is sup-
posed to handle long path learning in XCS [12] will almost certainly fail

(Section 9.5.3).

11.2 Future Possibilities

Our work opens up a wide range of future work, the most obvious being a

further evaluation of the suitability of the introduced optimality criterion to

real-world applications, which still requires some modifications to the meth-

ods we have introduced. Another challenging route is to use our optimality

criterion to design a Michigan-style LCS, and with it bridge the gap between

Pittsburgh-style and Michigan-style approaches.

New paths off the beaten LCS track are to derive properties of the optimal

set of classifiers, such as whether overlapping classifiers are supported in such

solutions, and to proceed further with the performance guarantees such as the

stability of using LCS with reinforcement learning.

These future routes are amongst others discussed in more depth in Chapter 10.

305

11.3 Concluding Remarks

The model-centred approach taken in this work is holistic in the sense that

rather than handling each LCS component separately, it allows us to deal

with function approximation, reinforcement learning and classifier replace-

ment from the same starting point, which is the model.

Is taking this approach really so much better than the ad-hoc approach; that

is, does it result in better methods? Giving a definite answer to this question

needs to be postponed until we have a fully functional LCS. Nonetheless, even

taking the model-based perspective alone gives us a new view on LCS and is

by itself a contribution. Also, considering that most popular machine learning

methods started ad-hoc and were later improved by reformulating them from

a model-centred perspective, applying the same methodology to reformulat-

ing LCS is very likely to be profitable in the long run.

Another question is whether theoretical advances in a field really help improve

its methods. Let us firstly claim that founding the theoretical understanding of

a method is a sign of its maturity. The method does not necessarily need to be

initially developed from the formal perspective, as Support Vector Machines

(SVMs) were [222]. Still, providing a theoretical foundation that explains what

a method is doing adds significantly to its understanding, if not also to its per-

formance. An examplewhere the understandingwas improved is the interpre-

tation of weight decay in neural networks as Gaussian priors on their weights

(see Example 3.2.2). The significant performance increase of reinforcement

learning through intelligent exploration can almost exclusively be attributed

to advances in their theoretical understanding [127, 28, 207]. Correspondingly,

while we cannot guarantee a further improvement of the already competitive

performance of LCS in supervised learning tasks through advances from the

theoretical side, such advances unquestionably increase their understanding

and provide a different perspective.

Of course, we do not claim that the methodology presented in this work is the

ultimate and only approach to design LCS. We do not intend to stifle the in-

novation in this field. Rather, we want to promote its uptake for well-defined

tasks such as regression and classification tasks, due to the obvious advan-

306

tages that our approach promises. Also, given that Sutton’s value-function

hypothesis [210] is correct, and value function learning is the only efficient

way to handle sequential decision tasks, then these tasks are most likely best

approached by taking the model-centred view as well. On the other hand,

given that the task does not fall into these categories (for example, [199]), then

an ad-hoc approach without strong formal foundations might still be the pre-

ferred choice for designing LCS. However, even following the route we have

outlined leaves significant space for design variations in how to formulate the

model, and in particular which method to develop or apply to search the space

of possible model structures.

Overall, taking our perspective, the answer to “What is a Learning Classifier

System?” is: a family of models that are defined by a global model being

formed by a set of localised models known as classifiers, an approach for com-

paring competing model with respect to their suitability in representing the

data, and a method to search the space of sets of classifiers to provide a good

model for the problem at hand. Thus, we have added themodel to themethod.

307

Appendix A

Notation

The notation used in this work is very similar to themachine learning standard

(for example, [19]). The subscript k always refers to the kth classifier, and the

subscript n refers to the nth observation. The only exception is Chapter 5 that

discusses a single classifier, which makes the use of k superfluous. Composite

objects, like sets, vectors and matrices, are usually written in bold. Vectors are

usually column vectors and are denoted by a lowercase symbol; matrices are

denoted by an uppercase symbol. ·T is the transpose of a vector/matrix. ·̂ is an
estimate. ·∗ in Chapter 7 denotes the parameters of the variational posterior,
and the posterior itself, and in Chapter 9 indicates optimality.

The tables in the next pages give the used symbol in the first column, a brief

explanation of its meaning in the second column, and — where appropriate

— the section number that is best to consult with respect to this symbol in the

third column.

309

Sets, Functions and Distributions

∅ empty set

R set of real numbers

N set of natural numbers

EX(X,Y) expectation of X,Y with respect to X

var(X) variance of X

cov(X,Y) covariance between X and Y

Tr(A) trace of matrixA

〈x,y〉 inner product of x and y 5.2

〈x,y〉A inner product of x and y, weighted by matrixA 5.2

‖x‖A norm of x associated with inner product space 〈·, ·〉A 5.2

‖x‖ Euclidean norm of x, ‖x‖ ≡ ‖x‖I 5.2

‖x‖∞ maximum norm of x 9.2.1

⊗,⊘ multiplication and division operator for element-wise

matrix and vector multiplication/division

8.1

L loss function, L : X × X → R
+ 3.1.1

l log-likelihood function 4.1.2

N (x|µ,Σ) normal distribution with mean vector µ and covari-

ance matrix Σ

4.2

Gam(x|a, b) gamma distribution with shape a, scale b 7.2.3

St(x|µ,Λ, a) Student’s t distribution with mean vector µ, precision

matrix Λ, and a degrees of freedom

7.4

p probability mass/density

q variational probability mass/density 7.3.1

q∗ variational posterior 7.3

Γ gamma function 7.2.3

ψ digamma function 7.3.7

KL(q‖p) Kullback-Leibler divergence between q and p 7.3.1

L(q) variational bound of q 7.3.1

U set of hidden variables 7.2.6

310

Data and Model

X input space 3.1

Y output space 3.1

DX dimensionality of X 3.1.2

DY dimensionality of Y 3.1.2

N number of observations 3.1

n index referring to the nth observation 3.1

X set/matrix of inputs 3.1, 3.1.2

Y set/matrix of outputs 3.1, 3.1.2

x input, x ∈ X , 3.1

y output, y ∈ Y 3.1

υ random variable for output y 5.1.1

D data/training set, D = {X,Y } 3.1

f target function, mean of data-generating process,

f : X → Y
3.1.1

ǫ zero-mean random variable, modelling stochasticity

of data-generating process and measurement noise

3.1.1

M model structure,M = {M , K} 3.1.1, 3.2.5

θ model parameters 3.2.1

f̂M hypothesis for data-generating process of model with

structureM, f̂M : X → Y
3.1.1

K number of classifiers 3.2.2

k index referring to classifier k 3.2.3

311

Classifier Model

Xk input space of classifier k, Xk ⊆ X 3.2.3

mnk binarymatching random variable of classifier k for ob-

servation n

4.3.1

mk matching function of classifier k,mk : X → [0, 1] 3.2.3

M set of matching functions,M = {mk} 3.2.5

Mk matching matrix of classifier k 5.2.1

M matching matrix for all classifiers 8.1

θk parameters of model of kth classifier 9.1.1

wk weight vector of classifier k, wk ∈ R
DX 4.2

ωk random vector for weight vector of classifier k 5.1.1

Wk weight matrix of classifier k,W ∈ R
DY×DX 7.2

τk noise precision of classifier k, τk ∈ R 4.2

αk weight shrinkage prior 7.2

aτ , bτ shape, scale parameters of prior on noise precision 7.2

aτk
, bτk

shape, scale parameters of posterior on noise precision

of classifier k

7.3.2

aα, bα shape, scale parameters of hyperprior on weight

shrinkage priors

7.2

aαk
, bαk

shape, scale parameters of hyperposterior on weight

shrinkage prior of classifier k

7.3.3

W set of weight matrices,W = {Wk} 7.2

τ set of noise precisions, τ = {τk} 7.2

α set of weight shrinkage priors, α = {αk} 7.2

ǫk zero-mean Gaussian noise for classifier k 5.1.1

ck match count of classifier k 5.2.2

Λ
−1
k input covariance matrix (for RLS, input correlation

matrix) of classifier k

5.3.5

γ step size for gradient-based algorithms 5.3

λmin / λmax smallest / largest eigenvalue of input correlation ma-

trix c−1
k XT MkX

5.3

T time constant 5.3

λ ridge complexity 5.3.5

λ decay factor for recency-weighting 5.3.5

ζ Kalman gain 5.3.6

312

Gating Network / Mixing Model

znk binary latent variable, associating observation n to

classifier k

4.1

rnk responsibility of classifier k for observation n,

rnk = E(znk)

4.1.3, 7.3.2

vk gating/mixing vector, associated with classifier k,

vk ∈ R
DV

4.1.2

βk mixing weight shrinkage prior, associated with classi-

fier k

7.2

aβ, bβ shape, scale parameters for hyperprior on mixing

weight shrinkage priors

7.2

aβk
, bβk

shape, scale parameters for hyperposterior on mixing

weight shrinkage priors, associated with classifier k

7.3.5

Z set of latent variables, Z = {znk} 4.1

V set/vector of gating/mixing vectors 4.1.2

β set of mixing weight shrinkage priors, β = {βk} 7.2

DV dimensionality of gating/mixing space 6.1

gk gating/mixing function (softmax function in Sec-

tion 4.1.2, anymixing function in Chapter 6, otherwise

generalised softmax function), gk : X → [0, 1]

