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Abstract

Learning Classifier Systems (LCS) are a family of rule-based machine learn-
ing methods. They aim at the autonomous production of potentially human-
readable results that are the most compact generalised representation whilst
also maintaining high predictive accuracy, with a wide range of application

areas, such as autonomous robotics, economics, and multi-agent systems.

Their design is mainly approached heuristically and, even though their perfor-
mance is competitive in regression and classification tasks, they do not meet
their expected performance in sequential decision tasks despite being initially
designed for such tasks. It is out contention that improvement is hindered by
a lack of theoretical understanding of their underlying mechanisms and dy-

namics.

To improve this understanding, our work proposes a new methodology for
their design that centres on the model they use to represent the problem struc-
ture, and subsequently applies standard machine learning methods to train
this model. The LCS structure is commonly a set of rules, resulting in a para-
metric model that combines a set of localised models, each representing one
rule. This leads to a general definition of the optimal set of rules as being
the one whose model represents the data best and at a minimum complexity,
and hence an increased theoretical understanding of LCS. Consequently, LCS
training reduces to searching and evaluating this set of rules, for which we
introduce and apply several standard methods that are shown to be closely
related to current LCS implementations.

The benefit of taking this approach is not only a new view on LCS, and the
transfer of the formal basis of the applied methods to the analysis of LCS, but



also the first general definition for what it means for a set of rules to be optimal.
The work promises advances in several areas, such as developing new LCS
implementations with performance guarantees, to improve their performance,

and foremost their theoretical understanding.
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Chapter 1

Introduction

This thesis will show how acquiring a model-centred view to reformulating
Learning Classifier Systems (LCS), a rule-based method for machine learning,
provides an holistic approach to their design, analysis and understanding. The
immediate contributions are a new methodology for their design and analysis,
a probabilistic model of their structure that reveals their underlying assump-
tions, a formal definition of when they perform optimally, new approaches to
their analysis, and strong links to other machine learning methods that have
not been available before. The work opens up the prospects of advances in
several areas, such as the development of new LCS implementations that have
formal performance guarantees, the derivation of representational properties

of the solutions that they aim for, and improved performance.

To introduce the work, let us initially give a short overview of machine learn-
ing, its applications and the most common problem types that it is concerned
with. An example that follows highlights the difference between ad-hoc and
model-centred approaches to designing machine learning algorithms and em-
phasises the advantages of the latter. This is followed by a short introduction
to LCS, their applications and current issues. Thereafter, we introduce our re-
search objective, the approach that we will take to reach this objective, and a
short overview of the chapters that are to follow.



1.1 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence (AI) that is con-
cerned with methods and algorithms that allow machines to learn. Thus,
rather than instructing a computer explicitly with regards to which aspects
certain data is to be classified, about relations between entities, or with which
sequence of actions to achieve certain goals, machine learning algorithms al-
low this knowledge to be inferred from a limited number of observations, or a
description of the task and its goal.

Their use is manifold, including speech and handwriting recognition, object
recognition, fraud detection, path planning for robot locomotion, game play-
ing, natural language processing, medical diagnosis, and many more [19, 170].
There is no universal method to handle all of these tasks, but a large set of
different approaches exist that are specialised for particular problem classes.

Probably the most distinct differences between the numerous machine learn-
ing methods is the type of task that they can handle, the approach that they
are designed with, and the assumptions that they are based upon. Consider-
ing firstly a set of common machine learning task types, let us then, based on a
simple example, introduce two common approaches to how one can develop

machine learning algorithms.

1.1.1 Common Machine Learning Tasks

The most common problem types of tasks that machine learning deals with

are:

Supervised Learning. In such tasks a set of input/output pairs are available,
and the function between the inputs and the associated outputs is to be
learned. Given a new input, the learned relation can be used to predict
the corresponding output. An example for a supervised learning task is
a classification task: given several examples of a set of object properties
and the type of this object, a supervised learning approach can be taken

2



to find the relation between the properties and the associated type, which
subsequently allows us to predict the object type for a set of properties.

Unsupervised Learning. Unsupervised learning is similar to supervised
learning, with the difference that no outputs are available. Thus, rather
than learning the relationship between inputs and associated outputs,
the learner builds a model of the inputs. Consider a clustering task where
several examples of the properties of some object are given and we want
to group the objects by the similarity of their properties: this is an un-
supervised learning task because the given examples only contain the
object properties, but not the group assignment of these objects.

Sequential Decision Tasks. Such tasks are characterised by a set of states, and
a set of actions that can be performed in these states, causing a transition
to another state. The transitions are mediated by a scalar reward and the
aim of the learner is to find the action for each state that maximises the re-
ward in the long run. An example for such a task is in a labyrinth to find
the shortest path the goal by assigning each step (that is, each transition)
areward of -1. As the aim is to maximise the reward, the number of steps
is minimised. The most common approach to sequential decision tasks is
that of dynamic programming and reinforcement learning: to learn the
optimal value of a state, which is the expected sum of rewards when al-
ways performing the optimal actions from that state, and subsequently
to derive the optimal actions from these values.

There exists a wide range of different machine learning methods that deal with
each of the problem types. As we are interested in their design, let us consider
two possible design approaches to an unsupervised learning task.

1.1.2 Designing an Unsupervised Learning Algorithm

Let us consider the well-known Iris dataset [84] that contains 150 instances of
four scalar attribute values and a class assignment each. Each of the four at-
tributes refer to a particular measure of the physical appearance of the flower.
Each instance belongs to one of the three possible classes of the plant.
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Assume that we do not know which class each instance belongs to and want
to design an algorithm that groups the instances into three classes, based on
their similarity of appearance that we infer from the similarity of their attribute
values. This task is an unsupervised learning task with the inputs given by the
attribute values of each instance.

Ad-Hoc Design of an Algorithm

Let us firstly approach the task intuitively by designing an algorithm that aims
at grouping the instances such that the similarity of any two instances within
the same group or cluster is maximised, and between different clusters is min-
imised. We measure the similarity of two instances by the inverse squared
Euclidean distance' between the points that represent these instances in the
four-dimensional attribute space, spun by the attribute values.

Starting by randomly assigning each instance to one of the three clusters, we
compute the centre of these clusters by the average attribute values of all in-
stances assigned to the corresponding cluster. To group similar instances into
the same cluster, let us now re-assign each instance to the cluster to whose cen-
tre it is closest, and subsequently re-compute the centres of these clusters. It-
erating these two steps causes the distance between instances within the same
cluster to be minimised, and between clusters to be maximised. Thus, we
have reached our goal. The concept of clustering by using the inverse dis-
tance between the data points as a measure of their similarity is illustrated in

Figure 1.1(a).

This clustering algorithm is the well-known K-means algorithm, which is guar-
anteed to converge, but not always to the optimal solution [161, 19]. While
it is a functional algorithm, it leaves open many question: is the squared Eu-
clidean distance indeed the best distance measure to use? What are the implicit
assumptions that are made about the data? How should we handle data where
the number of classes is unknown? In which cases would the algorithm fail?

'The squared Euclidean distance between two equally-sized vectors a = (ay, as,...)? and
b = (b1,ba,...)T is given by >".(a; — b;)* and is thus proportional to the sum of squared
differences between the vectors’ elements (see also Section 5.2). Therefore, two instances are
considered as being similar if the squared differences between their attribute values is small.
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Figure 1.1: Two different interpretations for clustering a set of data points into
two distinct clusters. The circles and squares are data points that are assign
to different clusters. The dashed circle and square represent the centres of the
identified clusters. (a) Identifying clusters by minimising the distance between
the data points within a cluster, and reassigning data points to the cluster to
whose centre they are closest to. The dashed lines indicate the assignment
of data points to cluster centres, given by the mean of all data points within
the cluster. (b) Interpreting the data points as being generated by Gaussians
that are centred on the cluster centres. The two dashed circles around the
centres represent the first and the second standard deviation of the generating
Gaussian.

Design of Algorithm by Modelling the Data

Let us approach the same problem from a different perspective: assume that
for each Iris class there is a virtual standard instance — something like a pro-
totypical Iris — and that all instances of a class are just noisy instantiations of
the standard instance. In other words, assume the attribute values of each in-
stance of a particular class to be generated by sampling from a Gaussian that is
centred on the attribute values of the standard instance of this class, where we
have modelled the noisy instantiation process by a Gaussian (for an illustration
see Figure 1.1(b)). Furthermore, let us assume that each class has generated all

instances with a certain probability.

The model we have just described is completely specified by it parameters,
which are the centre of the Gaussians and their covariance matrices, and the
probability that is assigned to each class. We can train this model by the princi-
ple of maximum likelihood by adjusting its parameters such that the probabil-
ity of having generated all observed instances is maximised; that is, we want
to find the model parameters that best explain the data. This can be achieved

by using a standard machine learning algorithm known as the expectation-
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maximisation (EM) algorithm [70]. In fact, assuming that each dimension of
each Gaussians is independent and has equal variance in each of the dimen-
sions, the resulting algorithm provides the same results as the K-means algo-
rithm [19]; so why take effort of specifying a model rather than using K-means
directly?

Reconsidering the questions that we have posed in the previous section makes
the benefit of having a model clear: it makes explicit the assumptions we make
about the data. This also allows us to specify when the method is likely to fail,
which is when we apply it to data that does not conform to the assumptions
that the model makes. Furthermore, in this particular example, instances are
not assigned to single clusters, but their probability of belonging to either clus-
ter is given. Also, we can find the best number of clusters by facilitating tech-
niques from the field of model selection that select the number of clusters that are
most suitable to explain the data. Additional advantages are that if Gaussians
do not describe the data well, we can easily change them to other distributions
and use the same techniques to train the model; and if new training methods
for that model type become available, they can be used as a drop-in replace-
ment for the ones that are currently used.

Clearly, due to the many advantages of the model-based approach, it should
always be preferred to the ad-hoc approach, as the example in this section has
demonstrated.

1.2 Learning Classifier Systems

Learning Classifier Systems are a family of machine learning algorithms that
are usually designed by the ad-hoc approach. Generally, they can be charac-
terised as handling sequential decision tasks with a rule-based representation
and by the use of evolutionary computation methods (for example, [169, 93]),
although some variants also perform supervised learning (for example, [162])
or unsupervised learning (for example, [215]), or do not rely on evolutionary
computation (for example, [87]).



1.2.1 A Brief Overview

Based on initial ideas by Holland [110, 111, 112, 110] to handle sequential de-
cision tasks and to escape the brittleness of expert systems of that time, LCS
initially did not provide the required operational stability that was hoped for
[86, 198, 134], until Wilson introduced the simplified versions ZCS [239] and
XCS [240], which solved most of the problems of earlier LCS and caused most
of the LCS community to concentrate on these two systems and their variants.

Learning Classifier Systems are based on a population of rules (also called the
classifiers) formed by a condition/action pair, that compete and cooperate to
provide the desired solution. In sequential decision tasks, classifiers whose
condition matches the current states are activated and promote their action.
One or several of these classifiers are selected, their promoted action is per-
formed, and the received reward is assigned to these classifiers, and addition-
ally propagated to previously active classifiers that also contributed to receiv-
ing the current reward. Occasionally, classifiers of low quality are removed
from the current population, and new ones are induced, with their condition
and action based on current high-quality classifiers. The aim of replacing clas-
sifiers is to improve the overall quality of the classifiers in the population.

Different LCS differ in how they select classifiers, in how they distribute the re-
ward, in whether they additionally maintain an internal state, and in how they
evaluate the quality of classifiers. The latter is the most significant difference
between early LCS, which based the quality of a classifier on the reward that
it contributed to receiving, and the currently most popular LCS, XCS [240],
that evaluates the quality of a classifier by how accurate it is at predicting its
contribution to the reward.

Shifting from strength-based to accuracy-based LCS also allowed them to be di-
rectly applied to regression tasks [243, 244], which are supervised learning
tasks where the output is of interval scale. That also changed the perspective
of how LCS handle sequential decision tasks: they act as function approxima-
tors for the value function that map the states and actions into the long-run
reward that can be expected to be received when performing the action in this
state, where the value function estimate is updated by reinforcement learning.
By replacing classifiers in the population, LCS aim at finding the best repre-
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sentation of this value function [139].

1.2.2 Applications and Current Issues

Learning Classifier Systems are applied in many areas, such as autonomous
robotics (for example, [74, 99]), multi-agent systems (for example, [85, 61]),
economics (for example, [224, 171, 3]), and even traffic light control [39]. Par-
ticularly in classification tasks, which are supervised learning tasks where the
output is of nominal scale, their performance has been found to be competitive
with other state-of-the-art machine learning algorithms [97, 153, 8].

Nonetheless, even modern LCS are not free of problems, the most significant
being the following:

e Even though initially designed for such tasks, LCS are still not partic-
ularly successful in handling sequential decision tasks [11, 12]. This is
unfortunate, as “there is a lot of commonality in perspective between
the RL community and the LCS community” and more communication

between the two communities would be welcome [150].

e Most LCS feature a high number of system parameters, and while the
effect of some of them is ill-understood, setting others requires a spe-
cialised knowledge of the system. XCS, for example, has 20 partially
interacting system parameters [57].

e No LCS features any formal performance guarantees, and even if such
guarantees might not always seem particularly important in applica-
tions, the choice between a method with such guarantees and an equally
powerful method without them will be for the one that features such
guarantees.

e There is no knowledge about the assumptions made about the data, and
as a result there is also hardly any knowledge about when some LCS
might fail.

e Very few direct links between LCS and other machine learning methods
are established, which makes the transfer of knowledge for mutual gain
hard, if not impossible.



e The general lack of rigour in the design of LCS leads to a lack of their
acceptance in the field of machine learning. Together with the previous
point this inhibits the exchange of ideas between possibly closely related
methods.

These problems concern both practitioners and theoreticians, and solving
them should be a top priority in LCS research. Many of them are caused by
designing LCS by an ad-hoc approach, with all the disadvantages that we
have described before. This was justified when insufficient links were drawn
between LCS and other approaches, and in particular when the formalisms
were insufficiently developed within other machine learning methods, but
now such a position is difficult to argue for.

1.3 About this Work

This work arises from the lack of theoretical understanding of LCS, and the
missing formality when developing them. Its objective is to develop a formal
framework for LCS that lets us design, analyse, and interpret LCS. In that
process we focus on related machine learning approaches and techniques to
gain from their understanding and their relation to LCS.

The immediate aim of this work is not to develop a new LCS. Rather it is to
give a different perspective on LCS, to increase the understanding and perfor-
mance of current LCS, and to lay the foundations for a more formal approach
to developing new LCS. Although we initially concentrate exclusively on re-
gression, the resulting framework also forms the basis for sequential decision
tasks, as shown in Chapter 9, and only requires small modifications to be ap-
plied to classification (see Section 10.3).

1.3.1 The Initial Approach

Our initial approach was to concentrate on an LCS structure similar to XCSF
[243] and to split it conceptually into its function approximation, reinforce-
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ment learning and classifier replacement component. Each of these was to be
analysed separately but with subsequent integration in mind, and resulted in
[77, 82, 156] for the function approximation component and [78, 79, 80] for the

reinforcement learning component.

In the analysis of these components we have pragmatically and successfully
followed a goal-centred approach: firstly we have defined formally what is to
be learned, and then have concentrated on how methods from machine learn-
ing can be applied to reach that goal. The algorithms resulting from this ap-
proach are equivalent or improve over the ones in XCSF, with the additional
gain of having a goal definition, a derivation of the method from first princi-
ples, and a strong link to associated machine learning methods from which we

can borrow their theoretical analysis.

When concentrating on classifier replacement, however, taking this approach
was hindered by the lack of a formal definition of what set of classifiers the
process of classifier replacement should aim at. Even though some studies
aimed at defining the optimal set for limited classifier representations [131,
134, 136], the was still no general definition available. But without having a
formally expressible definition of the goal it was impossible to define a method
that reaches it.

1.3.2 Taking a Model-Centred View

The definition of the optimal set of classifiers is at the core of LCS: given a
certain problem, most LCS aim at finding the set of classifiers that provides
the most compact competent solution to the problem.

Fortunately, taking the model-centred view to finding such a definition simpli-
fies its approach significantly: a set of classifiers can be interpreted as a model
for the data. With such a perspective, the aim of finding the best set of clas-
sifiers becomes that of finding the model that explains the data best. This is
the core problem of the field of model selection, and many methods have been
developed to handle it, such as structural risk minimisation (SRM) [221], min-
imum description length (MDL) [100], or Bayesian model selection [160].
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The advantage of taking the model-centred approach is not only to be able to
provide a formal definition for the optimal classifier set. It also reveals the
assumptions made about the data, and hence gives us hints about the cases
in which the method might excel the performance of other related methods.
Also, the model is independent of the method to train it, and therefore we
can choose amongst several to perform this task and also acquire their perfor-
mance guarantees. Furthermore, it makes LCS directly comparable to other
machine learning methods that explicitly identify their underlying model.

To define the model underlying a set of classifiers we have borrowed the prob-
abilistic formulation of the related Mixtures-of-Experts model [121, 122] and
extended it such that it can describe such a set. This process was simplified by
having already analysed the function approximation and reinforcement learn-
ing component which allowed the integration of related LCS concepts into the
description of the model. In fact, with the resulting model we were able to ex-
press both function approximation and reinforcement learning, which makes
the model-centred approach for LCS holistic — it integrates function approxi-

mation, reinforcement learning and classifier replacement.

1.3.3 Summarising the Approach

In summary, the approach we take is the following: firstly, we give a formal
description of the problem types we are interested in, and formulate a proba-
bilistic model that describes a set of classifiers. We continue by describing how
such a model can be trained by methods from adaptive filter theory [106] and
statistical machine learning [19, 167], given some data.

To define the optimal classifier set we use Bayesian model selection [19, 120],
which requires a Bayesian LCS model. We get this model by extending the
probabilistic LCS model to include prior information. By applying variational
Bayesian inference and introducing two methods of searching the space of
classifier sets, we introduce a method that allows us to demonstrate the viabil-
ity of our optimality criterion, as our preliminary results in [81] have already
shown.

As handling sequential decision tasks requires the merger of our LCS model
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with methods from reinforcement learning, we suggest how such a combi-
nation can be derived from first principles. One of the major issues of such
combinations is their algorithmic stability, and so we discuss how this can be
analysed. In addition, we provide some new insight into tasks which require
learning of long action sequences — that is, tasks in which XCS is known to
struggle [11, 12].

1.3.4 Contributions

The main contributions of this work are a new methodology for the design
and analysis of LCS, a probabilistic model of their structure that reveals their
underlying assumptions, a formal definition of when they perform optimally,
new approaches to their analysis, and strong links to other machine learning
methods that have not been available before.

The methodology is based on taking the model-centred approach to describing
the model underlying LCS, and applying standard machine learning methods
to train it. It supports the development of new LCS by modifying their model
and adjusting the training methods such that they conform to the new model
structure. Thus, the introduced approach, if widely adopted, will ensure a
formal as well as empirical comparability between approaches. In that sense,
it defines a reusable framework for the development of LCS.

A more detailed discussion of the contributions can be found in Chapter 11.

1.4 How to Read this Thesis

Many concepts that are frequently used in this work are introduced through-
out the text whenever they are required. Therefore, this work is best read
sequentially, in the order that the chapters are presented. However, this might
not be an option for all readers, and so we will emphasise some chapters that
might be of particular interest for people with a background in LCS and/or
ML.

12



Anyone new to both LCS and ML might want to first do some introductory
reading on LCS (for example, [42, 134]) and ML (for example, [19, 103]) be-
fore reading this work from cover to cover. LCS workers who are particularly
interested in our definition of the optimal set of classifiers should concentrate
on Chapters 3 and 4 for the LCS model, Chapter 7 for its Bayesian formulation
and the optimality criterion, and Chapter 8 for its application. Those who want
to know how the introduced model relates to currently used LCS should read
Chapters 3 and 4 for the definition of the model, Chapters 5 and 6 for training
the classifiers and how they are combined, and Chapter 9 for reinforcement
learning with LCS. People who know ML and are most interested in the LCS
model itself should concentrate on the second half of Chapter 3, Chapter 4,
and Chapter 7 for its Bayesian formulation.

1.4.1 Chapter Overview

Chapter 2 gives an overview of the initial LCS idea, the general LCS frame-
work, and the problems of early LCS. It also describes how the role of
classifiers changed with the introduction of XCS, and how this influences
the structure of the LCS model. As our objective is also to advance the
theoretical understanding of LCS, the chapter gives a brief introduction
to previous attempts that analyse the inner workings of LCS and com-
pares them with the approach that we have chosen to take.

Chapter 3 begins with a formal definition of the problem types, interleaved
with what it means to build a model to handle these problems. It then
gives a high-level overview of the LCS model by characterising it as a
parametric ML model, continuing by discussing how such a model can
be trained, and relating it back to the initial LCS idea.

Chapter 4 concentrates on formulating a probabilistic basis for the LCS model
by first introducing the Mixture-of-Experts model after [122], and subse-
quently modifying it such that it can describe a set of classifiers in LCS.
Certain training issues are resolved by training the classifiers indepen-
dently. The consequences of this independent training and its relation to
current LCS are discussed at the end of this chapter.

Chapter 5 is concerned with the training of a single classifier, either when all

data is available at once, or when it is acquired incrementally. For both
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cases we define what it means for a classifier to perform optimally, based
on training the LCS model with respect to the principle of maximum
likelihood, and introduce methods from adaptive filter theory to handle
its training. We concentrate on gradient-based methods and methods
that directly track the optimum, and derive a new incremental approach
to track the variance estimate of the classifier model. That this approach
outperforms currently based methods, and that gradient-based methods
might suffer from bad performance is shown empirically. The content of
this chapter is strongly related, but not equivalent, to our work in [77].

Chapter 6 shows how the local model of several classifiers can be combined to
a global model, based on maximum likelihood training of the LCS model
from Chapter 4. As the approach turns out to be computationally expen-
sive, we additionally introduce a set of heuristics that are shown to fea-
ture competitive performance in a set of experiments. How the content

of this chapter differs from our previous work in [82] is also discussed.

Chapter 7 deals with the core question of LCS: what is the best set of classi-
fiers for a given problem? Relating this question to model selection, we
introduce a Bayesian LCS model for use within Bayesian model selec-
tion. The model is based on the one elaborated in Chapter 4, but is again
discussed in detail with special emphasis on the assumptions that are
made about the data. To provide an approach to evaluate the optimality
criterion, the second half of this chapter is concerned with deriving an
analytical solution to the Bayesian model selection criterion by the use
of variational Bayesian inference. Throughout this derivation, obvious
similarities to the methods used in Chapters 5 and 6 are highlighted.

Chapter 8 describes two simple prototype algorithms for using the optimality
criterion to find the optimal set of classifiers, one based on Markov Chain
Monte Carlo (MCMC) methods, and the other based on GA’s. Their core
is formed by evaluating the quality of a set of classifiers, for which we
give a detailed algorithmic description based on the variational Bayesian
inference approach from Chapter 7. Based on these algorithms, the vi-
ability of the optimality criterion is demonstrated on a set of regression
tasks that highlight some of its features and how they relate to current
LCS.

Chapter 9 returns to the treatment of sequential decision tasks after having ex-
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clusively dealt with regression tasks in Chapters 4 to 8. It firstly gives a
formal definition of these tasks and their goal, together with an introduc-
tion to methods from dynamic programming and reinforcement learn-
ing. Then, the exact role of LCS in handling such tasks is defined, and
a possible method is partially derived from first principles. This deriva-
tion clarifies some of the current issues of how to correctly perform RL
with XCS(F), which is discussed in more detail. Based on the LCS model,
we also show how the stability of LCS with RL can be studied, and shed
some new light on the issues of learning long action sequences in XCS.

Chapter 10 is fully devoted to discussing the wide range of future work that
our approach has made possible, together with the new routes of re-
search that it has opened up. From the practical side we concentrate on
how new LCS can be implemented, based on the classifier set optimality
criterion introduced in Chapter 7, and how this criterion can be further
empirically validated. From the theoretical point of view we describe
how the optimality criterion can give us more insight into the property
of an optimal set of classifiers, and how our discussion about stability in
Chapter 9 might allow us to approach the question of whether an LCS

implementation converges to the desired solution.

Chapter 11 finally summarises the work, points out its contributions, and
puts it into the perspective of our initial objective.
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Chapter 2

Background

To give the reader a perspective on what characterises LCS exactly, and to
which level they are theoretically understood, we give in this chapter some
background on the initial ideas behind designing LCS, and describe what we
can learn from their development over the years and the existing theoretical
description. As an example of a current LCS we will concentrate on XCS [240]
— not only because it is currently the most used and best understood LCS, but
also because it is in its structure similar to how we will design our LCS model.
Therefore, when discussing the theoretical understanding of LCS we will also
put a special emphasis on XCS and its variants, in addition to describing gen-
eral approaches that have been used to analyse LCS.

Even though our work borrows numerous concepts and methods from sta-
tistical machine learning, we will not describe them and their background in
this chapter, as this would cause us to deviate too much from our main topic
of interest. However, whenever using new concepts and applying new meth-
ods we give a short discussion about their background throughout the text. A
more thorough description of the methods used in this work can be found in
[17, 19,103, 106, 166, 167], of which we particularly recommend [17, 19].

In general, LCS describe a very flexible framework that differs from other ma-
chine learning methods in its generality. It can potentially handle a large num-
ber of different problem types and can do so by using a wide range of different
representations. In particular, LCS have the potential of handling the complex
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problem class of POMDPs (as described below) that even the currently most
powerful machine learning algorithms still struggle with. Another appealing
feature is the possible use of human-readable representations that simplify the
introspection of found solutions without the requirement of converting them
into a different format. Their flexibility comes from the use of evolutionary
computation techniques to search for adequate substructures of potential so-
lutions. In combination, this makes LCS an interesting target for theoretical
investigation, in particularly to promote a more principled approach to their
design.

We begin this chapter by giving a general overview of the problems that were
the prime motivator for the development of LCS. This is followed by a review
of the ideas behind LCS, describing the motivation and structure of Holland’s
first LCS, the CS-1 [117]. Many of the LCS that followed had a similar struc-
ture, so instead of describing them in detail we focus on some of the prob-
lems that they struggled with in Section 2.2.5. With the introduction of XCS
[240] many of these problems disappeared and the role of the classifier within
the population was redefined, as discussed in Section 2.3. However, as our
theoretical understanding even of XCS is still insufficient, and as we aim at
advancing this understanding with our work, we provide an overview over
significant theoretical approaches to LCS in Section 2.4, before putting our ap-
proach into the general LCS context in Section 2.5.

2.1 A General Problem Description

Consider an agent that interacts with an environment. At each discrete time
step the environment is in a particular hidden state that is not observable by the
agent. Instead, the agent senses the observable state of the environment that is
stochastically determined by its hidden state. Based on this observed state, the
agent performs an action that changes the hidden state of the environment and
consequently also the observable state. The hidden state transitions conform
to the Markov property, such that the current hidden state only depends on the
previous hidden state and the performed action. For each such state transitions
the agent receives a scalar reward or payoff that can depend on the previous
hidden and observable state and the chosen action. The aim of the agent is to
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learn which actions to perform in each observed state (called the policy) such
that the received reward is maximised in the long run.

Such a task definition is known as a Partially Observable Markov Decision
Process (POMDP) [123]. It is able to describe a large number of seemingly
different problems types. Consider, for example, a rat that needs to find the
location of food in a maze: in this case the rat is the agent and the maze is
the environment, and a reward of -1 is given for each movement that the rat
performs until the food is found, which leads the rat to minimise the number of
required movements to reach the food. A game of chess can also be described
by a POMDDP, where the white player becomes the agent, and the black player
and the chess board define the environment. Further examples include path
planning, robot control, stock market prediction, and network routing.

While the POMDP framework allows the specification of complex tasks, find-
ing their solution is equally complicated. Thus, most of the recent work in LCS
has focused on a special case of POMDP problems that treat the hidden and
observable states of the environment as equivalent. Such problems are known
as Markov Decision Processes (MDPs) and are dealt with in more detail in
Chapter 9. They are approached by LCS by the use of reinforcement learning
which is centred on learning the expected sum of rewards for each state when
following the optimal policy. Thus, the intermediate aim is to learn a value
function that maps the states into their respective expected sum of rewards,

which is a univariate regression problem.

Even though the ultimate aim of LCS is to handle POMDPs, this work focusses
on an intermediate step, which is to perform univariate regression and multi-
variate regression with LCS, and discusses how an equal approach can lead to
LCS that are specialised on classification tasks. In addition, a separate chap-
ter describes how the same approach can be potentially extended to handle
MDPs, and which additional considerations need to be made. Nonetheless,
when introducing LCS we still consider their original motivation, which is to
deal with POMDPs.
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2.2 Early Learning Classifier Systems

The primary problems that LCS were designed to handle are sequential de-
cision tasks that are defined by POMDPs, as described above. In LCS it is
assumed that each observed state is a composite element that is identified by
the collection of its features, such that the agent is able to associate the choice
of action with certain features of the state. This allows the agent to generalise
over certain features and possibly also over certain states when defining its
choice of action for each of the states.

2.2.1 Initial Idea

Although some of Holland’s earlier work [110, 111, 112] had already intro-
duces some ideas for LCSs, a more specific framework was finally defined in
[115]. The motivation was to escape the brittleness of popular expert systems
of that time by evolving a set of cooperative and competing rules in a market-
inspired economy. In particular, Holland addressed the following three prob-
lems [116]:

Parallelism and coordination. Complex situations are to be decomposed into
simpler building blocks, called rules, that handle this situation coopera-
tively. The problem is to provide for the interaction and coordination of
a large number of rules that are active simultaneously.

Credit assignment. To decide which rules in a rule-based system are respon-
sible for its success, one needs to have a mechanism which accredits
each rule with its responsibility to that success. Such mechanism become
particularly complex when rules act collectively, simultaneously and se-
quentially. Furthermore, complex problems do not allow for exhaustive
search over all possible rule combinations, and so this mechanism has to
operate locally rather than globally.

Rule discovery. Only in toy problems can one evaluate all possible rules ex-
haustively. Real-world problems require the search for better rules based
on current knowledge to generate plausible hypotheses about situations
that are currently poorly understood.
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Holland addressed these questions by proposing a rule-based system that can
be viewed as a message processing system acting on a current set of messages,
either internal or generated by a set of detectors to the environment and thus
representing the environment’s observable state. Credit assignment is handled
by a market-like situation with bidders, suppliers and brokers. Rule discov-
ery facilitates an evolutionary computation-based process that discovers and

recombines building blocks of previously successful rules.

While we do not aim to replicate the original framework in full detail, the fol-
lowing section gives an overview of the most common features among some
of the LCS implementations derived from this framework. For a detailed
overview and comparison of different early LCS, see [10, Ch. 2].

2.2.2 The General Framework

In LCS the agent’s behaviour is determined by a set of classifiers (Holland’s
rules), each consisting of at least one condition and an action. On sensing the
state of the environment though a detector, the sensor reading of the agent is
injected as a message into an internal message list, containing both internal
and external messages. Classifier conditions are then tested for matching any
of the messages on the message list. The matching classifiers are activated,
promoting their actions by putting their message on the message list. The
message on the list can be either interpreted to perform actions or to be kept
on the list to act as an input for the next cycle. If several actions are promoted
at the same time, a conflict resolution subsystem decides which action to perform.
Once this is completed, the cycle starts again by sensing the new state of the

environment.

All of the messages are usually encoded using binary strings. Hence, to allow
matching of messages by classifier conditions, we are required to encode con-
ditions and actions of classifiers as binary strings as well. However, to allow
for a classifier to generalise over several different input messages, the string
representing its conditions can contain the don’t care symbol “#” that matches
both 1’s and 0’s in the corresponding position of the input message. Simi-
larly, actions of the same length as classifier conditions can also contain the
“#” symbol (in that case called pass-through), which implies that specific bits
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of the matching message are passed though to the actions, allowing a single
classifier to perform different actions depending on the input message. The
latter feature of generalisation in the classifier actions is much less frequently

used than generalisation in the classifier condition.

The description above covers how the agent decides which actions to perform
(called the performance subsystem) but does not explain how such an agent can
react to external reward to optimise its behaviour in a given environment.
Generally, the behaviour is determined by the population of classifiers and
the conflict resolution subsystem. Hence, considering that the functionality of
the conflict resolution subsystem is determined by properties of the classifiers,
learning can be achieved by evaluating the quality of each classifier and aiming
at a population that only contains classifiers of high quality. This is achieved
by a combination of the credit allocation subsystem and the rule induction sub-
system. The role of the former is to distribute externally received reward to
classifiers that promoted the actions responsible for receiving this reward. The
latter system creates new rules based on classifiers with high credit to promote
the ones that are assumed to be of good quality.

2.2.3 Interacting Subsystems

To summarise, LCS aim at maximising external reward by an interaction of the

following subsystems:

Performance Subsystem. This subsystem is responsible for reading the input
message, activating the classifiers based on their condition matching any
message in the message list, and performing actions that are promoted
by messages that are posted by the active classifiers.

Conflict Resolution Subsystem. If the classifiers promote several conflicting
actions, this subsystem decides for one action, based upon the quality
rating of the classifiers that promote these actions.

Credit Allocation Subsystem. On receiving external reward, this subsystem
decides how this reward is credited to the classifiers that promoted the

actions causing the reward to be given.
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Rule Induction Subsystem. This subsystem creates new classifiers based on
current high-quality classifiers in the population. As the population size
is usually limited, introducing new classifiers into the population re-
quires the deletion of other classifiers from the population, which is an
additional task of this subsystem.

Although the exact functionality for each of the systems was given in the orig-
inal paper [115], further developments introduce changes to the operation of
some subsystems, which is why we only give a general description here. In
Section 2.2.5 we discuss some properties of these LCS, and point out the major
problems that led the way to a new class of LCS that feature major performance

improvements.

2.2.4 The Genetic Algorithm in LCS

Holland initially introduced Learning Classifier Systems as an extension of
Genetic Algorithms to Machine Learning. GA’s are a class of algorithms that
are based on the principles of evolutionary biology, driven by mutation, selec-
tion and recombination. In principle, a population of candidate solutions is
evolved and, by allowing more reproductive opportunities to fitter solutions,
the whole population is pushed towards higher fitness. Although GA’s were
initially applied as function optimisers (for example [93]), Holland’s idea was
to adapt them to act as the search process in Machine Learning, giving rise to
LCS.

In an LCS, the GA operates as the core of the rule induction subsystem, aiming
at replicating classifiers of higher fitness to increase the quality of the whole
population. New classifiers are created by selecting classifiers of high quality
from the population, performing cross-over of their conditions and actions and
mutating their offspring. The offspring is then reintroduced into the popula-
tion, eventually causing deletion of lower quality classifiers due to bounded
population size. Together with the credit allocation subsystem, which is re-
sponsible for rating the quality of the classifiers, this process was intended to
generate a set of classifiers that promote optimal behaviour in a given environ-

ment.
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2.2.5 The Problems of Early LCS

In most earlier classifier systems' each classifier in the population had an as-
sociated scalar strength. This strength was assigned by the credit allocation
subsystem and acted as the fitness and hence quality rating of the classifier.

On receiving external reward, this reward contributed to the strength of all
classifiers that promoted the action leading to that reward. Learning immedi-
ate reward alone is not sufficient, as sequential decision tasks might require a
sequence of actions before any reward is received. Thus, reward needs to be
propagated back to all classifiers in the action sequence that caused this reward
to be received. The most popular scheme to perform this credit allocation was
the Implicit Bucket Brigade [113, 188, 189].

Even though this schema worked fairly well, performance in more compli-
cated tasks was still not satisfactory. According to Kovacs [134, 133], the main
problem was the use of classifier strength as its reproductive fitness. This
causes only high-reward classifiers to be maintained, and thus the information
about low-rewarding areas of the environment is lost, and with it the knowl-
edge about if the performed actions are indeed optimal. A related problem
is that if the credit assignment is discounted, that is, if classifiers that are far
away from the rewarding states receive less credit for causing this reward, then
such classifiers have a lower fitness and are more likely to be removed, causing
sub-optimal action selection in areas distant to rewarding states. Most funda-
mentally, however, is the problem that if the classifier strength is not shared
between the classifiers, then environments with layered payoff will lead to
the emergence of classifiers that match a large number of states, despite them
not promoting the best action in all of those states. Examples for such en-
vironments are the ones that describe sequential decision tasks. It needs to
be pointed out that Kovacs does not consider fitness sharing in his investiga-
tions, and that according to Bull and Hurst [34] optimal performance can be
achieved even with strength-based fitness as long as fitness sharing is used,
but “[...] suitable system parameters must be identified for a given problem”,

and how to do this remains open to further investigation.

It has also been shown by Forrest and Miller [86] that the stochastic selection

1See [10, Ch. 2] for a description and discussion of earlier LCS
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of matching classifiers can lead to instabilities in any LCS that after each per-
formed action reduces the strength of all classifiers by a life tax and has a small
message list such that not all active classifiers can post their messages at once.
In addition to these problems, Smith [198] investigated the emergence of para-
sitic classifiers that do not directly contribute to action selection but gain from
the successful performance of other classifiers in certain LCS types with inter-

nal message lists.

Even though various taxation techniques, fitness sharing [34], and other meth-
ods have been developed to overcome the problems of overly general and par-
asitic classifiers, LCS still did not feature satisfactory performance in more
complex tasks. A more drastic change was required.

2.3 The LCS Renaissance

Before introducing XCS, Wilson developed ZCS [239] as a minimalist classi-
tier systems that aimed through its reductionist approach to provide a better
understanding of the underlying mechanisms. ZCS still uses classifier fitness
based on strength by using a version of the implicit bucket brigade for credit

assignment, but utilises fitness sharing to penalise overly general classifiers.

Only a year after having published ZCS, Wilson introduced his XCS [240] that
significantly influenced future LCS research. Its distinguishing feature is that
the fitness of a classifier is not its strength anymore, but its accuracy in pre-
dicting the expected reward?. Consequently, XCS does maintain information
about low-rewarding areas of the environment and penalises classifiers that
match overly large areas, as their reward prediction becomes inaccurate. By
using a niche GA that restricts the reproduction of classifiers to the currently
observed state and promote the performed action, and removing classifiers in-
dependent of their matching, XCS prefers classifiers that match more states as

2Using measures different than strength for fitness was already suggested before but was
never implemented in the form of pure accuracy. Even in the first LCS paper, Holland sug-
gested that fitness should be based not only on the reward but also on the consistency of the
prediction [112], which was implemented in [117]. Later, however, Holland focused purely
on strength-based fitness [240]. A further LCS that uses some accuracy-like fitness measure is
Booker’s GOFER-1 [21].
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long as they are still accurate, thus aiming towards optimally general classi-
fiers®. More information about Wilson’s motivation for the development, and
an in-depth description of its functionality can be found in [134]. A short in-
troduction to XCS from the model-based perspective is given in Appendix B.

After its introduction, XCS was frequently modified and extended, and its the-
oretical properties and exact working analysed. This makes it, up until the
time of this writing, the most used and best analysed LCS available. These
modifications also enhanced the intuitive understanding of the role of the clas-
sifiers within the system, and as the LCS model we propose borrows much of
its design and intuition from XCS, we will in the following sections give fur-
ther background on the role of a classifier in XCS and its extensions. We will
only consider single-step tasks where a reward is received after each action,
and postpone the description of multi-step tasks until Chapter 9.

2.3.1 Computing the Prediction

Initially, each classifier in XCS only provided a single prediction for all states
that it matches, independent of the nature of these states [240, 241, 242].
In XCSF [243, 244], this was extended such that each classifier represents a
straight line and thus is able to vary its prediction over the states that it
matches, based on the numerical value of the state. This concept was soon
picked up by other researchers and was quickly extended to higher-order poly-
nomials [142, 143, 144], to the use of neural networks to compute the prediction
[35,177,178, 157], and even Support Vector Machines (SVMs) [158].

What became clear was that each classifier approximates the function that is
formed by a mapping from the value of the states to their associated payoffs,
over the states that it matches [244]. In other words, each classifier provides
a localised model of that function, where the localisation is determined by
the condition and action of the classifier — even in the initial XCS, where the
model is provided by a simple averaging over the payoff of all matched states
[77].

SWilson in [240] calls optimally general classifiers maximally general, which could lead to the
misinterpretation that these classifiers match all states.
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2.3.2 Localisation and Representation

Similar progress was made in how the condition of a classifier can be repre-
sented: while XCS initially used ternary strings for that task [240, 241], the
representational repertoire was soon increased to real-numbered interval rep-
resentations to handle real-valued states [242], as a prerequisite to function
approximation with computed predictions [243, 244]. Amongst other repre-
sentations used with XCS(F) to determine the matching of a classifier are now
hyper-ellipsoids [41, 41], neural networks [38], S-expressions [145], and convex
hulls [148]. Fuzzy classifier representations [60] additionally introduce match-
ing by degree which — despite a different approach to their design — makes
them very similar to the model that is presented here.

The possibility of using arbitrary representations in XCS(F) to determine
matching of a classifier was highlighted in [244]. In fact, classifiers that model
the payoff for a particular set of states and a single action can conceptually be
seen as perform matching in the space of states and actions, as they only model
the payoff if their condition matches the state, and their action is the one that
is performed. Similarly, classifiers without actions, such as the ones used in
[243, 244] for function approximation, perform matching in the space of states

alone.

2.3.3 Classifiers as Localised Maps from Input to Output

To summarise, classifiers in XCS are localised models of the function that maps
the value of the states to their associated payoffs. The localisation is deter-
mined by the condition/action pair that specifies which states and which ac-

tions of the environment are matched.

When LCS are applied to regression tasks we prefer to follow standard ter-
minology and call the state/action pair the input and the associated payoff
the output, as already done in [243]. Thus, the localised model of a classifier
provides a mapping from the input to the output, and its localisation is deter-
mined by the input alone.

27



We can map sequential decision tasks onto the same concept by specifying an
input by the state/action pair, and its associated output by the payoff. Simi-
larly, in classification tasks the input is given by the attributes, and the output
is the class label, as used in UCS [162], which is a variant of XCS specialised for
classification tasks. Therefore, the concept of classifiers providing a localised
model that maps inputs to outputs generalises over all LCS tasks, which we
will exploit when developing the LCS model.

2.3.4 Recovering the Global Prediction

Several classifiers can match the same input but each might provide a different
predictions for its output. To get a single output prediction for each input, the
classifiers” output predictions need to be combined, and in XCS and all its
variants this is done by a weighted average of these predictions, with weights
proportional to the fitness of the associated classifiers [240, 241].

The component responsible for combining the classifier predictions in XCS and
LCS has mostly been ignored, until we have shown in [82] that combining
the classifier predictions in proportion to the inverse variance of the classifier
models gives a lower prediction error than when using the inverse fitness. At
the same time, Brown, Kovacs and Marshall have demonstrated that the same
component can be improved in UCS by borrowing concepts from ensemble
learning [29].

Even though rarely discussed, we consider the necessity of combining the clas-
sifier predictions as important as having classifiers provide localised models,
as will become apparent when the LCS model is introduced.

2.3.5 Michigan-style vs. Pittsburgh-style LCS

In Michigan-style LCS all classifiers within a population cooperate to collec-
tively provide a solution. Examples are the first LCS, Cognitive System 1 (CS-
1) [117], SCS [93], ZCS [239] and XCS [240]. In the less common Pittsburgh-
style LCS several sets of classifiers compete against each other to provide a
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solution with a single fitness value for the set, with examples for such systems
given by LS-1 [200, 201, 202], GALE [152] and CCS [154, 155].

Even though “Michigan and Pittsburgh systems are really quite different ap-
proaches to learning [. .. ]” [134], they share the common goal of finding sets of
classifiers that provide a solution to the task at hand. Consequently, we assert
that their classifier populations can be represented by the same LCS model,
but their way of improving that model is different.

In developing the LCS model we do not distinguish between the two styles,
not even when defining the optimal set of classifiers in Chapter 7, in order
to emphasise that they are just two different implementations that have the
same goal. We will distinguish between them as soon as we start discussing
implementational details in Chapter 8, but attempt to build a bridge between
the two styles in Chapter 10.

2.4 Existing Theory

As with the creation of a model for LCS we also aim at advancing the theoret-
ical understanding of LCS in general, let us review some previous theoretical
work in LCS. We first start with theoretical approaches that consider all LCS
subsystems at once, and then concentrate on the GA in LCS, followed by dis-
cussing approaches that have analysed the function approximation and RL
side of LCS.

2.4.1 The Holistic View

The first and currently only LCS model that allows studying the interaction
with the environment and generalisation in the same model was developed
by Holland just after the introduction of the LCS framework [114].

He describes the set of states that the system can take by combining all possible

environmental states and internal states of the LCS, and defines a transition
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matrix that describes the Markov chain probabilities of transiting from one
system state to another. Thus, changes in the environment and the LCS are

tracked simultaneously.

Environmental similarities are exploited in the model by partitioning the
Markov matrix into equivalence classes to get a sub-Markov matrix that col-
lapses similar states into one. From this, reset times, upper bounds on expected
experiment repetition times and other properties can be derived.

The model was created before the emergence of modern RL* and so cannot
refer to its theoretical advances, and was not updated to reflect those. Ad-
ditionally, the inclusion of the LCS state into the model causes the number of
states to be uncountable due to the real-valued parameterisation of LCS. Thus,
it is unclear if the model will provide significant advances in the understand-
ing of LCS. We rather propose to rely on RL theory to study the performance
of LCS in sequential decision tasks, as discussed in Chapters 9 and 10.

2.4.2 Approaches from the Genetic Algorithm Side

As many researchers consider LCS as Genetic-based Machine Learners
(GBML), they are most frequently analysed from the GA perspective. Particu-
larly when considering single-step problems, when each action is immediately
mediated by a reward, the task is a regression task and does not require an RL
component. Due to its similarity to our LCS model, we will mainly consider
the analyses performed on XCS. Note, however, that none of these analyses is
of direct importance to the work presented here, as they study a single algo-
rithm that performs a task which we only define by its aim, rather than by how
it is performed. Nonetheless, the analysis of XCS has given valuable insights
into the set of classifiers that XCS aims at evolving — a topic that we come
back to in Section 7.1.1.

By the “emergence of modern RL” we refer to Sutton’s development of TD [211] and
Watkin’s Q-Learning [231]
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Single-Step Tasks

Single-step problems are essentially regression tasks where XCS aims at learn-
ing a complete mapping from the input space to the output space. In XCS,
such problems are handled by an RL method that for these tasks reduces
to a gradient-based supervised learning approach, as will be shown in Sec-
tions 5.3.3 and 5.3.4.

Most of the analysis of XCS in single-step tasks has been performed by Butz
et al. in an ongoing effort [51, 53, 44, 56, 49, 46, 50, 58] restricted to binary
string representations, and using a what they call facet-wise approach. Their ap-
proach is to look at single genetic operators, analyse their functionality and
then assemble a bigger picture from the operators” interaction, sometimes tak-
ing simplifying assumptions to make the analysis tractable.

In [53] they analyse the various evolutionary pressures in XCS, showing that
the set pressure pushes towards less specific classifiers, as already conjectured
in Wilson’s Generalization Hypothesis [240]. Mutation is shown to push towards
50% or 66% specificity, and no quantitative values are derived for the fitness
and subsumption pressure. Overall, it is qualitatively shown that XCS pushes
towards optimally general classifiers, but the quantitative results should be

treated with care due to their reliance of several significant assumptions.

In a subsequent series of work [51, 44, 46, 58], Butz et al. derive various time
and population bounds to analyse how XCS scales with the size of the input
and the problem complexity, where the latter expresses how strongly the val-
ues of various input bits depend on each other. Combining these bounds, they
show that the computational complexity of XCS grows linearly with respect to
the input space size and exponentially with the problem complexity. Thus they
state in [58] that XCS is a Probably Approximately Correct (PAC) learner (for
example [128]). While this claim might be correct, the work that is presented
is certainly not sufficient to support it — in particular due to the simplifying
assumptions made to derive these bounds. More work is required to formally
support this claim.

In additional to analysing the genetic pressures and deriving various bounds, a
wide range of further work has been performed, like the empirical and theoret-
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ical analysis of various selection policies in XCS (for example [56, 49, 83, 183]),
or improving the XCS and UCS performance of classification problems with
strong class imbalance [180, 181, 182]. None of these studies is directly related
to our work and therefore will not be discussed in detail.

Multi-Step Tasks

Very little work been has performed to analyse the GA in multi-step prob-
lems, where a sequence of action rather than a single action lead to the reward
that is to be maximised. The only relevant study might be [31], where Bull
has firstly shown in single-step tasks that overly general classifiers are sup-
ported in strength-based LCS but not in accuracy-based LCS. The model is
then extended to a 2-step task, showing that “effective selection pressure can
vary over time, possibly dramatically, until an equilibrium is reached and the
constituency of the co-evolving match sets stop changing” [31]. The model
even shows a pressure towards lower payoff rules in some cases, although
this might be an artifact of the model.

2.4.3 Approaches from the Function Approximation Side

XCS was, for the first time, used for function approximation in [243] by allow-
ing classifiers to compute their predictions from the values of the inputs. In
[143, 144] it has been shown that such classifiers might only converge slowly to
the correct model, and a training algorithm based on Recursive Least Squares
(RLS) [106] was proposed to improve their speed of convergence. A simi-
lar, but more in-depth, analysis was also provided in [77], where further ap-
proaches, including the Kalman filter [124], were proposed.

How classifiers are combined to form the global prediction is essential to func-
tion approximation but has been mostly ignored since it was defined in [240].
Only [82] and [29] have recently shed a new light on this component, but there

is certainly still room for advancing its understanding.
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2.4.4 Approaches from the Reinforcement Learning Side

Again concentrating on XCS, its exact approach to performing reinforcement
learning has been discussed in [139] and [45]. In the latter study, Butz et al.
show the parallels between XCS and Q-Learning and aim at adding gradi-
ent descent to XCS’s update equations. This modification is additionally pub-
lished in [47], and was later analysed in [226, 227, 143, 78, 141, 140], with mixed
results. Due to the current controversy about this topic we postpone its de-
tailed discussion to Section 9.3.6, where we show that XCS(F) does not need be
modified to perform Q-Learning with gradient descent.

Another study that is directly relevant to RL is the limits of XCS in learning
long sequences of actions [11, 12]. As this limitation emerges from the type of
classifier set model that XCS aims at, it is also relevant to our work, and thus
will be discussed in more detail in Section 9.5. Let us just note here that we will
show that the solution proposal given in [12] might not apply to all sequential
decision task definitions, but that our proposed model might be able to handle
them.

There has been no work on the stability of XCS when used for sequential de-
cision tasks, even though such stability is not guaranteed (for example, [25]).
Wada et al. claim in [226, 227] that XCS does not perform Q-Learning correctly
— a claim that we question in Section 9.3.6 — and consequently introduce a
modification of ZCS in [227] that makes it equivalent to Q-Learning with linear
function approximation. They demonstrate its instability in [225], and present
a stable variant in [227]. As described in Section 4.5, their LCS model is not
compatible with XCS, as they do not train their classifiers independently. As
we favour the XCS approach, we consider its stability in Section 9.4, indepen-
dent of the approach presented in [226, 227, 225].

2.5 Discussion and Conclusion

From this historical overview of LCS and in particular XCS we can see that
LCS are traditionally approached algorithmically and also analysed as such.
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Even in the first LCS, CS-1, most of the emphasis is put on how to approach
the problem, and little on the problem itself. Given that many non-LCS ap-
proaches handle the same problem class (for example, [17, 213]), an algorith-
mic description of LCS emphasises the features that distinguishes LCS from
non-LCS methods. But even with such statements one needs to be careful:
considering the series of 11 short essays under the title “What is a Learning
Classifier System?” in [116] it becomes clear that there is no common agree-
ment about what defines an LCS.

Based to these essays, Kovacs discusses in [135] if LCS should be seen as GA’s
or algorithms that perform RL. He concludes that while strength-based LCS
are more similar to GA’s, accuracy-based LCS shift their focus more towards
RL. Thus, there is no universal concept that applies to all LCS, particularly
when considering that there exist LCS that cannot handle sequential decision
tasks (for example, UCS [162]), and others that do not have a GA (for example,
MACS [90, 87]).

The extensive GA-oriented analysis in recent years has shed some light into
which problems XCS can handle and where it might fail, and how to set some
of its extensive set of system parameters. Nonetheless, questions still emerge
if accuracy-based fitness is indeed better than strength-based fitness in all sit-
uations, or if we even need some definition of fitness at all [22]? Furthermore,
the correct approach to reinforcement learning in LCS is still not completely
clear (see Section 9.3.6). In any case, we would like to emphasise that both the
GA and RL in LCS are just methods to reach some goal, and without a clear
definition of this goal it is impossible to determine if any method is ever able
to reach it.

This is why the approach we propose for the analysis of LCS differs from look-
ing further at existing algorithms and figuring out what they actually do and
how they might be improved. Rather, as already alluded to in the previous
chapter, we prefer to take a step back and concentrate firstly on the problem it-
self before considering an approach to find its solution. This requires us to give
a clear definition of the problem(s) that we aim to solve, followed by defining a
model that determines the assumptions that we have about the problem struc-
ture. To ensure that the resulting method can be considered as an LCS, the
design of this model is strongly inspired by the structure of LCS, and in par-
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ticular XCS.

Having a problem and an explicit model definition allows us to apply standard
machine learning methods to train this model. The model in combination with
its training defines the method, and as we will see, the resulting algorithms
are indeed close to the ones of XCS, but with all the advantages that we have
already described in the previous chapter. Additionally, we do not need to
explicitly handle questions about possible fitness definitions or the correctness
of the reinforcement learning method used, as they emerge naturally through
deriving training methods for the model. From that perspective, the proposed
approach handles many of the current issues in LCS more gracefully and holis-
tically than previous attempts.
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Chapter 3

A Learning Classifier Systems
Model

Specifying the model that is formed by a set of classifiers is central to our ap-
proach. On one hand it explicitly defines the assumptions that we make about
the problem that we want to solve, and on the other hand it determines the
training methods that can be used to provide a solution. This chapter gives a
conceptual overview over the LCS model, which is turned into a probabilistic
formulation in the next chapter.

As specified in Chapter 1, the tasks that LCS are commonly applied to are
regression tasks, classification tasks, and sequential decision tasks. The under-
lying theme of providing solutions to these tasks is to build a model that as-
sociates a set of observed inputs to their outputs. Taking the generative view,
we assume that the observed input/output pairs are the result of a possibly
stochastic process that generates an output for each associated input. Thus,
the role of the model is to provide a good representation of the data-generating

process.

As the number of available observations is generally finite and the observa-
tions themselves possibly noisy, and we do not have direct access to the data-
generating process, we need to induce its properties from these finite obser-
vations. Therefore, we are required to make assumptions about the nature of
the data-generating process which are expressed through the model that we
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assume.

Staying close to the LCS philosophy, this model is given by a set of localised
models that are combined to a global model. In LCS terms the localised mod-
els are the classifiers with their localisation being determined by which inputs
they match, and the global model is determined by how the classifier predic-
tions are combined to provide a global prediction. Acquiring such a model
structure has several consequences on how it is trained, the most significant
being that it is conceptually separable into a two-step procedure: firstly, we
want to find a good number of classifiers and their localisation, and secondly
we want to train this set of classifiers to be a seemingly good representation of
the data-generation process. Both steps are closely interlinked and need to be

dealt with in combination.

A more detailed definition of the tasks and the general concept of modelling
the data-generating process is given in Section 3.1, after which we introduce
the model that describes a set of classifiers as a member of the class of paramet-
ric models in Section 3.2. This includes an introduction to parametric models
in Section 3.2.1, together with a more detailed definition of the localised classi-
fier models and the global classifier set model in Sections 3.2.3 and 3.2.4. After
discussing how the model structure influences its training and how the model
itself relates to the Holland’s initial LCS idea in Sections 3.2.6 and 3.2.7, we
provide a brief overview of how the concepts introduced in this chapter prop-
agate through the chapters to follow.

3.1 Task Definitions

In previous sections we have already informally described the different prob-
lem classes that LCS are applied to. Here we give a more formal task definition
that acts as the basis for further formal development. We differentiate between

regression tasks, classification tasks, and sequential decision tasks.

Let us assume that we have a finite set of observations generated by noisy mea-
surements of a stochastic process. All tasks have at their core the formation of
a model that describes a hypothesis for the data-generating process. The pro-
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cess maps an input space X into an output space ), and so each observation
(x,y) of that process is formed by an input z € X that occurred and the associ-
ated measured output y € ) of the process in reaction to the input. The set of
all inputs X = {z,xs,...} and associated outputs Y = {y1,vs, ...} is called
the training set or data D = { X, Y }.

A model of that process provides a hypothesis for the mapping X — Y, in-
duced by the available data. Hence, given a new input x, the model can be
used to predict the corresponding output y that the process is expected to gen-
erate. Additionally, an inspection of the hypothesis structure can reveal regu-
larities within the data. In sequential decision tasks the model represents the
structure of the task and is employed as the basis of decision-making.

Before we describe the similarities and differences between the regression,
classification and sequential decision tasks, we further discuss the difficulty
of forming good hypotheses about the nature of the data-generating process
from only a finite number of observations. For this purpose we assume batch
learning, that is, the whole training set with N observations of the form (z,, y,,)
is available at once. In a later section, we contrast this approach with incremen-

tal learning, where the model is updated incrementally with each observation.

3.1.1 Expected Risk vs. Empirical Risk

In order to be able to model a data-generating process, we need to be able to
express this process by a smooth stationary function f : X — ) that generates
the observation (z,y) by y = f(z) + ¢, where € is a zero-mean random variable.

We require it to be given by a function such that the same expected output is
generated for the same input. That is, given two inputs z, 2’ such that = = 2/,
the expected output of the process needs to be the same for both inputs. Were
this not the case, then we would be unable to detect any regularities within the

process and so we could not build a meaningful model.

Smoothness of the function is required to express that the process generates
similar outputs for similar inputs. That is, given two inputs z, 2’ that are close
in X, their associated outputs y, ¢’ on average need to be close in ). This prop-

39



erty is required in order to make predictions: if it did not hold, then we could
not generalise over the training data, as relations between inputs do not trans-
fer to relations between outputs, and thus we would be unable to predict the
output for an input that is not in the training set. There are several ways of
ensuring the smoothness of a function, such as by limiting its energy of high
frequencies in the frequency domain [92]. We do not rely on any particular for-

mal definition but rather deal with smoothness from an intuitive perspective.

As discussed before, the process may be stochastic and the measurements of
the output may be noisy. This stochasticity is modelled by the random variable
¢, which has zero mean, such that for an observation (x,y) we have E(y) =
f(x). The distribution of € is determined by the process stochasticity and the

measurement noise.

With this formulation we can see that a model with structure M has to provide
a hypothesis of the form fy, : X — Y. In order to be a good model, f, has
to be close to f. To be more specific, let L : ) x ) — R* be a loss function
that describes a distance metric in ), that is L(y,y’) > 0 for all y # %/, and
L(y,y’) = 0 otherwise. To get a hypothesis fa close to f we want to minimise
the expected risk

/ L(f(2), fu(a))dp(a), (3.1)

where p(z) is the probability density of having input z. In other words, our aim
is to minimise the distance between the output of the data-generating process
and our model of it, for each input x weighted by the probability of observing
it.

We cannot directly minimise the expected risk as f is only accessible by a finite

set of observations. Thus, when constructing the model we need to rely on an
approximation of the expected risk, called the empirical risk and defined as

L(Yn, fra () (3.2)

”MZ

which is the average loss of the model over all available observations. De-
pending on the definition of the loss function, minimising the empirical risk
can result in least squares learning or the principle of maximum likelihood

[221]. By the law of large numbers, the empirical risk converges to the ex-
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pected risk almost surely with the number of observations tending to infinity,
but for a small set of observations the two measures might be quite different.
How to minimise the expected risk based on the empirical risk forms the ba-
sis of statistical learning theory, for which a good introduction with slightly
different definitions can be found in [221].

We could simply proceed by minimising the empirical risk. That this approach
will not lead to an adequate result is shown by the following observation: the
model that minimises the empirical risk is the training set itself. However, as-
suming noisy measurements, the data is almost certainly not completely cor-
rect. Hence, we want to find a model that represents the general pattern in
the training data but does not model its noise. The field that deals with this
issue is known as model selection. Learning a model such that it perfectly fits
the training set but does not provide a good representation of f is known as
overfitting. The opposite, that is, learning a model where the structural bias of
the model dominates over the information included from the training set, is
called underfitting.

While in LCS several heuristics have been applied to deal with this issue, it
has never been characterised explicitly. In this and the following chapters we
consider our aim to be the minimisation of the empirical risk. In Chapter 7
we come back to the topic of model selection, and show how we can handle it
with respect to LCS it in a principled manner.

3.1.2 Regression

Both regression and classification tasks aim at finding a hypothesis for the
data-generating process such that some risk measure is minimised, but dif-
fer in the nature of the input and output space. We characterise a regression
task by a multidimensional real-valued input space X = RP* with Dy di-
mensions and a multidimensional real-valued output space Y = RP» with
Dy dimensions. Thus, the inputs are column vectors = (z1,...,zp,)" and
the corresponding outputs are column vectors y = (y1,...,yp,)". In the case

of batch learning we assume that N observations (x,,,y,) are available in the
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form of the input matrix X and output matrix Y’

T~ ~y{ -
X = : , Y = : . (3.3)
—T— —~Yn—

The loss function is commonly the L, norm, also known as the Euclidean dis-
tance, and is defined by Ly(y, y') = |ly, ¥'[l> = (3, (4 — 1:)%)"/*. Hence, the loss
increases quadratically in all dimensions with the distance from the desired
value. Alternatively, the L; norm, also known as the absolute distance, and
defined as Li(y,v') = ||y, ¥'[1 = >, [v; — vi|, can be used. The L, norm has the
advantage that it only increases linearly with distance and is therefore more
resilient to outliers. Using the L, norm, on the other hand, makes analytical

solutions easier.

All LCS developed so far only handle univariate regression, which is charac-
terised by a 1-dimension output space, thatis ) = R. Consequently, the output
vectors y collapse to scalars y € R and the output matrix Y becomes a column
vector y € RY. For now we will also follow this convention, but will return to

multivariate regression with Dy > 1 in Chapter 7.

3.1.3 C(lassification

The task of classification is characterised by an input space that is mapped into
a subset of a multidimensional real-valued space X C R”* of D, dimensions,
and an output space ) that is a finite set of labels, mapped into a subset of the
natural numbers ) C N. Hence, the inputs are again real-valued column vec-
tors * = (21,...,2p, )", and the outputs are natural numbers y. The elements
of the input vectors are commonly referred to as attributes, and the outputs are
called the class labels.

XCS approaches classification tasks by modelling them as regression tasks:
each input vector x is augmented by its corresponding class label y to get the
new input vector ' = (—z’—, y)” that is mapped into some positive scalar

that we can without loss of generality assume to be 1. Furthermore, each input
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vector in the training set is additionally augmented by any other valid class
label except for the correct one (that is, as given by y) and maps into 0. Hence,
the new input space becomes X’ C R”* x N, and the output space becomes
V' = [0, 1]. Consequently, the correct class for a new input « can be predicted
by augmenting the input by each possible class label and choosing the class
for which the prediction of the model is closest to 1.

We will proceed in the same way as XCS and therefore will not need to con-
sider the classification task explicitly. Nonetheless, this procedure is not partic-
ularly efficient, and alternative LCS approaches to classification have already
been devised (for example, UCS [162]). We will discuss these alternatives in
Section 10.3 in the light of later presented work.

3.1.4 Sequential Decision

A sequential decision task requires a learner to maximise the long-term reward
it receives through the interaction with an environment. At any time, the envi-
ronment is in a certain state within the state space X'. A state transition occurs
when the learner performs an action from the action set .A. Each of these state
transitions is mediated by a scalar reward. The aim of the learner is to find a
policy, which is a mapping X — A that determines the action in each state,

that maximises the reward in the long run.

While it is possible to search the space of possible policies directly, a more
efficient approach is to compute the value function X x A — R that determines
for each state which long-term reward to expect when performing a certain
action. If we have a model of the state transitions and rewards, we can use
Dynamic Programming (DP) to compute this function. Reinforcement Learning
(RL), on the other hand, deals with finding the value function if no such model
is available. As the latter is commonly the case, Reinforcement Learning is also
the approach employed by LCS.

We can differentiate two approaches to RL: either we learn a model of the
transitions and rewards by observations and then use dynamic programming
to find the value function, called model-based RL, or we estimate the value func-
tion directly while interacting with the environment, called model-free RL.
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In the model-based case, we consequently need to derive a model of the state
transitions and rewards from the given observations, both of which are regres-
sion tasks. If we want to compute the policy while sampling the environment
we need to update the model incrementally and therefore need an incremental

learner.

In the model-free case, the function to model is the estimate of the value func-
tion, again leading to a regression task that needs to be handled incrementally.
Additionally, the value function estimate is also updated incrementally, and
as it is the data-generating process, this process is slowly changing. As a re-
sult, there is a dynamic interaction between the RL algorithm that updates the
value function estimate and the incremental regression learner that models it,
which is not in all cases stable and needs special consideration [25]. These
are additional difficulties that need to be taken into account when performing
model-free RL.

Clearly, although the sequential decision task was the prime motivator for
LCS, it is also the most complex to tackle. Therefore, we deal with standard
regression tasks first, and come back to sequential decision tasks in Chapter 9.
Even then we will only deal with it from the theoretical perspective of stability,
as it requires an incremental learning procedure that we will not develop.

3.1.5 Batch vs. Incremental Learning

In batch learning, we assume that the whole training set is available at once,
and that the order of the observations in that set is irrelevant. Thus, we can
train the model with all data at once and in any order.

Incremental learning methods differ from batch learning in that the model is
updated with each additional observation separately, and as such can handle
observations that arrive sequentially as a stream. Revisiting the assumption of
Section 3.1.1, that the data-generating process f is expressible by a function,

we can differentiate between two cases:

[ is stationary. If the data-generating process does not change with time and
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the full training set is available at once, any incremental learning method
is either only an incremental implementation of an equivalent batch

learning algorithm, or an approximation to it.

[ is non-stationary. Learning a model of a non-stationary generating process
is only possible if the process is only slowly varying, that is, if it changes
slowly with respect to the frequency that it is observed. Hence, we can
assume its stationarity at least within a limited time-frame. Itis modelled
by putting more weight on later observations, as earlier observations do
give general information about the process but might reflect it in an out-
dated state. Such recency-weighting of the observations is very naturally
achieved within incremental learning by assigning the current model a

lower weight than new observations.

The advantage of incremental learning methods over batch learning meth-
ods are that the former can handle observations that arrive sequentially as
a stream, and that they more naturally handle non-stationary processes, even
though the second feature can also be simulated by batch learning methods
by weighting the different observations according to their temporal sequence.
On the downside, when compared to batch learning, incremental learners are
generally less transparent in what exactly they learn, and dynamically more

complex.

With respect to the different tasks, incremental learners are particularly suited
to model-free RL, where the value function estimate is learned incrementally
and therefore changes slowly. Given that all data is available at once, regres-
sion and classification tasks are best handled by batch learners.

From the theoretical perspective, incremental learners can be derived from a
batch learner that is applied to solve the same task. This has the advantage
of preserving the transparency of the batch learning method and acquiring
the flexibility of the incremental method. We illustrate this principle with the
following example.

Example 3.1.1 (Relating Batch and Incremental Learning). We want to es-
timate the probability of a tossed coin showing head, without any initial

bias about its fairness. We perform N experiments with no input X = ()
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and outputs J = {0,1}, where 0 and 1 stand for tail and head respec-
tively. Adopting a frequentist approach, we can estimate the probability

of tossing a coin resulting in head by

1 N
py(H) = 5D n, (3.4)
n=1

where py(H) stands for the estimated probability of head after NV exper-
iments. This batch learning approach can be easily turned into an incre-

mental approach by
1 1= 1
pn(H) = Syn + & nzz:l Yn =pN-1(H) + = (yn —py-1(H)),  (35)

starting with p(H) = y;. Hence, to update the model py_;(H) with the
new observation yy, we only need to maintain the number IV of experi-
ments so far. When comparing Egs. (3.4) and (3.5) we can see that, whilst
the incremental approach yields the same results as the batch approach, it

is far less transparent in what it is actually calculating.

Let us now assume that the coin changes its properties over time, and
we therefore trust recent observations more. Hence, we will modify our

incremental update to

pN(H) =pn_1(H) +v(yn — pn-1(H)), (3.6)

where 0 < v < 1 is the recency factor that determines the influence of
past observations to our current estimate. Recursive substitution of p,, (H)

results in the batch learning equation

N
pn(H) = (1=7)"po(H) + > (1 =" "yn. (3.7)

n=1
Inspecting this equation reveals that observations n experiments back in
time are weighted by v(1 — v)". Additionally, we can see that an initial
bias po(H) is introduced that decays exponentially with the number of
available observations. Again, the batch learning formulation has led to

greater insight and transparency.
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Are LCS Batch Learners or Incremental Learners?

LCS are often considered to be incremental learners. While they are usually
implemented as such, there is no reason not to design them as batch learners
when applying them to regression or classifications tasks, given that all data is
available at once. Indeed, Pittsburgh-style LCS usually require an individual
representing a set of classifiers to be trained on the full data, and hence we can
interpret them as incrementally implemented batch learners when applied to
regression and classification tasks.

Even Michigan-style LCS can acquire batch learning when the classifiers are
trained independently: each classifier can be trained on the full data at once
and is later only queried for its fitness evaluation and its prediction.

As we aim at understanding what LCS are learning, we — for now — prefer
transparency over performance. Hence, we will predominantly describe LCS
from a batch learning perspective, although, throughout Chapters 5, 6 and
7, we will also discuss how to get similar results with incremental learning.
Still, the prototype system we develop is only fully described from the batch
learning perspective. How to turn this system into an incremental learner is

left as the topic of future research.

3.2 LCS as Parametric Model

While the term model may be used in many different ways, we will define it as
a collection of possible hypotheses about the data-generating process. Hence,
the choice of model determines the available hypotheses and therefore biases
our expressiveness about this process. Such a bias represents the assumptions
that we make about the process and its stochasticity. Understanding the as-
sumptions that are introduced with the model allows us to make statements
about its applicability and performance.

Example 3.2.1 (Different Linear Models and their Assumptions). A lin-

ear relation between inputs and outputs with constant-variance Gaussian
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noise € leads to least squares (that is, using the Ly loss function) linear
regression. Alternatively, assuming the noise to have a Cauchy distribu-
tion results in linear regression using the L; loss function. As a Cauchy
distribution has a longer tail than a Gaussian distribution, it is more re-
silient to outliers. Hence it is considered as being more robust, but the L
norm makes it harder to train [66]. This shows how an assumption of a
model about the data-generating process can give us information about

its expected performance.

Training a model means finding the hypothesis that is closest to what we as-
sume is the data-generating process. For example, in a linear regression model
the space of hypotheses is all hyper-planes in the input/output space, and per-
forming linear regression means picking the hyper-plane that best explains the
available observations.

The choice of model strongly determines how hard it is to train. While more
complex models are usually able to express a larger range of possible hypothe-
ses, this larger range also makes it harder for them to avoid overfitting and
underfitting. Hence, very often, overfitting by minimising the empirical risk is
counterbalanced by reducing the number of hypotheses that a model can ex-
press, thus making the assumptions that a model introduces more important.

Example 3.2.2 (Avoiding Overfitting in Artificial Neural Networks). Re-
ducing the number of hidden neurons in a feed-forward neural network
is a popular measure of avoiding overfitting the training data. This mea-
sure effectively reduces the number of possible hypothesis that it is able
to express and as such introduces a stronger structural bias. Another ap-
proach to avoiding overfitting in neural networks training is weight decay
that exponentially decays the magnitude of the weight of the neural con-
nections in the network. While not initially designed as such, weight de-
cay is equivalent to assuming a zero mean Gaussian prior on the weights
and hence biasing them towards smaller values. This prior is again equiv-

alent to assuming smoothness of the target function. [107].

Having underlined the importance of knowing the underlying model of a
method, we continue by introducing the family of parametric models and de-
scribing LCS as a member of that family. Our description is based on reflec-
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tions on what classifiers actually are and do, and how they cooperate to form
a model. While we give a general overview of how the model described by
LCS can be trained, more details have to wait until after we have developed a
formal probabilistic model of LCS in the following chapter.

3.2.1 Parametric Models

The choice of hypothesis during model training is usually determined by a set
of adjustable parameters 6. Models for which the number of parameters is
independent of the training set and remains unchanged during model train-
ing are commonly referred to as parametric models. In contrast, non-parametric
models are models for which the number of adjustable parameters either de-
pends on the training set, changes during training, or both.

Another property of a parametric model is its structure M (often also referred
to as scale). Given a model family, the choice of structure determines which
model to use from this family. For example, considering the family of feed-
forward neural networks with a single hidden layer, the model structure is
the number of hidden neurons and the model parameters are the weights of
the neural connections. Hence, the model structure is the adjustable part of
the model that remain unchanged during training but might determine the

number of parameters.

With these definitions we can re-formulate our aims: Firstly, we want to pick
an adequate model structure M that provides the model hypotheses fu(z; 8),
and secondly, we want to find the values for the model parameters 6 such that
we minimise the expected risk for our choice of loss function.

3.2.2 LCS Model

An LCS forms a global model by the combination of local models, represented
by the classifiers. The number of classifiers can change during the training
process, and so can the number of adjustable parameters by action of the GA.
Hence, an LCS is not a parametric model per se.
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We can turn an LCS into a parametric model by assuming that the number of
classifiers is fixed, and each classifier represents a parametric model. While
this choice seems arbitrary at first, it becomes useful for later development. Its
consequences are that both the number of classifiers and how they are located
in the input space are part of the model structure M and are not modified
while adjusting the model parameters. The model parameters 8 are the pa-
rameters of the classifiers and those required to combine their local models.

Consequently, training an LCS is conceptually split into two parts: We want
to find a good model structure M, that is, the adequate number of classifiers
and their location, and for that structure the values for the model parameters
0. This interpretation justifies calling LCS adaptive models.

Before providing more details on how to find a good model structure, let us
tirst assume a fixed model structure with K classifiers and investigate in more

detail the components of such a model.

3.2.3 C(Classifiers as Localised Models

In LCS, the combination of condition and action of a classifier determines the
inputs that a classifier matches. Hence, given the training set, one classifier
matches only a subset of the observations in that set. Thus, we can say that a
classifier is localised in the input space, where its location is determined by the
inputs that it matches.

Matching

Let &, C X be the subset of the input space that classifier k& matches. The
classifier is trained by all observations that it matches, and hence its aim is
to provide a local model fk(:a 0;) that maps X}, into ), where 6, is the set of
parameters of the model of classifier k. More flexibly, we can define matching
by a matching function my, : X — [0, 1] specific to classifier k, and given by the
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indicator function for the set A},

my(x) = (3.8)

1 ifx e Xk;
0 otherwise.

The advantage of using a matching function m, rather than a set X}, is that the
former allows for degrees of matching in-between 0 and 1, a feature that we
will make use of in a later section. Also note, that representing matching by X,
or the matching function m;, makes it independent of the choice of representa-
tion of the condition/action of a classifier. Thus, all future developments are
valid for all choices of representation.

Local Classifier Model

The local model of a classifier is usually a regression model with no particular
restrictions. As we have discussed in Section 2.3.1, initially only simple aver-
aging predictions were used, but more recently, classifiers have been extended
to use linear regression models, neural networks, and SVM regression. While
averagers are just a special case of linear models, neural networks might suffer
from the problem of multiple local optima [105], and SVM regression has no
clean approach to incremental implementations [158]. Hence, we will restrict
ourselves to the well-studied class of linear models as a good tradeoff between
expressive power and complexity of training. We will discuss them in depth
in Chapters 4 and 5.