4.1.2, 4.3.1

φ transfer function, φ : X → R
DV 6.1

Φ mixing feature matrix, Φ ∈ R
N×DV 8.1

H Hessian matrix,H ∈ R
KDV ×KDV 6.1.1

E error function of mixing model, E : R
KDV → R 6.1.1

γk function returning quality metric for model of classi-

fier k for state x, γk : X → R
+

6.2

313

Dynamic Programming and Reinforcement Learning

X set of states 9.1.1

x state, x ∈ X 9.1.1

N number of states 9.1.1

A set of actions 9.1.1

a action, a ∈ A 9.1.1

rxx′(a) reward function, r : X × X ×A → R 9.1.1

rµ
xx′ reward function for policy µ 9.1.1

rµ
x reward function for expected rewards and policy µ 9.1.1

rµ reward vector of expected rewards for policy µ,

rµ ∈ R
N

9.1.1

pµ transition function for policy µ 9.1.1

P µ transition matrix for policy µ, P µ ∈ [0, 1]N×N 9.1.4

γ discount rate, 0 < γ ≤ 1 9.1.1

µ policy, µ : X → A 9.1.1

V value function, V : X → R, V ∗ optimal, V µ for pol-

icy µ, Ṽ approximated

9.1.2

V value vector, V ∈ R
N , V ∗ optimal, V µ for policy µ,

Ṽ approximated

9.1.4

Ṽk value vector approximated by classifier k 9.3.1

Q action-value function, Q : X ×A → R, Q∗ optional,

Qµ for policy µ, Q̃ approximated

9.1.2

Q̃k action-value function approximated by classifier k 9.3.4

T dynamic programming operator 9.2.1

Tµ dynamic programming operator for policy µ 9.2.1

T
(λ)
µ temporal-difference learning operator for policy µ 9.2.4

Π approximation operator 9.2.3

Πk approximation operator of classifier k 9.3.1

α step-size for gradient-based incremental algo-

rithms

9.2.6

314

Appendix B

XCS and XCSF

As frequently referred to throughout this work, we here give a short account of

the functionality of XCS [240, 241] and XCSF [243, 244] from the model-based

perspective. The interested reader is referred to [57] for a full description of its

algorithmic implementation. The description here focuses on XCSF and only

considers XCS explicitly in cases where it differs from XCSF.

Even though XCSF is trained incrementally and is designed to handle sequen-

tial decision tasks, we describe it here as if it would perform batch learning

and univariate regression to relate it more easily to the methods that are de-

scribed in this work. More information on how XCSF handles sequential deci-

sion tasks is given in Section 9.3.

We assume a univariate regression setup as described in Section 3.1.2 with

N given observations. The description concentrates firstly on the classifier

and mixing models, and how to find the model parameters for a fixed model

structure M, and then focuses on how the model structure search in XCSF
searches for better model structures.

315

B.1 Classifier Model and Mixing Model

Let us assume a model structureM = {K,M} with K classifiers and their
matching functionsM = {mk : X → [0, 1]}. The classifier models are univari-
ate regression models that are trained independently by maximum likelihood

and thus aim at finding weight vectors wk that minimise

N
∑

n=1

mk(xn)
(

wT
k xn − yn

)2
, k = 1, . . . , K, (B.1)

as described in more detail in Chapter 5. In addition to the weight vector, each

classifier maintains its match count ck, called experience, and estimates its mean

absolute prediction error ǫk, simply called error, by

ǫk = ck−1
N
∑

n=1

m(xn)
∣

∣yn −wT
k xn

∣

∣ . (B.2)

A classifier’s accuracy is some inverse function κ(ǫk) of the classifier error. It

was initially given by an exponential [240], but was later [241, 57] redefined to

κ(ǫ) =

1 if ǫ < ǫ0,

α
(

ǫ
ǫ0

)−ν

otherwise,
(B.3)

where the constant scalar ǫ0 is the minimum error, the constant α is the scal-

ing factor, and the constant ν is a mixing power factor [57]. The accuracy is

constantly 1 up to the error ǫ0 and then drops off steeply, with the shape of the

drop determined by α and ν. The relative accuracy is a classifier’s accuracy for a

single input normalised by the sum of the accuracies of all classifiers matching

that input. The fitness is the relative accuracy of a classifier averaged over all

inputs that it matches, that is

Fk = c−1
k

N
∑

n=1

mk(xn)κ(ǫk)
∑K

j=1mj(xn)κ(ǫj)
(B.4)

Each classifier additionally maintains an estimate of the action set size ask,

which is the average number of classifiers that match the classifier’s matched

316

inputs, and is given by

ask = c−1
k

N
∑

n=1

mk(xn)
K
∑

j=1

mj(xn). (B.5)

The error, fitness, and action set size are incrementally updated by the LMS

algorithm (see Section 5.3.3), using the MAM update (see Section 5.4.1). The

weight vector is in XCSF updated by the NLMS algorithm (see Section 5.3.4),

and in XCS updated by the LMS algorithm and the MAM update with xn = 1

for all n.

The mixing model is the fitness-weighted average of all matching classifiers

(see also Section 6.2.5), and is formally specified by the mixing function

gk(x) =
mk(xn)Fk

∑K
j=1mj(xn)Fj

. (B.6)

For both classifier and mixing model training, XCSF aims at minimising the

empirical risk rather than the expected risk, regardless of the risk of overfitting

that come with this approach. Overfitting is handled at the model structure

search level, as will be described in the following section.

B.2 Model Structure Search

The model structure search incrementally improves the model structure by

promoting classifiers whose error is close to but not above ǫ0 (that is, classifiers

that are most general but still accurate), and a set of classifiers that is non-

overlapping in the input space.

The search is performed by a Michigan-style niche GA that interprets a single

classifier as an individual in a population, formed by the current set of classi-

fiers. The set of classifiers that matches the current input is called thematch set,

and its subset that promotes the performed action is called the action set1. In

1Initially, XCS as described in [240] performed GA reproduction in the match set, but was
later modified to act on the action set [241]. The description given here conforms to the latter

317

regression tasks, these two sets are equivalent, as the actions are irrelevant.

Reproduction of classifiers is invoked at regular intervals, based on the time

since the last invocation, averaged over the classifiers in the current action

set. Upon reproduction, two classifiers from the current action set are selected

with probabilities proportional to their fitnesses2, are then copied, and – after

performing crossover and mutation on their condition which represents their

matching function – are injected back into the current population. If the num-

ber of classifiers in the population reaches a certain preset limit on the popula-

tion size, deletion occurs. Classifier deletion is not limited to the current action

set but, in general3, classifiers are selected with a probability proportional to

their estimated action set size ask. If unmatched inputs are observed, XCSF

induces classifiers into the population that match that input, called covering,

and additionally deletes other classifiers if the population size grows out of

bounds.

As reproduction is performed in the action sets, classifiers which are more

general and thus participate in more action sets are more likely to reproduce.

Deletion, on the other hand, does not depend on the classifiers’ generality but

mainly on their action set size estimates. In combination, this causes a pref-

erence for more general classifiers that are still considered as being accurate,

a GA pressure called the set pressure in [53]. Note that due to the fitness pres-

sure, classifiers with ǫ > ǫ0 will have a very low fitness and are therefore very

unlikely to be selected for reproduction. The deletion pressure refers to deletion

being proportional to the action set size estimates, and causes an even distri-

bution of resources over all inputs. The mutation pressure depends on the mu-

tation operator and in general pushes the classifiers towards more generality

up to a certain threshold.

In combination, these pressures cause XCSF to evolve classifiers that feature an

error ǫ as close to ǫ0 as possible. Thus, generality of the classifiers is controlled

by the parameter ǫ0. Therefore, overfitting is avoided by the explicit tendency

of classifiers to feature some (small) deliberate error. XCSF additionally prefers

version.
2Selection for reproduction does not need to be with probabilities proportional to classifier

fitness. As an alternative, tournament selection has been used [56].
3Various variations to the described deletion scheme have been proposed and investigated

in [240, 132, 137].

318

non-overlapping set of classifiers, as overlapping classifiers compete for selec-

tion within the same action set until either of them dominates. For a further

discussion of the set of classifiers that XCSF tends to evolve, see Section 7.1.1.

319

Index

action, 240

action set, 258

action-value function, 242

ad-hoc design, 4

adaptive filter theory, 79

attributes, 40

basis functions, 82

batch learning, 37, 42–44, 84, 126

Bayesian model averaging, 280

Bayesian model selection, 11, 154

Bayesian Ying-Yang, see BYY

Bellman’s Equation, 242, 253

bucket brigade

implicit, 22, 23

building blocks, 18, 220

BYY, 193

CCS, 152

class labels, 40

classification, 7, 40, 280

classifier, 19, 48

accuracy, 80, 137

action, 19

averaging, 82, 86

condition, 19

fitness, 137

independent training, 72, 74, 184,

201

localisation, 25, 48, 62, 67

model, 73, 161

overgeneral, 23, 24

overlapping, 277

parameters, 64, 80

parasitic, 23

prediction, 24, 105, 135

representation, 25, 49, 222

strength, 77

clustering, 4

condition, see classifier condition

confidence intervals, 187

conflict resolution subsystem, 20, 21

conjugate prior, 162

contraction mapping, 244

credit allocation subsystem, 20, 21, 52

cross-entropy, 127

crossover, 215, 220, 284

data, 37, 159

complete, 60

incomplete, 60

likelihood, 154, 160

data-generating process, 37

non-stationary, 43

stationary, 42

stochasticity, 38, 63, 82

default hierarchies, 278

discount factor, 240

DP, 3, 41, 244

operators, 244

dynamic programming, see DP

eligibility traces, 247, 249

EM, 5, 60

321

empirical risk, 38, 79

ensemble learning, 27, 78, 279

expectation-maximisation, see EM

expected risk, 38

explore/exploit, 272

facet-wise approach, 29, 293

feature, 18

fitness sharing, 23, 77

GA, 21, 29, 214

niche, 24

gating network, 58, 75

generalisation, 66

genetic algorithm, see GA

global model, 123

gradient noise, 92

gradient noise amplification, 94

Hessian matrix, 127, 174, 209

horizon, 241

incremental learning, 37, 42–44, 87,

128, 286

inner product space, 84

input, 26, 49

matrix, 40

space, 37

IRLS, 62, 126, 174, 207

Iteratively Re-weighted Least

Squares, see IRLS

Jensen’s Inequality, 132

K-means, 4

Kalman filter, 100

covariance form, 102

inverse covariance form, 103

Kalman-Bucy system model, 100

Kullback-Leibler divergence, 166, 207

Laplace approximation, 173

latent variable, 56

LCS, 6, 17

accuracy-based, 7, 24

Anticipatory, 273

Bayesian model, 158

early, 18

Michigan-style, 27, 45, 286

model, 47, 55–78

Pittsburgh-style, 27, 45, 216

strength-based, 7, 22

Learning Classifier Systems, see LCS

Least Mean Squared, see LMS

Lipschitz continuous, 90

LMS, 77, 92

local maxima, 63, 71, 72, 75

long path learning, 266

loss function, 38

machine learning, 2, 17

MAM update, 100, 114

Markov Chain Monte Carlo, see

MCMC

Markov Decision Process, seeMDP

match count, 86

match set, 257

matching, 19, 48, 65, 106

function, 48, 222, 224

matrix, 84, 199

Matrix Inversion Lemma, 96

maximum likelihood, 57, 79

MCMC, 217

MDL, 191

MDP, 240

mean squared error, seeMSE

measurement noise, 38, 63, 82, 101

Metropolis-Hastings algorithm, 217

322

Minimum Description Length, see

MDL

minimum error, 151

minimum model error, 104

misadjustment, 92

mixing feature matrix, 199

mixing model, 76, 123, 164

training, 203

Mixtures-of-Experts, seeMoE

ML, seemachine learning

model

evidence, 154, 166, 200

global, 50

linear, 63, 81

localised, 26, 48

parameter priors, 158

parameters, 5, 47, 60

parametric, 47

probability, 200

selection, 10, 39, 153, 191

Bayesian, see Bayesian model

selection

structure, 47, 50, 73, 160

prior, 155

search, 51, 78, 213, 282

training, 46

model-based design, 5, 33, 294

MoE, 56

complete-data log-likelihood, 61

log-likelihood, 59

MSE, 92, 144

multi-step tasks, 30

Newton-Raphson method, 126

NLMS, 94, 255

noise precision, 64, 83

incremental estimation, 107

non-expansion, 246, 263

normal equation, 95

Normalised Least Mean Squared, see

NLMS

observation, 37

off-policy, 249

on-policy, 248

output, 26

matrix, 40

space, 37

overfitting, 39, 46, 79, 124

PAC, 30, 273

payoff, see reward

performance subsystem, 20, 21

policy, 41, 240

evaluation, 245

improvement, 245

iteration, 245

approximate, 246

optimal, 241

precision matrix, 101

prediction vector, 258

predictive distribution, 187

prior probability, 156

projection matrix, 85, 251

Q-Learning, 248, 254

randomised ANOVA, 115

recency-weighting, 43, 98, 129, 291

Recursive Least Squares, see RLS

regression, 7, 39

regularisation, 157

reinforcement learning, see RL

replicator dynamics, 288

responsibility, 61, 126, 169, 206

return, 241

reward, 18, 41

323

function, 240

ridge complexity, 97

ridge regression, 97

RL, 3, 31, 41, 244, 290

Bayesian, 273

stability, 31, 260

RLS, 95, 105, 256

recency-weighted, 98

rule induction subsystem, 20, 21, 53

SARSA, 248

sequential decision task, 3, 41, 237

Sherman-Morrison formula, 96

shrinkage prior, 157

single-step tasks, 29

softmax function, 58

generalised, 66, 125, 163

SRM, 192

state, 18, 240

space, 41, 240

steepest gradient descent, 89

step size, 89

Structural Risk Minimisation, see

SRM

supervised learning, 2

system state, 101

TD learning, 247

temporal-difference learning, see TD

learning

time constant, 90

training set, see data

transfer function, 66, 69

transition

function, 240

matrix, 243

UCS, 78

underfitting, 39, 46

unsupervised learning, 3

value

function, 41, 241

approximation, 246, 251

update noise, 270

function hypothesis, 242

iteration, 245

approximate, 246, 253

vector, 243

variational Bayesian inference, 166

variational bound, 166, 180, 210

weighted average, 130

weighted least squares, 83, 126

XCS, 24, 76, 100, 114, 136, 151, 265

XCSF, 24, 114, 257, 265

YCS, 152

ZCS, 23, 77

324

Bibliography

[1] Davide Aliprandi, Alix Mancastroppa, and Matteo Matteucci. A

Bayesian Approach to Learning Classifier Systems in Uncertain Envi-

ronments. In Keijzer et al. [129], pages 1537–1544.

[2] Brian D. O. Anderson and John B. Moore. Optimal Filtering. Information

and System Sciences Series. Prentice-Hall, Inc., Englewood Cliffs, NJ,

1979.

[3] G. Armano. NXCS Experts for Financial Time Series Forecasting. In Bull

[32], pages 68–91.

[4] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

[5] Arik Azran. Data Dependent Risk Bounds and Algorithms for Hierar-

chical Mixture of Experts Classifiers. Master’s thesis, Israel Institute of

Technology, Haifa, Israel, June 2004.

[6] Arik Azran and RonMeir. Data Dependent Risk Bounds for Hierarchical

Mixture of Experts Classifiers. In John Shawe-Taylor and Yoram Singer,

editors, Learning Theory, 17th Annual Conference on Learning Theory, COLT

2004, Banff, Canada, July 1-4, 2004, Proceedings, volume 3120 of Lecture

Notes in Computer Science, pages 427–441. Springer, 2004.

[7] Jaume Bacardit and Josep M. Garrell Guiu. Bloat control and general-

ization pressure using the minimum description length principle for a

Pittsburgh approach Learning Classifier System. In Kovacs et al. [138],

pages 59–79.

[8] Jaume Bacardit, Michael Stout, Jonathan D. Hirst, Kumara Sastry, Xavier

Llorá, and Natalio Krasnogor. Automated Alphabet Reduction Method

325

with Evolutionary Algorithms for Protein Structure Prediction. In

Thierens et al. [216], pages 346–353.

[9] Wolfgang Banzhaf, Jason M. Daida, A. E. Eiben, Max H. Garzon, Vasant

Honavar, Mark J. Jakiela, and Robert E. Smith, editors. Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO 1999), San

Francisco, CA, USA, 13-17 July 1999. Morgan Kaufmann.

[10] Alwyn Barry. XCS Performance and Population Structure within Multiple-

Step Environments. PhD thesis, Queens University Belfast, 2000.

[11] Alwyn M. Barry. The Stability of Long Action Chains in XCS. In Bull

et al. [37], pages 183–199.

[12] Alwyn M. Barry. Limits in Long Path Learning with XCS. In Cantú-Paz

et al. [59], pages 1832–1843.

[13] Peter L. Bartlett, Stéphane Boucheron, and Gábor Lugosi. Model selec-

tion and error estimation. Machine Learning, 48:85–113, 2002.

[14] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian com-

plexities: Risk bounds and structural results. Journal of Machine Learning

Research, 3:462–482, 2002.

[15] José M. Bernardo and Adrian F. M. Smith. Bayesian Theory. Wiley, 1994.

[16] Dimitri P. Bertsekas, Vivek S. Borkas, and Angelia Nedić. Improved

Temporal Difference Methods with Linear Function Approximation. In

Jennie Si, Andrew G. Barto, Warren Buckler Powell, and Don Wun-

sch, editors,Handbook of Learning and Approximate Dynamic Programming,

chapter 9, pages 235–260. Wiley Publishers, August 2004.

[17] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming.

Athena Scientific, Belmont, MA, 1996.

[18] H.-G. Beyer, U.-M. O’Reilly, D.V. Arnold, W. Banzhaf, C. Blum, E.W.

Bonabeau, E. Cant Paz, D. Dasgupta, K. Deb, J.A. Foster, E.D. de Jong,

H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G.R. Raidl, T. Soule,

A. Tyrrell, J.-P. Watson, and E. Zitzler, editors. Proceedings of the Genetic

and Evolutionary Computation Conference, GECCO-2005, volume 2, New

York, NY, USA, 2005. ACM Press.

326

[19] Christopher M. Bishop. Pattern Recognition and Machine Learning. Infor-

mation Science and Statistics. Springer, 2006.