Input to Matching and Local Models

Note that in LCS the input given to the matching function and that given to the
classifier’s model usually differ in that the input to the model is often formed
by applying a transfer function to the input given to the matching mechanism.
Nonetheless, to keep the notation uncluttered we assume that the given input
x contains all available information and both matching and the local model
selectively choose and modify the components that they require by an implicit

transfer function.
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Example 3.2.3 (Inputs to Matching and Local Model). Let us assume that
both the input and the output space are 1-dimensional, that is, ¥ = R and
Y = R, and that we perform interval matching over the interval (I, u],
such that my(z) = 1if [, <z < uy, and my(x) = 0 otherwise. Applying
the linear model f (@; wg) = zwy, to the input, with wy, being the adjustable
parameter of classifier k, we can only model straight lines through the
origin. However, applying the transfer function ¢(z) = (1,z)7 allows us
to introduce an additional bias to get f(a:, wy) = wkr¢(x) = Wk + TWg2,
with wy, = (wg1, wg2)? € R?, which is an arbitrary straight line. In such a
case, we assume the input tobe ' = (1, x)T, and the matching function to
only operate on the second component of the input. Hence, we can apply
both matching and the model to the same input. We give a more detailed
discussion about different transfer functions and their resulting models in

Section 5.1.1.

3.2.4 Recovering the Global Model

To recover the global model from K local models, we need to combine these
local models in some meaningful way. For inputs that only a single classifier
matches, the best model we have available is the matching classifier’s model.
However, there are no restrictions on how many classifiers can match a single
input. Therefore, in some cases, it is required to mix the local models of several

classifiers that match the same input.

There are several possible approaches to mixing classifier models, each cor-
responding to different assumptions about the data-generating process. We
will introduce a standard approach in Chapter 4 and investigate alternatives
in Chapter 6.

3.2.5 Finding a Good Model Structure

The model structure M is given by the number of classifiers and their localisa-
tion. As the localisation of a classifier k is determined by its matching function
my, the model structure is completely specified by the number of classifiers K
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and their matching functions M = {m}, thatis, M = { K, M }.

To find a good model structure means to find a structure that allows for hy-
potheses about the data-generating process that are close to the process sug-
gested by the available observations. Thus, finding a good model structure
implies dealing with over and underfitting of the training set. We will post-
pone a detailed treatment of this topic to Chapter 7 and will for now proceed
by assuming that a good model structure is known.

3.2.6 Considerations for Model Structure Search

The space of possible model structures is potentially huge, and hence to search
this space, evaluating the suitability of a single model structure M to explain
the data needs to be efficient to keep searching the model structure space com-
putationally tractable. Additionally, we want to guide our search by using the
information we gain about the quality of the classifiers within a certain model
structure by fitting this model structure to the data.

Each classifier in the LCS model represents some information about the in-
put/output mapping, limited to the subspace of the input space that it
matches. Hence, while preserving classifiers that seem to provide a good
model of the matched data, we want to refine the model structure in areas
of the input space for which none of the current classifiers provides an ad-
equate model. This can be achieved by either modifying the localisation of
current classifiers that do not provide an adequate fit, removing those classi-
tiers, or adding new classifiers to compare their goodness-of-fit to the current
ones. Intuitively, interpreting a classifier as a localised hypothesis for the data-
generating process, we want to change or discard bad hypotheses, or add new
hypotheses to see if they are favoured in comparison to already existing hy-
potheses.

In terms of the model structure search, the search space is traversed by modi-
tying the current model structure rather than discarding it at each search step.
By only modifying part of the model, we have satisfied the aim of facilitat-
ing knowledge of the suitability of the current model structure to guide the
structure search. Additionally, if only few classifiers are changed in their lo-
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calisation in each step of the search, we only need to re-train the modified or
added classifiers, given that the classifiers are trained independently. This is
an important feature that makes the search more efficient, and that we will

revisit in Section 4.4.

Such a search strategy clearly relates to how current LCS traverse the search
space: In Michigan-style LCS, such as XCS, new classifiers are added either
if no classifier is localised in a certain area of the input space, or to provide
alternative hypotheses by merging and modifying the localisation structure of
two other current classifiers with a high goodness-of-fit. Classifiers in XCS
are removed with a likelihood that is proportional to on average how many
other classifiers match the same area of the input space, causing the number
of classifiers that match a particular input to be about the same for all inputs.
Pittsburgh-style LCS also traverse the structure search space by merging and
modifying sets of classifiers of two model structures that were evaluated to
explain the data well. However, few current Pittsburgh-style LCS retain the
evaluation of single classifiers to improve the efficiency of the search — a fea-

ture that we use in our prototype implementation.

3.2.7 Relation to the Initial LCS Idea

Recall that originally LCS addressed the problems of parallelism and coordi-
nation, credit assignment, and rule discovery, as described in Section 2.2.1. We
will now describe how these problems are addressed in the proposed model.

Parallelism is featured by allowing several classifiers to be overlapping, that
is, to be localised partially in the same areas of the input space. Hence, they
compete locally by providing different models for the same data, and cooper-
ate globally by providing a global model only in combination. Coordination
of the different classifiers is handled on one hand by the model component
that combines the local models into a global model, and on the other hand by
the model structure search that removes or changes classifiers based on their
contribution to the full model.

Credit assignment is to assign external reward to different classifiers, and is
mapped to regression and classification tasks that fit the model to the data, as
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the reward is represented by the output. In sequential decision tasks, credit
assignment is additionally handled by the reinforcement learning algorithm,
which will be discussed in detail in Chapter 9.

Lastly, the role of discovering new rules, that is, classifiers with a better lo-
calisation, is performed by the model structure search. How to use current
knowledge to introduce new classifiers depends strongly on the choice of rep-
resentation for the condition and action of a classifier. As the presented work
does not make any assumptions about the representation, it does not deal with
this issue in detail, but rather relies on the body of prior work (for example,
[41, 38, 165, 145, 148, 206]) that is available on this topic.

3.3 Summary and Outlook

We have identified that the task of LCS is to find a good model that forms a
hypothesis about the form of the data-generating process, based on a finite set
of observations. The process maps an input space into an output space, and
the model provides a possible hypothesis for this mapping. The task of finding
a good model is made more complex as only a finite set of observations of the
input/output mapping are available that are perturbed by measurement noise
and the possible stochasticity of the process, and this task is dealt with by the
field of model selection. We have differentiated between minimising the ex-
pected risk, which is the difference between the real data-generating process
and our model, and minimising the empirical risk, which is the difference be-

tween the observations available of that process and our model.

Regression, classification and sequential decision tasks differ in the form of
the input and output spaces and in the assumptions made about the data-
generating process. For both regression and classification tasks we have as-
sumed the process to be representable by a smooth function with an additive
zero-mean noise term, and have reduced the classification tasks in an XCS-like
manner to regression tasks. While sequential decision tasks as handled by RL
also have a regression task at their core, they have special requirements on the
stability of the learning method and therefore receive a separate treatment in
Chapter 9.
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We have characterised a model as being a collection of possible hypotheses
about the nature of the data-generating process, and training a model as find-
ing the hypothesis that is best supported by the available observations of that
process. We have introduced the class of parametric models that are charac-
terised by an unchanging number of model parameters while the model is
trained, in contrast to the model structure of a parametric model, which is the
part of the model that is adjusted before training it, and determines the num-

ber of adjustable parameters during model training.

We have described LCS as a model that combines a set of local models (that
is, the classifiers) to a global model. While LCS are not parametric models
per se, we have characterised them as such by defining the model structure
as the number of classifiers and their localisation, and the model parameters
as the parameters of the classifiers and the ones required for combining the
local models. As a result, the task of training LCS is conceptually split into
finding a good model structure, that is, a good set of classifiers, and training
these classifiers with the available training set.

Finding a good model structure requires us to deal with the topic of model
selection and the tradeoff between overfitting and underfitting. As we require
a good understanding of the LCS model itself before attacking this issue, we
postpone the problem of evaluating the quality of a model structure to Chap-
ter 7. Until then, we assume the model structure M as a constant.

In the next chapters we discuss how to train an LCS model given a certain
model structure, that is, how to adjust the model parameters in the light of
the available data. Our temporary aim at this stage is to minimise the em-
pirical risk. Even though this might lead to overfitting, it still gives us valu-
able insights into how to train the LCS model, and its underlying assumptions
about the data-generating process. We proceed by formulating a probabilistic
model of LCS in Chapter 4 based on a generalisation of the related Mixtures-
of-Experts model. Furthermore, we give more details on training the classi-
fiers in Chapter 5, and alternatives for combining the local classifier models
to a global model in Chapter 6, assuming that the model structure remains
unchanged. After that we come back to developing a principled approach to
finding a good set of classifiers, that is, a good model structure.
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Chapter 4

A Probabilistic Model for LCS

Having conceptually defined the LCS model, we continue by embedding this
model in a formal setting. The formal model will be initially designed for a
tixed model structure M; that is, the number of classifiers and where they are
localised in the input space is constant during training of the model. Even
though we could proceed by characterising the LCS model by its functional
form, as we have done in [77], we instead develop a probabilistic model. Its ad-
vantage is that rather than getting a point estimate for the output y given some
input x, the probabilistic model provides the probability distribution p(y|x, 8)
that for some input « and model parameters 6 describes the probability den-
sity of the output having value y. From this distribution we can recover the
point estimate from its mean or its mode, and additionally we get information

about the certainty of the prediction by the spread of the distribution.

In this chapter we concentrate on modelling the data by the principle of max-
imum likelihood: given a set of observations, we want to tune the model pa-
rameters such that the probability of the observations given the model pa-
rameters is maximised. As described in the previous chapter this might lead
to overfitting the data, but nonetheless it gives us a first idea about how the
model can be trained, and relates it closely to XCS, where overfitting is con-
trolled on the model structure level rather than the model parameter level.
In Chapter 7 we generalise this model and introduce a training method that
avoids overfitting.
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In developing the probabilistic model we were guided by the formulation
of a related machine learning model: the Mixtures-of-Expert (MOE) model
[121, 122] fits the data by a fixed number of localised experts. Even though not
identified by previous LCS research, there are strong similarities between LCS
and MOE when relating the classifiers of LCS to the experts of MOE. How-
ever, they differ in that the localisation of the experts in MOE is changed by
a gating network that assigns observations to experts, whereas in LCS the lo-
calisation of classifiers is defined by the matching functions and is fixed for a
constant model structure. To relate these two approaches we modify the MOE
model such that it acts as a generalisation to both the standard MOE model
and LCS. Furthermore, we solve difficulties in training the emerging model
by detaching expert training from training the gating network.

We first introduce the standard MOE model as described in [122], which we
will build on in later developments, and discuss its training and how it lo-
calises the experts, followed by a discussion of the properties of linear expert
models in Section 4.2. To relate MOE to LCS, we generalise the MOE model
in Section 4.3 and again describe how it can be trained. Identifying the dif-
ficulties in training of this model, we propose a modification to the model in
Section 4.4 that simplifies its training.

4.1 The Mixtures-of-Experts Model

The MOE model is probably best explained from the generative point-of-view:
given a set of K experts, each observation in the training set is assumed to be
generated by one and only one of these experts. Let z = (z1,...,2x)" be a
random binary vector, where each of its elements z;, is associated with an ex-
pert and indicates whether that expert generated the given observation (z, y).
Given that expert k generated the observation, then z; = 1 for j = k,and z; = 0
otherwise, resulting in a 1-of-K structure of z. The introduced random vector
is a latent variable, as its values cannot be directly observed. Each observation
(€n, yn) in the training set has such a random vector z,, associated with it, and
we denote Z = {z,} the set of latent variables corresponding to each of the

observations in the training set.
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Each expert provides a mapping X — ) that is given by the conditional prob-
ability density p(y|x, 6y), that is, the probability of the output taking value y
given the input vector & and the model parameters 8, of expert k. Depending
on whether we deal with regression or classification tasks, experts can repre-
sent different parametric models. Leaving the expert models unspecified for

now, we will introduce linear regression models in Section 4.2.

4.1.1 Likelihood for Known Gating

A common approach to training probabilistic models is to maximise the like-
lihood of the outputs given the inputs and the model parameters, a principle
known as maximum likelihood. As we will later show, maximum likelihood
training is equivalent to minimising the empirical risk, with a loss function

depending on the probabilistic formulation of the model.

Following the standard assumptions of independent observations, and addi-
tionally assuming knowledge of the values of the latent variables Z, the likeli-
hood of the training set is given by

N
p(Y|X,Z,60) = [[ p(vnlzn, 20, 6), 4.1)
n=1

where 0 stands for the model parameters. Due to the 1-of-K structure of each
z,, the likelihood for the nth observation is given by

K
D(Yal@n; 20, 0) = [ p(yal@n, 61)*, (42)
k=1

where 2, is the kth element of z,. As only one element of 2, can be 1, the
above expression is equivalent to the jth expert model such that z,; = 1.

As the logarithm function is monotonically increasing, maximising the loga-
rithm of the likelihood is equivalent to maximising the likelihood. Combining
Egs. (4.1) and (4.2), the log-likelihood Inp(Y' | X, Z, 0) results in

N
np(Y|X,Z,0) = ZZZM In p(y,|xn, Ok). (4.3)

1

K
n=1 k=
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Inspecting Eq. (4.3) we can see that each observation n is assigned to the single
expert for which z,; = 1. Hence, it is maximised by maximising the likelihood
of the expert models separately, for each expert based on its assigned set of

observations.

4.1.2 Parametric Gating Network

As the latent variables Z are not directly observable, we do not know the val-
ues that they take and therefore cannot maximise the likelihood introduced in
the previous section directly. Rather, we introduce a parametric model for Z,
known as the gating network, that is trained in combination with the experts.

The gating network used in the standard MOE model is based on the assump-
tion that the probability of an expert having generated the observation (x, y)
is log-linearly related to the input x. This is formulated by

ge(x) = p(zr = 1o, v8) exp(v,fa:), (4.4)

stating that the probability of expert k£ having generated observation (z, y) is
proportional to the exponential of the inner product of the input « and the
gating vector v;, of the same size as . Normalising p(z, = 1|z, vy), we get

exp(v]

gr(T) = plar = |z, o) = —%

x)
> exp(vf @)’

(4.5)

which is the well-known softmax function, and corresponds to the multinomial
logit model in Statistics that is often used to model consumer choice [167]. It is
parameterised by one gating vector v, per expert, in combination forming the
set V' = {v;}. Figure 4.1 shows the directed graphical model that illustrates
the structure and variable dependencies of the Mixtures-of-Experts model.

To get the log-likelihood [(0; D) = Inp(Y'| X, 0), we use the 1-of-K structure

of z to express the probability of having a latent random vector z for a given
input « and a set of gating parameters V' by

‘iB V Hp zk—l\:v Vg Zk_Hgk . (46)
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Figure 4.1: Directed graphical model of the Mixtures-of-Experts model. The
circular nodes are random variables (z,;), which are observed when shaded
(yn). Labels without nodes are either constants (x,,) or adjustable parameters
(6x, vi). The boxes are “plates”, comprising replicas of the entities inside them.
Note that z,; is shared by both boxes, indicating that there is one z for each

expert for each observation.

Thus, by combining Eq. (4.2) and (4.6), the joint density over y and z is given

by
p(y, 2|z, 0) Hgk p(ylz, Ox)*.

By marginalising over z, the output density results in

K
(Y|, 8) ZHgk (yle, ) = gu(x)p(y|e, Or),
z k=1 k=1
and subsequently, the log-likelihood /(8; D) is
N N K
16; D) = In [ [ plynlzal0) =Y 0> gi(@n)p(ynlzn, 64).
n=1 n=1 k=1

Example 4.1.1 (Gating Network for 2 Experts). Let us consider the input
space Dy = 3, where an input is given by = = (1,z1,72)7. Assume
two experts with gating parameters v; = (0,0,1)7 and v = (0,1,0)7.
Then, Figure 4.2 shows the gating values g (x) for Expert 1 over the range
—5 <z <5,—5 < zy < 5. As can be seen, we have g;(x) > 0.5 in the
input subspace x; — x2 < 0. Thus, with the given gating parameters,
Expert 1 mainly models observations in this subspace. Overall, the gating

network causes a soft linear partitioning of the input space along the line
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Figure 4.2: Plot of the softmax function ¢,(x) by Eq. (4.5) with inputs « =
(1,21, 79)", and gating parameters v; = (0,0,1), vo = (0, 1,0).

x1 — x2 = 0 that separates the two experts.

4.1.3 Training by Expectation-Maximisation

Rather than using gradient descent to find the experts and gating network
parameters 6 that maximise the log-likelihood Eq. (4.9), as done in [121],
we can make use of the latent variable structure and apply the expectation-
maximisation (EM) algorithm [70, 122]. It begins with the observation that
maximisation of the likelihood is simplified if the values of the latent vari-
ables were known, as in Eq. (4.3). Hence, assuming that Z is part of the
data, D = {X,Y} is referred to as the incomplete data, and D U {Z}
{X.,Y,Z} is known as the complete data. The EM-algorithm proceeds with
the expectation step, by finding the expectation of the complete data log-
likelihood E(1(8; DU{Z})) with the current model parameters 6 fixed, where
(0;DU{Z}) = Inp(Y, Z|X,0) is the logarithm of the joint density of the
outputs and the values of the latent variables. In the maximisation step the
above expectation is maximised with respect to the model parameters. When
iterating this procedure, the incomplete data log-likelihood [(8; D) increases
monotonically until a maximum is reached, as proved in [176]. More details
on the application of the EM-algorithm to train the MOE model are given in
[122]. Now we will consider each step in turn.
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The Expectation Step

Using Eq. (4.7), the complete-data log-likelihood is given by

(e;pu{zZ}) = Inp(Y,Z|X,0)

N
= W[ [»(yn, 20|20, 6)
n=1
N K
= ZZ’Z”’“ (In gx(x,) + Inp(y, |z, Ok)) (4.10)
n=1 k=1
where 0 is the set of expert parameters {6, ...,0x} and gating parameters

V. When fixing these parameters, the latent variables are the only random
variables in the likelihood, and hence its expectation is

N K
Ez ((6;:DU{Z})) = ernk In gr(x,) + Inp(yn|xn,, Or)), (4.11)

n=1 k=1

where r,; = E(z,;) is commonly referred to as the responsibility of expert k for
observation n [19] and by the use of Bayes’ rule and Eq. (4.8) evaluates to

ok = E(zk) = p(zok = 10, Yn, 0)
P2k = 1|2n, V)p(Yn| Tn, Or)
P(Ynl|Tn, 6)
9 (@ )P(Yn |0, Or)
Zf:l 95 (Xn)p(Yn|Tn, 0;)

(4.12)

Hence, the responsibilities are distributed according to the current gating and
goodness-of-fit of an expert in relation to the gating and goodness-of-fit of the
other experts.

The Maximisation Step

In the maximisation step we aim at adjusting the model parameters to max-
imise the expected complete data log-likelihood. gx(x,) and p(y,|x,, 6x) do

not share any parameters, and so maximising Eq. (4.11) results in the two in-
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dependent maximisation problems

N K

max S ruklngi(,), (4.13)
n=1 k=1
N K

max Z Z Tk I D(Yn | T, ). (4.14)
n=1 k=1

Note that the responsibilities are evaluated with the previous model parame-
ters and are not considered as being functions of these parameters. The func-
tion concerning the gating parameters V' can be maximised by the Iteratively
Re-weighted Least Squares (IRLS) algorithm as described in Chapter 6 (see
also [122, 19]). The expert parameters can be modified independently, and the
method depends on the expert model. We will describe the maximisation step
when introducing the linear expert model in Section 4.2.

To summarise, we can maximise [(6; D) by iterating over the expectation and
the maximisation steps. In the expectation step, the responsibilities are com-
puted for the current model parameters. In the maximisation step, the model
parameters are updated with the computed responsibilities. Convergence of
the algorithm can be determined by monitoring the result of Eq. (4.9).

4.1.4 Localisation by Interaction

The experts in the standard MOE model are localised in the input space
through the interaction of expert and gating network training: after the gating
is randomly initialised, the responsibilities are calculated by Eq. (4.12) accord-
ing to how well the experts fit the data in the areas of the input space that they
are assigned to. In the maximisation step, performing Eq. (4.13) tunes the gat-
ing parameters such that the gating network fits best the previously calculated
responsibilities. Equation (4.14) causes the experts to be only trained on the
areas that they are assigned to by the responsibilities. The next expectation
step re-evaluates the responsibilities according to the new fit of the experts,
and the maximisation step adapts the gating network and the experts again.
Hence, iterating the expectation and the maximisation step causes the experts
to be distributed according to their best fit to the data.
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The pattern of localisation is determined by the form of the gating model. As
previously demonstrated, the softmax function causes a soft linear partition
of the input space. Thus, the underlying assumption of the model is that the
data was generated by some processes that are linearly separated in the input
space. The model structure becomes richer by adding hierarchies to the gating
network, as done in [122]. However, adding hierarchies to MOE moves them
away from LCS, and thus we will not discuss this extension.

4.1.5 Training Issues

The likelihood function of MOE is neither convex nor unimodal [20]. Hence,
training it by using a hill-climbing procedure such as the EM-algorithm will
not guarantee that we find the global maximum. Several approaches have
been developed to deal with this problem (for example, [20, 5]), all of which
are either based on random restart or stochastic global optimisers. Hence, they
require several training epochs and/or a long training time. While this is not
an issue for MOE where the global optimum only needs to be found once,
it is not an option for LCS where the model needs to be (at least partially)
re-trained for each change in the model structure. A potential LCS-related
solution will be presented in Section 4.4.

4.2 Linear Expert Models

Even though experts can be used for both regression and classification, we are
only concerned with regression and therefore will only deal with the standard
expert regression model for MOE which is the linear model [122], and in our
LCS-related case the univariate linear model. For each expert £, it is charac-
terised by a linear relation of the input  and the adjustable parameter w;,
which is a vector of the same size as the input. Hence, the relation between
the input  and the output y is modelled by a hyper-plane. Additionally, the
stochasticity and measurement noise are modelled by a Gaussian. Overall, the
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probabilistic model for expert k is given by

_ T \ 1/2 y
plylzwnn) = Nolwlz. i) = (55) "ew (- S @iz -y)?). @15

where N stands for a Gaussian, and the model parameters 6, = {wy, 7} are
the D y-dimensional weight vector w;, and the noise precision (that is, inverse
variance) 7. The distribution is centred on the inner product w} z, and its

spread is inversely proportional to 7, and independent of the input.

As we give a detailed discussion about the implications of assuming this ex-
pert model and various forms of its incremental training in Chapter 5, let us
here only consider how it specifies the maximisation step of the EM-algorithm
for training the MOE model, in particular with respect to the weight vector wy;:
Combining Egs. (4.14) and (4.15), the term to maximise becomes

N K N K 1 - - . ,
ernklnp(yn‘mnawkaﬂc) = ernk éln%_g( kwn_yn)

n=1 k=1 n=1 k=1

K N
- Z % Z T”k(wgmn - yn)2 -+ const.,

where the constant terms absorbs all terms that are independent of the weight
vectors. Considering the experts separately, the aim for expert k is to find

N
: T 2

YglvlkH;T k(Wi T — Yn) (4.16)

which is a weighted linear least squares problem. This shows how the assump-

tion of a Gaussian noise locally leads to minimising the empirical risk with the

L, loss function.

While the concepts introduced in the following sections are valid for any form
of expert models, a detailed description of how to train linear expert models
to find both the weight vector and the model precision are postponed to Chap-
ter 5.
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4.3 Generalising the MoE Model

The standard MOE model assumes that each observation was generated by
one and only one expert. In this section we will make the model more LCS-
like by replacing the term “expert” with “classifier”, and by introducing the
additional assumption that a classifier can only have produced the observation
if it matches the corresponding input. The following sections implement this
assumption and discuss its implications.

4.3.1 An Additional Layer of Forced Localisation

Let us recall that for a certain observation (x,y), the latent variable z deter-
mines which classifier generated this observation. The generalisation that is
introduced assumes that a classifier k£ can have only generated this observa-
tion, that is, z;, = 1, if it matches the corresponding input.

Let us introduce an additional binary random vector m = (m, ..., m i), each
element being associated with one classifier !. The elements of m are 1 if and
only if the associated classifier matches the current input z, and 0 otherwise.
Unlike z, m does not comply to the 1-of-K structure, as more than one classi-
tier can match the same input. The elements of the random vector are linked
to the matching function by

p(my, = 1|z) = my,(x), (4.17)

that is, the value of a classifier’s matching function determines the probability
of that classifier matching a certain input.

To enforce matching, we re-define Eq. (4.4), that is, the probability for classifier
k having generated observation (x,y), to be

plzr = 1|z, vg, my) o (4.18)

exp(vid(x)) if my =1 forx,
otherwise,

1While the symbol m also refers to the matching function, its use as either the matching
function or the random variable that determines matching is apparent from its context.
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where ¢ is a transfer function, whose purpose we will explain later and which
we can for now assume to be the identity function. Thus, the differences from
the previous definition Eq. (4.4) are the additional transfer function and the
condition on my, that locks the generation probability to 0 if the classifier does
not match the input. We remove the condition on m;, by marginalising over it,
to get

gr(x) = plz = 1z, vr) Z p(zr = 1|z, v, my)p(my, = m|x)

me{0,1}
= 0+ p(zr = U, vg, mg)p(mi = 1|x)
= () exp(o] 9(x)). (419)

Adding the normalisation term, the gating network is now defined by

01(@) = plox = 1z, vy) = o @IEROOE) -y o

Zj:l m;(x) eXp('UJTQb(w))

As can be seen when comparing it to Eq. (4.5), the additional layer of lo-
calisation is specified by the matching function, which reduces the gating to
gr(x) = 0 if the classifier does not match , that is, if m(x) = 0.
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Figure 4.3: Directed graphical model of the generalised Mixtures-of-Experts
model. See the caption of Figure 4.1 for instructions on how to read this graph.
When compared to the Mixtures-of-Expert model in Figure 4.1, the latent vari-
ables z,; depends additionally on the matching random variables m,,;, whose
values are determined by the mixing functions m;, and the inputs x,,.

As classifiers can only generate observations if they match the corresponding
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input, the classifier model itself does not require any modification. Addition-
ally, Eq. (4.9) is still valid, as z; = 1 only if m; = 1 by Eq. (4.18). Figure 4.3
shows the graphical model that, when compared to Figure 4.1, illustrates the
changes that are introduces by generalising the MoE model.

4.3.2 Updated Expectation-Maximisation Training

The only modifications to the standard MOE are changes to the gating net-
work, expressed by gi. As Egs. (4.12), (4.13) and (4.14) are independent of the
functional form of g, they are still valid for the generalised MOE. Therefore,
the expectation step of the EM-algorithm is again performed by evaluating the
responsibilities by Eq. (4.12), and the gating and classifier models are updated
by Egs. (4.13) and Eqgs. (4.14). Convergence of the algorithm is again monitored
by Eq. (4.9).

4.3.3 Implications on Localisation

Localisation of the classifiers is achieved on one hand by the matching function
of the classifiers, and on the other hand by the combined training of gating
networks and classifiers.

Let us first consider the case when the nth observation (z,,, y,) is matched by
one and only one classifier k, that is m;(x,) = 1 only if j = k, and m;(x,) =0
otherwise. Hence, by Eq. (4.20), g;(x,) = 1 only if j = k, and g;(z,) = 0
otherwise, and consequently by Eq. (4.12), r,; = 1 only if j = k, and r,; = 0
otherwise. Therefore, full responsibility for the observation is given to the one
and only matching classifier, independent of its goodness-of-fit.

On the other hand, let us assume that the same observation (z,,, y,,) is matched
by all classifiers, that is m;(x,) = 1 forall j € {1,..., K}, and assume the iden-
tity transfer function ¢(x) = x. In that case, Eq. (4.20) reduces to the standard
MOE gating network Eq. (4.5) and we perform a soft linear partitioning as
described in Section 4.1.4.
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In summary, localisation by matching determines for which areas of the input
space the classifiers attempt to model the observations. In areas where they
match, they are distributed by soft linear partitions as in the standard MOE
model. Hence, we can acquire a two-layer intuition on how localisation is
performed: Matching determines the rough areas where classifiers are respon-
sible to model the observations, and the softmax function then performs the

fine-tuning in areas of overlap between classifiers.

4.3.4 Relation to Standard MoE Model

The only difference between the generalised MOE model and the standard
MOE model is the definition of the gating model g;. Comparing the standard
model Eq. (4.5) with its generalisation Eq. (4.20), we can see that the standard
model is recovered from the generalisation by having m;(x) = 1 for all £ and
x, and the identity transfer function ¢(x) = x for all . Defining the matching
functions in such a way is equivalent to having each classifier match all inputs.
Hence, we have a set of classifiers that all match the whole input space, and
localisation is performed by soft linear partitioning of the gating network.

4.3.5 Relation to LCS

This generalised MOE model satisfies all characteristics of LCS that we have
outlined in Section 3.2: Each classifier describes a localised model with its lo-
calisation determined by the model structure, and the local models are com-
bined to form a global model. So given that we can train the model efficiently,
and have a good mechanism for searching the space of model structures, do we
already have an LCS? While some LCS researchers might disagree — partially
because there is no universal definition of what an LCS is and LCS appear to
us to be mostly thought of in algorithmic terms rather than in terms of the
model that they describe — we believe that this is the case.

However, the generalised MOE model has a feature that no LCS has ever used:
beyond the localisation of classifiers by their matching function, the responsi-
bilities of classifiers that share matching inputs is further distributed by the
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softmax function. While this feature might lead to a better fit of the model to
the data, it blurs the observation/classifier association by extending it beyond
the matching function. Nonetheless, we can use the introduced transfer func-
tion ¢ to level this effect: when defined as the identity function ¢(x) = z, then
by Eq. (4.19) the probability of a certain classifier generating an observation
for a matching input is log-linearly related to the input «. However, by setting
¢(x) = 1 for all x, the relation is reduced to gi(x) o< my(x) exp(vy), where the
gating parameter v, reduces to the scalar v;. Hence, the gating weight becomes
independent of the input (besides the matching) and only relies on the constant
vy, through exp(vy,). In areas of the input space that several classifiers match,
classifiers with a larger v, have a stronger influence when forming a prediction
of the global model, as they have a higher gating weight. To summarise, set-
ting ¢(x) = 1, makes gating independent of the input (besides the matching)
and the gating weight for each classifier is determined by a single scalar that
is independent of the current input x that it matches. We will discuss further
details and alternative models for the gating network in Chapter 6.

Note that ¢(x) = 1 is not applicable in the standard MOE model, that is, when
all classifiers match the full input space. In this case, we have neither locali-
sation by matching nor by the softmax function. Hence, the global model is
not better at modelling the data than a single local model applied to the whole
data.
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Figure 4.4: Plots showing the generalised softmax function Eq. (4.20) for 2 clas-
sifiers with inputs = (1,21, z9)" and ¢(x) = @, where Classifier 1 in plot (a)
has gating parameters v; = (0,0, 1) and matches a circle of radius 3 around
the origin, and Classifier 2 in plot (b) has gating parameters v, = (0,1,0)" and
matches all inputs.
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Example 4.3.1 (Localisation by Matching and the Softmax Function). Con-
sider the same setting as in Example 4.1.1, and additionally ¢(xz) = x for
all z and the matching functions

{ 1 if /2% + 23 < 3, (421)

m(@) = 0 otherwise,
and ma(x) = 1 for all . Therefore, classifier 1 matches a circle of ra-
dius 3 around the origin, and classifier 2 matches the whole input space.
The values for gi(z) and g»(x) are shown in Figures 4.4(a) and 4.4(b), re-
spectively. As can be seen, the whole part of the input space that is not
matched by Classifier 1 is fully assigned to Classifier 2by g»(x) = 1. In the
circular area where both classifiers match, the softmax function performs

a soft linear partitioning of the input space, just as in Figure 4.2.

The effect of changing the transfer function to ¢(x) = 1 is visualised in
Figure 4.5, and shows that in such a case no linear partitioning takes place.
Rather, in areas of the input space that both classifiers match, Eq. (4.20) as-
signs the generation probabilities input-independently in proportion the

exponential of the gating parameters v; = 0.7 and v2 = 0.3.

(@) (b)

Figure 4.5: Plots showing the generalised softmax function Eq. (4.20) for 2 clas-
sifiers with inputs = (1,2, 22)" and ¢(x) = 1, where Classifier 1 in plot (a)
has gating parameters v; = 0.7 and matches a circle of radius 3 around the
origin, and Classifier 2 in plot (b) has gating parameters v, = 0.3 and matches

all inputs.

Besides localisation beyond matching, the generalised MOE model has an-
other feature that distinguishes it from any previous LCS ?: it allows for match-

“While Butz seems to have experimented with matching by a degree in [41], he does not

72



ing by a degree of the range [0, 1] rather than by just specifying where a clas-
sifier matches and where it does not (as, for example, specified by set X}, and
Eq. (3.8)). Additionally, by Eq. (4.17), this degree has the well-defined mean-
ing of the probability p(m; = 1|x) of classifier £ matching input x. Alter-
natively, by observing that E(m|x) = p(m; = 1|x), this degree can also be
interpreted as the expectation of the classifier matching the corresponding in-
put. Overall, matching by a degree allows the specification of soft boundaries
of the matched areas which can be interpreted as the uncertainty about the
exact area to match?, justified by the limited number of data available. This
might solve issues with hard classifier matching boundaries when searching
for good model structures, which can occur when the input space X" is very
large or even infinite, leading to a possibly infinite number of possible model
structures. In that case, smoothing the classifier matching boundaries makes
fully covering the input space with classifiers easier. A more detailed investi-
gations of the advantages of matching by degree is left as future research.

4.3.6 Training Issues

If each input is only matched by a single classifier, each classifier model is
trained separately, and the problem of getting stuck in local maxima does not
occur, analogous to the discussion that we will present in Section 4.4.3. Classi-
fiers with overlapping matching areas, on the other hand, cause the same train-
ing issues as already discussed for the standard MOE model in Section 4.1.5,
which causes the model training to be time-consuming.

LCS training is, in our approach, conceptually split into two parts: training the
model for a fixed model structure, and searching the space of possible model
structures. To do the latter, evaluation of a single model structure by training
the model needs to be efficient. Hence, the current training strategy is hardly

a viable option. However, identifying the cause for local maxima allows us

describe how it is implemented and only states that “Preliminary experiments in that re-
spect [...] did not yield any further improvement in performance”. Furthermore, his hyper-
ellipsoidal conditions [41, 52] might look like matching by degree on initial inspection, but as
he determines matching by a threshold on the basis function, matching is still binary. Fuzzy
LCS (for example, [60]), on the other hand, provide matching by degree but are usually not
developed from the bottom up which makes modifying the parameter update equations diffi-
cult.
3Thanks to Dr. Dan Richardson, University of Bath, for this interpretation.
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to modify the model to avoid those and therefore make model training more
efficient, as we will show in the next section.

4.4 Independent Classifier Training

The assumption of the standard MOE model is that any observation is gener-
ated by one and only one classifier. We have generalised this model by adding
the restriction that any classifier can only have generated an observation if it
matches the input associated with this observation, thereby adding an addi-
tional layer of forced localisation of the classifiers in the input space.

Here we introduce a change rather than a generalisation to the model assump-
tions: as before we assume that the data is generated by a combination of
localised processes, but the role of the classifiers is changed from cooperating
with other classifiers in order to locally model the observations that it matches
to modelling all observations that it matches, independent of the other clas-
sifiers that match the same inputs. This distinction becomes clearer once we
have discussed the formal differences in Sections 4.4.2 and 4.4.3.

The motivation behind this change is twofold: firstly, it removes local maxima
and thus simplifies classifier training, and secondly, it simplifies the intuition
behind what a classifier models. We start by discussing these motivations in
more detail in the following section, followed by their implication on training
the model and the assumptions about the data-generating process.

4.41 The Origin of Local Maxima

Following the discussion in Section 4.1.5, local maxima of the likelihood func-
tion are the result of the simultaneous training of the classifiers and the gating
network. In the standard MOE model, this simultaneous training is necessary
to provide the localisation of the classifiers in the input space. In our generali-
sation, on the other hand, a preliminary layer of localisation is provided by the

matching function, and the interaction between classifiers and the gating net-
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work is only required for inputs that are matched by more than one classifier.
This was already demonstrated in Section 4.3.3, where we have shown that
classifiers acquire full responsibility for inputs that they match alone. Hence,
in the generalised MOE, local maxima only arise when classifiers overlap in

the input space.

4.4.2 What does a Classifier Model?

By Eq. (4.14), a classifier aims at maximising the sum of log-likelihoods of all
observations, weighted by the responsibilities. By Eqgs. (4.12) and (4.20), these
responsibilities can only be non-zero if the classifier matches the correspond-
ing inputs, thatis, 7, > 0 only if m(x,,) > 0. Hence, by maximising Eq. (4.14),
a classifier only considers observations that it matches.

Given that an observation (x,,, y,,) is matched by a single classifier k£, we have
established in Section 4.3.3 that 7,, = 1 and r,; = 0 for all j # k. Hence,
Eq. (4.14) assigns full weight to classifier k£ when maximising the likelihood
of this observation. Consequently, given that all observations that a classifier
matches are matched by only this classifier, the classifier models these obser-
vations in full, independent of the other classifiers*.

Let us consider how observations are modelled that are matched by more than
one classifier: as a consequence of Eq. (4.12), the non-negative responsibilities
of all matching classifiers sum up to 1, and are therefore between 0 and 1.
Hence, by Eq. (4.14), each matching classifier assigns less weight to modelling
the observation than if it would be the only classifier matching it. Intuitively,
overlapping classifiers “share” the observation when modelling it.

We have now established that i) a classifier only models observations that
it matches, ii) it assigns full weight to observations that no other classifier
matches, and iii) it assigns partial weight to observations that other classifiers
match. Expressed differently, a classifier fully models all observations that it
matches alone, and partially models observations that itself and other clas-

4XCS has the tendency to evolve sets of classifiers with little overlap in the areas that they
match. In such cases, all classifiers model their assigned observations in full, independent of
if they are trained independently or in combination.
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sifiers match. Consequently, the local model provided by a classifier cannot
be interpreted by their matching function alone, but also requires knowledge
of the gating network parameters. Additionally, when changing the model
structure as discussed in Section 3.2.6 by adding, removing, or changing the
localisation of classifiers, all other overlapping classifiers need to be re-trained
as their model is now incorrect due to changing responsibilities. We can avoid
these problems and make the classifier model more transparent if we train
them independently of each other.

4.4.3 Introducing Independent Classifier Training

Classifiers are trained independently if we replace the responsibilities 7, in

Eq. (4.14) by the matching functions my(x,) to get

K K
max Z Z My () I p(Yn| 2, Or). (4.22)

n=1 k=1

Hence, a classifier models all observations that it matches, independent of the
other classifiers. We have reached our first goal, which was to simplify the
intuition about what a single classifier models. While this does not cause any
change for observations that are matched by a single classifier, observations
that are matched by several classifiers are modelled by each of these classifiers
independently rather than shared between them. This independence is shown
by the graphical model in Figure 4.6, which illustrates the model of a single
classifier k.

With this change, the classifiers are independent of the responsibilities and
subsequently also of the gating network. Thus, they can be trained completely
independently, and we can modify the model structure by adding, removing,
or changing classifier locations without re-training the other classifiers that
are currently in the model, and thereby make searching the space of possible

model structures more efficient.

An additional consequence of classifiers being trained independently of the re-
sponsibilities is that for standard choices of the local models (see, for example
[122]), the log-likelihood Eq. (4.22) is concave for each classifier. Therefore, it
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Figure 4.6: Directed graphical model for training classifier £ independently.
See the caption of Figure 4.1 for instructions on how to read this graph. Note
that the values of the matching random variables m,,; are determined by the
matching function my, and the inputs x,,.

has a unique maximum and consequently we cannot get stuck in local maxima

when training individual classifiers.

4.4.4 Training the Gating Network

Training the gating network remains unchanged, and therefore is described by
Egs. (4.12) and (4.13). Given a set of trained classifiers, the responsibilities are
tully specified by evaluating Eq. (4.12). Hence, the log-likelihood of the gating
network Eq. (4.13) is a concave function (for example, [20]), and therefore has

a unique maximum.

Thus, the classifier models have unique optima and can be trained indepen-
dently of the gating network by maximising a concave log-likelihood function.
Furthermore, the gating network depends on the goodness-of-fit of the classi-
tiers, but as they are trained independently, the log-likelihood function of the
gating network is also concave. Therefore, the complete model has a unique
maximum likelihood, and as a consequence we have reached our second goal,

which was to remove local maxima to ease training of the model.

77



4.4.5 Implications on Likelihood and

Assumptions about the Data

By letting a classifier model match each observation with equal weight, we are
violating the assumption that each observation was generated by one and only
one classifier for observations that are matched by more than one classifier.
Rather we can interpret each classifier as a hypothesis for a data-generating
process that generated all observations of the matched area of the input space.

The gating network, on the other hand, was previously responsible for mod-
elling the probabilities of some classifier having produced some observation,
and the classifiers were trained according to this probability. While the gating
network still has the same purpose when the classifiers are trained indepen-
dently, the estimated probability is not fed back to the classifiers anymore. The
cost of this lack of feedback is a worse fit of the model to the data, which results
in a lower likelihood of the data given the model structure.

Note, however, that independent classifier training only causes a change in
the likelihood in areas where more than one classifier matches the same input.
Hence, we only get a lower likelihood if classifiers have large areas of over-
lap, and it is doubtful that such a solution is ever desired. Nonetheless, the
potentially worse fit needs to be offset by the model structure search to find
solutions with sufficiently minimal overlap between different classifiers.

As the gating network is not gating the observations to the different classifiers
anymore, but rather mixes the independently trained classifier models to best
explain the available observations we will, in the remaining chapters, refer to
it as the mixing model rather than the gating network.

4.5 Discussion and Summary

Starting with the probabilistic MOE model as given in [122], we have gener-
alised it by adding matching as a form of forced localisation of the experts,
which makes the model similar to LCS. Additionally, we have simplified its
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training by handling the classifiers independently of the gating network. As a
result, we have a probabilistic model for LCS that can act as the basis of further
development. In fact, solving Eq. (4.22) to train the classifiers forms the basis
of the next chapter. The chapter thereafter deals with the mixing model by
describing how the solution to Eq. (4.13) can be found exactly, and by approx-
imation. Thus, in combination, the following two chapters describe in detail
how the model can be trained by maximum likelihood.

Even though we have approached the LCS model from a different perspective,
the resulting structure is very similar to a currently existing LCS: XCS and its
derivates follow the same path of independently training the classifier models
and combining them by a mixing model. While in XCS it is not explicitly iden-
tified that the classifiers are indeed trained independently, this fact becomes
apparent in the next chapter, where we show that the classifier parameter up-
date equations that result from independent classifier training resemble those
of XCS. The mixing model used by XCS does not conform to the generalised
softmax function but rather relies on heuristics, as we will show in Chapter 6.

ZCS [239], on the other hand, differs from the presented model as its classifier
training is not independent. If we consider single-step tasks where the reward
r is immediately presented after each action is performed, then the classifier

strength wy, of each classifier is updated at time ¢ + 1 after receiving reward r;
by

,
W41 = Wkt + Mp(Te11)Y (th—?;fm - wk,t) : (4.23)
TR

where wy, is the strength estimate of classifier k at time ¢, x,;; is the input at
time ¢ + 1 that is associated with the reward r,., and + is a scalar step size®.
The my(x,11) causes the algorithm to only perform updates when the classifier
matches the input x4, as otherwise my(x:+1) = 0. As we will discuss in the
next chapter, the above is the Least Mean Squared (LMS) algorithm that aims

at minimising
2
Tt

Thus, the strength w;, of each classifier represents the average shared reward

over all states that it matches, where the reward r; is shared by all classifiers

5In [239], 4 is denoted 7mm, v is given by 3, > 5 my (z¢41) is the size of the current action
set | A|, and wj, has no explicit symbol.

79



that match x,. This sharing, known as fitness sharing due to the strength of a
classifier also being its fitness, causes the strength of a classifier to depend on
how many classifiers match the same inputs. Thus, the classifiers are trained
in combination rather than independently. Due to its strong relation to ZCS,
the above discussion also applies to the LCS developed by Wada et al. in [227].

In [23], Booker develops a different LCS model based on a tile-coding repre-
sentation whose functional form can be collapsed to a linear model. In that
sense it is similar to ZCS, as for a constant model structure ZCS can also be
described by a linear model [227]. LCS that are for all model structures de-
scribable by linear models are very likely not to train their classifiers indepen-
dently®. For example, consider the linear model f(x;0) = >k 9k(x)bk, and
an input « that is matched by two classifiers. Note, that matching is induced
by gx(x) which is input-dependent and therefore — to keep the model linear
— cannot be a function of the model parameters 6. Given that the state x is
matched by more than one classifier, we have g;(x) > 0 for at least two differ-
ent k. The prediction f(x; @) is then formed by the linear weighted combina-
tion of ¢, for these k’s. Therefore, the parameters of several classifiers depend
on each other in providing f(«; @), and given that the g,(x)’s do not always
sum up to 1, they cannot be trained independently. Even though using linear
models avoids local optima in the training process, another problem emerges:
due to the interdependence of the classifiers, changing the matching function
of one of them requires all other classifiers to be re-trained, which makes model
structure search less efficient. Also, it becomes harder to determine the quality
of a single classifier to guide the model structure search’. Furthermore, there
is no clear interpretation for the model provided by a single classifier. Despite
linear models being easier to analyse, all these reasons support using indepen-
dent classifier training in LCS.

Independent classifier training moves LCS closer to ensemble learning. This
similarity has been exploited recently in [29, 164] where knowledge from en-

®Possibly the only way to use a linear model and still train the classifiers independently is to
for each input to average over all matching classifier models, as introduced as a modification to
XCS by Wada et al. [226]. In such a case, the mixing model is g () = my(x)/(>_f mz(x)) and
is therefore only dependent on the model structure and independent of the model parameters.

"Booker proposed to consider classifiers with low parameter values as bad classifiers, as
“The ones with large weights are the most important terms in the approximation” [24], but
would that also work in cases where low parameter values are actually good parameter val-
ues? One can easily imaging a part of a function that is constantly 0 and thus requires 0
parameter values to model it.
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semble learning and other machine learning methods has been used to im-
prove the performance of UCS [162]. Even though this direction is very
promising, we will not consider the link between LCS and ensemble learning

in this work.

In summary, amongst currently popular LCS, the presented model is most
similar to XCS(F). It combines independently trained classifiers by a mixing
model to provide a global model that aims at explaining the given observa-
tions. While LCS with independently trained classifiers are only one particu-
lar type of LCS, we have chosen to concentrate on this particular type due to
the obvious advantages discussed above. As classifiers are trained indepen-
dently of each other, we can concentrate on the training of a single classifier, as

we will do in the following chapter.
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Chapter 5

Training the Classifiers

The model of a set of classifiers consists of the classifiers themselves and the
mixing model. The classifiers are localised linear models that are trained inde-
pendently of each other, and their localisation is determined by the matching
function my,. This chapter is entirely devoted to the training of a single classi-
fier.

We have already introduced the linear model that a classifier assumes in Sec-
tion 4.2, but here we provide more details about its underlying assumptions,
and how it can be trained in both a batch learning and an incremental learn-
ing way. Most of the concepts and methods in this chapter are well known in
statistics (for example, [96]) and adaptive filter theory (for example, [106]), but
have not been put into the context of LCS before.

In training a classifier we focus on solving Eq. (4.22), which emerges from ap-
plying the principle of maximum likelihood to the LCS model. By maximis-
ing the likelihood we minimise the empirical risk rather than the expected risk
which might lead to overfitting. Nonetheless, it provides us with a first ap-
proach to training the classifiers, and results in parameter update equations
that are mostly equivalent to the ones used in XCS(F), which confirms that the
LCS model is in its structure similar to XCS(F). In Chapter 7 we return to deal-
ing with over- and underfitting, and will derive methods that are subsequently
related to the methods derived in this chapter.
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The classifier model parameters we estimate are its weight vector and its noise
variance. The latter is a good indicator of the goodness-of-fit of the model and
is also used in a modified form to estimate the accuracy of a classifier in XCS
and its variants. In general, it is useful to guide the model structure search as
we have already discussed in Section 3.2.6, and thus having a good estimate
of the noise variance is advantageous. Thus, we put special emphasis on how
to estimate it efficiently and accurately.

Since each classifier is trained independently (see Section 4.4), we will in this
chapter only consider training of a single classifier k. To keep the notation un-
cluttered, we will drop the subscript k; that is, the classifier’s matching func-
tion my, is denoted m, the model parameters 6, = {wy, 7} become w and 7,
and the estimate f;, provided by classifier k is denoted f. For any further vari-
ables introduced throughout this chapter it will be explicitly stated whether
they are local to a classifier.

We start by introducing the linear classifier model and its underlying assump-
tions in the next section, followed in Section 5.2 by how to estimate its param-
eters if all training data is available at once. Incremental learning approaches
are discussed in Section 5.3, where we firstly describe gradient-based methods
to estimate the weight vector and then methods that track the optimal esti-
mate exactly. Estimating the noise variance simultaneously is discussed for
both methods in Section 5.3.7. In Section 5.4, we demonstrate the slow con-
vergence of gradient-based methods empirically, and summarise the chapter
in Section 5.5 by putting what we have introduced in this chapter into the per-
spective of current LCS.

5.1 Linear Classifier Models and
Their Underlying Assumptions

By reducing classification tasks to regression tasks in Section 3.1.3, we can limit
ourselves to using local regression models and, in particular, linear models
as a good balance between the expressiveness of the model and the ease of
training the model (see Section 3.2.3). We have already previously introduced
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the univariate linear model in Section 4.2, but will here discuss its underlying

assumptions and implications in more detail.

5.1.1 Linear Models

A linear model assumes a linear relation between the inputs and the output,
parameterised by a set of model parameters. Given an input vector  with Dy
elements, the model is parameterised by the equally-sized random vector w
with realisation w, and assumes that the scalar output random variable v with
realisation y follows the relation

v=wlx +e, (5.1)

where € is a zero-mean Gaussian random variable that models the stochasticity
of the process and the measurement noise. Hence, ignoring for now the noise
term ¢, we assume that the process generates the output by a weighted sum
of the components of the input, as becomes very clear when considering a
realisation w of w, and rewriting the inner product

wie = Z WLy, (5.2)
where w; and z; are the ith element of w and x respectively.

While linear models are usually augmented by a bias term to offset them from
the origin, we assume that the input vector always contains a single constant
element (which is usually fixed to 1), which has the equal effect. For example,
consider the input space to be the set of reals; thatis X = R, Dy = 1 and both
and w are scalars. In such a case, the assumption of a linear model implies that
the observed output follows zw, which is a straight line through the origin
with slope w. To add the bias term, we can instead assume an augmented
input space X’ = {1} x R, with input vectors ' = (1,z)7, resulting in the
linear model w”a’ = w; + wyr — a straight line with slope w, and bias w;.
Equally, the input vector can be augmented by other elements to extend the

expressiveness of the linear model, as shown in the following example:
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Example 5.1.1 (Common Classifier Models used in XCS(F)). Initially, clas-
sifiers in XCS [240, 241] only provided a single prediction, independent of
the input. Such behaviour is equivalent to having the scalar input z,, = 1
for all n, as the weight w then models the output as an average over all
matched outputs. Hence, we call such classifiers averaging classifiers. That
they are really averaging over the matched outputs will be demonstrated

in Example 5.2.1.

Later, Wilson introduced XCSF (the F standing for “function”), that ini-
tially used straight lines as the local models [244]. Hence, in the one-
dimensional case, the inputs are given by «,, = (1,4,) to model the output
by w1 + waiy, where i, is the variable part of the input. This concept was
taken further by Lanzi et al. [142] by applying 2-nd and 3-rd order poly-

2 -3)T

O and , = (1,ip,i2,i3

nomials, using the input vectors x,, = (1,14, o)

respectively. Naturally, the input vector does not need to be restricted
to taking i, to some power, but allows for the use of arbitrary functions.
These functions are known as basis functions, as they construct the base
of the input space. Nonetheless, increasing the complexity of the input
space makes it harder to interpret the local models. Hence, if we aim at
understanding the localised model, we should keep these models simple

— such as straight lines.

5.1.2 Gaussian Noise

The noise term e captures the stochasticity of the data-generating process and
the measurement noise. In the case of linear models we assume that inputs
and outputs stand in a linear relation. Every deviation from this relation is
captured by € and is interpreted as noise. Hence, assuming the absence of
measurement noise, the fluctuation of e gives us information about the ade-
quacy of assuming a linear model. In other words, if the variance of ¢ is small,
then inputs and outputs do indeed follow a linear relation. Hence, monitoring
the variance of € gives us a measure of how well the local model fits the data.
For that reason, we aim not only at finding a weight vector that maximises the

likelihood, but also want to estimate the variance of ¢ at the same time.

For linear models it is common to assume that the random variable € repre-

senting the noise has zero mean, constant variance, and follows a normal dis-
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tribution [96], that is € ~ A(0,77'), where 7 is the noise precision (inverse
noise variance). Hence, in combination with Eq. (5.1), and for some realisation

w of w and input z, the output is modelled by

T T

v plyle,w, ) = Nylw'z, 77" = (%)m exp (—5(10% - y)2> , (5.3)

which defines the probabilistic model of a classifier and forms the core of our
investigations of this chapter.

That the assumption of Gaussian noise is sensible is discussed at length in [166,
Ch. 1].

5.1.3 Maximum Likelihood and Least Squares

To model the matched observations, a classifier aims at maximising the proba-
bility of these observations given its model, as formally described by Eq. (4.22).
Combined with the linear model Eq. (5.3), the term to maximise by a single
classifier k is given by

> ml@n) np(yalan, w,m7") =

n=1

As already shown in Section 4.2, maximising Eq. (5.4) with respect to the
weight vector w results in the weighted least squares problem,
N
min Z m(x,) (wT:cn — yn)2 , (5.5)

n=1

where the weights are given by the classifier’s matching function. Thus, to de-
termine w by maximum likelihood, we only consider observations for which

m(x,) > 0, that is, which are matched.

To determine the noise precision of the fitted model, we maximise Eq. (5.4)
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with respect to 7, resulting in the problem

max (ln(T) Z m(x,) + 7 Z m(z,) (w'z, — yn)2> , (5.6)

where w is the weight vector determined by Eq. (5.5).

The rest of this chapter is devoted to discussing batch and incremental learning
solutions to Egs. (5.5) and (5.6). Let us start with the batch learning approach.

5.2 Batch Learning Approaches

When performing batch learning, we assume as described in Section 3.1.5 that
all the data D is available at once. Hence, we have full knowledge of {z.,, .},
N and, knowing the current model structure M, also of the classifier’s match-

ing function m.

Let us now apply this approach to find the classifier’s model parameters by
solving Egs. (5.5) and (5.6).

Notation We will use the following notation in this and the remaining sec-
tions and chapters. Let z,y € RY be vectors, and A € RY x R a diagonal
matrix. Let (x,y) = @’y be the inner product of  and y, atlet (x,y) 4 = =7 Ay
be the inner product weighted by A, forming the inner product space (-, ) 4.
Then, ||z||4 = \/(, ) 4 is the norm associated with the inner produce space
(-,-)a. Any two vectors x, Z are said to be A-orthogonal, if (x,x)4 = 0. Note
that ||z| = ||| is the Euclidean norm, where I is the identity matrix.

5.2.1 The Weight Vector

Using the matrix notation introduced in Eq. (3.3), and defining the diagonal
N x N matching matrix M), of classifier £ by M), = diag(m(x,),...,m(xn)),
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in this chapter simply denoted M, we can rewrite Eq. (5.5) to
min (Xw — y)" M(Xw — y)) = min || Xw — y|f3,. (5.7)

Thus, we want to find the w that minimises the weighted distance between
the estimated outputs Xw and the observed outputs y in the inner product
space (-,-)y. This distance is convex with respect to w and therefore has a
unique minimum [26]. Note that as we assume the output space to be single-
dimensional, the set of observed outputs is given by the vector y rather than
the matrix Y.

The solution to Eq. (5.7) is found by setting its first derivative to zero, resulting
in

W= (X"TMX)" X"My. (5.8)
Alternatively, a numerically more stable solution that can also be computed if
XTM X is singular and therefore cannot be inverted, is

W = (x/MX)+ VMy, (5.9)

where X+ = (X7 X )~ X7 denotes the pseudo-inverse of matrix X [19].

Using the weight vector according to Eq. (5.8), the matching-weighted vector
of estimated outputs X w evaluates to

X=X (X"TMX) " X"My. (5.10)

Note that X (X*M X ) ' XM is a projection matrix that projects the vector
of observed outputs y onto the hyperplane {Xw|w € RP*} with respect to
(-, -)m- This result is intuitively plausible, as the w that minimises the weighted
distance || Xw — y||»s between the observed and the estimated outputs is the
closest point on this hyperplane to y with respect to (-, ), which is the or-
thogonal projection of y in (-, -)» onto this plane. We will use this concept of
projection extensively in Chapter 9.
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5.2.2 The Noise Precision

To get the maximum likelihood noise precision we need to solve Eq. (5.6). As
before, we evaluate the maximum of Eq. (5.6) by setting its first derivative with
respect to 7 to zero, to get

A—

7= X — gl (5.11)

where

=Y my(aw,) = Tr(Mj), (5.12)

is the match count of classifier k, and is in this chapter simply denoted c. Tr(M)
denotes the trace of the matrix M, which is the sum of its diagonal elements.
Hence, the inverse noise precision, that is, the noise variance, is given by the
average squared error of the model output estimates over all matched obser-

vations.

Note, however, that the precision estimate is biased, as it is based on another
estimate w [96, Ch. 5]. This can be accounted for by using

7= (c— Dx) | X — gyl (5.13)
which is the unbiased estimate of the noise precision.

To summarise, the maximum likelihood model parameters of a classifier us-
ing batch learning are found by first evaluating Eq. (5.8) to get w and then
Eq. (5.13) to get 7.

Example 5.2.1 (Batch Learning with Averaging Classifiers). Averaging
classifiers are characterised by using z,, = 1 for all n for their linear model.
Hence, we have X = (1,...,1)7, and evaluating Eq. (5.8) results in the

scalar weight estimate

N
W=c"t Z m(xn)Yn, (5.14)
n=1

which is the outputs y,, averaged over all matched inputs. Note that, as
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discussed in Section 3.2.3, the inputs to the matching function as appear-
ing in m(x,) are not necessarily the same as the ones used to build the
local model. In the case of averaging classifiers this differentiation is es-
sential, as the inputs z,, = 1 used for building the local models do not

carry any information that can be used for localisation of the classifiers.
The noise precision is determined by evaluating Eq. (5.13) and results in

N
P =(c= 1)) m@n) (1 — ya)?, (5.15)
n=1
which is the unbiased average over the squared deviation of the outputs
from their average, and hence gives us an indication of which prediction

error we can expect from the linear model.

5.3 Incremental Learning Approaches

Having derived the batch learning solution, let us now consider the case where
we want to update our model with each additional observation. In partic-
ular, let us assume that the model parameters wy and 7y are based on N
observations, and we want to incorporate the knowledge of the new obser-
vation (xn41,Yn+1) to get the updated parameters wy; and 7y4;. The fol-
lowing notation will be used: Xy, yy, My, and cy denote the input, output,
matching matrix, and match count respectively, after /N observations. Sim-
ilarly, Xny1,Yn+1, My, cn41 stand for the same objects after knowing the

additional observation (.1, yn+1)-

In this section we describe several methods that can be used to perform
the model parameter update, starting with computationally simple gradient-
based approaches, to more complex, but also more stable methods. Since
quickly obtaining a good idea of the quality of the model of a classifier is im-
portant, and as the noise precision quality measure after Eq. (5.6) relies on
the weight estimate, we will not only consider the computational costs of the
methods, but also emphasise their speed of convergence with respect to esti-
mating both w and 7.

We start by describing a principle from adaptive filter theory that tells us
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when an incremental linear model performs optimally. Then we consider some
gradient-based approaches, followed by approaches that recursively track the
least-squares solution. Additionally, we will currently only consider updating
the weight vector parameter w, and will return to estimating the noise preci-

sion 7 with similar means in Section 5.3.7.

5.3.1 The Principle of Orthogonality

The Principle of Orthogonality tells us when the weight vector estimate wy is
optimal in the weighted least squares sense of Eq. (5.5):

Theorem 5.3.1 (Principle of Orthogonality (for example, [106])). The weight vec-
tor estimate wy after N observations is optimal in the sense of Eq. (5.5) if the se-

quence of inputs {x1, ...,z N} is My-orthogonal to the sequence of estimation errors
{(wizy — 1), (WyTN —yn)}, that is
N
<XN7 Xywy — yN)MN = Zm(wn)mn (w%xn - yn) = 0. (516)
n=1

Proof. The solution of Eq. (5.5) is found by setting the first derivative of
Eq. (5.7) to zero to get

2X]7\;MNXN12)N - 2X]7\;MNyN =0.

The result follows by dividing the above by 2 and rearranging the expression.
O

By multiplying Eq. (5.16) by wy, we can make a similar statement about the
output estimates:

Corollary 5.3.2 (Corollary to the Principle of Orthogonality (for example,
[106])). The weight vector estimate wy after N observations is optimal in the sense of

Eq. (5.5) if the sequence of output estimates {wkxy, ..., whxy} is My-orthogonal
to the sequence of estimation errors {(Wkx1 — v1), ..., (Whkaxy — yn)}, that is
N
<XN11]N7 XN'li)N - yN>MN = Zm(mn)wjj\}m7L (’lf)%il?n - yn) = 0. (517)
n=1
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Hence, when having a wy that minimises || X ywy —yn || a1, , both the sequence
of inputs and output estimates are M y-orthogonal to the estimation errors.
In other words, the hyperplane spun by the vectors Xy and Xywy is My-
orthogonal to the vector of estimation errors (Xywy — yy), and therefore,
the output estimate is an orthogonal projection onto this hyperplane with re-
spect to (-, ). This conforms to the batch learning solution introduced in
Section 5.2.1.

5.3.2 Steepest Gradient Descent

Steepest gradient descent is a well-known method for function minimisation,
based on following the gradient of that function. Applied to Eq. (5.5), we can
use it to find the weight vector that minimises the squared error. However, it
is only applicable if we know all observations at once, which is not the case
when performing incremental learning. Nonetheless, we discuss it here as it
gives valuable insights into the stability and speed of convergence of other
gradient-based incremental learning methods that we will describe in a later

section.

As for batch learning, let X, y, M and c be the output matrix, the input vector,
the matching vector, and the match count respectively, given all N observa-
tions. Then, steepest gradient descent is defined by

1
Wp+1 = Wy — 7n+1§vwn (HXwn - y”?u) ) (5.18)

starting at some arbitrary w,, and hence generating a sequence of weight vec-
tors {wy, wy, ... } by performing small steps along the gradient of the squared
error. Note that n does in this case refer to the iteration number of the method
rather than to the index of the observation, and 7,, > 0 is the step size in the
nth iteration. Evaluating the gradient V,, with respect to w,, results in the
algorithm

Wpy1 = Wy — Y1 X M (Xw, —y). (5.19)

With each step along the gradient, steepest gradient descent reduces the
squared error. As the error function is convex and hence has a unique min-

imum, following its gradient will lead us to this minimum and hence, solves
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Eq. (5.5).

Stability Criteria

By definition, the step size 7, can change at each iteration. When kept constant,
that is 7, = 7 for all n > 0, and the gradient is Lipschitz continuous', then the
steepest gradient descent method is guaranteed to converge to the minimum
Eq. (5.5), if that minimum exists [17, Prop. 3.4]. In our case, the gradient as a
function of w is Lipschitz continuous, and hence, convergence for a constant

step size is guaranteed.

Another condition for the stability of steepest gradient descent, which is easier
to evaluate, is for the step size vy to hold

0<y< , (5.20)

)\mcm

where )., is the largest eigenvalue of the input correlation matrix ¢! X7 M X
[106, Ch. 4]. Hence, the step size that keeps the algorithm stable depends
highly on the values of the input vectors.

Time Constant Bounds

Similar to the stability of the method, its rate of convergence is also dependent
on the eigenvalues of the input correlation matrix. Let T be the time constant?
of the weight vector update. This time constant is bounded by

1 1
<T
—In(1 — Y A\paz) — —In(1 — yAin)’

IN

(5.21)

where \,,,; and A, are the largest and the smallest eigenvalue of I XTMX
respectively [106, Ch. 4]. As a low T implies a higher rate of convergence,

A function f : A — Ais Lipschitz continuous if there exists a finite constant scalar K such
that || f(a) — f(b)|| < K||a—b|| for any a,b € A. The magnitude K is a measure of the continuity
of the function f.

2The time constant is a measure of the responsitivity of a dynamic system. A low time
constant means that the systems response quickly to a changing input. Hence, it is inversely
proportional to the rate of convergence
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we would prefer A\, and A, to be close together for a tight bound, and
large such that 7" is kept small. However, if the eigenvalues are widely spread,
which is an indication of ill-conditioned inputs, then the settling time of the
gradient descent algorithm is limited by A, [17, Ch. 3]. Therefore, the con-
vergence rate is — as the stability criterion — dependent on the values of the

input vectors.

Example 5.3.1 (Stability Criteria and Time Constant for Steepest Gradient
Descent). Let us start with investigating averaging classifiers, thatis X =
(1,...,1)T, matching all inputs, and hence M = I, the identity matrix.
The only eigenvalue of c ! X7 M X is A = 1, and therefore, according to
Eq. (5.20), steepest gradient descent is stable for 0 < v < 2. Equation (5.21)
results in the time constant T = —1In(1 — 7)~!, and hence the method

converges faster with a larger step size, as we would intuitively expect.

The same analysis can be applied to classifiers with straight line models,
with input vectors @, = (1,4,)” with i, € R for all n. In that case, the

input vector correlation matrix is given by

11 g
aﬁxﬁwxpiN§:<, ,;), (5.22)

n—1 in 1

with eigenvalues A\; = 0,A\2 = 1 + N~ 3" i2. Hence, the step size has to

obey
2

0<~< W, (5.23)

which demonstrates that the larger the values of i,,, the smaller the step
size has to be to still guarantee stability of the algorithm. The time con-

stant is bounded by

1
In(1 —~(1+N-13"42))

<T < o, (5.24)

showing that a large eigenvalue spread |A\2 — \;| caused by on average
high magnitudes of 4,, pushes the time constant towards infinity, resulting
in very slow convergence. Therefore, the convergence rate of steepest
gradient descent depends frequently on the range of the inputs®. This

dependency will be demonstrated empirically in Section 5.4.

3A similar LCS-related analysis was done in [143, 144], but there the stability criteria for
steepest gradient descent were applied to the LMS algorithm
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5.3.3 Least Mean Squared

The Least Mean Squared (LMS) algorithm is an incremental approximation to
steepest gradient descent. Rather than performing gradient descent on the er-
ror function given all observations, it follows the gradient of the error function
given only the current observation. For this reason, it is also known as Stochas-
tic Incremental Steepest Gradient Descent, ADALINE, or, after their developers
Widrow and Hoff [237], the Widrow-Hoff Update.

By inspecting Eq. (5.5), the error function for the (N + 1)th observation based
on the model after N observations is m(xy1)(Wkxy1 — yny1)?, and its gra-
dient with respect to wy is therefore 2m(zyi1)Tni1(WhTN 11 — Yns1). Using
this local gradient estimate rather than the global gradient, the LMS update is
given by

W41 = WN + 7N+1m(33N+1)5UN+1(yN+1 - szVCUNH)a (5.25)

starting with an arbitrary w.

As the gradient estimate is only based on the current input, the method suffers
from gradient noise. Due to this noise, a constant step size v will cause random
motion close to the optimal approximation [106, Ch. 5].

Misadjustment due to Local Gradient Estimate

Let hy(w) = ¢3'[| Xnyw — yn||? be the mean squared error (MSE) after N ob-
servations as a function of the weight vector. The excess mean square estimation
error is the difference between the MSE of the LMS algorithm and the minimal
MSE after Eq. (5.16). The ratio between the excess MSE and the minimal MSE
error is the misadjustment, which is a measure of how far away the convergence
area of LMS is from the optimal estimate. The estimate error for some small
constant step size can, according to [106, Ch. 5], be estimated by

h(why) + Y (W) D A (5.26)



where w}; is the weight vector that satisfies Eq. (5.16) and thus, hy(w}) is
the minimal MSE, and ); is the jth of the J eigenvalues of ¢ ' X5 My X y. This
shows that the excess MSE estimate is i) always positive, and ii) is proportional
to the step size 7. Thus, reducing the step size also reduces the misadjust-
ment. Indeed, under the standard stochastic approximation assumptions that
>0 =ocoand Y o 77 < oo, the Lipschitz continuity of the gradient, and
some Pseudogradient property of the gradient, we can guarantee convergence
to the optimal estimate [17, Prop. 4.1].

Stability Criteria and Average Time Constant

As the LMS filter is a traversal filter of length one, using only the current ob-
servation for its gradient estimate, no concrete bounds for the step size can
be currently given [106, Ch. 6]. However, if the step size is small when com-
pared to the inverse of the largest eigenvalue of the input vector correlation
matrix, then the stability criteria are the same as for steepest gradient descent
Eq. (5.20).

As the gradient changes with each step, we can only give an expression for
the local time constant that varies with time (for more details see [77]). On
average, however, the time constant can be bounded in the same way as for

steepest gradient descent Eq. (5.21), with the same consequences.

This leaves us in a dilemma: we have already established that the misadjust-
ment is proportional to the step size. On the other hand, the time constant is
inversely proportional to it. Hence, we have conflicting requirements and can
either aim for a low estimation error or a fast rate of convergence, but will not
be able to satisfy both requirements with anything other than a compromise.

Relation to Batch Learning

To get a better intuitive understanding of how the LMS algorithm estimates
the weight vector, let us reformulate it as a batch learning approach for the

simplified case of an averaging classifier that matches all inputs, that is z,, =
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1,m(xz,) = 1for all n > 0. In that case, Eq. (5.25) reduces to

Wyt1 = WN + Y41 (Yn41 — D), (5.27)

and by recursive substitution (as in Example 3.1.1) results in the batch learning

formulation
N N N
n=1 m=n-+1 n=1

Hence, the nth observation y, is weighted by ~, [I_,. (1 — %), which, for
0 < v < 1forall 0 < n < n, means that the lower n, the less y,, contributes to
the weight estimate. Also, w, introduces a bias that decays exponentially with
[T, (1 —7,). Comparing this insight to the results of Example 5.2.1, where we
have shown that the optimal weight in the least squares sense for averaging
classifiers is the average over all matched outputs, we can see that the LMS
algorithm does not achieve this optimum for arbitrary step sizes. Nonetheless,
it can be applied readily for recency-weighted applications, such as to handle

non-stationary processes, as is required in reinforcement learning applications.

5.3.4 Normalised Least Mean Squared

As we can see from Eq. (5.25), the magnitude of the weight update is directly
proportional to the new input vector x 1, causing gradient noise amplification
[106, Ch. 6]. Thus, if we have large values in some elements of the feature
vector, the correction based on a local error will be amplified and causes addi-
tional noise. This problem can be overcome by weighting the correction by the
squared Euclidean norm of the input, resulting in the update

LTN+1

W1 =Wy + %m(Tni1) | (yn1 — WRTN11). (5.29)

|2 N1 ||

This update equation can also be derived by calculating the weight vector up-
date that minimises the norm of the weight change ||wy;1 — wx||?, subject to
the constraint m(xy1)Wy+1TN+1 = Yn+1. As such, the normalised LMS filter
can be seen as a solution to a constrained optimisation problem.

Regarding stability, the step size parameter v is now weighted by the inverted
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square norm of the input vector. Thus, stability in the MSE sense is dependent
on the current input. The lower bound is still 0, and the upper bound will be
generally larger than 2 if the input values are overestimated, and smaller than
2 otherwise. The optimal step size, located at the largest value of the mean
squared deviation, is the centre of the two bounds [106, Ch. 6].

As expected, the normalised LMS algorithm features a rate of convergence that
is higher than that of the standard LMS filter, as demonstrated empirically in
[75]. One drawback of the modification is that one needs to check ||z 1||? for
being zero, in which case no update needs to be performed to avoid division

by zero.

To summarise, both variants of the LMS algorithm have low computational
and space costs O(Dyx), but only rely on the local gradient estimate and may
hence feature slow convergence and misadjustment. We can adjust the step
size to either improve convergence speed or misadjustment, but cannot im-
prove both at the same time. Additionally, the speed of convergence is by
Eq. (6.21) influenced by the value of the inputs and might be severely reduced
by ill-conditioned inputs, as we will demonstrate in Section 5.4.

Let us recall that to quickly get an idea of the goodness-of-fit of a classifier
model, which we measure by the model variance, we also need a good es-
timate of the weight vector. Despite their low computational cost, gradient-
based methods are known to suffer from low speed of convergence and are
therefore not necessarily the best choice for this task. In the following sections
we describe incremental methods that are computationally more costly, but
are able to recursively track the weight vector that satisfies Eq. (5.16) and are
therefore optimal in the least squares sense.

5.3.5 Recursive Least Squares

The Principle of Orthogonality Eq. (5.16) is satisfied if the normal equation
(XN¥MyXn) Wy = X Myyn, (5.30)
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holds. Using the Dy x Dy symmetric matrix Ay = XTI My Xy, we can relate
Ay and Ay by

AN+1 = AN + m(wN+1)xN+lx%+1, (531)

with Ay = 0. Similarly, we have

XJI\;+1MN+1yN+1 = XJY\;MNyN +m(TN11)TN YN (5.32)

which, in combination with Egs. (5.30) and (5.31), allows us to derive the rela-
tion

Anpwng = Aviiwy + m($N+1)$N+1(yN+1 - w£$N+1)~ (5.33)

Pre-multiplying the above by Ay ;, we get the weight vector update

Wy 1 =Wy + m(Ty ) AL EN 1 (Un i — WyEN), (5.34)

which, together with Eq. (5.31) and starting with w, = 0, defines the recursive
least squares (RLS) algorithm (see, for example, [106, Ch. 9] or [17, Ch. 3]).

Following this algorithm allows us to satisfy the Principle of Orthogonality
with each additional observation, and as such provides an incremental ap-
proach of tracking the optimal weight vector in the least squares sense. This
comes at the cost O(D3,) of having to invert the matrix A with each additional
observation that is to be included into the model. Alternatively, we can utilise
the properties of A to derive the following modified update:

Operating on A !

The Sherman-Morrison formula (also known as the Matrix Inversion Lemma,
e.g. [106, Ch. 6]) provides a method of adding a dyadic product to an invert-
ible matrix by operating directly on the inverse of this matrix. Hence, it is
applicable to Eq. (5.31), and results in

-1 T -1
Ay 33N+133N+1AN

AL =AY = m(zn) : (5.35)

T 1
L+ m(eni1)Ty Ay T
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which is of cost O(D%) rather than O(D3%) for inverting A in Eq. (5.34) at each
update.

The drawback of this approach is that we cannot initialise A, = 0, as the
Sherman-Morrison formula is only valid for invertible matrices, and Ay = 0 is
clearly not. This issue is usually handled by initialising A ' — 51, where § is a
large positive scalar (to keep A, close to 0), and I is the identity matrix. While
this approach introduces an initial bias to the RLS algorithm, this bias decays

exponentially, as we will show in the next section.

Relation to Ridge Regression

It is easy to show that the solution wy to minimising
IXnvw = yxliy + Allwl?, (5.36)
(A is the positive scalar ridge complexity) with respect to w requires
(XA MyXy + M)y = X Myy, (5.37)

to hold. The above is similar to Eq. (5.30) with the additional term A\I. Hence,
Eq. (5.31) still holds when initialised with Ay = AI, and consequently so does
Eq. (5.34). Therefore, initialising A;' = 41 to apply Eq. (5.35) to operate on
A~! rather than A is equivalent to minimising Eq. (5.36) with A = 6.

In addition to the matching-weighted squared error, Eq. (5.36) penalises the
size of w. This approach is known as ridge regression and was initially intro-
duced to work around the problem of initially singular X5 My Xy for small
N, that prohibited the solution of Eq. (5.30). However, minimising Eq. (5.36)
rather than Eq. (5.7) is also advantageous if the input vectors suffer from a
high noise variance, resulting in large w and a bad model for the real data-
generating process. Essentially, ridge regression assumes that the size of w is
small and hence computes better model parameters for noisy data, given that
the inputs are normalised [103, Ch. 3].