[20] ChristopherM. Bishop andMarkus Svensén. BayesianHierarchicalMix-

tures of Experts. In Proceedings of the 19th Annual Conference on Uncer-

tainty in Artificial Intelligence (UAI-03), pages 57–64, San Francisco, CA,

2003. Morgan Kaufmann.

[21] Lashon B. Booker. Triggered rule discovery in classifier systems. In

J. David Schaffer, editor, Proceedings of the 3rd International Conference on

Genetic Algorithms (ICGA89), pages 265–274, George Mason University,

June 1989. Morgan Kaufmann.

[22] Lashon B. Booker. Do We Really Need to Estimate Rule Utilities in Clas-

sifier Systems? In Lanzi et al. [146], pages 125–142.

[23] Lashon B. Booker. Approximating value function in classifier systems.

In Bull and Kovacs [36].

[24] Lashon B. Booker, May 2006. Personal Communication.

[25] Justin A. Boyan and AndrewW.Moore. Generalization in reinforcement

learning: Safely approximating the value function. In G. Tesauro, D. S.

Touretzky, and T. K. Leen, editors, Advances in Neural Information Process-

ing Systems 7, pages 369–376, Cambridge, MA, 1995. The MIT Press.

[26] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-

bridge University Press, 2004.

[27] Steven J. Bradtke. Reinforcement Learning Applied to Linear Quadratic

Regulation. In Advances in Neural Information Processing Systems, vol-

ume 5. Morgan Kaufmann Publishers, 1993.

[28] R. I. Brafman and M. Tennenholtz. R-max: a General Polynomial Time

Algorithm for Near-optimal Reinforcement Learning. In Proceedings of

the 17th International Joint Conference on Artificial Intelligence, pages 953–

958, 2001.

[29] Gavin Brown, Tim Kovacs, and James Marshall. UCSPv: Principled Vot-

ing in UCS Rule Populations. In Thierens et al. [216], pages 1774–1782.

[30] Larry Bull. SimpleMarkovModels of the Genetic Algorithm in Classifier

Systems: Multi-step Tasks. In Lanzi et al. [149].

327

[31] Larry Bull. On accuracy-based fitness. Journal of Soft Computing, 6(3–

4):154–161, 2002.

[32] Larry Bull, editor. Applications of Learning Classifier Systems, volume 150

of Studies in Fuzziness and Soft Computing. Springer, 2004.

[33] Larry Bull. Two Simple Learning Classifier Systems. In Bull and Kovacs

[36], pages 63–90. YCS part also in TR UWELCSG03–005.

[34] Larry Bull and Jacob Hurst. ZCS redux. Evolutionary Computation,

10(2):185–205, 2002.

[35] Larry Bull and Jacob Hurst. A Neural Learning Classifier System with

Self-Adaptive Constructivism. In Proceedings of the 2003 IEEE Congress

on Evolutionary Computation, volume 2, pages 991–997. IEEE Press, 2003.

Also TR UWELCSG03-003.

[36] Larry Bull and Tim Kovacs, editors. Foundations of Learning Classifier

Systems, volume 183 of Studies in Fuzziness and Soft Computing. Springer

Verlag, Berlin, 2005.

[37] Larry Bull, Pier Luca Lanzi, and Wolfgang Stolzmann, editors. Journal of

Soft Computing, volume 6. Elsevir Science Publishers, 2002.

[38] Larry Bull and Toby O’Hara. ANeural Rule Representation for Learning

Classifier Systems. In Lanzi et al. [147].

[39] Larry Bull, J. Sha’Aban, Andy Tomlinson, J. D. Addison, and B.G. Hey-

decker. Towards Distributed Adaptive Control for Road Traffic Junction

Signals using Learning Classifier Systems. In Bull [32], pages 279–299.

[40] Martin V. Butz. An Algorithmic Description of ACS2. In Lanzi et al.

[147], pages 211–229.

[41] Martin V. Butz. Kernel-based, Ellipsoidal Conditions in the Real-Valued

XCS Classifier System. In Beyer et al. [18], pages 1835–1842.

[42] Martin V. Butz. Rule-Based Evolutionary Online Learning Systems: A Prin-

cipled Approach to LCS Analysis and Design, volume 191 of Studies in Fuzzi-

ness and Soft Computing. Springer, 2006.

[43] Martin V. Butz, July 2007. Personal Communication.

328

[44] Martin V. Butz and David E. Goldberg. Bounding the population size

in XCS to ensure reproductive opportunities. In Cantú-Paz et al. [59],

pages 1844–1856.

[45] Martin V. Butz, David E. Goldberg, and Pier Luca Lanzi. Gradient De-

scent Methods in Learning Classifier Systems: Improving XCS Perfor-

mance in Multistep Problems. Technical Report 2003028, Illinois Genetic

Algorithms Laboratory, December 2003.

[46] Martin V. Butz, David E. Goldberg, and Pier Luca Lanzi. Bound-

ing Learning Time in XCS. In Kalyanmoy Deb, Riccardo Poli, Wolf-

gang Banzhaf, Hans-Georg Beyer, Edmund K. Burke, Paul J. Darwen,

Dipankar Dasgupta, Dario Floreano, James A. Foster, Mark Harman,

Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea Tettamanzi, Dirk

Thierens, and Andrew M. Tyrrell, editors, Genetic and Evolutionary Com-

putation - GECCO 2004, Genetic and Evolutionary Computation Conference,

Seattle, WA, USA, June 26-30, 2004, Proceedings, volume 3102 of Lecture

Notes in Computer Science. Springer Verlag, 2004.

[47] Martin V. Butz, David E. Goldberg, and Pier Luca Lanzi. Gradient De-

scent Methods in Learning Classifier Systems: Improving XCS Perfor-

mance in Multistep Problems. IEEE Transactions on Evolutionary Compu-

tation, 9(5):452–473, October 2005. Also IlliGAl TR No. 2003028.

[48] Martin V. Butz, David E. Goldberg, and Wolfgang Stolzmann. Introduc-

ing a Genetic Generalization Pressure to the Anticipatory Classifier Sys-

tem Part I: Theoretical Approach. In Proceedings of the 2000 Genetic and

Evolutionary Computation Conference (GECCO 2000), pages 34–41, 2000.

[49] Martin V. Butz, David E. Goldberg, and Kurian Tharakunnel. Analy-

sis and Improvement of Fitness Exploitation in XCS: Bounding Models,

Tournament Selection and Bilateral Accuracy. Evolutionary Computation,

11:239–277, 2003.

[50] Martin V. Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart Wilson. To-

ward a Theory of Generalization and Learning in XCS. IEEE Transaction

on Evolutionary Computation, 8:28–46, 2004.

[51] Martin V. Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart W. Wilson.

How XCS Evolves Accurate Classifiers. In Spector et al. [203], pages

927–934.

329

[52] Martin V. Butz, Pier Luca Lanzi, and Stewart W. Wilson. Hyper-

ellipsoidal conditions in XCS: Rotation, linear approximation, and so-

lution structure. In Keijzer et al. [129], pages 1457–1464.

[53] Martin V. Butz and Martin Pelikan. Analyzing the Evolutionary Pres-

sures in XCS. In Spector et al. [203], pages 935–942.

[54] Martin V. Butz and Martin Pelikan. Studying XCS/BOA learning in

Boolean functions: structure encoding and random Boolean functions.

In Keijzer et al. [129], pages 1449–1456.

[55] Martin V. Butz, Martin Pelikan, Xavier Llorá, and David E. Goldberg.

Automated global structure extraction for effective local building block

processing in XCS. Evolutionary Computation, 14(3), September 2006.

[56] Martin V. Butz, Kumara Sastry, and David E. Goldberg. Tournament

selection: Stable fitness pressure in XCS. In Cantú-Paz et al. [59], pages

1857–1869.

[57] Martin V. Butz and Stewart W. Wilson. An Algorithmic Descriprion of

XCS. In Bull et al. [37], pages 144–153.

[58] Matrin V. Butz, David E. Goldberg, and Pier Luca Lanzi. Computational

Complexity of the XCS Classifier System. In Bull and Kovacs [36].

[59] Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis, Ra-

jkumar Roy, Una-May O’Reilly, Hans-Georg Beyer, Russell K. Standish,

Graham Kendall, Stewart W. Wilson, Mark Harman, Joachim Wegener,

Dipankar Dasgupta, Mitchell A. Potter, Alan C. Schultz, Kathryn A.

Dowsland, Natasa Jonoska, and Julian F. Miller, editors. Genetic and Evo-

lutionary Computation - GECCO 2003, Genetic and Evolutionary Computa-

tion Conference, Chicago, IL, USA, July 12-16, 2003. Proceedings, volume

2723 of Lecture Notes in Computer Science. Springer, 2003.

[60] Jorge Casillas, Brian Carse, and Larry Bull. Fuzzy-XCS: A Michigan Ge-

netic Fuzzy System. IEEE Transactions on Furrz Systems, 15(4), August

2007.

[61] Keith Chalk and George D. Smith. Multi-Agent Classifier Systems and

the Iterated Prisoner’s Dilemma. In George D. Smith, Nigel C. Steele,

and Rudolf F. Albrecht, editors, Artificial Neural Networks and Genetic Al-

gorithms, pages 615–618. Springer, 1997.