To summarise, using the RLS algorithm Egs. (5.34) and (5.35) with A, = 41,
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a classifier performs ridge regression with ridge complexity A = §~'. As by
Eq. (5.36), the contribution of ||w| is independent of the number of observa-
tions NV, its influence decreases exponentially with V.

A Recency-Weighted Variant

While the RLS algorithm provides a recursive solution such that Eq. (5.16)
holds, it weights all observations equally. Nonetheless, we might sometimes
require recency-weighting, such as when using LCS in combination with rein-
forcement learning. Hence, let us derive a variant of RLS that applies a scalar
decay factor 0 < A <1 to past observations.

More formally, after N observations, we aim at minimising
N
N
Zm(wn))\Zj:n+1m(a!j)(wTwn —yn)? = | X yw — yNH?u}V (5.38)
n=1
with respect to w, where the A\-augmented diagonal matching matrix M3y, is

given by

m(wl)/\zy:z‘ m(zx;) 0
m(x )\Zj\fza m(z;)
M) = () _ . (5.39)

0 m(a:N)

Note that we are using A==+ ™) rather than simply A¥~" to only decay past
observations if the current observation is matched. As before, the solution wy
that minimises Eq. (5.38) satisfies

(XA MR Xy )by = X Miyy. (5.40)
Using Ay = X5 M3 Xy and the relations

Anii = AX"EVIA N+ m(Ty) Ty @, (5.41)

Ay = N"@E)A by + m(Tn )Ty YN, (542)
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the recency-weighted RLS weight vector update is given by
Wy 1 = A"V Dy (@) A 2N (Y — WREN ). (5.43)

The matrix A can be updated by either using Eq. (5.41) or by applying the
Sherman-Morrison formula to get

Ay ey ozl AV
A]_\/1+1 _ )\—m(ch+1)AJ—Vl . m(mN+1))\—m(mN+1) N YN+ILN 14N

T 1 '
@y ey )Ty Ay Ty

(5.44)
All equations from this section reduce to the non-recency-weighted equiva-
lents if A = 1.

In summary, the RLS algorithm recursively tracks the solution according to
the Principle of Orthogonality. As this solution is always optimal in the least
squares sense, there is no need to discuss its convergence to the optimal solu-
tion, as was required for gradient-based algorithms. While the RLS can also
be adjusted to perform recency-weighting, as developed in this section, its
only drawback when compared to the LMS or normalised LMS algorithm is
its higher computational cost. Nonetheless, if this additional cost is bearable,
it should be always preferred to the gradient-based algorithm, as we will also
demonstrate in Section 5.4.

Example 5.3.2 (RLS Algorithm for Averaging Classifiers). Let us consider
averaging classifiers, that is , = 1 for all n > 0. Hence, we have for
Eq. (5.31)

ANy = AN +m(xeNi1), (5.45)

which, when starting with Ay = 0 is equivalent to the match count Ay =
cn. The weight update after Eq. (5.34) reduces to

wy 1 =wy +m(ey 1)y (Un i — wy). (5.46)

Note that this is equivalent to the LMS algorithm Eq. (5.25) for averag-

1

ing classifiers when using the step size vy = ¢, . By recursive back-

substitution of the above, and using wo = 0, we get

N
wN = cfvl Z m(TN+1)Yn, (5.47)

n=1
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which is, as already derived for batch learning Eq. (5.14), the matching-
weighted average over all observed outputs.

Interestingly, XCS applies the MAM update that is equivalent to averag-
ing the input for the first y~! inputs, where v is the step size, and then
tracking the input using the LMS algorithm [240]. In other words, it boot-
straps its weight estimate using the RLS algorithm, and then continues
tracking of the output using the LMS algorithm. Note that this is only
the case for XCS with averaging classifiers, and does not apply for XCS-
derivates that use more complex models, such as XCSE. Even though not
explicitly stated in [244], we assume that the MAM update was not used
for the weight update in those XCS derivates, but is still used when up-
dating its scalar parameters, such as the relative classifier accuracy and
fitness.

5.3.6 The Kalman Filter

In developing the RLS algorithm we have concentrated on following the Prin-
ciple of Orthogonality, without considering the probabilistic structure of the
random variables. While by introducing the Kalman filter in this section we
formally arrive at the same update equations as for the RLS algorithm, we
additionally provide this probabilistic structure, and hence support better un-
derstanding of the method. Furthermore, its use is advantageous as “[...]

the Kalman filter is optimal with respect to virtually any criterion that makes
sense” [166, Ch. 1].

Firstly, we introduce the system model, and from this model derive the update
equations in the covariance form and the inverse covariance form. Following
this, we discuss how to estimate the system state and the measurement noise
simultaneously, by following the Minimum Model Error philosophy. Finally,
we relate the resulting algorithm to the RLS algorithm.

The System Model

The Kalman-Bucy system model [124, 125] describes how a noisy process mod-
ifies the state of a system, and how this affects the noisy observation of the sys-
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tem. Both the process and the relation between system state and observation is
assumed to be linear, and all noise is zero-mean white (uncorrelated) Gaussian

noise.

In our case, the process that generates the observations is assumed to be sta-
tionary, which is expressed by a constant system state. Additionally, the ob-
servations are in linear relation to the system state and all deviations from that
linearity are covered by zero-mean white (uncorrelated) Gaussian noise. The
resulting model is

U = wla, + e, (5.48)

where v, is the random variable that represents the observed nth scalar output
of the system, w is the system state random variable, x,, is the known nth
input vector to the system, and ¢, is the measurement noise associated with

observing y,,.

The noise ¢, is modelled by a zero-mean Gaussian ¢, ~ N(0, (m(x,)7,)™")
with precision m(x,,)7,. Here, we utilise the matching function to blur obser-
vations that are not matched. Given, for example, that x,, is matched and so
m(x,) = 1, resulting in a measurement noise with variance 7, !. However, if
that state is not matched, that is if m(x,) = 0, then the measurement noise
has infinite variance and hence we cannot induce any information from the

associated observation.

For the system state w we acquire the multivariate Gaussian model w ~
N(w, A™') centred on w and with precision matrix A. Hence, the output v,, is
also Gaussian v,, ~ N (y,, (m(z,)7,)™"), and jointly Gaussian with the system
state w. More details on the random variables, their relations and distributions
can be found in [166, Ch. 5] and [2, Ch. 1].

Comparing the model Eq. (5.48) to the previously introduced linear model
Eq. (5.1), we can see that the system state corresponds to the weight vector,
and that the only difference is the assumption that the measurement noise
variance can change with each observation. Additionally, the Kalman-Bucy
system model explicitly assumes a multivariate Gaussian model for the sys-
tem state w, resulting in the output v also being modelled by a Gaussian.

The aim of the Kalman filter is to estimate the system state that can subse-
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quently be used to predict the output given a new input. We achieve this
by conditioning a prior wy ~ A(wg, A;') on the available observations. As
before, we proceed by assuming that the current model wy ~ N (wy, Ay') re-
sults from incorporating the information of NV observations, and we want to
add the new observation (zy1,yn+1,7n+1). Later we will show how to es-
timate the noise precision 7y, but for now we assume that it is part of the

observation.

Covariance Form

As the system state and the observation are jointly Gaussian, the Bayesian up-
date of the model parameters is given by [2, Ch. 3]

Wy = E(wylova ~ N(yvis, (m(@yi)mve) ™))
= E(WN> -+ COV(wN, UN+1)VaI'(UN+1)71(yN+1 — E(UN—H)); (549)
Afle = cov (wz\u wrlongr ~ N (Ynsa, (m(a’N+1)7—N+1>71))

= cov(wy,wy) — cov(wy, vyi1)var(vy, 1) tcov(vy i, wy)(5.50)

Evaluating the expectations, variances and covariances

E(wy)=wy, cov(wy, wy)=Ay",
E(vn41)=wxEn 1, var(vyy1) =25 Ay ey + (m(en) i)
COV(WN7UN+1):A&1:UN+1, COV(’UN+1,(.|JN):J3£+1A&1,

and substituting them into the Bayesian update results in

Cvpr = m@y) A ey (m(@y )Tk Ay ey +7yh) , (551)
Wy = Wy + (v (Yv — UAJ%CUNH) ; (5.52)
Ay = A = Gvnai AR (5.53)

This form of the Kalman filter is known as the covariance form as we are oper-

ating on the covariance matrix A~! rather than the precision matrix A.

The value (41 is known as the Kalman gain and is a temporary measure that
depends on the current model wy and the new observation. It mediates how

much wy is corrected, that is, how much the current input xy,, influences
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A}, and how the output residual yy.1 — W@y contributes to computing

WN+1-

From the update equations we can see that as the measurement noise variance
Txn+1 approaches zero, the gain (1 weights the output residual more heavily.
On the other hand, as the weight covariance A}' approaches zero, the gain
(N1 assigns less weight to the output residual [236]. This is the behaviour that
we would intuitively except, as low-noise observations should influence the
model parameters more strongly than high-noise observations. Also, the gain
is mediated by the matching function and in the cases of non-matched inputs

reduced to zero, which causes the model parameters to remain unchanged.

Inverse Covariance Form

Using the Kalman filter to estimate the system state requires the definition of
a prior wy. In many cases, we do not have any knowledge of what the correct
prior might be, and setting it arbitrarily might introduce an unnecessary bias.
While complete lack of information can be theoretically induced as the limiting
case of certain eigenvalues of A" going to infinity [166, Ch. 5.7], it cannot be

used in practice due to large numerical errors when evaluating Eq. (5.51).

This problem can be dealt with by operating the Kalman filter in the inverse
covariance form rather than the previously introduced covariance form. To up-
date A rather than A~' we substitute (y1 from Eq. (5.51) into Eq. (5.53) and
apply the Matrix Inversion Lemma (for example, [106, Ch. 9.2]) to get

Anii = Ax + m(Tyi1) TNAZNAT N4 - (5.54)
The weight update is derived by combining Eq. (5.51) and Eq. (5.53) to get
(v = m(Tn1) TN AR TN+, (5.55)
which, when substituted into Eq. (5.52), gives
Wyt = Wy + M(Tx1) TN A BN (Y — WREN4). (5.56)

We get the final update equation by pre-multiplying the above by Ay, and
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substituting Eq. (5.54) for the first Ay, of the resulting equation, giving

AWy = Aywy + m(:cN+l)7—N+1wN+1yN+1- (5.57)

Thus, we are not directly updating w but rather the vector (Aw) € R~ from
which we can recover w by w = A~!(Aw). Hence, even though the initial A
might be singular and therefore cannot be inverted to calculate w, it can still be
updated by Eq. (5.54) until it is non-singular and can be inverted. This allows
us to use the non-informative prior Ay = 0 that cannot be used when applying
the covariance form of the Kalman filter.

Minimum Model Error Philosophy

For deriving the Kalman filter update equations we have assumed knowledge
of the measurement noise variances {r; ', 7, ',...}. In our application of the
Kalman filter that is not the case, and so we have find a method that allows us
to estimate the variances at the same time as the system state.

Assuming a different measurement noise variance for each observation makes
estimating these prohibitive, as it would require us to estimate more parame-
ters than we have observations. To reduce the degrees of freedom of the model
we will make the assumption that 7 is constant for all observations, that is
7 = T3 = --- = 7. In addition, we adopt the Minimum Model Error (MME)
philosophy [172] that aims at finding the model parameters that minimises
the model error, which is determined by the noise variance 7. The MME is
based on the Covariance Constraint condition, which states that the observation-
minus-estimate error variance must match the observation-minus-truth error
variance, that is

(Y — wlx,)? ~ (m(x,)7) " (5.58)

Given that constraint and the assumption of not having any process noise, the
model error for the nth observation is given by weighting the left-hand side of
Eq. (6.58) by the inverted right-hand side, which, for N observations results in

7> m(a,) (W@, — ya)’. (5.59)



Minimising the above is independent of 7 and therefore equivalent to Eq. (5.5).
Thus, assuming a constant measurement noise variance has led us back to

minimising the error that we originally intended to minimise.

Relation to Recursive Least Squares

In deriving the Kalman filter update we arrived a set of equations that are very
similar but not quite the same as the RLS update equations. Maybe the most
obvious match is the inverse covariance update Eq. (5.54) of the Kalman filter,
and Eq. (5.31) of the RLS algorithm, only differing by the additional term 7,
in Eq. (56.54). Similarly, Eq. (5.56) and Eq. (5.34) differ by the same term.

In fact, if we substitute all A in the RLS update equations by 7~'A, and apply
the assumption 7y = 7, = --- = 7 to the Kalman filter equations, these equa-
tions become equivalent. More specifically, the covariance form of the Kalman
filter corresponds to the RLS algorithm that uses Eq. (5.35), and the inverse
covariance form is equivalent to using Eq. (5.31). They also share the same
characteristics: while Eq. (5.35) is computationally cheaper, it cannot be used
with a non-informative prior, just like the covariance form. Conversely, using
Eq. (5.31) allows the use of non-informative priors, but requires a matrix in-
version with every additional update, as does the inverse covariance form to

recover w by w = A~ (Aw), making it computationally more expensive.

The information we gain from this relation is manifold:

e The weight vector of the linear model we apply corresponds to the sys-
tem state of the Kalman filter. Hence, it can be modelled by a multi-
variate Gaussian, that, in the notation of the RLS algorithm, is given by
wy ~ N(wy, (TAx)™1). As 7 is unknown, it needs to be substituted by
its estimate 7.

e Acquiring this model for w causes the output random variable v to be-
come Gaussian as well. Hence, using the model for prediction, these
predictions will be Gaussian. More specifically, given a new input «’, the
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predictive density is
y ~ N (w77 (@A + m(2) ), (5.60)

and is thus centred on w” «'. Its spread is determined on one hand by the
estimated noise variance (m(z')7)~! and the uncertainty of the weight
vector estimate '7 (7A)'x. The A in the above equations refers to the
one estimated by the RLS algorithm.

Following [103, Ch. 8.2.1], we can get the two-sided 95% confidence of the
standard normal distribution by considering its 97.5% point (as (100% —
2 x 2.5%) = 95%), which is 1.96. Therefore, the 95% confidence interval
of the classifier predictions is centred on the mean of Eq. (5.60) with 1.96
times the square root of the prediction’s variance to either side of the

mean.

In deriving the Kalman filter update equations, we have embedded
matching as a modifier to the measurement noise variance, that is ¢, ~
N(0, (m(z,)7)~"), which gives us a new interpretation for matching: A
matching value between 0 and 1 for a certain input can be interpreted
as reducing the amount of information that the model acquires about
the associated observation by increasing the noise of the observation and
hence reducing its certainty.

A similar interpretation can be given to RLS with recency-weighting: the
decay factor A acts as a multiplier to the noise precision of past obser-
vations and hence reduces their certainty. This causes the model to put
more emphasis on more recent observations due to their lower noise vari-
ance. Formally, modelling the noise for the nth observation after NV ob-

servations by
-1
en ~ N <O, (m(wn)TAzﬁinﬂm(mﬂ')) > (5.61)
causes the Kalman filter to perform the same recency weighting as the

recency-weighted RLS variant.

The Gaussian prior on w provides a different interpretation of the ridge
complexity ) in ridge regression: recalling that A corresponds to initialis-
ing RLS with A;' = A\7'1, it is also equivalent to using the Kalman filter
with the prior wy ~ N(0, (A7) "*I). Hence, ridge regression assumes the
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weight vector to be centred on 0 with an independent variance of (A7) ~*
of each element of this vector. As the prior covariance is proportional to
the real noise variance 7!, a smaller variance will cause stronger shrink-

age due to a more informative prior.

What if the noise distribution is not Gaussian? Would that invalidate the ap-
proach taken by RLS and the Kalman filter? Fortunately, the Gauss-Markov
Theorem (for example, [96]) states that the least squares estimate is optimal
independent of the shape of the noise distribution, as long as its variance is
constant over all observations. Nonetheless, adding the assumption of Gaus-
sian noise and acquiring a Gaussian model for the weight vector allows us to
specify the predictive density. Without these assumptions, we would be un-
able make any statements about this density, and are subsequently also unable
to provide a measure for the prediction confidence.

In summary, while we have demonstrated the formal equivalence between
the Kalman filter in our application and the RLS algorithm, relating the two
methods significantly increases the understanding of the assumptions under-
lying the RLS method and provides intuitive interpretations for matching and
recency-weighting by relating them to an increased uncertainty about the ob-

servations.

5.3.7 Incremental Noise Precision Estimation

So far, we have concentrated our discussion of incremental methods on how
to estimate the weight vector that solves Eq. (5.5). Let us now consider how
we can estimate the noise precision by incrementally solving Eq. (5.6).

For batch learning it was already demonstrated that Egs. (5.11) and (5.13) pro-
vide a biased and unbiased noise precision estimate that solves Eq. (5.6). The
same solutions are valid when using an incremental approach, and thus, after
N observations,

N =y Xnvwy — ynllis, (5.62)
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provides a biased estimate of the noise precision, and
iy = (en = Da) | X o — ywlls, (563)

is the unbiased estimate. Ideally, wy is the weight vector that satisfies the
Principle of Orthogonality, but if gradient-based methods are utilised, we are
forced to rely on the current (possibly quite wrong) estimate.

Let us firstly derive a gradient-based method for estimating the noise preci-
sion, which is the one applied in XCS. Following that, we introduce a much
more accurate approach that can be used alongside the RLS algorithm to track
the exact noise precision estimate after Eq. (5.63) for each additional observa-

tion.

Estimation by Gradient Descent

We can reformulate the problem of computing Eq. (5.62) as finding the mini-

mum of

S o) (77 = (ke — ya)?) (5.64)

That the minimum of the above with respect to 7 is indeed Eq. (5.62) can be
easily shown by the solution of setting its gradient with respect to 7 to zero.

This minimisation problem can now be solved with any gradient-based
method. Applying the LMS algorithm, the resulting update equation is given
by

b =Ty Fym(@ni) (W @y — yne1)” — 731) - (5.65)

While this method provides a computationally cheap approach to estimating
the noise precision, it is flawed in several ways: firstly, it suffers under some
circumstances from slow convergence speed, just as any other gradient-based
method. Secondly, at each step, the method relies on the updated weight vec-
tor estimate, but does not take into account that changing the weight vector
also modifies past estimates and with it the squared estimation error. Finally,
by minimising Eq. (5.64) we are computing the biased estimate Eq. (5.62) rather
than the unbiased estimate Eq. (5.63). Let us now introduce a method that
solves all of these problems.
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Estimation by Direct Tracking

Let us assume that the sequence of weight vector estimates {w;, w», . .. } satis-
ties the Principle of Orthogonality, which we can achieve by utilising the RLS
algorithm. In the following, we derive a method for incrementally updating
| X nwy —yn||3s,, which then allows us to accurately track the unbiased noise
precision estimate Eq. (5.63).

At first, let us derive a simplified expression for | Xy —yn||3,, : based on the
Corollary to the Principle of Orthogonality Eq. (5.17) and —yny = —Xywy +
(XNliJN — yN) we get

yjj\}MNyN = uA’NX]q\;MNXN'UA]N - 2w1€XJ€MN(XNwN —yn)
+(Xnwy — yn) My(Xny — yn)
= W X MyXywy + | Xnwy — ynllis, (5.66)

which, for the sum of squared errors, results in
I Xnwn —yn i, = yvMyyy — Wy XMy Xyy. (5.67)

To express || Xy 1WN+1—Yn+1 H?MNH in terms of || X vy —yn |3, , we combine
Egs. (5.31), (5.32) and (5.67), and use Aywy = X 5 Myyy after Eq. (5.30) to get

|‘XN+11i’N+1 - yN+1H?\4N+1
= Yy Myayn — Wy X3 My Xy gy
= [ Xnwy — ynlig, +m(eni)yi, + WHANWY — W AN 1 W41
= [ Xnwn —yn 3, +m(@ni)yig
vy (A + m(@y )N (@) Wyn — M(EN 1) BN YN 1)
_ﬁ’JTVH (ANWy +m(TNi1)TN11YN11)
= [ Xnwy — ynli, + (@)Y + m(@n ) WA TN Ty Wy
_m(mN-&-l)w%wN-HyN-&-l - m(wN+1)w£+1wN+1yN+1
= [ Xnwy —ynllis,

+m(@n1) (W EN+1 — Yn+1) (Wh TNt — Yntr)-

Thus, we have the following result:

Theorem 5.3.3 (Incremental Sum of Squared Error Update). Let the sequence
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of weight vector estimates {w:,Wws,...} satisfy the Principle of Orthogonality
Eq. (5.16). Then

| X NN — YUntr H?WNH (5.68)

= || Xnwn — yNH?\/IN + m(mNH)(ﬁJ%xNH - yN+1)("f1%+133N+1 — Yn+1)

holds.

An almost equal derivation reveals that the sum of squared errors for the
recency-weighted RLS variant is given by

| X N1y g1 — yN+1H?wN+1

_ )\m(a:N+1)HXN11JN - yNH?\/[N

+m(Tn1) (WREN+1 — Yn41) (W a1 TN+ — YN11)s (5.69)

where, when compared to Eq. (5.68), the current sum of squared errors is ad-
ditionally discounted.

In summary, we can track the unbiased noise precision estimate by directly
solving Eq. (5.63), where the match count is updated by

cN41 = N + m(Tn1), (5.70)

and the sum of squared errors is updated by Eq. (5.68). As Theorem 5.3.3
states, Eq. (5.68) is only valid if the Principle of Orthogonality holds. How-
ever, using the computationally cheaper RLS implementation that involves
Eq. (5.35) introduces an initial bias and hence violates the Principle of Orthog-
onality. Nonetheless, if § in A;' = §1 is set to a very large positive scalar,
this bias is negligible, and hence we can still apply Eq. (5.68) with only minor

inaccuracy.

Example 5.3.3 (Noise Precision Estimation for Averaging Classifiers). Let
us assume averaging classifiers, that is z,, = 1 for all n > 0. Given that
we utilise a gradient-based method to estimate the weight vector, we are

violating the Principle of Orthogonality, and hence have to use Eq. (5.65)
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to estimate the noise precision, resulting in
i =78 meni) (v — yve)? — 73) - (5.71)

Alternatively, we can use the RLS algorithm Eq. (5.46) for averaging clas-

sifiers, and use Eq. (5.68) to accurately track the noise precision by

P = Fm(@n ) (N — yn1) (N1 — Yng1)- (5.72)

Note that while the computational cost of both approaches is equal (in
its application to averaging classifiers), the second approach is vastly su-
perior in its weight vector and noise precision estimation accuracy and

should therefore be always preferred.

Squared Error or Absolute Error?

XCSF (of which XCS is a special case) initially applied the NLMS method
Eq. (5.29) [240], and later the RLS algorithm by Egs. (5.34) and (5.35) [143, 144]
to estimate the weight vector. The classifier estimation error is tracked by the
LMS update

T = 7n Fm(@n) (| 2y — vl = 750) (5.73)
to — after IV observations — perform stochastic incremental gradient descent

on the error function

N
> oml@n) (77 = g, — ) (5.74)

n=1
Therefore, the error that is estimated is the mean absolute error

N

017\71 Z m(x,)

n=1

WNTn — Un|, (5.75)

rather than the MSE Eq. (5.62). Thus, XCSF does not estimate the error that
its weight vector estimate aims at minimising, and does not give a justification
for this inconsistency — probably because the errors that are minimised have
never before been explicitly expressed. While there is no systematic study that
compares using Eq. (5.62) rather than Eq. (5.75) as the classifier error estimate

115



in XCSF, we have recommended in [156] to use the MSE for the reason of con-
sistency and easier tracking by Eq. (5.68), and — as shown here — to provide
its probabilistic interpretation as the noise precision estimate 7 of the linear
model.

5.3.8 Summarising Incremental Learning Approaches

We have introduced various approaches to estimating the weight vector and
noise precision estimate of the linear model Eq. (5.3). While the gradient-
based models, such as LMS or NLMS, are computationally cheap, they require
problem-dependent tuning of the step size and might feature slow conver-
gence to the optimal estimates. RLS and Kalman filter approaches, on the
other hand, scale at best with O(D3%), but are able to accurately track both
the optimal weight vector estimate and its associated noise precision estimate

simultaneously.

Table 5.1 gives a summary of all the methods introduced in this chapter (omit-
ting the recency-weighted variants), together with their computational com-
plexity. As can be seen, this complexity is exclusively dependent on the size
of the input vectors for use by the classifier model (in contrast to their use
for matching). Given that we have averaging classifiers, we have Dy = 1,
and thus, all methods have equal complexity. In this case, the RLS algorithm
with direct noise precision tracking should always be applied. For higher-
dimensional input spaces, the choice of the algorithm depends on the avail-
able computational resources, but the RLS approach should always be given a
strong preference.

5.4 Empirical Demonstration

Having described the advantage of utilising the RLS algorithm to estimating
the weight vector and tracking the noise variance simultaneously, we will in
this section demonstrate its superiority over gradient-based methods empiri-
cally with two simple experiments. The experiments show on one hand that
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Figure 5.1: The graph shows the weight estimate (on the left scale) and noise
variance estimate (on the right scale) of different averaging classifiers when
being presented with observations sampled from A (5, 1). The weight estimate
of the RLSLMS classifier is not shown, as it is equivalent to the estimate of the
RLS classifier.

the speed of convergence of the LMS and NLMS algorithm is lower than for
the RLS algorithm and depends on the values of the input, and on the other
hand that direct tracking of the noise variance is more accurate than estimating
it by the LMS method.

5.4.1 Experimental Setup

We use the following classifier setups:

NLMS Classifier. This classifier uses the NLMS algorithm Eq. (5.29) to esti-
mate the weight vector, starting with w, = 0, and a constant step size of
v = 0.2. For one-dimensional input spaces, Dy = 1, with z,, = 1 for all
n > 0, the NLMS algorithm is equivalent to the LMS algorithm Eq. (5.25),
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in which case we use the variable step size

1 i <1
wz{ fex Hew <1/, (5.76)

0 otherwise,

which is known as the MAM update [223], and is equivalent to boot-
strapping the estimate by RLS (see Example 5.3.2).

The noise variance is estimated by the LMS algorithm Eq. (5.63), with an
initial 7, ' = 0, and a step size that follows the MAM update Eq. (5.76).
Thus, the NLMS classifier uses the same techniques for weight vector
and noise variance estimation as XCS(F), with the only difference that we
are estimating the correct variance, rather than inconsistently the mean
absolute error Eq. (5.75) (see also Section 5.3.7). Hence, the performance
of NLMS classifiers reflects the performance of classifiers in XCS(F).

RLSLMS Classifier. The weight vector is estimated by the RLS algorithm, us-

ing Eqgs.(5.34) and (5.35), with initialisation w, = 0 and A, 1 = 10001I. The
noise variance is estimated by the LMS algorithm, just as for the NLMS
Classifier. This setup conforms to XCSF classifiers with RLS as first intro-
duced in [143, 144].

RLS Classifier. Asbefore, the weight vector is estimated by the RLS algorithm

Egs. (5.34) and (5.35), with initialisation wy, = 0 and A;' = 1000I. The
noise variance is estimated by tracking the sum of squared errors ac-
cording to Eq. (5.68) and evaluating Eq. (5.63) for the unbiased variance

estimate.

In both experiments, all three classifiers are used for the same regression task,

with the assumption that they match all inputs, that is, m(«,) = 1 for all n > 0.

Their performance of estimating the weight vector is measured by the MSE of

their model evaluated with respect to the target function f over 1000 inputs

that are evenly distributed over the function’s domain, using Eq. (5.11). The

quality of the estimate noise variance is evaluated by its squared error when

compared to the unbiased noise variance estimate Eq. (5.13) of a linear model

trained by Eq. (5.8) over 1000 observations that are evenly distributed over the

function’s domain.
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For the first experiment, averaging classifiers with z,, = 1 for all n > 0 are
used to estimate weight and noise variance of the noisy target function f,(z) =
5+ N(0,1). Hence, the correct weight estimate is @ = 5, with noise variance
77! = 1. As the function output is independent of its input, its domain does
not need to be defined. The target function of the second experiment is the
sinusoid f>(x,) = sin(i,) with inputs x,, = (1, ,), hence, using classifiers that
model straight lines. The experiment is split into two parts, where in the first
part, the function is modelled over the domain i,, € [0,7/2), and in the second
part over i, € [pi/2, ). The classifiers are trained incrementally, by presenting
them with observations that are uniformly sampled from the target function’s

domain.

Statistical significance of difference in the classifiers’ performances of esti-
mating the weight vector and noise variance is evaluated by comparing the
sequence of model MSEs and squared noise variance estimation errors re-
spectively, after each additional observations, and over 20 experimental runs.
These sequences violate the standard analysis of variances (ANOVA) as-
sumption of homogeneity of covariances, and thus we utilise the randomised
ANOVA procedure as introduced in [187], that was specifically designed to
analyse the difference of performance curves of machine learning algorithms.
It is based on estimating the sampling distribution of the null hypothesis (“all
methods feature the same performance”) by sampling the standard two-way
ANOVA F-values from randomly reshuffled performance curves between the
methods, where we use a samples size of 5000. The two factors are the type
of classifier that is used, and the number of observations that the classifier
has been trained on, where performance is measured by the model or noise
variance error. We are only reporting significant difference between classifier
types, and are using Tukey’s HSD post hoc test to determine the direction of
the effect.

Figures 5.1 and 5.2 show one run of training the classifiers on f; and f; respec-
tively. Figure 5.1 illustrates how the weight and noise variance estimate differs
for different classifiers when trained on the same 50 observations. Figure 5.2,
on the other hand, does not display the estimates itself, but rather shows the
error of the weight vector and noise variance estimates. Let us first evaluate
the ability of the different classifiers to estimate the weight vector.
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5.4.2 Weight Vector Estimate

In our discussion of the weight vector estimate we will ignore the RLSLMS
classifier due to its equivalence to the RLS classifier. Figure 5.1 shows that
while both the NLMS and the RLS algorithm estimate the weight to be about
w = 5, the RLS algorithm is more stable in its estimate. In fact, comparing the
model MSEs by the randomised ANOVA procedure reveals that this error is
significantly lower for the RLS method (randomised ANOVA: F,;(2,2850) =
38.0, Fig o1 = 25.26, p < .01). Figure 5.1 also clearly illustrates that utilising
the MAM causes the weight estimates to be initially equivalent to the RLS es-
timates, until 1/ = 5 observations are reached. As the input to the averaging
classifier is always x, = 1, the speed of convergence of the LMS classifier is
not dependent on these inputs.

The second experiment, on the other hand, demonstrates how ill-conditioned
inputs cause the convergence speed of the NLMS algorithm to deteriorate. The
upper graph of Figure 5.2 shows that while the weight estimate is close to op-
timal after 10 observations for the RLS classifier, the NLMS classifier requires
more than 50 observations to reach a similar performance, when modelling f;
over i, € [0,7/2). Even worse, changing the sampling range to i, € [7/2,7)
causes the NLMS performance to drop such that it still features an MSE of
around 0.1 after 300 observations, while the performance of the RLS classifier
remains unchanged, as shown by the lower graph of Figure 5.2. This drop
can be explained by the increasing eigenvalues of ¢! X5 My Xy that, as dis-
cussed in Section 5.25, reduce the speed of convergence. The minimal MSE of a
linear model is in both cases approximately 0.00394, and the difference in per-
formance between the NLMS and the RLS classifier is in both cases significant
(randomised ANOVA for i, € [0,7/2]: Fag(2,2850) = 973.0, Fj, 01 = 93.18,
p < .001; randomised ANOVA for i, € [r/2,7]: Fye(2,17100) = 8837L.5,
Flig 001 = 2190.0, p < .001).

5.4.3 Noise Variance Estimate

As the noise variance estimate depends by Eq. (5.63) on a good estimate of the
weight vector, we can expect classifiers that perform poorly on estimating the
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weight vector not to perform any better when estimating the noise variance.
This suggestion is confirmed when considering the noise variance estimate of
the NLMS classifier in Figure 5.1 that fluctuates heavily around the correct
value of 1. While the RLSLMS classifier has the equivalent weight estimate to
the RLS classifier, its noise variance estimate fluctuates almost as heavily as
that of the NLMS classifier, as it also uses LMS to perform this estimate. Thus,
while a good weight vector estimate is a basic requirement for estimating the
noise variance, the applied LMS method seems to perform even worse when
estimating the noise variance than when estimating the weight. As can be seen
in Figure 5.1, direct tracking of the noise variance in combination with the RLS
algorithm for a stable weight estimate gives the least noise and accurate esti-
mate. Indeed, while there is no significant difference in the squared estima-
tion error between the NLMS and RLSLMS classifier (randomised ANOVA:
Fag(2,2850) = 53.68, F, oo = 29.26, p < .001; Tukey’s HSD: p > .05), the RLS
classifier features a significantly better estimate than both of the other classifier
types (Tukey’s HSD: for both NLMS and RLSLMS p < .01).

Conceptually, the same pattern can be observed in the second experiment, as
shown in Figure 5.2. However, in this case, the influence of a badly estimated
weight vector becomes more clear, and is particularly visible for the NLMS
classifier. Recall that in this figure we are plotting the estimation errors rather
than the estimates itself, and hence, the upper graph shows that the NLMS
classifier only provides estimates that are comparable to the RLSLMS and RLS
classifier after 30 observations. The performance of NLMS in the case of ill-
conditioned inputs is even worse; its estimation performance never matches
that of the classifiers that utilise the RLS algorithm for their weight vector es-
timate. In contrast to the first experiment there is no significant difference
between the noise variance estimation error of the RLSLMS and RLS classi-
fiers, but in both cases they are significantly better than the NLMS classifier
(for i, € [0,7/2]: randomised ANOVA: Fy,(2,2850) = 171.41, F§g7_001 = 32.81,
p < .001; Tukey’s HSD: NMLS vs. RLSLMS and RLS p < .01, RLSLMS vs.
RLS p > .05; for i, € [r/2,7n]: randomised ANOVA: F;,(2,17100) = 4268.7,
Flg 001 = 977.89, p < .001; Tukey’s HSD: NLMS vs. RLS and RLSLMS p < .01,
RLSLMS vs. RLS p > .05).

In summary, both experiments in combination demonstrate that to provide a
good noise variance estimate, the method needs to estimate the weight vector
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well, and that direct tracking of this estimate is better than its estimation by
the LMS algorithm.

5.5 Discussion and Summary

We started this chapter by describing the aim of the local model that is rep-
resented by a classifier as maximising its likelihood, as this follows from the
probabilistic LCS model in the previous chapter. The rest of this chapter was
devoted to describing a batch approach and comparing and contrasting sev-
eral incremental learning approaches to estimating the maximum likelihood

parameter values.

In more detail, we have reduced the problem of estimating the weight vector to
a weighted least squares problem Eq. (5.5), that by itself is a well known prob-
lem with a multitude of approaches that goes far beyond the ones described in
this chapter. Nonetheless, the actual contribution of this chapter is to, for the
tirst time, explicitly identify what a classifier aims at learning, and derive sev-
eral approaches to reach this aim in a principled manner. In addition, we also
provide new LCS-related probabilistic interpretations for i) the linear model
and its noise structure, ii) the model error as the noise variance, iii) an explicit
weight vector model that allows for the specification of a predictive density,
and iv) matching and recency-weighting as uncertainty of the observations.

The weight update of the original XCS conforms to Eq. (5.25) with z, = 1
for n > 0 and hence, as firstly shown here, aims at minimising the squared
error Eq. (5.5). Later, XCS was modified to act as regression model [243], and
extended to XCSF to use model straight lines [244] by using the NLMS update
Eq. (6.29), again without explicitly stating a single classifier’s aim. In a similar
manner, the classifier model was extended to a full linear model [142]*.

Simultaneously, and similar to our discussion in Section 5.3.4, the convergence
of gradient-based methods was identified as a problem [143, 144], but in con-
trast to our discussion, [143] apply the stability criteria of steepest gradient

4Despite the title “Extending XCSF Beyond Linear Approximation” of [142], the underlying
model is still linear.
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descent to the NLMS method. As an alternative, the RLS algorithm was pro-
posed to estimate the weight vector, but the aim of a classifier was specified
without considering matching, and matching was implemented by only up-
dating the classifier’s parameter if that classifier matches the current input.
While this is a valid procedure from the algorithmic perspective, it does not
make matching explicit in the classifier’s aim, and cannot deal with matching
to a degree. Our formulation of the aim Eq. (5.5), in contrast, provides both
features and thereby leads to a better understanding and greater flexibility of
the classifier model.

At about the same time as the RLS algorithm was introduced to estimate the
weight vector, in addition to deriving the various incremental weight update
equations from first principles, we have applied the Kalman filter for this task
[77], with afore mentioned benefits to the probabilistic interpretation of the
classifier. Here, we have also linked them to maximum likelihood learning,
and — by incorporating matching into the definition of the aim of a classifier
— have provided a principled approach to matching by degree.

While XCSF weight estimation research did not stop at linear models [157,
177], we have decided not to extend our work beyond their realm to avoid the
introduction of multiple local optima that make estimating the globally opti-
mal weight vector significantly more complicated. In addition, there is always
the tradeoff between the complexity of the local models and the global model
to consider: if more powerful local models are used, less of them are necessary
to provide the same level of complexity of the global model, but the increased
complexity and power makes their model usually harder to understand. For
these reasons, we see linear classifier models as a good tradeoff between ease
of training and power of the model, that are still relatively simple to interpret.

In contrast to the large amount of research activity seeking to improve the
weight vector estimation method in XCS, its method of estimating the clas-
sifier model quality based on the absolute rather than the squared error was
left untouched since the initial introduction of XCS until we questioned its
validity in [77] on the basis of the identified model aim, as also discussed in
Section 5.3.7. The modified error measure not only introduces consistency, but
also allows us to accurately track the noise precision estimate with the method
developed in Section 5.3.7, as we have previously published in [77]. Used as
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a drop-in replacement for the mean absolute error measure in XCSFE, we have
shown that it, indeed, improves the generalisation capabilities as it provides
a more accurate and stable estimate of the model quality of a classifier and
subsequently a fitness estimate with the same qualities [156].

Nonetheless, the methods introduced in this chapter are by no means to be
interpreted as the ultimate methods to use to train the classifier models. Al-
ternatively, one can use the procedure deployed in this chapter to adapt other
parameter estimation techniques to their use in LCS. Hence, the further con-
tribution of our work is a method for integrating or replacing alternative ap-
proaches in a formal, predictable, and principled manner. If widely adopted,
this will ensure formal as well as empirical comparability between approaches,
and enables the development of strong statements in regard to complexity,
convergence and efficiency that have not been previously been available for
LCS research in the form of a reusable developmental framework. Still, cur-
rently the RLS algorithm is the best known incremental method to track the
optimal weight estimate while simultaneously accurately estimating the noise
variance. Hence, given that one aims at minimising the squared error Eq. (5.5),
it should be the method of choice.

As an alternative to the squared error that corresponds to the assumption of
Gaussian noise, one can consistently aim at estimating the weight vector that
minimises the mean absolute error Eq. (5.75), as done in [158]. However, this
requires a modification of the assumptions about the distributions of the differ-
ent linear model variables. Additionally, there is currently no known method
toincrementally track the optimal weight estimate, as RLS does for the squared
error measure. This also means that Eq. (5.68) cannot be used to track the
model error, and slower gradient-based alternatives have to applied.

In a later chapter we will reconsider the probabilistic structure of the linear
model and show how the development of a probabilistic approach enables us
to embed it in a fully Bayesian framework that also lends itself to application
to multi-dimensional output spaces. Before that, let us in the following chapter
discuss another LCS component that, contrary to the weight vector estimate,
has received hardly any attention in LCS research: how the local models pro-
vided by the classifiers are combined to form a global model.
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Batch Learning

w=(XTMX)'X"TMy or w=((VMX)"VMy
77l = (c — D)7 Y| Xw — yl|3, with ¢ = Tr(M)

Incremental Weight Vector Estimate Complexity
LMS

Wy = Wy + YN EN11) TN (Yngr — WHTN+1) O(Dy)
NLMS

Wy = WN + 7N+1m($zv+1)“£f]v—:11”z(yN+1 - ’Lbﬁwzvﬂ) O(Dy)
RLS (Inverse Covariance Form)

Wy = Wy + (TN 1) Ay Ev 1 (Y — WREN ), O(Dy)

— T
Ay = An + m(TN1)TN1Ty

RLS (Covariance Form)

- — o -1 AT 2
W1 =Wy + Mm(Tn11) AN T (Yns — WyTN4), O(Dx)
— — A_le+1€cT A_l
A 1 — A 1 m(x N N+17N
N+1 N (xn41) Trm(@n 1)@k ) Aglan 1

Kalman Filter (Covariance Form)

_ _ _ —1
(vt = m(@ni) AV TN (m(@ene)el AV @ve + 734)

W1 =Wy + (vt (Uver — WhEN4) O(D3%)
AJ_v1+1 = Az_vl - CN+1w%+1A&1

Kalman Filter (Inverse Covariance Form)
ANp1WNy1 = ANWN + M(BN11) TNAIENF1YN 15
Anyi = An + m(wN+1)TN+1$N+1«'B%+1, O(D3)
W1 = Anp1 (Anp W)

Incremental Noise Precision Estimate Complexity
LMS (for biased estimate Eq. (5.62))
g = T Fm(en) (W 2y —yva)? — 7)) O(Dx)

Direct tracking (for unbiased estimate Eq. (5.63))
Only valid in combination with RLS/Kalman filter in Inverse Covariance Form
or in Covariance Form with insignificant prior

[ X N1y = Yns g, = 1 Xvwn —ynllisy,

+m(xy1)(WEEN 1 — Z/N+1)(ﬁ71€+1$N+1 — YN+1)s O(Dx)
Ny =N +m(enir),
it = (evir = Do) [ X v pron i1 — yna iy

Table 5.1: A summary of batch and incremental methods presented in this
chapter for training the linear model of a single classifier. The notation and
initialisation values are explained throughout the chapter.
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Weight and noise estimation error for sinusoid over [0, pi/2]
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Figure 5.2: The graphs show the MSE of the weight vector estimate (on the left

(1,4,)" and output y,, = sin(i,). In the upper graph, the sinusoid

was sampled from the range i,, € [0, 7/2], and in the lower graph the samples
are taken from the range i,, € [7/2, 7]. The MSE of the weight vector estimate

for the RLSLMS classifier is not show, as it is equivalent to the MSE of the RLS

classifier.

input x,,
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Chapter 6

Mixing Independently Trained

Classifiers

An essential part of our model and of LCS in general that hardly any research
has been devoted to is how to combine the local models provided by the classi-
fiers to produce a global model. More precisely, given an input and the output
prediction of all matched classifiers, the task is to combine these predictions to
form a global prediction. We will call this task the mixing problem, and some
model that provides an approach to this task a mixing model.

Whilst some early LCS (for example, SCS [93]) aimed at choosing a single
“best” classifier to provide the global prediction, in modern Michigan style
LCS, predictions of matching classifiers have been mixed to give the “system
prediction”, that is, what we call the global prediction. In XCS, for example,
Wilson [240] defined the mixing model as follows:

“There are several reasonable ways to determine [the global pre-
diction] P(a;). We have experimented primarily with a fitness-
weighted average of the prediction of classifiers advocating a,. Pre-
sumably, one wants a method that yields the system’s “best guess”
as to the payoff [. .. ] to be received if a; is chosen”,

and maintains this model for all XCS derivatives without any further discus-
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sion. As we will discuss in Section 6.2.5, the fitness he is referring to is a com-
plex heuristic measure of the quality of a classifier. While we do not aim at
redefining the fitness of a classifier in XCS, we question if it is really the best
measure to use when mixing the local classifier predictions. The mixing model
has been changed in YCS [33], a simplified version of XCS and accuracy-based
LCS in general, such that the classifier update equations can be formulated
by difference equations, and by Wada et al. [226] to linearise the underlying
model for the purpose of correcting XCS for use with reinforcement learning
(see also Section 9.3.6). In either case the motivation for changing the mix-
ing model differs from the motivation in this chapter, which is to improve the
performance of the model itself, rather than to simplify it or to modify its for-

mulation for the use in reinforcement learning.

A formal treatment of the mixing problem requires a formal statement of the
aim that we want to reach. In a previous study [82] we have defined this aim
to be the minimisation of the mean squared error of the global prediction with
respect to the target function, given a fixed set of fully trained classifiers. As
will be discussed in Section 6.4, this aim does not completely conform to the
LCS model we have introduced in Chapter 4.

Rather than using the mean squared error as a measure of the quality of a
mixing model, we will pragmatically follow the approach we have introduced
with the probabilistic LCS model: each classifier k provides a localised proba-
bilistic input/output mapping p(y|x, )), and the value of a binary latent ran-
dom variance z,;, determines if classifier £ generated the nth observation. Each
observation is generated by one and only one matching classifier, and so the
vector z, = (2u1,...,2,x)" has a single element with value 1, with all other
elements being 0. As the values of the latent variables are unknown, they are
modelled by the probabilistic model gi(x) = p(znx = 1|z, vs), which is the
mixing model. The aim is to find a mixing model that is sufficiently easy to
train and maximises the data likelihood Eq. (4.9), given by

1(6:D) = > ge(@n)p(ynlzn, 00). 6.1)
n=1 k=1

One possibility for such a mixing model was already introduced in Chap-
ter 4 as a generalisation of the gating network used in the Mixtures-of-Experts
model, and given by the matching-augmented softmax function Eq. (4.20).
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Further alternatives will be introduced in this chapter.

We have called the approach “pragmatic”, as by maximising the data likeli-
hood, we ignore the problem of overfitting and the identification of a good
model structure that is essential to LCS. Nonetheless, the methods introduced
here will reappear in only sightly modified form once we deal with these is-
sues, and discussing them here provides us with a better understanding in
later chapters. Additionally, XCS implicitly uses an approach similar to maxi-
mum likelihood to train its classifiers and mixing models, and deals with over-
fitting only at the level of localising the classifiers in the input space (see Ap-
pendix B). Therefore, the methods and approaches discussed here can be used
as a drop-in replacement for the XCS mixing model and for related LCS.

To summarise, we assume to have a set of K fully trained classifier, each of
which provides a localised probabilistic model p(y|z, 8;). The aim is to find a
mixing model that provides the generative probability p(z,, = 1|x,,vs), that
is, the probability that classifier k£ generated observation n, given input x,, and
model parameters v;, that maximises the data likelihood Eq. (6.1), and that is
sufficiently easy to train and scales well with the number of classifiers.

We will firstly concentrate on the model we have introduced in Chapter 4, and
provide two approaches to training this model. Due to thereafter discussed
weaknesses of these training procedures, we introduce a set of formally in-
spired heuristics that are computationally cheap. In some empirical studies
we show that these heuristics perform competitively when compared to the
optimum. The chapter concludes by comparing the approach of maximising
the likelihood to our previous study [82], where we have minimised the mean
squared error.

6.1 Using the Generalised Softmax Function

By relating the probabilistic structure of LCS to the Mixtures-of-Experts model
in Chapter 4, we defined the probability of classifier £ generating the nth ob-
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servation by the generalised softmax function Eq. (4.20), that is,

mk(wn) eXP(’v%(wn))
Soisy my(wn) exp(v] ¢(@,))

where V' = {v,} is the set of mixing model parameters v, € RPV, and ¢(x)
is a transfer function that maps the input space & into some Dy -dimensional
real space RPV. In LCS, this function is usually ¢(x) = 1 for all x € X, with
Dy =1, but to stay general, we assume an arbitrary definition of ¢.

Assuming knowledge of the predictive densities of all classifiers p(y|x, ;), the
data likelihood Eq. (6.1) is maximised by the expectation-maximisation algo-
rithm by finding the values for V' that maximise Eq. (4.13), given by

K

N
Z Z Tnk 10 g (). (6.3)

n=1 k=1
In the above equation, 7, stands for the responsibility of classifier & for obser-

vation n, given by Eq. (4.12), that is

Zj:l 9j (mn)p(yn|wn> 0])

T'nk =

Thus, we want to fit the mixing model to the data by minimising the cross-
entropy — > >, "nk In gi(x,,) between the responsibilities and the generative

mixing model.

6.1.1 Batch Learning by Iterative Reweighted Least Squares

The softmax function is a generalised linear model, and specialised tools have
been developed to fit such models [167]. Even though we use a generalisa-
tion of this function, we can still apply the same tools, as we will introduce in
this section. In particular, we will use the Iterative Reweighted Least Squares
(IRLS) to find the mixing model parameters.

The IRLS can be derived by applying the Newton-Raphson iterative optimisa-
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tion scheme [19] that, for minimising an error function E(V'), takes the form
Ve — vl _ oIV E(V), (6.5)

where H is the Hessian matrix whose elements comprise the second deriva-
tives of £(V'), and VE(V) is the gradient vector of E(V') with respect to V.
Even though not immediately obvious, its name derives from a reformulation
of the update procedure that reveals that, at each update step, the algorithm
solves a weighted least squares problem where the weights change at each step
[19].

As we want to maximise Eq. (6.3), our function to minimise is the cross-

entropy

N K

n=1 k=1

The gradient of g, with respect to v; is

Vo, 9k(®) = gr(x)(Ir; — gj(x))d(x), (6.7)

and, thus, the gradient of £(V') evaluates to

Vo, E(V) N
VyE(V) = : C VR B(V) =) (g5(®) — rag)d(@n), (6.8)
V. E(V) =t

where we have used ), gi(«) = 1. The Hessian matrix

Hll HIK
HKl HKK

is constructed by evaluating its Dy x Dy blocks

N
- ij = Z gk(mn)(ij - gj(mn))¢(m7z)¢(wn)Ta (610)
n=1
that result from Hy; =V, V, E(V).
To summarise the IRLS algorithm, given N observations D = {X,Y}, and
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knowledge of the classifier parameters {6, ..., 0} to evaluate p(y|x, 8;), we
can incrementally improve the estimate V' by repeatedly performing Eq. (6.5),
starting with arbitrary initial values for V. As the Hessian matrix H given
by Eq. (6.9) is positive definite [19], the error function E(V') is convex, and
the IRLS algorithm will approach is unique minimum, although, not mono-
tonically [120]. Thus, E(V') after Eq. (6.6) will decrease, and can be used to

monitor convergence of the algorithm.

Note, however, that by Eq. (6.5), a single step of the algorithm requires us to
compute the gradient Vy E(V') of size K Dy, the K Dy x KDy Hessian matrix
H, and the inversion of the latter. Due to this inversion, the IRLS algorithm
is at least of complexity O(N (K Dy )?), which prohibits its application in LCS,
where we require algorithms that preferably scale linearly with the number of
classifiers. Nonetheless, it is of significant theoretical value, as it provides us
with the values for V' that maximise Eq. (6.3) and can therefore be used as a
benchmark for other mixing models and their associated methods.

6.1.2 Incremental Learning by Least Squares

Following a similar but slightly modified derivation to the one give in [122],
we can incrementally approximate the maximum of Eq. (6.3) by a recursive
least squares procedure that is of lower complexity than the IRLS algorithm.
Due to the convexity of E(V), its unique minimum is found where its gradient
is Vi E(V) = 0, that is, when we have V such that

N

S (k@) — r)d(@a) =0, k=1,...,K. 6.11)

n=1

Equally, when substituting Eq. (6.2) for g, we want to solve

e ( xp(o] §(2)) P\ ey
> () (ZK )>¢< W) =0 (612

K mi(@,) exp(87d(x,)  mi(@n

n=1
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Thus, we want the left-hand term inside the brackets to be similar to the right-
hand term, weighted by my(x,,), that is

my(ax exp(0; $(2n)) ~ my(x i 6.13
e @ espelo(r) @y )

for all n. Solving the above for 9] ¢(x,,), its desired target values is

In—"" _ _1nc, (6.14)

where C,, = Y. mj(x,) exp(0] ¢(,)) is the normalising term that is common
to all v} ¢(x,,) and can therefore be omitted, as it disappears when v/ ¢(x,,) is

converted to gi(x,). Therefore, the target for v} ¢(x;) is In —2t— weighted by

mp (mn) ’

my(x,). This allows us to reformulate the problem of finding values for V that
maximise Eq. (6.3) as the K linear least squares problems of minimising

N 2
> () <@,{¢(wn)—ln Ik ) k=1,..., K. (6.15)
n=1

Even though r,; = 0 if my(x,) = 0, and therefore m;:?::n) is undefined in such a
case, this does not cause any problems, as in such a case the weight is equally
zero which makes computing the target superfluous. Also note that each of
these problems operate on an input space of dimensionality Dy, and hence,
using the least squares methods introduced in the previous chapter, have ei-
ther complexity O(N K Dy,) for the batch solution or O(K D}) for each step of
the incremental solution. Given that we usually have Dy = 1 in LCS, this is

certainly an appealing property.

When minimising Eq. (6.15) it is essential to consider that the values for 7,
by Eq. (6.4) depend on the current v, of all classifiers. Consequently, when
performing batch learning, it is not sufficient to solve all K least squares prob-
lems only once, as the corresponding targets change with the update values
of V. Thus, again one needs to repeatedly update the estimate V until the
cross-entropy Eq. (6.6) converges.

On the other hand, using recursive least squares to provide an incremental ap-

proximation of V' we need to honour the non-stationarity of the target values

by using the recency-weighted RLS variant. Hence, according to Section 5.3.5
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the update equations take the form

Vpnpr = Ay (6.16)
~ T )
+mp(®n41) Ay O N41) (ln W;) - U/?N¢(5L’N+1)T> ;
Ay, = ATmEve) AL (6.17)

Ano(@nin)d(@ni) Ay

Ak (@n) 4 mk(mNH)¢(33N+1)TA1;1%/¢(5EN+1) ’

—m(a:NH))\_m(mN“)

where the 9,’s and A, 's are initialised to ¥y = 0 and A, = 61 for all k, with
 being a large scalar. In [122], Jordan and Jacobs initially set A = 0.99 and
increased a fixed fraction (0.6) of the remaining distance to 1.0 every 1000 up-
dates. While this seems a sensible approach to start with, future work includes
empirical investigation of how to best set \.

As pointed out in [122], approximating the values of V' by least squares does
not result in the same parameter estimates as when using the IRLS algorithm,
due to the use of least squares rather than maximum likelihood. In fact, the
least squares approach can be seen as an approximation to the maximum like-
lihood solution under the assumption that the residual in Eq. (6.15) in small,
which is equivalent to assuming that the LCS model can fit the underlying re-
gression surface and that the noise is small. Nonetheless, empirical results in
[122] demonstrate that the least squares approach provides good results even
when the residual is large in the early stages of training. In any case, in terms
of complexity it is a very appealing alternative to the IRLS algorithm.

6.2 Alternative Heuristics

While the IRLS algorithm minimises Eq. (6.6), it does not scale well with the
number of classifiers. The least squares approximation, on the other hand,
scales well, but minimises Eq. (6.15) instead of Eq. (6.6), which does not al-
ways give good results, as we will show in Section 6.3. Thus, in this section,
we introduce some heuristic mixing models that scale linearly with the num-
ber of classifiers, just like the least squares approximation, and feature better

performance.
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Before discussing different heuristics, let us define the requirements on g;: to
preserve their probabilistic interpretation, we require g, (x) > 0 for all £ and «,
and ), gr(z) = 1 for all . In addition, we need to honour matching, which
means that if m;(x) = 0, we need to have g,(x) = 0. These requirements are
met if we define

my, () i ()

WO = @) ©19

where {7, : X — R"} is a set of K functions returning positive scalars, that

implicitly rely on the mixing model parameters V. Thus, the mixing model de-
fines a weighted average, where the weights are specified on one hand by the
matching functions, and on the other hand by the functions 7. The heuristics
differ among each other only in how they define the ~;’s.

Note that the generalised softmax function Eq. (6.2) also performs mixing by
weighted average, as it conforms to Eq. (6.18) with ;. (z) = exp(v{ ) and mix-
ing model parameters V' = {v;}. The weights it assigns to each classifier are
determined by the log-linear model exp(v} x), which needs to be trained sepa-
rately, depending on the responsibilities that express the goodness-of-fit of the
classifier models for the different inputs. In contrast, all heuristic models that
we introduce rely on measures that are part of the classifiers’ models and do
not need to be fitted separately. As they do not have any adjustable parame-
ters, they all have V' = ().

6.2.1 Properties of Weighted Averaging Mixing

Let f : X — Rbe given by fr(x) = E(y|a, 6;), that is, the estimator of classifier
k defined by the mean of the conditional distribution of the output given the
input and the classifier parameters. Equally, let f : X — R be the global
model estimator, given by f(x) = E(y|x, §). As by Eq. (4.8) we have p(y|z, §) =
> x 9k(x)p(y|x, 6)), the global estimator is related to the local estimators by

f(z) = /y 0 Y g(@)plle, 0)dy = 3 gu(@) (), (6.19)

and, thus, is also a weighted average of the local estimators. From this follows
that f is bounded from below and above by the lowest and highest estimate of
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the local models, respectively, that is

min fiulx) < f(z) < max fulx), VeeX. (6.20)

In general, we aim at minimising the deviation of the global estimator f from
the target function f that describes the data-generating process. If we measure
this deviation by the difference measure & (f(z) — f(z)), where & is some con-
vex function i : R — R*, mixing by a weighted average allows us to derive an

upper bound on this difference measure:

Theorem 6.2.1. Given the global estimator f:X >R, that is formed by a weighted
averaging of K local estimators fi, - X — Rby f(x) = 3, gr(x)fr(x), such that
gr(x) > 0 for all © and k, and ), gx(x) = 1 for all x, the difference between the
target function f : X — R and the global estimator is bounded from above by

h(f@) - f@) <Y g@h (fil@) - f@). vaex, (62D

where h : R — R* is a convex function. More specifically, we have

(f@) ~ f@) < X ole) (fula) - f@) . vaex, 62

and

fulx) — f(z)|, VeeX. (6.23)

f@) = @) <> aul=)

Proof. For any € X, we have
h(f@) - f@) = n (Z g1(x) fu() - f(w))

= h (Z gu(w) (fil) - f(w))>
k
< Y a@h (fil@) - f(@)).
k
where we have used ), gx(x) = 1, and the inequality is Jensen’s Inequality
(for example, [234]), based on the convexity of h and the weighted average

property of g,. Having proven Eq. (6.21), Egs. (6.22) and (6.23) follow from the
convexity of h(a) = a* and h(a) = |al, respectively. ]
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Therefore, we can minimise the error of the global estimator by assigning high
weights, that is, high values of g;(x), to classifiers whose errors of the local
estimator is small. Observing in Eq. (6.18) that the value of g, (x) is directly
proportional to the value of v;(x), a good heuristic will assign high values to
v () if the error of the local estimator can be expected to be small. The design
of all of our heuristics is based on this intuition.

The probabilistic formulation of the LCS model allows us to derive a further
bound, this time on the variance of the output prediction:

Theorem 6.2.2. Given the density p(y|x, @) for output y given input x and pa-
rameters 6, formed by the K classifier model densities p(y|x, ) by p(ylx, 0y) =
> r 9e(@)p(y|x, Or), such that gi(x) > 0 for all © and k, and ", gx(x) = 1 for all x,
the variance of y is bounded from above by the weighted average of the variance of the
local models for y, that is

var(y|x, 0) ng *var(y|x, 0;) < ng Jvar(y|x, O), Vx e X. (6.24)

Proof. To show the above, we again take the view that each observation was
generated by one and only one classifier, and introduce the indicator variable
I as a conceptual tool that takes the value £ if classifier k£ generated the ob-
servation, giving g;(x) = p(I = k|x), where we are omitting the parameters
of the mixing models implicit in g;. We also use p(y|x, 0;) = p(y|z,I = k) to
denote the model provided by classifier k. Thus, we have p(y|z,0) = >, p(I =
klx)p(y|x,I = k), and, analogously, E(y|x,8) = >, p(I = klz)E(y|x, = k).
However, similarly to the basic relation var(aX +bY) = a*var(X) +b*var(Y) +
2abcov(X,Y), we have for the variance

var(y|x, 0) Zp *var(ylz, I = k) +0, (6.25)

where the covariance terms are zero as the classifier models are conditionally
independent given /. This confirms the equality in Eq. (6.24). The inequality
is justified by observing that the variance is non-negative, and 0 < g;(x) < 1
and so gi.(z)* < gi(@). [

Here, we not only provide a bound on the variance, but also an exact expres-
sion for the variance of the combined prediction. This gives us a different view
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on the design criteria for possible heuristics: we want to assign weights that
are in some way inversely proportional to the classifier prediction variance.
As the prediction variance indicates the prediction error we can expect, this
design criterion conforms to the one we have derived from the statement of
Theorem 6.2.1.

Neither Theorem 6.2.1 nor Theorem 6.2.2 assume that the local models are
linear. In fact, they apply in any case when a global model results from a
weighted average of a set of local models. Thus, they can also be used in LCS
when the classifier models are non-linear, such as in [157, 177].

Example 6.2.1 (Mean and Variance of a Mixture of Gaussians). Con-
sider 3 classifiers that, for some input x provide the predictions
p(ylz, 01) = N(y[0.2,0.1%), p(y|x, 82) = N(y|0.5,0.05%), and p(y|z, 03) =
N (y|0.7,0.2%). Using the mixing weights inversely proportional to their
variance, that is g (z) = 0.20, g2(x) = 0.76, and g3(x) = 0.04, our global
estimator f(x), determined by Eq. (6.19), results in f(xz) = 0.448. Let us
assume that the target function value is given by f(x) = 0.5, resulting in
the squared prediction error (f(x) — f(x))? & 0.002704. This error is cor-
rectly upper-bounded by Eq. (6.22), that results in (f(x) — f(x))? < 0.0196.
We can demonstrate the correctness of Eq. (6.24) by taking 10° sam-
ples from the predictive distributions of the different classifiers, result-
ing in the sample vectors s, s, and s3, each of size 10%. Thus, we can
produce a sample vector of the global prediction by s = >, gi(x)ss,
which has the sample variance 0.00190. This conforms to — and thus
empirically validates — the variance after Eq. (6.24), which results in
var(y|z, 8) = 0.00191 < 0.0055.

6.2.2 Inverse Variance

The unbiased noise variance estimate of classifier  is, after Eq. (5.13), given by

N
= (= D) Y (@) (@, — ya)” (6.26)
n=1



and is therefore approximately the mean sum of squared prediction errors.
If this estimate is small, the squared prediction error is, on average, known
to be small and we can expect the predictions to have a low error. Hence,
we define inverse variance mixing by using mixing weights that are inversely
proportional to the noise variance estimates of the according classifiers. More
formally, we use Eq. (6.18) with v, (x) = 7, for all . In the previous chapter
we have shown how to estimate the noise variance of a classifier by batch or

incremental learning.

6.2.3 Prediction Confidence

If the classifier model is probabilistic, we can specify a probabilistic density for
its predictions. Knowing this density allows us to specify an interval on the
output into which 95% of the observations are likely to fall, known as the 95%
confidence interval. The width of this interval therefore gives us a measure
of how certain we are about the prediction made by this classifier. This is the
underlying idea of mixing by prediction confidence.

More formally, the predictive density of the linear classifier model is given for
classifier k by marginalising p(y, Ox|x) = p(y|x, 0)p(0;) over the parameters
0., and results in

plyle) =N (y\ti)fa:, (2" A e+ 1)) , (6.27)

as already introduced in Section 5.3.6. The 95% confidence interval — indeed
that of any percentage — is directly proportional to the standard deviation of
this density, which is the square root of its variance. Thus, to assign higher
weights to classifiers with a higher confidence prediction, that is, a prediction

with a smaller confidence interval, we use
A—1/. T A —1 —1/2
() = (7, (@A e + 1)) . (6.28)

Compared to mixing by inverse variance, this measure additionally takes the
uncertainty of the weight vector estimate into account and is consequently de-
pendent on the input. Additionally, it relies on the assumption of Gaussian
noise and a Gaussian weight vector model, which might not hold — in partic-
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ular when the number of observations that the classifier is trained on is small.
Therefore, despite using more information than mixing by inverse variance,

we cannot guarantee its better performance.

6.2.4 Maximum Prediction Confidence

The global model density is by Eq. (4.8) given by a mixture of the densities
of the local models. As for the local models, we can specify a confidence in-
terval on the global model by looking at the spread of its density. In order to
maximise the global prediction confidence we want to minimise the spread of
the global prediction. As we apply mixing by weighted average, the spread of
the global density is bounded from below and above by the smallest and the
largest spread of the contributing classifiers. Thus, in order to minimise the
spread of the global prediction, we only consider the predictive density of the
classifier with the smallest predictive spread.

Using this concept, mixing to maximise the prediction confidence is formalised
by setting v, (x) to 1 only for the classifier with the lowest prediction spread,
that is,

(6.29)

1 ifk= argmax, mk(m) (%I;l(mTAlzl.’L’ + 1))_1/2 )
() = -
0 otherwise.

Note the addition of my(x) to ensure that we pick the matching highest confi-

dence classifier.

As for mixing by confidence, using only the classifier with the highest predic-
tion confidence relies on several assumptions that might by violated. Thus, we
expect maximum confidence mixing to deliver worse performance than mix-
ing by inverse variance in cases where these assumptions are violated. In such
cases it might even fare worse than mixing by confidence, as it relies on these

assumptions more heavily.
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6.2.5 XCS

While none of the approaches discussed before are currently used in any
LCS, we will cast — for the sake of comparison — the way in which XCS(F)
performs mixing into the same formal framework. Mixing in XCS(F) has
not changed since it was firstly specified in [240], despite its multiple other
changes and improvements. Additionally, the mixing model in XCS(F) is
closely linked to the fitness of a classifier as used by the genetic algorithm, and
thus — as we will see — is overly complex. Due to the algorithmic descrip-
tion of an incremental method, the aims of XCS(F) are usually not explicitly
specified. Nonetheless, all mixing parameters in XCS(F) are updated by the
LMS method, for which we have already discussed the formally equivalent,
but more intuitive, batch approach in the previous chapter.

Recall, that the LMS algorithm for single-dimensional constant inputs is speci-
tied by Eq. (5.25) to update some scalar estimate w of an output y after observ-
ing the (N + 1)th output by

Wn41 = WN + ’YN+1(3/N+1 —Wy), (6.30)

where vy, is some scalar step size. As previously shown in Example 5.2.1,
this update equation aims at minimising a sum of squared errors Eq. (5.5),
whose minimum is achieved by

N
W=c ! m(Ty)Yn, (6.31)
k
n=1

given all N observations. Hence, Eq. (6.31) is the batch formulation for the
solution that the incremental Eq. (6.30) approximates.

Applying this relation to the XCS update equations for the mixing parameters,
the mixing model employed by XCS(F) can be described as follows: The error
e, of classifier £ in XCS(F) is the mean absolute prediction error of its local

models, and is given by

N

€ = c,;l Z m(x,) ‘yn — 'Lb,fa:n ) (6.32)

n=1
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The classifier’s accuracy is some inverse function x(e;) of the classifier error.
This function was initially given by an exponential [240], but was later [242, 57]

redefined to
1 if € < €,

k(€) = —v _ (6.33)
o (é) otherwise,

where the constant scalar ¢, is known as the minimum error, the constant « is a
scaling factor, and the constant v is a mixing power factor [57]. The accuracy is
constantly 1 up to the error ¢, and then drops off steeply, with the shape of the
drop determined by « and v. The relative accuracy is a classifier’s accuracy for a
single input normalised by the sum of the accuracies of all classifiers matching
that input. The fitness is the relative accuracy of a classifier averaged over all
inputs that it matches, that is
g~ (@) ()

n=1 Zszl m(,)k(€;)

(6.34)

This fitness is the measure of a classifier’s prediction quality, and hence v, is
input-independently given by v, (x) = Fj.

Note that the magnitude of a relative accuracy depends on both the error of
a classifier, and on the error of the classifiers that match the same input. This
makes the fitness of classifier k£ dependent on inputs that are matched by classi-
fiers that share inputs with classifier k, but are not necessarily matched by this
classifier. This might be a good measure for the fitness of a classifier (where
prediction quality is not all that counts), but we do not expect it to perform
overly well as a measure of the prediction quality of a classifier. This expecta-

tion is confirmed in the following experiments.

6.3 Empirical Comparison

In order to evaluate how well the different heuristics perform with respect to
our aim of maximising Eq. (6.1) we perform a set of experiments that com-
pare the different methods when applied to four regression tasks. The experi-
ments show that i) mixing by inverse variance outperforms the other heuristic
methods, ii) also performs better than the least squares approximation, and iii)

142



mixing as done in XCS(F) performs worse than all other methods.

In all experiments we firstly create a set of K classifiers such that the number of
classifiers matching each input is about the same for all inputs, and train these
classifiers on all available observations by batch learning. As the next step,
the different mixing models are applied to the previously trained set of clas-
sifiers, and their performance is compared based on the likelihood Eq. (6.1).
This setup was chosen for several reasons: firstly, mixing is only required if
several classifiers match the same input, which is provided by the generated
set of classifiers. Secondly, the classifiers are trained before the mixing models
are applied, as we want to only compare the mixing models based on the same
set of classifiers, and not how training of classifiers and mixing them interacts.
Finally, we use the likelihood measure to compare the performance of the mix-
ing models, rather than some form of squared error or similar, as our aim in
this chapter is to discuss methods that maximise this likelihood, rather than

any other measure.

6.3.1 Experimental Design

Function Definition
Blocks flx) = Y hiK(x—ux;), K(z) = (14 sgn(z))/2,
(z;) = (0.1,0.13,0.15,0.23,0.25,0.40, 0.4, 0.65,
0.76,0.78,0.81),

(h)) = (4,-5,3,—4,5,-4.2,2.1,4.3,-3.1,5.1, —4.2).
Bumps f) = YhiK((@—z)/w;),  K(x) =0+
(xj) =  TBlocks,
(h;) = (4,5,3,4,5,4.2,2.1,4.3,3.1,5.1,4.2),
(w;) = (0.005,0.005,0.006,0.01,0.01,
0.03,0.01,0.01, 0.005, 0.008, 0.005).
Doppler flx) = (z(1—2)"%sin(27(1 4+ 0.05)/(z + 0.05))
Heavisine f(z) = 4sindrzr —sgn(z — 0.3) —sgn(0.72 — z)

Table 6.1: The set of functions used for evaluating the performance of the dif-
ferent mixing models. The functions are taken from [72], and have been pre-
viously used in an LCS-related study in [23]. The functions are samples over
the range [0, 1] and their outputs are normalised to —0.5 < f(z) < 0.5.

Regression Tasks. The mixing models are evaluated on four regression tasks
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f : R — R, given in Table 6.1. The input range is [0, 1], and the output is
shifted and scaled such that —0.5 < f(z) < 0.5. 1000 observations (i, f(i,))

are taken from the target function f at regular intervals, from 0 to 1, to give

the output vector y = (f(i1), ..., f(i1000))"-

classifiers is given by X = (1,...,1)%, and for classifiers that model straight

The input matrix for averaging
lines by a 1000 x 2 matrix X with the nth row given by (1, ¢,,).

Classifier Generation and Training. For each experimental run K classifiers
are created, where K depends on the experiment. Each classifier matches an
interval [lx, ux] of the input space, that is my(i,,) = 11if I, < 7, < uy, and
mg(in) = 0 otherwise. Even coverage such that about an equal number of clas-
sifiers matches each input is achieved by splitting the input space into 1000
bins, and localising the classifiers one by one in a “Tetris”-style way: the av-
erage width in bins of the matched interval of a classifier needs to be 1000¢/ K
such that on average c classifiers match each bin. The interval width of a new
classifier is sampled from B(1000, (1000¢/K)/1000), where B(n, p) is a binomial
distribution for n trials and a success probability of p. The minimal width is
limited from below by 3, such that each classifier is at least trained on 3 obser-
vations. The new classifier is then localised such that the number of classifiers
that match the same bins is minimal. If several such locations are possible, one
is chosen at random by sampling from a uniform distribution. Having posi-
tioned all K classifier, they are trained by batch learning using Egs. (5.9) and
(5.13). The number of classifiers that match each input is in all experiments set
toc=3.

Mixing Models. We compare the performance of the IRLS algorithm (IRLS)
and its least-squares approximation (LS) on the generalised softmax function
with ¢(x) = 1 for all z, the inverse variance (InvVar) heuristics, the mixing by
confidence (Conf) and mixing by maximum confidence (MaxConf) heuristics,
and mixing by XCS(F) (XCS). Additionally, when classifiers model straight
lines, we use the IRLS algorithm (IRLSf) and its least-squares approximation
(LSf) with a transfer function ¢(x) = (1,i,)” to allow for an additional soft-
linear partitioning beyond the realm of matching (see the discussion in Sec-
tion 4.3.5 for more information). Training by the IRLS algorithm is performed
incrementally according to Section 6.1.1, until the change in cross-entropy
Eq. (6.6) between two iterations is smaller than 0.1%. The least-squares ap-
proximation is performed repeatedly in batches rather than as described in
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Section 6.1.2, by using Eq. (5.9) to find the v,’s that minimise Eq. (6.15). Con-
vergence is assumed when the change in Eq. (6.6) between two batch updates
is smaller than 0.05% (this value is smaller than for the IRLS algorithm, as the
least squares approximation takes smaller steps). The heuristic mixing models
do not require any separate training and are applied such as described in Sec-
tion 6.2. For XCS we use the standard setting ¢y = 0.01, « = 0.1, and v = 5, as
recommended in [57].

Evaluating the Performance. Having generated and trained a set of classifiers,
each mixing model is trained with the same set to make their performance di-
rectly comparable. It is measured by evaluating Eq. (6.1), where p(y,|x,, ) is
computed by Eq. (5.3), using the same observations that the classifiers where
trained on, and the g;’s are provided by the different mixing models. As the
IRLS algorithm maximises the data likelihood Eq. (6.1) when using the gener-
alised softmax function as the mixing model, we use it as a benchmark, and re-
port the likelihoods of the other mixing model as a fraction of the one reached
by the IRLS algorithm with ¢(x) = 1.

Statistical Analysis. To determine if the performance of the different mixing
models differ significantly, we use a two-way analysis of variances (ANOVA),
with the first factor being the type of mixing model (IRLS, IRLSf, LS, LSf,
InvVar, Conf, MaxConf, XCS) and the second factor being the combination
of regression task and type of classifier (Blocks, Bumps, Doppler, Heavisine,
either with averaging classifiers, or classifiers that model straight lines). The
direction of the difference is determined by Tukey’s HSD post-hoc test. As the
optimal likelihood as measured by IRLS varies strongly with different sets of
classifiers, we measure the performance of the methods as a fraction of the
optimal likelihood rather than the likelihood itself.

6.3.2 Results

In our first experiment, we have compared the performance of all mixing
model when K = 50 classifiers are used. For all functions and both averag-
ing classifiers and classifiers that model straight lines we have performed 50
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Function Likelihood of Mixing Model as Fraction of IRLS
IRLS IRLSf LS LSf | InvVar  Conf MaxConf  XCS

Blocks 1.00000 0.99473 0.99991 0.99988  0.99973  0.99877
Bumps 1.00000 0.94930 0.98442 0.97740  0.96367  0.94678
Doppler 1.00000 0.94930 0.98442 0.97740  0.96367  0.94678
Heavisine 1.00000 0.96289 0.96697 0.95123  0.95864  0.95807
Blocks lin 1.00000 1.00014 0.99141 0.99559 | 0.99955 0.99929  0.99956  0.99722
Bumps lin 1.00000 0.99720 0.94596 0.94870 | 0.98425 0.97494 0.97797  0.94107
Doppler lin 1.00000 0.99856 0.94827 0.98628 | 0.98723 0.97818  0.98172  0.94395
Heavisine lin  1.00000 0.99523 0.98480 0.96854 | 0.98448 0.97347  0.99005  0.95739

Table 6.2: The mean likelihoods of the different mixing models, as a fraction of
the mean likelihood of IRLS, averaged over 50 experimental runs per function.
A lin added to the function name indicates the use of classifiers that model
straight lines rather than averaging classifiers. For averaging classifiers, IRLS
and IRLSf, and LS and LSf are equivalent, and so their results are combined.
The results written in bold indicate that there is no significant difference to
the best-performing mixing model for this function. Those results that are sig-
nificantly worse than the best mixing model but not significantly worse than
the best model in their group are written in italics. Statistical significance was
determined by Tukey’s HSD post-hoc test at the 0.01 level.

experimental runs per function®. To give the reader an intuitive idea how mix-
ing is performed, Figures 6.1 to 6.4 show the predictions of the different meth-
ods of a single run when using classifiers that model straight lines. The mean
likelihoods over these 50 runs as a fraction of the mean likelihood of the IRLS
method are shown in Table 6.2. An ANOVA reveals that there is a significant
performance difference between the different methods (F(7,2744) = 43.0688,
p = 0.0). Comparing the means reveals that the method that performs best is
IRLS, followed by IRLSf, InvVar, MaxConf, Conf, LSf, LS, and last, XCS. The
p-values of Tukey’s HSD post-hoc test are given in Table 6.3. They show that
the performance difference between all methods is significant at the 0.01 level,

except for the ones that are written in italics.