330

[62] Hugh Chipman, Edward I. George, and Robert E. McCulloch. Bayesian

Treed Models. Machine Learning, 48(1–3):299–320, July 2002.

[63] Hugh A. Chipman, Edward I. George, and Robert E. McCulloch.

Bayesian CART Model Search. Journal of the American Statistical Asso-

ciation, 93(443):935–948, September 1998.

[64] David Corne, ZbigniewMichalewicz, Marco Dorigo, Gusz Eiben, David

Fogel, Carlos Fonseca, Garrison Greenwood, Tan Kay Chen, Guenther

Raidl, Ali Zalzala, Simon Lucas, Ben Paechter, Jennifier Willies, Juan

J. Merelo Guervos, Eugene Eberbach, Bob McKay, Alastair Channon,

Ashutosh Tiwari, L. Gwenn Volkert, Dan Ashlock, and Marc Schoe-

nauer, editors. Proceedings of the 2005 IEEE Congress on Evolutionary Com-

putation, volume 3. IEEE Press, 2005.

[65] David Corne, ZbigniewMichalewicz, Marco Dorigo, Gusz Eiben, David

Fogel, Carlos Fonseca, Garrison Greenwood, Tan Kay Chen, Guenther

Raidl, Ali Zalzala, Simon Lucas, Ben Paechter, Jennifier Willies, Juan

J. Merelo Guervos, Eugene Eberbach, Bob McKay, Alastair Channon,

Ashutosh Tiwari, L. Gwenn Volkert, Dan Ashlock, and Marc Schoe-

nauer, editors. Proceedings of the 2005 IEEE Congress on Evolutionary Com-

putation, volume 1. IEEE Press, 2005.

[66] Don Coursey and Hans Nyquist. On Least Absolute Error Estimation of

Linear Regression Models with Dependent Stable Residuals. The Review

of Economics and Statistics, 65(4):687–692, November 1983.

[67] R. Dearden, N. Friedman, and S. Russel. Bayesian Q-Learning. In Pro-

ceedings of the 15th National Conference on Artificial Intelligens, Menlo Park,

CA, USA, 1998.

[68] T. Degris, O. Sigaud P.-H., and Wuillemin. Learning the Structure of

Factored Markov Decision Processes in Reinforcement Learning Prob-

lems. In Proceedings of the 23rd International Conference on Machine Learn-

ing (ICML’2006), pages 257–264, CMU, Pennsylvania, USA, 2006.

[69] Morris H. DeGroot. Lindley’s Paradox: Comment. Journal of the American

Statistical Association, 77(378):337–339, June 1982.

[70] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal Statistical

Society B, 39:1–38, 1977.

331

[71] David G. T. Denison, Christopher C. Holmes, Bani K. Mallick, and

Adrian F. M. Smith. Bayesian Methods for Nonlinear Classification and Re-

gression. Wiley Series in Probability and Statistics. John Wiley & Sons,

Ltd., 2002.

[72] David L. Donoho and Iain M. Johnstone. Ideal spatial adaptation by

wavelet shrinkage. Biometrika, 81:425–455, 1994.

[73] Marco Dorigo and Hugues Bersini. A Comparison of Q-Learning and

Classifier Systems. In Dave Cliff, Philip Husbands, Jean-Arcady Meyer,

and Stewart W. Wilson, editors, From Animals to Animats 3. Proceed-

ings of the Third International Conference on Simulation of Adaptive Behavior

(SAB94), pages 248–255. A Bradford Book. MIT Press, 1994.

[74] Marco Dorigo and U. Schnepf. Genetic-basedMachine Learning and Be-

haviour Based Robotics: A New Synthesis. IEEE Transactions on Systems,

Man and Cybernetics, 23(1), 1993.

[75] Scott C. Douglas. A Family of Normalized LMS Algorithms. IEEE Signal

Processing Letters, SPL-1(3):49–51, March 1994.

[76] Jan Drugowitsch and Alwyn M. Barry. XCS with Eligibility Traces. In

Beyer et al. [18], pages 1851–1858.

[77] Jan Drugowitsch and AlwynM. Barry. A Formal Framework and Exten-

sions for Function Approximation in Learning Classifier Systems. Tech-

nical Report 2006–01, University of Bath, U.K., January 2006.

[78] Jan Drugowitsch and Alwyn M. Barry. A Formal Framework for Rein-

forcement Learning with Function Approximation in Learning Classifier

Systems. Technical Report 2006–02, University of Bath, U.K., January

2006.

[79] Jan Drugowitsch and Alwyn M. Barry. Towards Convergence of Learn-

ing Classifier Systems Value Iteration. Technical Report 2006–03, Uni-

versity of Bath, U.K., April 2006.

[80] Jan Drugowitsch and Alwyn M. Barry. Towards Convergence of Learn-

ing Classifier Systems Value Iteration. In Proceedings of the 9th Interna-

tional Workshop on Learning Classifier Systems, pages 16–20, 2006.

332

[81] Jan Drugowitsch and Alwyn M. Barry. Generalised Mixtures of Experts,

Independent Expert Training, and Learning Classifier Systems. Techni-

cal Report 2007–02, University of Bath, April 2007.

[82] Jan Drugowitsch and Alwyn M. Barry. Mixing independent classifiers.

In Thierens et al. [216], pages 1596–1603. Also TR CSBU-2006-13.

[83] Mohammed Odeh Faten Kharbat, Larry Bull. Revisiting genetic selec-

tion in the XCS learning classifier system. In Corne et al. [64], pages

2061–2068.

[84] R. A. Fisher. The use of multiple measurements in taxonomic problems.

Annual Eugenics, 7(2):179–188, 1963.

[85] Terence C. Fogarty, Larry Bull, and Brian Carse. Evolving Multi-Agent

Systems. In J. Periaux and G. Winter, editors, Genetic Algorithms in Engi-

neering and Computer Science, pages 3–22. John Wiley & Sons, 1995.

[86] Stephanie Forrest and John H. Miller. Emergent behavior in classifier

systems. In Stephanie Forrest, editor, Emergent Computation. Proceedings

of the Ninth Annual International Conference of the Center for Nonlinear Stud-

ies on Self-organizing, Collective, and Cooperative Phenomena in Natural and

Artificial Computing Networks. A special issue of Physica D. Stephanie Forrest

(Ed.), volume 42, pages 213–217. Elsevier Science Publishers, 1990.

[87] P. Gérard, J.-A. Meyer, and O. Sigaud. Combining Latent Learning with

Dynamic Programming in MACS. European Journal of Operational Re-

search, 160:614–637, 2005.

[88] P. Gérard and O. Sigaud. Adding a Generalization Mechanism to YACS.

In Spector et al. [203], pages 951–957.

[89] P. Gérard and O. Sigaud. YACS : Combining Anticipation and Dynamic

Programming in Classifier Systems. In Lanzi et al. [149], pages 52–69.

[90] P. Gérard and O. Sigaud. Designing Efficient Exploration with MACS:

Modules and Function Approximation. In Cantú-Paz et al. [59], pages

1882–1893.

[91] Mark N. Gibbs. Bayesian Gaussian Processes for Regression and Classifica-

tion. PhD thesis, University of Cambridge, 1997.

333

[92] Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization The-

ory and Neural Networks Architectures. Neural Computation, 7:219–269,

1995.

[93] David E. Goldberg. Genetic Algorithms in Search, Optimisation, and Ma-

chine Learning. Addison-Wesley, MA, 1989.

[94] Geoffrey J. Gordon. Online fitted reinforcement learning from the value

function approximation. In Workshop on Value Function Approximation

held during the 12th International Conference on Machine Learning, 1995.

[95] Geoffrey J. Gordon. Stable Function Approximation in Dynamic Pro-

gramming. In Armand Prieditis and Stuart Russell, editors, Proceedings

of the Twelfth International Conference on Machine Learning, pages 261–268,

San Francisco, CA, USA, 1995. Morgan Kaufmann.

[96] Franklin A. Graybill. An Introduction to Linear Statistical Models, vol-

ume 1. McGraw-Hill Education, 1961.

[97] A. Greenyer. The use of a learning classifier system JXCS. In P. van der

Putten and M. van Someren, editors, CoIL Challenge 2000: The Insurance

Company Case. Leiden Institute of Advanced Computer Science, June

2000. Technical report 2000-09.

[98] John J. Grefenstette, editor. Proceedings of the 2nd International Conference

on Genetic Algorithms (ICGA87), Cambridge, MA, July 1987. Lawrence

Erlbaum Associates.

[99] John J. Grefenstette. Evolutionary Algorithms in Robotics. In

M. Jamshedi and C. Nguyen, editors, Robotics and Manufacturing: Recent

Trends in Research, Education and Applications, v5. Proc. Fifth Intl. Sympo-

sium on Robotics andManufacturing, ISRAM 94, pages 65–72. ASME Press:

New York, 1994. http://www.ib3.gmu.edu/gref/.

[100] Peter D. Grünwald. A tutorial introduction to the minimum descrip-

tion length. In Peter Grünwald, Jae Myung, and Mark A. Pitt, editors,

Advances in Minimum Description Length Theory and Applications, Neu-

ral Information Processing Series, chapter 1 & 2, pages 3–79. MIT Press,

Cambridge, MA, USA, 2005.

334

[101] D. Harrison and D. L. Rubinfeld. Hedonic Prices and the Demand for

Clean Air. Journal of Environmental Economic and Management, 5:81–102,

1978.