To see if the number of classifiers influence the results we have performed
further experiments with K € {20, 100,400}. These experiments gave qualita-
tively similar results, which is why we do not report them explicitly.

Tn our experience, performing the experiments with fewer runs provided insufficient data
to permit significance tests to reliably detect the differences.
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IRLS IRLSf InvVar MaxConf Conf LS LS XCS

XCS 0.0000 0.0000 0.0000 0.0000  0.0000 0.0283 0.5131 -
LS 0.0000  0.0000 0.0000 0.0000  0.0000 0.8574 -

LSt 0.0000 0.0000 0.0000 0.0095  0.0150 -

Conf 0.0000 0.0000 0.1044 0.9999 -

MaxConf 0.0000 0.0000 0.1445 -
InvVar 0.0001  0.0002 -

IRLSf 0.8657 -

IRLS -

Table 6.3: p-values for Tukey’s HSD post-hoc comparison of the different
mixing methods. The performance values were gathered in 50 experimental
runs per function, using both averaging classifiers and classifiers that model
straight lines. The p-values reported are for a post-doc comparison only con-
sidering the factor that determines the mixing method. The methods are or-
dered by performance, with the leftmost and bottom method being the best-
performing one. The p-values in italics indicate that no significant difference
between the methods at the 0.01 level was detected.

6.3.3 Discussion

As can be seen from the results, IRLS is in almost all cases significantly better,
and in no case significantly worse than any other methods that were applied.
IRLSf uses more information than IRLS to mix the classifier predictions, and
thus can be expected to perform better. As can be seen from Table 6.2, how-
ever, it frequently features worse performance, though not significantly. This
worse performance can be attributed to our stopping criterion that is based on
the relative change of the likelihood between two successive iterations. We ob-
served this likelihood to increase more slowly when using IRLSf, which leads
the stopping criterion to abort learning earlier for IRLSf than IRLS, causing it
to perform worse.

InvVar is the best method of the introduced heuristics and constantly outper-
forms LS and LSf. Even though it does not perform significantly better than
Conf and MaxConf, its mean is higher and the method relies on less assump-
tions. Thus, it should be the preferred method amongst the heuristics that

were introduced.

As expected, XCS features a worse performance than all other methods, which
we attribute to the fact that the performance measure of the local model is
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Prediction of Blocks function using different mixing models
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Figure 6.1: Resulting predictions of a single run, using different mixing models
for the Blocks function. See the text for an explanation of the experimental
setup.

influenced by the performance of the local models that match the same in-
puts. This might introduce some smoothing, but it remains questionable if
such smoothing is ever advantageous. This doubt is justified by observing
that XCS performs worst even on the smoothest function in the test set, which

is the Heavisine function.

Overall, we have empirically confirmed that IRLS performs best. However,
due to its high complexity and bad scaling properties, it is not recommendable
for applications that require the use of a large number of classifiers. While the
least squares approximation could be used as an alternative in such cases, our
experiments suggest that InvVar provides us with better results. Additionally,
it is easier to implement than LS and LSf, and requires no incremental update.
Thus, it should be the preferred method to use.
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Prediction of Bumps function using different mixing models
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Figure 6.2: Resulting predictions of a single run, using different mixing models
for the Bumps function. See the text for an explanation of the experimental
setup.

6.4 Relation to our Previously Published Work

In a previous study [82], we have dealt with a similar problem, but with the
motivation of minimising the mean squared error of the global output predic-
tion rather than relying on a probabilistic model and maximising the likeli-
hood. Thus, we have defined the mixing problem as finding a mixing model
that minimises
N 2

> (fl@n) — () (6.35)

n=1
where f is the target function, and f(z,) is the global output prediction for
input x,,. We can derive this problem statement with a model that assumes
the relation between f and f to be f(z) = f(z) + ¢, where ¢ ~ N(0,0?) is a
zero-mean constant variance Gaussian that represents the random noise. The
maximum likelihood estimate for the parameters of f is found by maximising
S N (f(x,)|f(2,), 0%), which is equivalent to minimising Eq. (6.35).

In the LCS model introduced in Chapter 4, on the other hand, we assume
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Prediction of Doppler function using different mixing models
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Figure 6.3: Resulting predictions of a single run, using different mixing models
for the Doppler function. See the text for an explanation of the experimental
setup.

zero-mean constant variance Gaussian noise on each local model p(y|x, 6y)
rather than the global model p(y|z, €). These models are related by p(y|x, 0) =
>k 9e(x)p(y|z, 0;), and as g (x) might change with «, the noise variance of the
global model is very likely not constant. As a result, the maximum likelihood
estimate for the LCS model as introduced in Chapter 4 does not conform to
minimising Eq. (6.35).

Therefore, while the study in [82] is valid from the purely functional point-
of-view of minimising the squared global prediction error, it is not compatible
with the assumptions that are the basis of this work. Thus, the additional linear
mixing model that was introduced in [82] and is directly based on Eq. (6.35)
does not apply here, and was therefore skipped. Another difference between
[82] and the work presented in this chapter is that [82] lacks the probabilistic
basis, and does not consider the generalised softmax function as a possible
mixing model. The heuristics, on the other hand, are the same as in [82].

The results of the empirical study in [82], on the other hand, are qualitatively
the same as the ones we have presented here, as they show that the InvVar
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Prediction of Heavisine function using different mixing models
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Figure 6.4: Resulting predictions of a single run, using different mixing models
for the Heavisine function. See the text for an explanation of the experimental
setup.

heuristic features competitive performance that is usually better than that of
Conf and MaxConf, and always outperforms XCS. That this same trend is ob-
servable when maximising the likelihood rather than minimising the mean
squared error demonstrates that the developed probabilistic model structure
is compatible — despite different underlying assumptions — to the functional
structure of LCS and the assumption of a constant noise variance at the global
model structure level.

6.5 Summary and Outlook

In this chapter we have approached an essential LCS component that is largely
ignored by LCS research: how to combine a set of localised models, provided
by the classifiers, to provide a global prediction. We have defined the aim
of this “mixing problem” by maximising the data likelihood Eq (6.1) of the
previously introduced LCS model.
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As we have shown, the IRLS algorithm is a possible approach to finding
the globally optimal mixing parameters V' to the generalised softmax mixing
model, but suffers from high complexity, and can therefore act as nothing more
than a benchmark to compare other approaches to. The least squares approx-
imation, on the other hand, scales well but lacks the desired performance, as

shown in experiments.

As an alternative we have introduced heuristics that are inspired by formal
properties of mixing by weighted average. Not only do they scale well with the
number of classifiers as they do not have any adjustable parameters other than
the classifier parameters, but they also perform better than mixing by the least
squares approximation. In particular, mixing by inverse variance makes the
least assumptions of the introduced heuristics, and is also the best-performing
one (though not significantly) and therefore our recommended choice.

The mixing model in XCS was never designed to maximise the data likelihood,
and therefore our comparison to other heuristics might not seem completely
fair. However, we have also shown in [82] that it also performs worst with
respect to the mean squared error measure, and thus is not a good choice for a
mixing model. Rather, mixing by inverse variance should be used as a drop-
in replacement in XCS, but this recommendation is more strongly based on
previous experiments in [82] (see Section 6.4) rather than the empirical results
presented here.

With this chapter we complete our discussion of how to find the LCS model
parameters 6 by the principle of maximum likelihood for a fixed model struc-
ture M, and continue by providing a framework that lets us in addition find
a good model structure, that is, a good set of classifiers. As we will see, the
approach we take does not allow us to deal with identifying good model struc-
tures only at the model structure level M, but requires us to reformulate the
probabilistic model itself to avoid overfitting even when finding the model
parameters for a fixed model structure. With it, we deviate from the principle
of maximum likelihood, which, however, does not completely invalidate the
work that was presented in the last two chapters. Rather, we will discover that
the new update equations for parameter learning are up to small modifica-
tions similar to the ones that provide use with maximum likelihood estimates.
Investigating these differences provide us with the valuable insight of how
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exactly model selection infiltrates the parameter learning process.
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Chapter 7

The Optimal Set of Classifiers

In this chapter we deal with the question of what it means for a set of classifiers
to be optimal in the light of the available data, and how to provide a formal so-
lution to this problem. As such, we tackle the core task of LCS, whose ultimate
aim is it to find such a set.

Up until now there is no general definition of what we want to learn in LCS.
Rather, there is an intuitive understanding of what a desirable set of classifiers
should look like, and LCS algorithms are designed around such an under-
standing. However, having LCS that perform according to intuition in simple
problems where the desired solution is known does not mean that they will do
so in more complex tasks. Furthermore, how do we know that our intuition

does not betray us?

While there are a small number of studies on what LCS want to learn and how
that can be measured [131, 134, 136], they concentrate exclusively on the case
where the input is encoded as a binary string, and even then they list several
possible approaches rather than providing a single conclusive answer. How-
ever, considering the complexity of the problem at hand, it is understandable
that approaching it is anything but trivial. The solution structure is strongly
dependent on the chosen representation, but what is the best representation?
Do we want the classifiers to partition the input space such that each of them
independently provides a part of the solution, or do we expect them to cooper-
ate? Should we prefer default hierarchies, where predictions of more general
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classifiers, that is, classifiers that match larger areas of the input space, are
overridden by more specific ones, in a tree-like structure? Are the predictions
of the classifiers supposed to be completely accurate, or do we allow for some
error? And these are just a few questions to consider.

Rather than listing all possible questions and going through them one by one,
we approach the problem from another side, based on how we have charac-
terised LCS in Chapter 3: a fixed set of classifiers, that is, a fixed model struc-
ture M, provides a certain hypothesis about the data-generating process that
generated the observed data D. Thus, “What do LCS want to learn?” becomes
“Which model structure M explains the available data D best?”. But, what ex-
actly does “best” mean? Fortunately, evaluating the suitability of a model with
respect to the available data is a common task in machine learning, known as
model selection. Hence, we have reduced the complex problem of defining the
optimal set of classifiers to identifying a suitable model, and to applying it.
This is what we will do for the rest of this chapter.

Firstly, we will spend a bit more time on the question of optimality, and, in
general, which model properties are desirable. We decide for using Bayesian
model selection to identify good sets of classifiers, and therefore will refor-
mulate the LCS model as a fully Bayesian model. Subsequently, in a longer,
more technical section, we apply variational Bayesian inference to find closed-
form approximations to posterior distributions. As a result, we have a closed-
form expression for the quality of a particular model structure that allows us
to compare the suitability of different LCS model structures to explain the
available data. As such, we provide the first general (that is, representation-
independent) definition of optimality for a set of classifiers, and with it an
answer to the question what we want to learn with LCS.

7.1 What is Optimal?

Let us consider two extremes: N classifiers, such that each observation is
matched by exactly one classifier, or a single classifier that matches all inputs.
In the first case, each classifier replicates its associated observation completely
accurately, and so the whole set of classifiers is a completely accurate repre-
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sentation of the data; it has an optimal goodness-of-fit. Methods that minimise
the empirical risk, such as maximum likelihood or squared error minimisation,
would evaluate such a set as being optimal. Nonetheless, it does not allow us
to find any generalisation in noisy data, as it does not differentiate between
noise and the pattern in the data. In other words, having one classifier per ob-
servation does not provide us with any additional information than the data
itself, and thus is not a desired solution.

Using a single classifier that matches all inputs, on the other hand, is the sim-
plest LCS model structure, but has a very low expressive power. That is, it can
only express very simple pattern in the data, and will very likely have a bad
goodness-of-fit. Thus, finding a good set of classifiers involves balancing the
goodness-of-fit of this set and its complexity, which determines its expressive
power. This tradeoff must be somehow expressed in each method that avoids

overfitting.

7.1.1 Current LCS Approaches

XCS has the ability to find a set of classifiers that generalises over the available
data [240, 241], and so has YCS [33] and CCS [154, 155]. This means that they
do not simply minimise the overall model error but have some built-in model

selection capability, however crude it might be.

Let us first consider XCS: its ability to generalise is brought about by a combi-
nation of the accuracy-definition of a classifier and the operation of its genetic
algorithm. A classifier is considered as being accurate if its mean absolute
prediction error over all matched observations is below the minimum error!
threshold €. The genetic algorithm provides accurate classifiers that match
larger areas of the input space with more reproductive opportunity. However,
overly general classifiers, that is, classifiers that match overly large areas of
the input space, will feature a mean absolute error that is larger than €,, and
are not accurate anymore. Thus, the genetic algorithm “pushes” towards more

general classifiers, but only until they reach ¢, [53]. In combination with the

1The term minimum error for ey is a misnomer, as it specifies the maximum error that clas-
sifier can have to still be accurate. Thus, ¢y should be called the maximum admissible error or
similar.
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competition between classifiers that match the same input, XCS can be said to
aim at finding the smallest non-overlapping set of accurate classifiers. From
this perspective we could define an optimal set of classifiers that is dependent
on ¢p. However, such a definition is not very appealing, as i) it is based on an
algorithm, rather than having an algorithm that is based on the definition; ii) it
is based solely on intuition; iii) the best set of classifiers is fully determined by
the setting of ¢, that might depend on the task at hand; and iv) ¢ is the same
for the whole input space, and so XCS cannot cope with tasks where the noise
varies for different areas of the input space.

YCS [33] was developed by Bull as a simplified version of XCS such that its
classifier dynamics can be modelled by difference equations. While it still mea-
sures the mean absolute prediction error of each classifier, it defines the fitness
as being inversely proportional to this error, rather than using any accuracy
concept based on some error threshold. Additionally, its genetic algorithm
differs from the one used in XCS in that it selects classifiers from the whole set
rather than only from the set that matches the current input. Having a fitness
that is inverse to the error will make the genetic algorithm assign a higher re-
productive opportunity to low-error classifiers that match many inputs. How
low this error has to be depends on the error of other competing classifiers in
the set, and on the maximum number of classifiers allowed, as that number
determines the number of classifiers that the genetic algorithm aims at assign-
ing to each input. Due to these dependencies it is difficult to define which set
of classifiers YCS aims at finding, particularly as it depends on the dynamics
of the genetic algorithm and the interplay of several system parameters. Its
pressure towards more general classifiers comes from those classifiers match-
ing more inputs and thus updating their error estimates more quickly, which
gives them an initial higher fitness than more specific classifiers. However, this
pressure is implicit and weaker than in XCS, which is easily seen in Figure 1(a)
of [33], where general and specific, but equally accurate, classifiers peacefully
and stably co-exist in the population. We can only state that it supports clas-
sifiers that match larger areas of the input space, but only up until their errors
get too large when compared to other classifiers in the set.

CCS [154, 155], in contrast, has a very clear definition of what types of classi-

fiers win the competition in a classification task: it aims at maximally general

and maximally accurate classifiers by combining a generality measures, given
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by the proportion of overall examples correctly classified, and an error mea-
sures that is inversely proportional to the number of correct positive classifica-
tions over all classification attempts of a rule?. The tradeoff between generality
and error is handled by a constant v that needs to be tuned. Thus, as in XCS, it
is dependent on a system parameter that is to be set by the user. Additionally,
in its current form, CCS aims at evolving rules that are completely accurate,
and is thus unable to cope with noisy data [154, 155]. The set of classifiers
it aims for can be described as the smallest set of classifiers that has the best
tradeoff between error and generality, as controlled by the parameter .

7.1.2 Model Selection

Due to the shortcomings of the previously discussed LCS, we will not con-
sider them in our definition of the optimal set of classifiers, but rather will use
existing concepts from current model selection methods. Even though most of
the model selection criteria have different philosophical background, they all
result in the principle of minimising a combination of the model error and a
measure of the model complexity. To provide good model selection it is essen-
tial to use a good model complexity measure, and it has been shown in [126]
that, generally, methods that consider the data when judging the model com-
plexity outperform methods that do not. Furthermore, it is also of advantage
to use the full training data rather than an independent test set [13].

Bayesian model selection meets these requirements and has additionally al-
ready been applied to the Mixtures-of-Expert model [230, 20, 219]. This makes
it an obvious choice as a model selection criterion for LCS. We will provide a
short discussion of alternative model selection criteria that might be applicable
to LCS in Section 7.5, later in this chapter.

2In [154, 155], the generality measure is called the accuracy, and the ratio of positive correct
classifications over the total number of classification attempts is the error, despite it being some
inverse measure of the error.
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7.1.3 Bayesian Model Selection

Given a model structure M and the data D, Bayesian model selection is based
on finding the probability density of the model structure given the data by
Bayes’ rule

p(M|D) o< p(DIM)p(M), (7.1)

where p(M) is the prior over the set of possible model structures. The “best”
model structure given the data is the one with the highest probability density
p(M|D).

The data-dependent term p(D|M) is a likelihood known as the evidence for
model structure M, and is for a parametric model with parameters 6 evaluated
by
p(DIM) = [ p(Dl6. Myp(8 M), 72)
0

where p(D|6, M) is the data likelihood for a given model structure M, and
p(0|M) are the parameter priors given the same model structure. Thus, in
order to perform Bayesian model selection, one needs to have a prior over
the model structure space {M}, a prior over the parameters given a model
structure, and an efficient way of computing the model evidence Eq. (7.2).

As we would expect from a good model selection method, an implicit property
of Bayesian model selection is that it penalises overly complex models [160].
This can be intuitively explained as follows: probability distributions that are
more widely spread generally have lower peaks as the area underneath their
density function is always 1. While simple model structures only have a lim-
ited capability of expressing data sets, more complex model structures are able
to express a wider range of different data sets. Thus, their prior distribution
will be more widely spread. As a consequence, conditioning a simple model
structure on some data that it can express will cause its distribution to have a
larger peak than a more complex model structure than is also able to express
this data. This shows that, in cases where a simple model structure is able
to explain the same data as a more complex model structure, Bayesian model
selection will prefer the simpler model structure.
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7.1.4 Applying Bayesian Model Selection to
Finding the Best Set of Classifiers

Applied to LCS, the model structure is, as previously described, defined by
the number of classifiers K" and their matching functions M = {m; : X —
0,1]}, giving M = {K, M }. In order to find the best set of classifiers, we need
to maximise its probability density with respect to the data Eq.(7.1), which is

equivalent to maximising its logarithm
Inp(M|D) = Inp(D|M) + Inp(M) + const., (7.3)

where the constant term captures the normalising constant and can be ignored
when comparing the different model structures, as it is shared between them.

Evaluating the log-evidence In p(D| M) in Eq. (7.3) requires us to firstly specify
a parameter prior p(6| M), and then to evaluate Eq. (7.2) to get the evidence of
M. Unfortunately, the LCS model described in Chapter 4 is not fully Bayesian
and needs to be reformulated before we can evaluate the evidence. Addition-
ally, the resulting probabilistic model structure does not provide a closed-form
solution to Eq. (7.2). Thus, the rest of this chapter is devoted to i) introducing
a fully Bayesian LCS model, and ii) applying an approximation method called
Variational Bayesian inference that gives us a closed-form expression for the ev-
idence. Before we do so, let us discuss the prior p(M) on the model structure
itself, and why the requirement of specifying parameter and model structure
priors is not an inherit weakness of the method.

7.1.5 The Model Structure Prior p(M)

Specifying the prior for p(M) lets us express our belief about which model
structures are best at representing the data, prior to knowledge of the data.
Recall that M = {M, K} and thus we can decompose p(M) into p(M) =
p(M|K)p(K). Our belief about the number of classifiers K is that this number
is certainly always finite, and thus we need to have p(K) — 0 with K — oo.
The beliefs about the set of matching functions of M given some K is less
clear. Let us only note that M contains K matching functions such that the set
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of possible M grows exponentially with K.

The question of how to best specify p(M), and if there even is a “best” prior
on M, will be left open as a topic of further research. For now, we will for
illustrative purposes use p(M) x 1/K!, or

Inp(M) = —In K! + const. (7.4)

This prior can be interpreted as the prior p(K) = (e — 1)7'1/K! on the number
of classifiers, where e = exp(1), and a uniform p(M | K) that is absorbed by the
constant term. Such a prior satisfies p(X) — 0 for K — oo and expresses that
we expect the number of classifiers in the model to be small®.

7.1.6 The Myth of No Prior Assumptions

A prior in the Bayesian sense is specified by a prior probability distribution
and expresses what is known about a random variable in the absence of some
evidence. For parametric models, the prior usually expresses what we expect
the model parameters to be, in the absence of any observations. As such, it
is part of the assumptions that we make about the data-generating process.
Combining the information of the prior and the data gives us the posterior.

Having the need to specify prior distributions could be considered as a weak-
ness of Bayesian model selection, or even Bayesian statistics. Similarly, it could
also be seen as a weakness of our approach to define the best set of classifiers.
This view is justified by the idea that there exist other methods that do not
make any prior assumptions. But is this really the case?

Let us investigate the class of linear models as we have described them in
Chapter 5. Due to linking the recursive least squares algorithm to ridge re-
gression in Section 5.3.5 and the Kalman filter in Section 5.3.6, we have shown

3As pointed out by Dr. Dan Richardson, University of Bath, the prior p(K) o 1/K! has
E(K) < 2 and thus expresses the belief that the number of classifiers is expected to be on
average less than 2. He proposed the alternative prior p(K) = exp(—V)V X /K!, where V is a
constant related to volume, and E(K) increases with V.
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that the ridge regression problem
min (| Xw — gl + Aw|?) 75)

is equivalent to conditioning a multivariate Gaussian prior wy ~ N (0, (A7) 1)
on the available data { X, y}, where 7 is the noise precision of the linear model
with respect to the data. Such a prior means that we assume each element of
the weight vector to be independent — due to the zero off-diagonal elements
of the diagonal covariance matrix — and zero-mean Gaussian with variance
(A7)~!. That is, we assume the elements most likely to be zero, but they can
also have other values with a likelihood that decreases with their deviation

from zero.

Setting A = 0 reduces Eq. (7.5) to a standard linear least squares problem with-
out any prior assumptions — as it seems — besides the linear relation between
the input and the output and the constant noise variance. Let us have a closer
look how X\ = 0 influences wy: As A — 0 causes (A7)~! — oo, one can interpret
the prior wy to be the multivariate Gaussian (0, ooI) (ignoring the problems
that come with the use of c0). As a Gaussian with increasing variance ap-
proaches the uniform distribution, the elements of the weight vectors are now
equally likely to take any possible value of the real line. Even though such a
prior seems unbiased at first, let us not forget that the uniform density puts
most of its weight on large values due to its uniform tails [69]. Thus, as linear
least squares is equivalent to ridge regression with A = 0, its prior assumptions
on the values of the weight vector elements is that they are uncorrelated but
most likely take very large values. Large weight vector values, however, are
usually a sign of non-smooth functions. Thus, linear least squares implicitly

assumes that the function it models is not smooth.

We have discussed in Section 3.1.1 that a prerequisite for generalisation is that
a function is smooth. Thus, we do actually assume smoothness of the function,
and therefore ridge regression with A > 0 is more appropriate than plain lin-
ear least squares. The prior that is associated with ridge regression is known
as a shrinkage prior [103], as it causes the weight vector elements to be smaller
than without using this prior. Ridge regression itself is part of a family of reg-
ularisation methods that add the assumption of function smoothness to guide
parameter learning in otherwise ill-defined circumstances [217].
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In summary, even methods that seemingly make no assumptions about the
parameter values are biased by implicit priors, as we have shown by compar-
ing ridge regression with linear least squares. In any case, it is important to be
aware of these priors, as they are part of the assumptions that a model makes
about the data-generating process. Thus, when introducing the Bayesian LCS
model, we put special emphasis on how the introduced parameter priors ex-

press our assumptions.

7.2 A Fully Bayesian LCS

The Bayesian LCS model is equivalent to the one introduced as a generalisa-
tion of the Mixtures-of-Experts model in Chapter 4, with the differences that
we allow classifiers to perform multivariate rather than univariate regression,
and that we put priors and associated hyperpriors on all model parameters.
As such, it is a generalisation of the previous model as it completely subsumes
it. For now we do not assume the classifiers to be trained independently, and
will re-introduce this independence at a later stage, analogous to Section 4.4.

Table 7.2 gives a summary of the Bayesian LCS model, and Figure 7.1 shows
its variable dependency structure as a directed graph. The model is besides
the additional matching similar to the Bayesian MoE model in [230, 229], to
the Bayesian mixture model in [219], and to the Bayesian MoE model in [20].

We will now describe each of its components in more detail.

7.2.1 Data, Model Structure, and Likelihood

To evaluate the evidence of a certain model structure M, we need the data D
and the model structure M to be known. The data D consists of N observa-
tions, each given by an input/output pair (x,,y,). The input vector x, is an
element of the Dy-dimensional real input space X = R”*, and the output vec-
tor y,, is an element of the Dy-dimensional real output space Y = RP”». Hence,
x, has Dy, and y,, has Dy elements. The input matrix X and output matrix Y’
are defined according to Eq. (3.3).
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Data, Model Structure, and Likelihood

N observations {(z,,y,)}, T, € X = RP*, y, € Y =RP»
Model structure M = {K, M}, k=1,... K
K classifiers
Matching functions M = {m;, : X — [0,1]}
Likelihood p(Y|X,W,7,Z) = [['_, [T, p(ynlzn, Wi, 7,)
Classifiers
Variables ~ Weight matrices W = {W, }, W, € RP» x RP«
Noise precisions 7 = {7}
Weight shrinkage priors o = {oy. }
Noise precision prior parameters a,, b,
a-hyperprior parameters a,, b,

Model pyle, Wi, i) = N(y|Wiz, 7, T) = [[% N (y;|whz, 7))
Priors P(Wi, i) =TT (N (wyg]0, (i) "' T)Gam (7 |a,, b))

p(ag) = Gam(ay|aq, by)

Mixing

Variables  Latent variables Z = {z,}, z, = (2n1,-- -, 2nx)? € {0,1}¥, 1-0of-K
Mixing weight vectors V = {v,.}, v, € RPV
Mixing weight shrinkage priors 8 = {;}
B-hyperprior parameters ag, bs

Model p(Z|1X, V. M) =T1_ TTe, gu(@n)™ ]

o 7 i@ exp(o 6(@)

gr(®) = plax = 1|@, vp,me) = o Sy @

Priors p(vi|Br) = N (vi|0, 3,1 1)
p(B) = Gam(f|ags, b)

Table 7.1: Bayesian LCS model, with all its components. For more details on
the model see Section 7.2.

We assume the data to be standardised by a linear transformation such that all
x and y have mean 0 and a range of 1. The purpose of this standardisation
is the same as the one given in [62], which is to make it easier to intuitively
gauge parameter values. For example, with the data being standardised, a
weight value of 2 can be considered large as a half range increase in  would
result in a full range increase in y.

The model structure M = { K, M} specifies on one hand that we have K clas-
sifiers, and on the other hand, where these classifiers are localised. Each clas-
sifier k£ has an associated matching function m;, : X — [0, 1], that returns for
each input the probability of classifier £ matching this input, as described in
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Figure 7.1: Directed graphical model of the Bayesian LCS model. See the cap-
tion of Figure 4.1 for instructions on how to read this graph. Note that to train
the model, we assume the data D and the model structure M to be given.
Hence, the y,,’s and M are observed random variables, and the x,,’s are con-
stants.

Section 4.3.1. We assume that for each input «,, we have >, my(x,) > 0, that
is, that each input is matched by at least one classifier. This needs to be the
case to ensure that we can model all of the inputs. As the model structure is
known, all probability distributions are implicitly conditional on M.

To specify the data likelihood, we again take the generative view that each ob-
servation was generated by one and only one classifier. Let Z = {z,,} be the
N latent binary vectors z, = (2,1, ..., 2.x)" of size K. We have z,;, = 1 if clas-
sifier k& generated observation n, and z,; = 0 otherwise. As each observation
is generated by a single classifier, only a single element of each z, is 1, and
all other elements are 0. Under the standard assumption of independent and
identically distributed data, that gives the likelihood

N K
p(Y|X,W7’T,Z) = HHp(yn‘mnvwvak)znh (76)

n=1 k=1
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where p(y,|z,, Wy, T) is the model for the input/output relation of classifier
k, parameterised by W = {W;} and 7 = {7;}. Let us firstly introduce the
classifier model, and then the model for the latent variables Z.

7.2.2 Multivariate Regression Classifiers

The classifier model for classifier £ is given by

p(yle, Wi, ) = N(y|Wy, 7, ')
Dy

— H./\/'(yj|w;fpka:, )

Jj=1
Dy

1) (G e

j=1

where y; is the jth element of y, W;, is the Dy x Dy weight matrix, and 7 is
the scalar noise precision. wy; is the jth row vector of the weight matrix Wi.

This model assumes that each element of the output y is linearly related to x
with coefficients wy;, that is, y; ~ w,fja:. Additionally, it assumes the elements
of the output vector to be independent and feature zero-mean Gaussian noise
with constant variance 7, '. Note that the noise variance is assumed to be
the same for each element of this output. It would be possible to assign each
output element its own noise variance estimate, but we have chosen not to do
so to keep the model relatively simple. If we have Dy = 1, we return to the

univariate regression model Eq. (5.3) that forms the basis of Chapter 5.

7.2.3 Priors on the Classifier Model Parameters

We assume each element of the output to be related to the input by a smooth
function. Thus, we assume the elements of the weight matrix W;, to be small
which we express by assigning shrinkage priors to each row vector w;,; of the
weight matrix W),. Additionally, we assume the noise precision to be larger,

but not much larger than 0, and in no case infinite, which is given by the prior
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Gam(7y|a,, b;) on the noise precision. Thus, the prior on W, and 7, is given by

p(Wi,milaw) = | [ p(wig, melow)
o
= [[ W w0, (axm) ' T)Gam(ri|a-, b.)) (7.8)

j=1

D an
_ ﬁ <aka>DX/2 by exp (_ak—Tk wlwe: — a7 >
, 27 I'(a,) 9 RTR TR

Jj=1

where I'(+) is the gamma function, o, parameterises the variance of the Gaus-
sian, and a. and b, are the parameters of the Gamma distribution. This prior
distribution is known as normal inverse-gamma, as the inverse variance param-
eter of the Gaussian is distributed according to a Gamma distribution. Its use
is advantageous, as conditioning it on a Gaussian results again in a normal
inverse-gamma distribution, that is, it is a conjugate prior of the Gaussian dis-
tribution.

The prior assumes that elements of the weight vectors wj; are independent
and most likely zero, which is justified by the standardised data and the lack
of further information. Its likelihood of deviating from zero is parameterised
by oy,. 71 is added to the variance term of the normal distribution for mathe-
matical convenience, as it simplifies the computation of the posterior and pre-

dictive density.

The noise precision is distributed according to a Gamma distribution, which
we will parameterise as in [20] by a, = 1072 and b, = 10~* to keep the prior
sufficiently broad and uninformative, as shown in Figure 7.2(a). An alternative
approach would be to set the prior on 7, to express the belief that the variance
of the localised models will be most likely smaller than the variance of a single
global model of the same form. We will not follow this approach, but more
information on how to set the distribution parameters in such a case can be
found in [62].

We could specify a value for oy, by again considering the relation between the

local models and global model, as in [62]. However, we rather follow [20], and

treat «;, as a random variable that is modelled in addition to W}, and 7. It is
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assigned a conjugate Gamma distribution

ble oz,(ca“ -1

plag) = Gam(ag|aq, by) = W

exp(—aaa), (7.9)

which we keep sufficiently broad and uninformative by setting a, = 1072 and

ba = 107%. The combined effect of 7, and a;, on the weight vector prior variance

Prior density for classifier noise variance Prior density for classifier weight variance
0.05 — T T T T 0.0004 —
000035 g
0.04 4
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5 5
8 8
002 ] 0.00015 |- B
0.0001 - —
0.01 - —
5e-05 - ” || B
b fl ||I||. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ] ol dl |||||I|| ,,,,,,,,,,,,,,,,,,,,,,,,,,, ]
0 50 100 150 200 0 5000 10000 15000 20000
Variance Variance

Figure 7.2: Histogram plot of the density of the (a) noise variance, and (b)
variance of the weight vector prior. The plot in (a) was generated by sampling
from 7, ' and shows that the prior on the variance is very flat, with the highest
peak at a density of around 0.04 and a variance of about 100. The plot in (b)
was generated by sampling from (. 7;) ! and shows an even broader density
for the variance of the zero mean weight vector prior, with its peak at around
0.00028 at a variance of about 10000.

7.2.4 Mixing by the Generalised Softmax Function

As in Chapter 4, the latent variables are modelled by the generalised softmax
function Eq. (4.20), given by
mi(x) exp(vi ¢ ()

k(@) =plae = 1z, v0) = 5 . 7.10
w@) =pla =t m) = S el o(@) 719

It assumes that, given that classifier k matched input «, the probability of clas-
sifier k£ generating observation n is related to ¢(x) by a log-linear function
exp(v} ¢(x)), parameterised by v;. The transfer function ¢ : X — R”Y maps
the input into a Dy-dimensional real space, and therefore the vector vy, is of
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size Dy and also an element of that space. In LCS, we usually have Dy =1
and ¢(x) = 1 for all x € X, but to stay general, we will not make any assump-
tions about ¢ and Dy, .

To specify the joint probability for the latent vector 2 we again make use of its
1-of-K structure to get

p(z|x, V) Hgk (7.11)

Thus, the joint probability of all z,, becomes

p(Z|X.V) HHgk ), (7.12)

n=1k=1

which fully specifies the model for Z.

7.2.5 Priors on the Mixing Model

Due to the normalisation, the mixing function g, is over-parameterised, as it
would be sufficient to specify K —1 vectors v, and leave v constant [167]. This
would make the values for all v,’s to be specified in relation to the constant vy,
and causes problems if classifier K is removed from the current set. Thus, we
rather leave g, over-parameterised, and assume all v;’s to be small, which is

again expressed by a shrinkage prior, given by

p(velBs) = N(vg|0,58;')

Dy /2

Thus, the elements of v, are assumed to be independent and zero-mean Gaus-

sian with precision [3.

Rather than specifying a value for 3, we again model it by the Gamma hyper-

prior
ag glag—1)

P(Be) = Gam(Bilag.bs) = —Fr— exp(=asfh) (7.14)

with hyper-parameters set to ag = 1072 and by = 10~* to get a broad and
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uninformative prior for the variance of the mixing weight vectors. The shape

of the prior is the same as for 7, ', which is shown in Figure 7.2(a).

7.2.6 Joint Distribution over Random Variables

Assuming knowledge of X and M, the joint distribution over all random vari-
ables decomposes into

p(Y, U’X) = p(Y|X, W7 T, Z)p(W, T‘Oé)p(a)
xp(Z| X, V)p(V|B)p(B), (7.15)

where U collectively denotes the hidden variables U = {W, 7, a, Z,V,3}.
This decomposition is also clearly visible in Figure 7.1, where the dependency
structure between the different variables and parameters is graphically illus-
trated. All priors are independent for different £’s, and so we have

K

p(W,Tla) = Hp(Wk,Tk|ak), (7.16)
k;l

pla) = [[plaw), (7.17)
k=1

p(VIB) = []p(vilsh), (7.18)
k=1

p(B) = []r(B. (7.19)
k=1

By inspecting Egs. (7.6) and (7.12) we can see that, similar to the priors, both
p(Y|X,W,r,Z) and p(Z|X,V) factorise over k, and therefore the joint dis-
tribution Eq. (7.15) factorises over k as well. We will use this property when
deriving expressions for the evidence p(D|M).
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7.3 Evaluating the Model Evidence

In this rather technical section we will derive an expression for the model ev-
idence p(D|M) for use in Eq. (7.3). Evaluating Eq. (7.2) does not give us a
closed-form expression. Hence, we will make use of an approximation tech-
nique known as variational Bayesian inference [120, 19] that provides us with
such a closed-form expression.

Alternatively, we could utilise sampling techniques, such as Markov Chain
Monte Carlo (MCMC) methods, that would provide us with an accurate poste-
rior and model evidence. However, as the model structure search is expensive
and requires a quick evaluation of the model evidence for a given model struc-
ture, and therefore the computational burden of sampling techniques makes
approximating the model evidence by variational methods a better choice.

For the remainder of this chapter, we treat all distributions as being implic-
itly conditional on X and M, to keep the notation simple. Additionally, we
will not always explicitly specify the range for sums and products, as they are
usually obvious from their context.

7.3.1 Variational Bayesian Inference

Our goal is, on one hand, to find a variational distribution ¢(U) that approx-
imates the true posterior p(U|Y’) and, on the other hand, to get the model
evidence p(Y'). Variational Bayesian inference is based on the decomposition
[19, 119]

Inp(Y) = L(q) +KL(q|p), (7.20)
_ p(U,Y)
B p(U]Y)

KL(qllp) = —/Q(U) In W(HL (7.22)

which holds for any choice of g. As the Kullback-Leibler divergence KL(¢||p)
is always non-negative, and zero if and only if p(U|Y") = ¢(U) [235], the varia-
tional bound £(q) is a lower bound on In p(Y") and only equivalent to the latter
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if ¢(U) is the true posterior p(U|Y"). Hence, we can approximate the posterior
by maximising the lower bound £(gq), which brings the variational distribution
closer to the true posterior and at the same time gives us an approximation of
the model evidence by £(¢) < Inp(Y).