[102] Sherif Hashem. Optimal Linear Combination of Neural Networks. PhD the-

sis, Purdue University, December 1993.

[103] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning: Data Mining, Inference, and Prediction. Springer Series

in Statistics. Springer, 2001.

[104] W. K. Hastings. Monte Carlo sampling using Markov chains and their

applications. Biometrika, 57:97–109, 1970.

[105] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice

Hall International, Upper Saddle River, NJ, 2nd edition, 1999.

[106] Simon Haykin. Adaptive Filter Theory. Information and System Sciences

Series. Prentice Hall, Upper Saddle River, NJ, 4th edition, 2002.

[107] John A. Hertz and Richard G. Palmer. Introduction to the Theory of Neural

Computation. Westview Press, 1991.

[108] Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T.

Volinsky. Bayesian Model Averaging: A Tutorial. Statistical Science,

14(4):382–417, 1999.

[109] Joseph Hofbauer and Karl Sigmund. Evolutionary Games and Replicator

Dynamics. Cambridge University Press, 1998.

[110] John H. Holland. Hierachical descriptions of universal spaces and adap-

tive systems. Technical Report ORAProjects 01252 and 08226, University

of Michigan, 1968.

[111] John H. Holland. Processing and processors for schemata. In E. L.

Jacks, editor,Associative Information Processing, pages 127–146. NewYork:

American Elsevier, 1971.

[112] John H. Holland. Adaptation in Natural and Artificial Systems. University

ofMichigan Press, AnnArbor, 1975. Republished by theMIT press, 1992.

335

[113] John H. Holland. Properties of the bucket brigade. In John J. Grefen-

stette, editor, Proceedings of the 1st International Conference on Genetic Al-

gorithms and their Applications (ICGA85), pages 1–7. Lawrence Erlbaum

Associates: Pittsburgh, PA, July 1985.

[114] John H. Holland. A Mathematical Framework for Studying Learning in

Classifier Systems. Physica D, 22:307–317, 1986.

[115] John H. Holland. Escaping Brittleness: The Possibilities of General-

Purpose Learning Algorithms Applied to Parallel Rule-Based Systems.

In Mitchell, Michalski, and Carbonell, editors,Machine Learning, an Arti-

ficial Intelligence Approach. Volume II, chapter 20, pages 593–623. Morgan

Kaufmann, 1986.

[116] John H. Holland, Lashon B. Booker, Marco Colombetti, Marco Dorigo,

David E. Goldberg, Stephanie Forrest, Rick L. Riolo, Robert E. Smith,

Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson. What is

a Learning Classifier System? In Lanzi et al. [146], pages 3–32.

[117] John H. Holland and J. S. Reitman. Cognitive systems based on adap-

tive algorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern-

directed Inference Systems. New York: Academic Press, 1978. Reprinted

in: Evolutionary Computation. The Fossil Record. David B. Fogel (Ed.)

IEEE Press, 1998. ISBN: 0-7803-3481-7.

[118] Rob J. Hyndman. Computing and graphing highest density regions. The

American Statistician, 50(2):120–126, May 1996.

[119] Tommi S. Jaakkola. Tutorial on variational approximation methods. In

Manfred Opper and David Saad, editors, Advanced Mean Field Methods,

pages 129–160. MIT Press, 2001.

[120] Tommi S. Jaakkola andMichael I. Jordan. Bayesian parameter estimation

via variational methods. Statistics and Computing, 10(1):25–37, 2000.

[121] R. A. Jacobs, M. I. Jordan, S. Nowlan, and G. E. Hinton. Adaptive mix-

tures of local experts. Neural Computation, 3:1–12, 1991.

[122] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the

EM algorithm. Neural Computation, 6:181–214, 1994.

336

[123] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.

Planning and Acting in Partially Observable Stochastic Domains. Artifi-

cial Intelligence, 101:99–134, 1998.

[124] Rudolph Emil Kalman. A New Approach to Linear Filtering and Pre-

diction Problems. Transactions of the ASME–Journal of Basic Engineering,

82(Series D):35–45, 1960.

[125] Rudolph Emil Kalman and R. S. Bucy. New results in linear filtering

and prediction theory. Transactions ASME, Part D (J. Basic Engineering),

83:95–108, 1961.

[126] Michael J. Kearns, Yishay Mansour, Andrew Y. Ng, and Dana Ron. An

experimental and theoretical comparison of model selection methods.

Machine Learning, 27:7–50, 1997.

[127] Michael J. Kearns and S. Singh. Near-optimal Reinforcement Learning

in Polynomial Time. In Proceedings of the 15th International Conference on

Machine Learning, pages 260–268, San Francisco, CA, USA, 1998. Morgan

Kaufmann.

[128] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computa-

tional Learning Theory. MIT Press, Cambridge, MA, USA, 1994.

[129] Maarten Keijzer, Mike Cattolico, Dirk Arnold, Vladan Babovic, Christian

Blum, Peter Bosman, Martin V. Butz, Carlos Coello Coello, Dipankar

Dasgupta, Sevan G. Ficici, James Foster, Arturo Hernandez-Aguirre,

Greg Hornby, Hod Lipson, Phil McMinn, Jason Moore, Guenther Raidl,

Franz Rothlauf, Conor Ryan, and Dirk Thierens, editors. GECCO 2006:

Proceedings of the 8th annual conference on Genetic and evolutionary compu-

tation, Seattle, Washington, USA, 8–12 JulyJuly 2006. ACM Press.

[130] Vijay R. Konda and John N. Tsitsiklis. On actor-critic algorithms. SIAM

Journal on Control and Optimization, 42(4):1143–1166, 2003.

[131] TimKovacs. EvolvingOptimal Populationswith XCSClassifier Systems.

Master’s thesis, School of Computer Science, University of Birmingham,

Birmingham, U.K., 1996. Also technical report CSR-96-17 and CSRP-96-

17 ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSRP-96-17.ps.gz.

337

[132] Tim Kovacs. Deletion schemes for classifier systems. In Banzhaf et al.

[9], pages 329–336. Also TR CSRP-99-08, School of Computer Science,

University of Birmingham.

[133] Tim Kovacs. Strength or accuracy? A comparison of two approaches

to fitness calculation in learning classifier systems. In Annie S. Wu, edi-

tor, Proceedings of the 1999 Genetic and Evolutionary Computation Conference

Workshop Program, pages 258–265, 1999.

[134] Tim Kovacs. A Comparison and Strength and Accuracy-based Fitness in

Learning Classifier Systems. PhD thesis, University of Birmingham, 2002.

[135] Tim Kovacs. Two views of classifier systems. In Lanzi et al. [147], pages

74–87.

[136] Tim Kovacs. What should a classifier systems learn and how should we

measure it? In Bull et al. [37], pages 171–182.

[137] Tim Kovacs and Larry Bull. Towards a better understanding of rule ini-

tialisation and deletion. In Thierens et al. [216], pages 2777–2780.

[138] Tim Kovacs, Xavier Llorá, Keiki Takadama, Pier Luca Lanzi, Wolfgang

Stolzmann, and Stewart W. Wilson, editors. Learning Classifier Systems:

International Workshops, IWLCS 2003–2005, Revised Selected Papers, vol-

ume 4399 of LNAI. Springer, 2007.

[139] Pier Luca Lanzi. Learning Classifier Systems from a Reinforcement

Learning Perspective. In Bull et al. [37], pages 162–170.

[140] Pier Luca Lanzi, Martin V. Butz, and David E. Goldberg. Empirical Anal-

ysis of Generalization and Learning in XCS with Gradient Descent. In

Thierens et al. [216], pages 1814–1821.

[141] Pier Luca Lanzi and Daniele Loiacono. Standard and averaging rein-

forcement learning in XCS. In Keijzer et al. [129], pages 1489–1496.

[142] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E.

Goldberg. Extending XCSF Beyond Linear Approximation. In Beyer

et al. [18], pages 1827–1834.

338

[143] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E.

Goldberg. Generalization in the XCSF Classifier Systems: Analysis, Im-

provement, and Extenstion. Technical Report 2005012, Illinois Genetic

Algorithms Laboratory, March 2005.

[144] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E.

Goldberg. Generalization in the XCSF Classifier System: Analysis,

Improvement, and Extension. Evolutionary Computation, 15(2):133–168,

2007.

[145] Pier Luca Lanzi and Alessandro Perrucci. Extending the Representation

of Classifier Conditions Part II: FromMessy Coding to S-Expressions. In

Banzhaf et al. [9], pages 345–253.

[146] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.

Learning Classifier Systems. From Foundations to Applications, volume 1813

of LNAI. Springer-Verlag, Berlin, 2000.

[147] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.

IWLCS ’01: Revised Papers from the 4th International Workshop on Advances

in Learning Classifier Systems, volume 2321 of LNAI. Springer-Verlag,

London, UK, 2002.

[148] Pier Luca Lanzi and Stewart W. Wilson. Using convex hulls to represent

classifier conditions. In Keijzer et al. [129], pages 1481–1488.

[149] Pier Luca Lanzi, W. Wolfgang Stolzmann, and Stewart W. Wilson, ed-

itors. Advances in Learning Classifier Systems, volume 1996 of LNAI.

Springer-Verlag, Berlin, 2001.

[150] Michael Littman, September 2006. Personal Communication.

[151] Xavier Llorá, July 2007. Personal Communication.

[152] Xavier Llorá and Josep M. Garrell. Knowledge-Independent Data Min-

ingwith Fine-Grained Parallel EvolutionaryAlgorithms. In Spector et al.

[203], pages 461–468.

[153] Xavier Llorá, Rohith Reddy, Brian Matesic, and Rohit Bhargava. To-

wards Better than Human Capability in Diagnosing Prostate Cancer Us-

ing Infrared Spectroscopic Imaging. In Thierens et al. [216], pages 2098–

2105.

339

[154] Xavier Llorá, Kumara Sastry, andDavid E. Goldberg. The Compact Clas-

sifier System: Motivation, Analysis and First Results. In Corne et al. [65],

pages 596–603. Also IlliGAl TR No. 2005019.

[155] Xavier Llorá, Kumara Sastry, David E. Goldberg, and Luis de la Ossa.

The χ-ary Extended Compact Classifier System: Linkage Learning in

Pittsburgh LCS. In Proceedings of the International Workshop on Learning

Classifier Systems (IWLCS-2006), to appear. Also IlliGAl TR No. 2006015.

[156] Daniele Loiacono, Jan Drugowitsch, Alwyn M. Barry, and Pier Luca

Lanzi. Improving Classifier Error Estimate in XCSF. In Proceedings of

the 9th International Workshop on Learning Classifier Systems, 2006.

[157] Daniele Loiacono and Pier Luca Lanzi. Neural Networks for Classifier

Prediction in XCSF. In Stefano Cagnoni, Pierre Collet, Giuseppe Nicosia,

and Leonardo Vanneschi, editors, Proceeding of the Workshop on Evolution-

ary Computation (EC)2AI), pages 36–40, August 2006.

[158] Daniele Loiacono, Andrea Marelli, and Pier Luca Lanzi. Support Vector

Regression for Classifier Prediction. In Thierens et al. [216], pages 1806–

1813.

[159] Sean Luke and Liviu Panait. A comparison of bloat control methods for

genetic programming. Evolutionary Computation, 14(3):309–344, 2006.

[160] David J. C. MacKay. Bayesian interpolation. Neural Computation,

4(3):415–447, May 1992.

[161] J. MacQueen. Some methods for classification and analysis of multivari-

ate observations. In Proceedings of the Fifth Berkeley Symposium on Math-

ematical Statistics and Probability, volume 1, pages 281–297. University of

Claifornia Press, 1967.

[162] Ester Bernadó Mansilla and Josep M. Garrell Guiu. Accuracy-based

learning classifier systems: Models, analysis and applications to clas-

sification tasks. Evolutionary Computation, 11(3):209–238, 2003.

[163] Ester Bernadó Mansilla, Xavier Llorá, and Josep M. Garrell Guiu. XCS

and GALE: A Comparative Study of Two Learning Classifier Systems on

Data Mining. In Lanzi et al. [147], pages 115–132.

340

[164] James A. R. Marshall, Gavin Brown, and Tim Kovacs. Bayesian es-

timation of rule accuracy in UCS. In GECCO ’07: Proceedings of the

2007 GECCO conference companion on Genetic and evolutionary computation,

pages 2831–2834, New York, NY, USA, 2007. ACM Press.

[165] James A. R. Marshall and Tim Kovacs. A representational ecology for

learning classifier systems. In Keijzer et al. [129], pages 1529–1536.

[166] Peter S. Maybeck. Stochastic Models, Estimation, and Control. Volume 1,

volume 141 of Mathematics in Science and Engineering. Academic Press,

Inc., New York, 1979.

[167] P. McCullach and J. A. Nelder. Generalized Linear Models. Monographs

on Statistics and Applied Probability. Chapman and Hall, 1983.

[168] Alex McMahon, Dan Scott, and Will Browne. An autonomous ex-

plore/exploit strategy. In GECCO ’05: Proceedings of the 2005 workshops

on Genetic and evolutionary computation, pages 103–108, New York, NY,

USA, 2005. ACM Press.

[169] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press,

February 1998.

[170] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[171] Johann Mitlöhner. Classifier systems and economic modelling. In APL

’96. Proceedings of the APL 96 Conference on Designing the Future, volume

26 (4), pages 77–86, 1996.

[172] D. J. Mook and J. L. Junkins. Minimum Model Error Estimation for

Poorly Modeled Dynamic Systems. Journal of Guidance, Control and Dy-

namics, 11(3):256–261, May–June 1988.

[173] Alberto Moraglio, November 2006. Personal Communication.

[174] David E. Moriarty, Alan C. Schultz, and John J. Grefen-

stette. Evolutionary Algorithms for Reinforcement Learn-

ing. Journal of Artificial Intelligence Research, 11:199–229, 1999.

http://www.ib3.gmu.edu/gref/papers/moriarty-jair99.html.

[175] Ian T. Nabney. Netlab: Algorithms for Pattern Recognition. Springer, 2002.

341

[176] Radford Neal and Geoffrey E. Hinton. A View of the EM Algorithm

that Justifies Incremental, Sparse, and other Variants. In Michael I. Jor-

dan, editor, Learning in Graphical Models, pages 355–368. MIT Press, Cam-

bridge, MA, USA, 1999.

[177] Toby O’Hara and Larry Bull. A Memetic Accuracy-based Neural Learn-

ing Classifier System. In Corne et al. [64], pages 2040–2045.

[178] Toby O’Hara and Larry Bull. Backpropagation in Accuracy-based Neu-

ral Learning Classifier Systems. In Kovacs et al. [138], pages 26–40.

[179] Dirk Ormoneit and Saunak Sen. Kernel-Based Reinforcement Learning.

Machine Learning, 49(2-3):161–178, 2002.

[180] Albert Orriols-Puig and Ester Bernadó-Mansilla. Class Imbalance Prob-

lem in the UCS Classifier System: Fitness Adaptation. In Corne et al.

[65], pages 604–611.

[181] Albert Orriols-Puig and Ester Bernadó-Mansilla. Bounding XCS’s Pa-

rameters for Unbalanced Datasets. In Keijzer et al. [129], pages 1561–

1568.

[182] Albert Orriols-Puig, David E. Goldberg, Kumara Sastry, and Es-

ter Bernadó Mansilla. Modeling XCS in Class Imbalances: Population

Size and Parameter Settings. In Thierens et al. [216], pages 1838–1846.

[183] Albert Orriols-Puig, Kumara Satary, Pier Luca Lanzi, David E. Goldberg,

and Ester Bernadó Mansilla. Modeling Selection Pressure in XCS for

Proportionate and Tournament Selection. In Thierens et al. [216], pages

1846–1854.

[184] Martin Pelikan. Hierarchical Bayesian Optimization Algorithm: Toward a

New Generation of Evolutionary Algorithms. Studies in Fuzziness and Soft

Computing. Springer, 2005.

[185] Martin Pelikan, Kumara Sastry, and Erick Cantu-Paz, editors. Scalable

Optimization via Probabilistic Modeling: From Algorithms to Applications.

Studies in Computational Intelligence. Springer, 2006.

[186] Michael Peter Perrone. Improving Regression Estimation: Averaging Meth-

ods for Variance Reduction with Extensions to General Convex Measure Opti-

mization. PhD thesis, Brown University, May 1993.

342

[187] Justus H. Piater, Paul R. Cohen, Xiaoqin Zhang, and Michael Atighetchi.

A Randomized ANOVA Procedure for Comparing Performance Curves.

In ICML ’98: Proceedings of the Fifteenth International Conference on Ma-

chine Learning, pages 430–438, San Francisco, CA, USA, 1998. Morgan

Kaufmann Publishers Inc.

[188] Rick L. Riolo. Bucket Brigade Performance: I. Long Sequences of Classi-

fiers. In Grefenstette [98], pages 184–195.

[189] Rick L. Riolo. Bucket Brigade Performance: II. Default Hierarchies. In

Grefenstette [98], pages 196–201.

[190] Jorma Rissanen. Modeling by the shortest data description. Automatica,

14:465–471, 1978.

[191] Jorma Rissanen. A universal prior for integers and estimation by mini-

mum description length. Annals of Statistics, 11:416–431, 1983.

[192] Jorma Rissanen. Stochastic Complexity in Statistical Inquiry. World Scien-

tific, Singapore, 1989.

[193] Jorma Rissanen. Fisher information and stochastic complexity. IEEE

Transactions on Information Theory, 42(1):40–47, 1996.

[194] Gavin Rummery and Mahesan Niranja. On-line Q-Learning using Con-

nectionist Systems. Technical Report 166, Engineering Department, Uni-

versity of Cambridge, 1994.

[195] Ralf Schoknecht. Optimality of Reinforcement Learning Algorithms

with Linear Function Approximation. In Proceedings of the 15th Neural

Information Processing Systems conference, pages 1555–1562, 2002.

[196] Ralf Schoknecht and Artur Merke. Convergent Combinations of Rein-

forcement Learning with Linear Function Approximation. In Proceedings

of the 15th Neural Information Processing Systems conference, pages 1579–

1586, 2002.

[197] Ralf Schoknecht and Artur Merke. TD(0) Converges Provably Faster

than the Residual Gradient Algorithm. In ICML ’03: Proceedings of

the twentieth international conference on Machine Learning, pages 680–687,

2003.

343

[198] Robert E. Smith. Memory Exploitation in Learning Classifier Systems.

Evolutionary Computation, 2(3):199–220, 1994.

[199] Robert E. Smith, B. A. Dike, B. Ravichandran, A. El-Fallah, and R. K.

Mehra. The Fighter Aircraft LCS: A Case of Different LCS Goals and

Techniques. In Lanzi et al. [146], pages 283–300.

[200] S. F. Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD

thesis, University of Pittsburgh, 1980.

[201] S. F. Smith. Flexible Learning of Problem Solving Heuristics through

Adaptive Search. In Proceedings Eight International Joint Conference on Ar-

tificial Intelligence, pages 422–425, 1983.

[202] S. F. Smith. Adaptive learning systems. In R. Forsyth, editor, Expert

Systems: Principles and Case Studies, pages 169–189. Chapman and Hall,

1984.

[203] Lee Spector, Erik D. Goodman, AnnieWu,W. B. Langdon, Hans-Michael

Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H

Garzon, and Edmund Burke, editors. GECCO-2001: Proceedings of the

Genetic and Evolutionary Computation Conference, San Francisco, CA, USA,

7-11 July 2001. Morgan Kaufmann.

[204] Statlib dataset archive. From StatLib – Data, Software and News from

the Statistics Community. http://lib.stat.cmu.edu/.

[205] Wolfgang Stolzmann. Anticipatory Classifier Systems. In J. R. Koza,

W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon,

D. E. Goldberg, H. Iba, and R. Riolo, editors, Genetic Programming, pages

658–664. Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA,

1998.

[206] Christopher Stone and Larry Bull. For real! XCSwith continuous-valued

inputs. Evolutionary Computation, 11(3):299–336, 2003. Also UWE TR

UWELCSG02-007.

[207] Alexander L. Strehl. Model-Based Reinforcement Learning in Factored

MDPs. In IEEE Symposium on Approximate Dynamic Programming, pages

103–110, 2007.

344

[208] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and

Michael L. Littman. PAC Model-Free Reinforcement Learning. In Pro-

ceedings of the 23rd International Conference on Machine Learning (ICML

2006), pages 881–888, Pittsburgh, PA, USA, 2006.

[209] Malcolm J. A. Strens. A Bayesian Framework for Reinforcement Learn-

ing. In ICML ’00: Proceedings of the Seventeenth International Conference on

Machine Learning, pages 943–950, San Francisco, CA, USA, 2000. Morgan

Kaufmann Publishers Inc.

[210] Richard S. Sutton. Value-function hypothesis. From

Reinforcement Learning and Artificial Intelligence.

http://rlai.cs.ualberta.ca/RLAI/valuefunctionhypothesis.html.

[211] Richard S. Sutton. Learning to predict by the method of temporal differ-

ences. Machine Learning, 3:9–44, 1988.

[212] Richard S. Sutton. Generalization in Reinforcement Learning: Suc-

cessful Examples Using Sparse Coarse Coding. In David S. Touretzky,

Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural

Information Processing Systems, volume 8, pages 1038–1044, Cambridge,

MA, USA, 1996. MIT Press.

[213] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-

troduction. MIT Press, Cambridge, MA, USA, 1998.

[214] Gilbert Syswerda. Uniform Crossover in Genetic Algorithms. In Proceed-

ings of the 3rd International Conference on Genetic Algorithms, pages 2–9,

San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[215] Kreangsak Tamee, Larry Bull, and Ouen Pinngern. Towards Clustering

with XCS. In Thierens et al. [216], pages 1854–1860.

[216] Dirk Thierens, Hans-Georg Beyer, Mauro Birattari, Josh Bongard, Jürgen

Branke, John Andrew Clark, Dave Cliff, Clares Bates Congdon, Kalzan-

moy Deb, Benjamin Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller,

Jason Moore, Frank Neumann, Martin Pelikan, Riccardo Poli, Kumara

Sastry, Kenneth Owen Stanley, Thomas Stützle, Richard A. Watson, and

Ingo Wegener, editors. GECCO-2007: Proceedings of the 9th Annual Con-

ference on Genetic and Evolutionary Computation Congerece 2007, volume 2.

ACM Press, July 2007.

345

[217] A.N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed Problems. Winston,

1977.

[218] John Tsitsiklis and Benjamin Van Roy. An Analysis of Temporal-

Difference Learning with Function Approximation. IEEE Transactions

on Automatic Control, 42(5):674–690, May 1997.

[219] Naonori Ueda and Zoubin Ghahramani. Bayesian model search for mix-

ture models based on optimizing variational bounds. Neural Networks,

15:1223–1241, 2002.

[220] P. J. van Laarhoven and E. H. Aarts. Simulated Annealing: Theory and

Applications. Springer, June 1987.

[221] Vladimir N. Vapnik. An Overview of Statistical Learning Theory. IEEE

Transactions on Neural Networks, 10(5):988–999, September 1999.

[222] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer,

1999.

[223] G. Venturini. Apprentissage Adaptatif et Apprentissage Supervisé par Algo-

rithme Génétique. PhD thesis, Université de Paris-Sud, 1994.

[224] Nickolas Vriend. Self-Organization of Markets: An Example of a Com-

putational Approach. Computational Economics, 8(3):205–231, 1995.

[225] Atsushi Wada, Keiki Takadama, and Katsunori Shimohara. Counter Ex-

ample for Q-Bucket-Brigade under Prediction Problema. In Kovacs et al.

[138], pages 130–145.

[226] Atsushi Wada, Keiki Takadama, Katsunori Shimohara, and Osamu

Katai. Is Gradient Descent Method Effective for XCS? Analysis of Re-

inforcement Process in XCSG. In Wolfgang Stolzmann et al., editor, Pro-

ceedings of the Seventh InternationalWorkshop on Learning Classifier Systems,

2004, LNAI, Seattle, WA, June 2004. Springer Verlag.

[227] Atsushi Wada, Keiki Takadama, Katsunori Shimohara, and Osamu

Katai. Learning Classifier Systemwith Convergence and Generalisation.

In Bull and Kovacs [36].

[228] M. Wainwright, T. Jaakkola, , and A. Willsky. A new class of upper

bounds on the log partition function. IEEE Transactions on Information

Theory, 51:2313–2335, 2005.

346

[229] Steve Waterhouse. Classification and Regression using Mixtures of Experts.

PhD thesis, Department of Engineering, University of Cambridge, 1997.

[230] Steve Waterhouse, David MacKay, and Tony Robinson. Bayesian Meth-

ods for Mixtures of Experts. In David S. Touretzky, Michael C. Mozer,

andMichael E. Hasselmo, editors, Advances in Neural Information Process-

ing Systems 8, pages 351–357. MIT Press, 1996.

[231] Christopher J.C.H. Watkins. Learning from delayed rewards. PhD thesis,

University of Cambridge, Psychology Department, 1989.

[232] Christopher J.C.H.Watkins and Peter Dayan. Q-learning.Machine Learn-

ing, 8(3):279–292, 1992.

[233] Eric W. Weisstein. Banach fixed point theorem,

1999. From Mathworld – a Wolfram Web Resource.

http://mathworld.wolfram.com/BanachFixedPointTheorem.html.

[234] Eric W. Weisstein. Jensen’s inequality, 1999.

From Mathworld – a Wolfram Web Resource.

http://mathworld.wolfram.com/JensensInequality.html.

[235] Eric W. Weisstein. Relative entropy, 1999. FromMathworld – a Wolfram

Web Resource. http://mathworld.wolfram.com/RelativeEntropy.html.

[236] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter.

Technical Report TR 95-401, University of North Carolina at Chapel Hill,

Department of Computer Science, April 2004.

[237] Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In

IRE WESCON Convention Revord Part IV, pages 96–104, 1960.

[238] R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong. An Empir-

ical Analysis of Collaboration Methods in Cooperative Coevolutionary

Algorithms. In Spector et al. [203], pages 1235–1242.

[239] Stewart W. Wilson. ZCS: A zeroth level classifier system. Evolutionary

Computation, 2(1):1–18, 1994.

[240] Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary

Computation, 3(2):149–175, 1995. http://prediction-dynamics.com/.

347

[241] Stewart W. Wilson. Generalization in the XCS classifier system. In

John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb,

Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hi-

toshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings

of the Third Annual Conference, pages 665–674. Morgan Kaufmann, 1998.

http://prediction-dynamics.com/.

[242] Stewart W. Wilson. Get real! XCS with continuous-values inputs. In

Lanzi et al. [146], pages 209–222.

[243] Stewart W. Wilson. Function Approximation with a Classifier System.

In Spector et al. [203], pages 974–981.

[244] Stewart W. Wilson. Classifiers that Approximate Functions. Neural Com-

puting, 1(2-3):211–234, 2002.

[245] Lei Xu. BYY harmony learning, structural RPCL, and topological self-

organizing on mixture models. Neural Networks, 15:1125–1151, 2002.

[246] Lei Xu. Fundamentals, Challenges, and Advances of Statistical Learning

for Knowledge Discovery and Problem Solving: A BYY Harmony Per-

spective. In Proceedings of International Converence on Neural Networks and

Brain, volume 1, pages 24–55. Publishing House of Electronics Industry,

Beijing, China, October 2005.

348