Factorial Distributions

To make this approach tractable, we need to choose a family of distributions
q(U) that gives an analytical solution. A frequently used approach (for exam-
ple, [20, 230]) that is sufficiently flexible to give a good approximation to the
true posterior is to use the set of distributions that factorises with respect to
disjoint groups U; of variables

q(U) = Hqi(Ui), (7.23)

which allows us to maximise £(g) with respect to each group of hidden vari-
ables separately while keeping the other ones fixed. This results in

Ing;(U;) =E;z; (Inp(U,Y)) + const., (7.24)

when maximising with respect to U;, where the expectation is taken with re-
spect to all hidden variables except for U;, and the constant term is the loga-
rithm of the normalisation constant of ¢; [19, 119]. In our case, we group the
variables according to their priors by {W, 7}, {a}, {V'}, {8}, {Z}.

Handling the Softmax Function

If the model has a conjugate-exponential structure, Eq. (7.24) gives an ana-
lytical solution with a distribution form equal to the prior of the correspond-
ing hidden variable. However, in our case the generalised softmax function
Eq, (7.10) does not conform to this conjugate-exponential structure, and we
need to deal with it separately. A possible approach is to replace the softmax
function by an exponential lower bound on it, which consequently introduces
additional variational variables with respect to which £(g) also needs to be
maximised. This approach was followed in [20, 120] for the logistic sigmoid
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function, but currently there is no known exponential lower bound function
on the softmax besides a conjectured one in [91]*. Alternatively, we can follow
the approach taken in [230, 229], where ¢{,(V') is approximated by a Laplace
approximation. Despite such an approximation invalidating the lower bound

nature of £(q), we have chosen to use it due to the lack of better alternatives.

Update Equations and Model Posterior

To get the update equations for the parameters of the variational distribution,
we need to evaluate Eq. (7.24) for each group of hidden variables in U sepa-
rately, similar to the derivations in [229] and [219]. This provides us with an
approximation for the posterior p(U|Y) and will be shown in the following

sections.

To approximate the model evidence p(Y'), we need to find a closed-form ex-
pression for L£(q) by evaluating Eq. (7.21), where we can reuse many terms
that have already been used for finding the variational update equations, as
we will see after having derived the update equations.

7.3.2 Classifier Model ¢;;, (W, T)

The maximum of L(q) with respect to W and 7 is given by evaluating
Eq. (7.24) for qw ,, which, by using Egs. (7.15), (7.16) and (7.6) results in

gy, (W.7) = Ez(lnp(Y|W,7,2)) + Es(Inp(W, 7|e)) + const.
= D ) Ez(zar Inp(yn| Wi, 7))
k n

+> Eo(Inp(Wi, 7o) + const., (7.25)
k

where the constant represents all terms in Eq. (7.15) that are independent of
W and 1, and E; and E, are the expectations evaluated with respect to Z and
a respectively. This expression shows that ¢;;,, factorises with respect to £,

4A more general bound was recently developed in [228], but its applicability still needs to
be evaluated.
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which allows us to handle the qy,- (W}, 7;)’s separately, by solving

In gy (Wy, 1) = ZEZ(an In p(Yn| Wi, 7)) + Eo(In p(Wy, 7| ) + const.

(7.26)

Using the classifier model Eq. (7.7), we get
Z Ez (2nk In p(yn| Wi, 7))

= ZEZ(an) IHHN(ynj’wijwnka_l)
= ZTnk Z ( In7, — yn] wij:cn)2> + const.

D
= Ty <Z rnk> In 75, + const. (7.27)

n

Tk Z 2 T Z T Z T
_5 ( Tnkynj - kaj T'nkLnYnj + ’Uka Tnknd, | Wkj |,
J

n n n

where 7, = Ez(2,) is the responsibility of classifier k for observation n, and y,,;
is the jth element of y,,. The constant represents the terms that are independent
of W), and 7.

E, (In p(Wy, 7 |c,) ) is expanded by the use of Eq. (7.8) and results in

Eo(In p(Wi, 7l o))
= Z]Ea (In N (w0, (7)) + In Gam(7x|ar, b))

= Z <— In Tl — ;E (ak)ng'wkj + (CL-,— — 1) In T — b.,-Tk) -+ const.

DxD
= <DyaT—Dy+ XQ y)lnrk

Tk
—5 <2Dbe + Ea(ak) Z wkTkaj) -+ const. (728)

J
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Thus, evaluating Eq. (7.26) gives

DxD D
lnq;;V,a(W]m Tk) = <Dya7' - Dy + % + 73] znjrnk) lnTk

-5 <QDbe +2 (Z Paklng = 2Wi5 Y TnkTnln;
7 n

n

—i—'ng (Ea<ak)1 + memi) wkj)) + const.

= lnH (wij|wy;, (A}) ) Gam(rylas b2 ), (7.29)

with the distribution parameters

A; = Ba(ap) I+ ruz.z), (7.30)

wi; = ALY kg, (7.31)
. 1

ar, = At ) T (7.32)

* 1 x T A x %

7 n

The second equality in Eq. (7.29) can be derived by expanding the final re-
sult and replacing all terms that are independent of W), and 7, by a constant.
The distribution parameter update equations are that of a standard Bayesian
weighted linear regression (for example, [19, 15, 71]).

Note that due to the use of conjugate priors, the variational posterior
@0 Wk, 7) BEq. (7.29) has the same distribution form as the prior p(Wy, 7i.|ay)
Eq. (7.8). The resulting weight vector wy;, that models the relation between
the inputs and the jth component of the outputs, is given by a Gaussian with
mean wj;; and precision 7;A}. The same posterior weight mean can be found
by minimising

1 X wi; = yjll 7, + Ealou)|lwil]*, (7.34)
with respect to wy,;, where R;, is the diagonal matrix Ry, = diag(ri, ..., ~Nk),
and y; is the vector of jth output elements, y; = (v15,...,yn;)7, thatis, the jth
column of Y. This shows that we are performing a responsibility-weighted
ridge regression with ridge complexity E,(a;). Thus, the shrinkage is deter-
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mined by the prior on a;, as we can expect from our specification of the weight

vector prior Eq. (7.8).

The noise precision posterior is the Gamma distribution Gam(7|a} , b7 ). Us-
ing the relation )”(—g ~ Gam(v/2,v\/2) , where % is the scaled inverse x? distri-
bution with v degrees of freedom, we can interpret Eq. (7.32) as incrementing
the degrees of freedom from an initial 2a, by > 7. Thus, while the prior has
the weight of 2a, observations, each added observation is weighted accord-
ing to the responsibility that classifier £ has for it. By using Eq. (7.30) and the

relation

Z Tnk(ynj - w]thxn>2

n

2 x T x T T *
= E TnkYpj — 2Wy; E Tnk®TnYnj + Wy, < E rnkaznazn> Wy,
n

n n

Eq. (7.33) can be reformulated to give

* 1 * *
b = b + 55 (Zrnkuyn — Wia,|® +Ealan) Y Hwij2> . (7.35)

J

This shows that b, is updated by the responsibility-weighted sum of squared
prediction errors, averaged over the different elements of the output vector,
and the average size of the w;;’s, weighted by the expectation of the weight
precision prior. Considering that E(Gam(a,b)) = a/b [19], the mean of the
noise variance posterior is therefore strongly influenced by the responsibility-
weighted averaged squared prediction error, given a sufficiently uninforma-

tive prior.

7.3.3 Classifier Weight Priors ¢ ()

As by Eq. (7.17), p() factorises with respect to k, we can treat the variational
posterior ¢}, for each classifier separately. For classifier £, this posterior is ac-
cording to Egs. (7.15), (7.16), (7.17) and (7.24) given by

In g’ (o) = Ew,r(In p(Wy, 7| o)) + Inp(ov,) + const. (7.36)
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Using Eq. (7.8), the expectation of weights and noise precision evaluates to

EWT(lnp(Wk,Tk|Oék))
= ZEVV’T (In N (w10, (oe7i,) 1) + In Gam(7y|a,, b,))

J
D
= Z <TX In o — %EWT(Tkngwij ~+ const. (737)
J
Also, by Eq. (7.9),

Inp(ag) = (aq — 1) In oy, — by, + const. (7.38)

Together, that gives the variational posterior

DxDy,

Ing (ag) = ( +a, — 1) In ay,

1
——G@+§§;Em4mwﬂww06%+cmﬁt

= InGam(aglay, , b7, ), (7.39)
with
\ DxDy
ay, = Qo+ 5 (7.40)
. 1
b, = ba+5§:EW,T(Tkw,{jwkj). (7.41)
J

Utilising again the relation between the gamma distribution and the scaled
inverse x? distribution, Eq. (7.40) increments the initial 2a,, degrees of freedom
by Dx Dy, which is the number of elements in W.

The posterior mean of oy, is E(ay) = aj;, /b, and thus is inversely proportional
to the size of the weight vectors [Jwy,;|* = wj;wy; and the noise precision 7.
As the element-wise variance in the weight vector prior Eq. (7.8) is given by
(7)™, the effect of 75, on that prior is diminished. Thus, the weight vec-
tor prior variance is proportional to the expected size of the weight vectors,
which has the effect of spreading the weight vector prior if the weight vec-
tor is expected to be large, effectively reducing the shrinkage. Intuitively, this
is a sensible thing to do, as one should refrain from using an overly strong

shrinkage prior if the weight vector is expected to have large elements.
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7.3.4 Mixing Model ¢;,(V)

We get the variational posterior ¢{,(V') on the mixing model parameters by
solving Eq. (7.24) with Eq. (7.15), that is

Ingy (V) =Ez(Inp(Z|V)) + Es(Inp(V'|3)) + const.. (7.42)

Even though ¢j, factorises with respect to k, we will solve it for all classifiers
simultaneously due to the Laplace approximation that we apply thereafter.

Evaluating the expectations by using Egs. (7.12), (7.13) and (7.19) we get

EZ<1np(Z|V)) = ZZ%ka(«%z% (743)
n k
Es(lnp(VI8)) = D Es(lnN(v0,5,'1))
k
= Z <—%v,{vk> + const., (7.44)

k

where we have again used 7, = Ez(z,;). Thus, the variational log-posterior

evaluates to

Es(Be) 1
In gy = - n n t. 7.4
nqy (V) ; ( 9 UkvlmL;?“ k9k(@n) | + cons (7.45)
Note that the distribution form of this posterior differs from its prior Eq. (7.13),
which would cause problems in further derivations. Thus, we proceed the
same way as Waterhouse et al. in [230, 229] by performing a Laplace approxi-
mation of the posterior.

The Laplace approximation aims at finding a Gaussian approximation to the
posterior density, by centering the Gaussian on the mode of the density and
deriving its covariance by a second-order Taylor expansion of the posterior
[19]. The mode of the posterior is found by solving

dlngy (V)

v =0, (7.46)

which, by using the posterior Eq. (7.45) and the definition of g, Eq. (7.10), re-
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sults in

D (roe = gu(@n))d(@) — Eg(B)vr =0,  k=1,... K. (7.47)
Note that, besides the addition of the Es(8;)v,, term due to the shrinkage
prior on vy, the minimum we seek is equivalent to the one of the prior-less
generalised softmax function, given by Eq. (6.11). Therefore, we can find
this minimum by applying the IRLS algorithm Eq. (6.5) with error function
E(V) = —Ing(V), where the required gradient vector and the Dy x Dy
blocks Hj,; of the Hessian matrix Eq. (6.9) are given by

Vi, E(V)
VvE(V) = : . VG E(V) = (gi(@n) — moj)d(@a) + Es(8))v;,
Vo E(V) "
(7.48)
and

Hy; = Hye =Y ge(@n) (L — 9;(w0))d(@,)d(@,) " + IyEa(B) . (7.49)

I;;; is the kjth element of the identity matrix, and the second I in the above
expression is an identity matrix of size Dy x Dy. As the resulting Hessian is
positive definite [175], the posterior density is concave and has a unique max-
imum. We will provide more detail on how to implement the IRLS algorithm
in the next chapter.

Let V* with components v; denote the parameters that maximise Eq. (7.45).
V* gives the mode of the posterior density, and thus the mean vector of its
Gaussian approximation. As the logarithm of a Gaussian distribution is a
quadratic function of the variables, this quadratic form can be recovered by
a second-order Taylor expansion of Ingj, (V') [19], which results in the preci-

sion matrix
Al = —VVing (V*) = VVE(V*) = H|y_y-, (7.50)

where H is the Hessian matrix of £/(V') as used in the IRLS algorithm. Overall,
the Laplace approximation to the posterior ¢j,(V') is given by the multivariate

Gaussian
G (V) = N(VIV* AL, (7.51)
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where V* is the solution to Eq. (7.47), and Aj, is the Hessian matrix evaluated
at V.

7.3.5 Mixing Weight Priors ¢;(3)

By Eq. (7.19), p(B) factorises with respect to k, and thus allows us to find g5(3)
for each classifier separately, which, by Egs. (7.15), (7.18) and (7.24), requires
us to evaluate

Inq5(6k) = Ev(Inp(ve|Br)) + Inp(B). (7.52)

Using Egs. (7.13) and (7.14), the expectation and log-density are given by

Evnp(od k) = 2L~ FEy(fv) +const. (759
Inp(Bk) = (ag—1)InpG; — Brbs + const. (7.54)

Combining the above, we get the variational posterior

2
= InGam(Byla,,bj;,), (7.55)

D 1
Ings(Be) = (aﬁ -1+ —V> In g3, — <bg + §Ev('v,{'vk)> bs + const.

with the distribution parameters

D

ah, = as+ (7.56)
1

As the priors on vy, are similar to the ones on wy, they cause the same effect:
as bj; increases proportionally to the expected size [v;|?, the expectation of
the posterior E3(3:) = aj, /bj decreases in proportion to it. This expectation
determines the shrinkage on v;, (see Eq. (7.47)), and thus, the strength of the
shrinkage prior is reduced if v, is expected to have large elements, which is an
intuitively sensible procedure.
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7.3.6 Latent Variables ¢}, (Z)

To get the variational posterior over the latent variables Z we need to evaluate
Eq. (7.24) by the use of Eq. (7.15), that is,

Ingy(Z) =Ew,.(Inp(Y|W,T,2)) + Ey(lnp(Z|V)) + const. (7.58)
We can evaluate the first expectation by combining Egs. (7.6) and (7.7), to get

EWT(]np(Y|W7 T, Z))
— Z Z Znk ZEW,T(lnN(ynj]wijxn, ")
n k J

= Z Z Znk Z <—% In 27r> + Z Z Znk Z %ET(lnTk)
n k J no ok J
—% > ; Znk Z Ewr (T(Ynj — wi;20)?)
n J
— % Z g 2k Er (In )
_% zn: Z 2ok Z Ew.r (Tk(ynj — wi;x,)?) + const., (7.59)
n k J

where we have used ), z,, = 1. Using Egs. (7.12) and (7.11), the second

expectation results in
Ev(Inp(Z|V) = > ) zuBy(ng(z,))
n k
DDz ng(@) ooy (7.60)
n k

Q

where we have approximated the expectation of In g;(x,,) by the logarithm of
its maximum a-posteriori estimate, that is, In g (x,,) evaluated at v;, = v}. This
approximation was applied as a direct evaluation of the expectation does not
yield a closed-form solution. The same approximation was applied in [230,
229] for the MoE model.

Combining the above expectations results in the posterior
gy (Z) = Y Zukpuk + const., (7.61)
n k
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with

D 1
In Prk = In gk(mn)‘vkzvz + %Er(ln Tk) — 5 ZEW’T (Tk(ynj — ngajn)Q) . (762)
J

Without the logarithm, the posterior becomes ¢} (Z) o [[, [], pi3F, and thus,

nk 7

under the constraint ), z,, = 1, we get

(Z) =I5, with re= % =Es(z).  (7.63)
n k Zj Pnj
As for all posteriors, the variational posterior for the latent variables has the
same distribution form as its prior Eq. (7.12).

Note that r,,;, gives the responsibility that is assigned to classifier k£ for mod-
elling observation n, and is proportional to p,; Eq. (7.62). Thus, the responsi-
bilities are on one hand proportional to the current mixing weights g;(x), and
on the other hand are higher for low-variance classifiers (note that 7, is the
inverse variance of classifier k) that feature a low expected squared prediction
error (yy,; — 'ng x,,)? for the associated observation. Overall, the responsibilities
are distributed such that the observations are modelled by the classifiers that

are best at modelling them.

7.3.7 Required Moments of the Variational Posterior

Some of the variational distribution parameters require evaluation of the mo-
ments of one or the other random variable in our probabilistic model. In this
section, we evaluate these moments, and also provide other moments of the
variational distribution that are required at a later stage. Throughout this sec-
tion we will use E,(x) = =* and cov,(x,xz) = A~!, where x ~ N (z*,A™!) is
a random vector that is distributed according to a multivariate Gaussian with

mean x* and covariance matrix A~'.

Given that we have a random variable X ~ Gam(a,b), then its expectation
is Ex(X) = a/b, and the expectation of its logarithm is Ex(In X) = ¢(a) —
Inb, where ¢ (z) = & InI'(7) is the digamma function [19]. Thus we get the
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following posterior moments for ¢ (o), qg( Br), and ¢ (7 ):

a*

E,(a;) = bz (7.64)
E.(lnog) = t(as) — Inb,,, (7.65)
Es(Br) = ZZ (7.66)
Es(nf) = o(aj,) —Inby, (7.67)
E (7,) = Z (7.68)
E.(nm) = v(a’,)—Inb. (7.69)

To get the moments of gy, (W}, 7) and ¢, (vi), we can use var(X) = E(X?) —
E(X)?, and thus, E(X?) = var(X) + E(X)? to get

E(x"z) = ZE(xf)
= ZVM(J;,—)%—ZE(@)Q

= Tr(cov(z,x)) + E(z) E(zx),
and similarly,
E(zz”) = cov(z,z) + E(x)E(x)",

where X is a random variable, and x = (z;)” is a random vector. Hence, as by
Eq. (7.51), ¢i,(V') is a multivariate Gaussian with covariance matrix A*{/’l, we
get

Ey(vivp) = Tr (A )we) + v vy, (7.70)

where (A*V_l) wx denotes the kth Dy x Dy block element along the diagonal of
Ayt

Getting the moments of ¢;,, (W}, 7;.) requires a bit more work. Let us first con-
sider Eyy , (7,wy;), which by Eq. (7.29) and the previously evaluated moments
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gives

EW,T(Tkwkj)

= [ nGamira, 07) ( [Nt (i) >dwm) dr,

:wZ]/TkGam(Tklam, Tk)di
*

a;
— (7.71)
Tk

For By, (hw];wy;) we get

Ew. (mow]jwy;)
/TkGam(Tklam, . </ wk]’IUk]N('wk]’wkp(TkA )~ )d'wk]> dr

z/TkGam(Tk!aTk7 b;, ) Ew (wy wy,;)dry

= wZ]ka]E (1) + Tr(AZfl)

a
=5 LwpTwp; 4+ Tr(AL Y. (7.72)

T . . . . .
Ew,,(Tswy;jwy;) can be derived in a similar way, and results in

*

Ty wp; + AL (7.73)

Ewﬂ- (Tkwkjw,z;-) = bT
Tk

The last required moment is Ey, (74 (yy,; — 'ngwn)Q), which we get by binomial

expansion and substituting the previously evaluated moments, to get

EW,T(Tk(ynj - wljg;xn)Q)
=E.(1)ys; — 2Bwr (Thewiy) oty + ) Bw - (mewiwy;) @,

Z* (g — wi, ") + 2T AL . (7.74)

Now we have all the required expressions to compute the parameters of the

variational posterior density.
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7.3.8 The Variational Bound L(q)

We are most interested in finding the value for £(¢) by Eq. (7.21), as it provides
us with an approximated lower bound on the logarithm of the model evidence
Inp(Y'), and is the actual expression that we want to maximise. Evaluating
Eq. (7.21) by using the distribution decomposition according to Eq. (7.15), the
variational bound is given by

L(g) = / q(U)lnp(qlgl’jgj)dU

= Ewrazvg(npY W, rT,Z,V,03))
—Ewrazvs(lngW,r,a,Z,V,3))
= Ew,z(np(Y|W,T,2Z)) + Ep,o(lnp(W,T|ar)) + Eo(Inp(ar))
+Ezv(Inp(Z|V)) + Evs(lnp(V]B)) + Es(lnp(8))
—Ew-(Ing(W, 7)) — Eo(Ing(ar)) — Ez(Ing(Z))
—Ev(Ing(V)) — Es(Ing(8)), (7.75)

where all expectations are taken with respect to the variational distribution q.
We proceed by evaluating the expectations one by one, using the previously

derived moments of the variational posteriors.

To derive Ey. z(In p(Y'|W, 7, Z)), we use Egs. (7.6) and (7.7) to get

Ew,z(Inp(Y|W,T))
= Z ZEZ(an) ZEwﬁ(lnN(ynﬂw/{jxm 7-};1))
n k J

1 1 1
- Z Zrnk Z <§]ET(111 Tk) — 5 In27 — §EWT(Tk<yn]‘ — wijm,L)2)>

n k J

¥ (% (0a5,) ~ b, —n2e) Yo

n

1 at . .
LYy (b_*k(ynj —wl,Tw,) + @AY w) )

n 7 Tk
Dy (0 s )
- Z 7 (w(a‘rk) —In brk —In 27T) Z T'nk
k: n
L~ (T -
= > vk <b*k Yy — Wiz, ||* + Dy, A;, la:n> > . (7.76)
n Tk
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The classifier model parameters expectation Eyy ;. (Inp(W, T|a)) can be de-
rived by using Egs. (7.7) and (7.16), and is given by

Ew,ro(lnp(W, T|at)) (7.77)

=33 (Buira (A (w30, (7)™ 1)) + Ex (1n Gam(riar. b))

Expanding for the densities and substituting the variational moments results

in
Ew o(lnp(W,T|a))

DyD
— Z (% (w(azk) —Inb;, +(a),) —Inb; —In 2m)
k

1 a’zé a;k' * T % x—1

+Dy (- InT(a,) + ar Inb, + (a, — 1)(¢(as,) — Inb,) — bT“:k) ) _

We derive the expression E, (Inp(a)) — E,(In¢(ex)) in combination, as that al-
lows for some simplification. Starting with E, (Inp(a)), we get from Egs. (7.17)
and (7.9), by expanding the densities and substituting the variational mo-

ments,

Eq(Inp(a)) (7.79)

*

= Z <— InI'(aq) + aqInby + (aq — 1)(Y(ay, ) —Ind}, ) — baaak>
k

X
be,

The expression for E,(In ¢(c)) can be derived by observing that —E, (In ¢(cy))
is the entropy of ¢ (cy). Thus, using ¢’ (o) = [[, ¢} (ax), substituting Eq. (7.39)
for ¢ (ax), and applying the entropy of the Gamma distribution as given in
[19], we get

Eo(lng(e)) = =Y (InT(a;,) — (a}, — De(a,) —Inb}, +ai)  (7.80)
k

Combining the above expressions and removing the terms that cancel out re-
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sults in

Ea(np(a)) - Ea(ng(@)) = Y (=T(a0) + aalnbe + (a0 — az, Ju(as,)

a*
~aa b, —bay ™ +InT(a,) +a, ). (7.81)

(879

The expression E; v (Inp(Z|V)) — Ez(Ing(Z)) is also derived in combination
by using Egs. (7.12), (7.11) and (7.63), from which we get

Ezyv(Inp(Z|V)) — Ez(Ing(Z ernk Y |“k adadal mU g (7.82)

where we have, as previously, approximated Ey (In gx(x,,)) by In gx(x,) |'Ulc:U;:'

The derivation to get Ey s(Inp(V'|3)) is again based on simple expansion of
the distribution given by Egs. (7.18) and (7.13), and substituting the variational

moments, which results in

Evs(Inp(V]B)) (7.83)

*

DV * la * * * —
k

We get Ey (In ¢(V')) by observing that it is the negative entropy of the Gaussian
Eq. (7.51), and thus evaluates, as given in [19], to

Ey(Ing(V)) = ( In |A, 11+K§ (1+1n27r)>. (7.84)

As the priors on (3, are of the same distribution form as the ones on a4, the
expectations of their log-density results in a similar expression as Eq. (7.65)

and is given by
Es(np(8)) ~Es(ng(8) = 3 (~InT(ag) +ashnbs + (a5 — a3 )i(a3,)
k

*

a
—ap by, — bﬂf +InT(a},) +ap, ). (7.85)
k
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This completes the evaluation of the expectations required to compute the vari-
ational bound Eq. (7.75).

To simplify the computation of the variational bound, we define

Li(q) = Ew,z(np(Y|Wi, 7, 2i)) + Ew.ro(In p(Wi, 7| cu.))
+E,(Inp(aw)) — Ew-(In g(Wy, 7)) — Ea(lng(ag)), (7.86)

which can be evaluated separately for each classifier by observing that all ex-
pectations except for Ey (In¢(V')) are sums whose components can be evalu-
ated independently for each classifier. Furthermore, £ (¢) can be simplified by
using the relations

DDy

5 = U, — Qo (7.87)
1 a;k' * * * — *
3 ( b:: zj:wkfwkj + DyTr(A}, 1)) = b, —ba, (7.88)

which results from Egs. (7.40) and (7.41). Thus, the final, simplified expression
for L, (q) becomes

D
Lilg) = 5 (Wla,) — by, —In2m) Y

1 a;y . e
5 X (5o~ Wi |+ DA )
n Tk

DxD D
—InT(aq) + aaInby +InT(a}, ) — a}, Inb} + % + 73’ In|A; Y
+Dy< —Inl'(a;) + a; b, + (ar — a; )¥(a;, ) — a-Inb;, — b, Z:k
Tk
+InT(a;, ) + a:k>. (7.89)

All leftover terms from Eq. (7.75) are assigned to the mixing model, and are
given by

Ly(q) = Ezv(np(Z|V))+Evs(lnp(V|B)) + Es(lnp(B))
—Ez(Ing(Z)) — Ey(Ing(V)) — Eg(lng(8)). (7.90)
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We can again derive a simplified expression for £,,(¢q) by using the relations

Dy ,
7 = aﬁk — ag, (791)

1 * — * * *

5 (Tr (A D) + 03" 0) = b, — by, (7.92)

which result from Egs. (7.56) and (7.57). Overall, this leads to the final simpli-
fied expression
Lu(q) = Y (=InT(ag) +aslnbs +InT(aj) — aj, Inbj,) (7.93)

k
1 KD
+ Zn: Zk:rnk (lngk(mn)lvk:vz —1In rnk) + 5 In \A’{fl\ + 5 v

The get the variational bound of the whole model structure, and with it the
lower bound on the logarithm of the model evidence In p(Y"), we need to com-
pute

L(q) = L) + > Lilq), (7.94)

where £;(q) and L(q) are given by Egs. (7.89) and (7.93) respectively.

Training the model means maximising £(q) Eq. (7.94) with respect to its param-
eters (W, Ay, a b7 a;, b5, V¥, Ay, af b5 ). Infact, deriving the maximum
of L(q) with respect to each of these parameters separately while keeping the
others constant results in the variational update equations that we have de-

rived in the previous sections [19].

7.3.9 Independent Classifier Training

As we can see from Eq. (7.89), we need to know the responsibilities {r,} to
train each of the classifiers. The mixing model, on the other hand, relies on
the goodness-of-fit of the classifiers, as embedded in g, in Eq. (7.93). There-
fore, classifiers and mixing model need to be trained in combination to max-
imise Eq. (7.94). Taking this approach, however, introduces local optima in the
training process, as already discussed for the non-Bayesian MoE model in Sec-
tion 4.1.5. Such local optima make evaluating the model evidence for a single
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model structure too costly to perform efficient model structure search, and so
we need to modify the training process to remove these local optima. We will
proceed the same way as in Section 4.4: we train the classifiers independently
of the mixing model.

More specifically, the classifiers are fully trained on all observations that they
match, independently of other classifiers, and then combined by the mixing
model. Formally, this is achieved by replacing the responsibilities r,; by the

matching functions my(x,,).

The only required modification to the variational update equations is to
change the classifier model updates from Eqs (7.30) — (7.33) to

Ap = Eola) I+ my(z,)z.@,, (7.95)

w;;j - Afl Z mk(wn)mnyn]‘v (796)
1

a:k = ar+ 5 Z mk(mn)7 (797)

1 N
br = b+ E (Z (Z mk(mn)yfw — 'w};jTAkwkj>> . (7.98)

J
Thus, we are now effectively finding a w;,; that minimises

| X wi; — 37, + Ealan)|wsl?, (7.99)

as we have already discussed extensively in Section 5.3.5. The weight prior
update Egs. (7.40) and (7.41), as well as all mixing model update equations

remain unchanged.

Even though we have replaced all ,;’s in the classifier update equations
with my(x,)’s, the classifier-specific component £;(¢) Eq. (7.89) remains un-
changed. This is justified by observing that the responsibilities enter £;(q)
through the expectation Ey, z(Inp(Y |W, 7, Z)), which is based on Egs. (7.6)
and (7.7). Note that Eq. (7.6) combines the classifier models to form a global
model, and is thus conceptually part of the mixing model rather than the clas-
sifier model. Thus, the 7,,;’s in L (q) specify how classifier k£ contributes to the
global model and remain unchanged.
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Consequently, the variational posteriors for the classifiers only maximise the
variational bound L(q) if we have r,; = my(x,) for all n, k. In all other cases,
the variational bound remains below the one that we could achieve by training
the classifiers according to their responsibilities. This effect is analogous to
the reduced likelihood as discussed in Section 4.4.5. In cases where we only
have one classifier per observation, we automatically have 7, = my(x,), and
thus making classifier training independent only affects areas where several
classifiers match the same input. Nonetheless, the model structure selection
criterion is proportional to the value of the variational bound and therefore
most likely prefers model structures that do not assign multiple classifiers to a

single observation.

7.3.10 How to Get p(M|D) for Some M

Recall that rather than finding the model parameters 6 for a fixed model struc-
ture, we want to find the model structure M that maximises p(M|D). How-
ever, we will see that the approach we have taken also requires us to train the
model.

Variational Bayesian inference provides us with a lower bound on In p(D|M)
that is given by maximising the variational bound £(g). As we get p(M|D)
from p(D|M) by Eq. (7.3), we can approximate p(M|D) for a given model
structure M by maximising £(¢). Using the assumptions of factorial distri-
butions, £(gq) is maximised with respect to a group of hidden variables while
keeping the other ones fixed by computing Eq. (7.24). Therefore, by iteratively
updating the distribution parameters of g3, (W, 7), ¢; (), ¢;:(V), ¢5(B), and
¢;(Z) in a sequential fashion, we monotonically increase the variational bound
until we reach a maximum [26]. Independent classifier training simplifies this
procedure by making the update of ¢;;, (W, 7) and ¢,(a) independent of the
update of the other variational densities. Thus, we first train the classifiers
independently, and then update the mixing model parameters accordingly.

To summarise, finding p(M|D) for a given model structure can be done with
the following steps:
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1. Train the classifiers by iteratively updating the distribution parameters
of gjy., (W, 7) and ¢}, () until convergence, for each classifier separately.

2. Train the mixing model by iteratively updating the distribution parame-
ters of ¢/(V'), ¢3(8), and ¢3(Z) until convergence.

3. Compute the variational bound £(q) by Eq. (7.94).

4. p(M|D) is then given by Eq. (7.3), where Inp(D|M) is replaced by its
approximation £(q).

Appropriate convergence criteria are introduced in the next chapter.

7.4 Predictive Distribution

An additional bonus of the probabilistic basis we provide for LCS is that we
are able to provide a predictive distribution rather than having to use simple
point estimates. Hence, we can also provide information about the certainty
of the prediction, which allows us to provide confidence intervals, rather than
only its most likely value. In this section we derive the predictive density for
the Bayesian LCS model.

The question we are answering is: in the light of all available data, how likely
are certain output values for a new input? We approach this question formally
by providing the predictive density p(y'|x’,D) = p(y'|z’, X,Y ), where ' is
the new known input vector, and vy’ its associated unknown output vector,
and all densities are, as before, implicitly conditional on the current model
structure M.
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7.4.1 Deriving p(y'|2’, D)

We get an expression for p(y'|z’, D) by using the relation

py'le’, X,Y) (7.100)
_ Z///p(y',z', W,r,Vie/, X,Y)dWdrdV

— Z / / / p(y' |z, 2/, W, T)p(Z |2, V)p(W, T, V|X,Y)dWdrdV

- Z/// (HN(yf|Wkw/,rk11)z,;gk(a3f)z,;) p(W,r,V|X,Y)dWdrdV,
2! k

where 2’ is the latent variable associated with the observation (', y’), and we
have replaced p(y'|x’, 2, W, T) by Eq. (7.6), and p(2'|z’, V') by Eq. (7.11). As
we do not know the real posterior p(W, T, V|X,Y ), we approximate it by the
variational posterior, that is, p(W,7,V|X,Y) = ¢, (W, T)g; (V). Together
with summing over all 2/, this results in

Y|z, X,Y) (7.101)
- Z </ gk(m’)q{k,(vk)dvk> // qév’T(Wk,Tk)N(y’]Wk:c',Tk_lI)dedi,
3

where we have utilised the factorisation of ¢j,(V') and ¢j;, (W, 7) with respect
to k, and the independence of the two variational densities.

The first integral [ gi(z')g; (viy)dvy is the expectation Ey (gi(2')) which does

not have an analytical solution. Thus, as in [219], we approximate it by the

maximum a-posteriori estimate

/ 9 () gy (vi)dvg = gr ()] o= - (7.102)

The second integral [[ iy . (Wi, 7 )N (y/|Wy!, 7, T)dWdry, is the expecta-
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tion Ey (N (y'|Wya!, 77 'I)), that, by using Egs. (7.7) and (7.29), evaluates to

EWﬂ—(N(yI‘Wkw,, Tk_II)dedi
= //N(y/|wkx/>7_k1I)Q;V|T(Wk’Tk)Q:(Tk)dedi

- / (H/N(yﬂwijwlka1)N(wkj|w};j> (Tk:AZ)l)d’wkj> ¢ (1 )d Ty,

—H / Nt T, m (1 4+ &7 AL 'a))Gam(mac, b2, )dr

—HSt (yj|w* o' (1+a A )" 163,2 ) (7.103)

where St(y}|w;,;” = Te! (14" A a)? a; /bz ,2a; ) is the Student’s t distribu-
tion with mean wj,” #’, precision (1 + a:’TAz 'x')az /i, and 2a, degrees of
freedom. To derive the above we have used the convolution of 2 Gaussians,
given by

[ NGt i, ()l
= N(yjjwi e 77 (1 + 2" A7), (7.104)

and the convolution of a Gaussian with a Gamma distribution,

/N(yﬂw,’;jTac/ o 1+ 2 AL ) Gam (.| a d

TE? Tk)

bx

Tk

— St <y]\w*T 1+ 2 TA ) 9 *),(7.105)
both of which can be found in [19].

Combining Egs. (7.101), (7.102), and (7.103) gives the final predictive density

*

ar_
piye, X, Y) = ng( o= UkHSt <y]'w* e (142" A ) 1b*k’2a7’“> :
k Tk

(7.106)

which is a mixture of Student’s t distributions.

195



7.4.2 Mean and Variance

Given the predictive density, we derive point estimates by its mean, and get
information about the prediction confidence by its variance. As the mixture
of Student’s t distributions might be multi-modal, there exists no clear defini-
tion for the 95% confidence intervals, but a mixture density-related study that
deals with this problem can be found in [118]. Here, we take the variance as a
sufficient indicator of the prediction’s confidence.

Let us first state the mean and variance for arbitrary mixture densities, and
subsequently apply it to Eq. (7.106). Let { X} be a set of random variables that
are mixed with mixing coefficients {g;} to give X = >, gxXs. As shown in
[230], the mean and variance of X are given by

X)=> aB(Xy), var(X)=> gi(var(X;) +E(X))?) - E(X)*. (7.107)

The Student’s t distributions in Eq. (7.106) have mean 'w;;jTa:’ and variance
(14 «"A e )20 /(az — 1). Therefore, the mean vector of the predictive

Tk

density is
E(y'|=', X,Y) <ng o Wk> (7.108)

and each element y; of y' has variance

var(y)|@', X, Y) (7.109)

*

b
= ng vk vt ( ﬁ(l—Fm’TA* 1 /) + (wZ]Tw,)2> —]E(y’|:r:’,X,Y)?,

Tk

where E(y'|z’, X,Y); denotes the jth element of E(y'|2', X,Y).

In the following chapter we will use these expressions to plot the mean predic-
tions of the LCS model, and will use the variance to derive confidence interval
on these predictions.
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7.5 Alternative Model Selection Methods

Bayesian model selection is not the only model selection criterion that might
be applicable to LCS. In this section we review a set of alternatives and their
relation to LCS.

As described in Section 7.1.2, model selection criteria might differ in their
philosophical background, but they all result in the principle of minimising a
combination of model error and model complexity. Their main difference lies
in how they define the model complexity. Very crude approaches, like the two-
part MDL, only consider the coarse model structure, whereas more refined cri-
teria, like the refined MDL, SRM, and BYY, are based on the functional form of
the model. However, they usually do not take the training data into consider-
ation when evaluating the model complexity. Recent research has shown that
approaches based on the training data, like cross-validation, Bayesian model
selection, or Rademacher complexity, are usually better in approximating the
target function [126].

7.5.1 Minimum Description Length

The principle of Minimum Description Length (MDL) [190, 191, 192] is based
on the idea of Occam’s Razor, that amongst models that explain the data
equally well, the simplest one is the one to prefer. MDL uses Kolmogorov
complexity as a baseline to describe the complexity of the model, but as that
is uncomputable, coding theory is used as an approximation to find minimum

coding lengths that then represent the model complexity [100].

In its crudest form, the two-part MDL requires a binary representation of both
the model error and the model itself, where the combined representation is
to be minimised [190, 191]. Using such an approach for LCS makes its per-
formance highly dependent on the representation used for the matching func-
tions and the model parameters, and is therefore rather arbitrary. Its depen-
dence on the chosen representation and the lack of guidelines on how to decide
upon a particular representation are generally considered the biggest weak-
ness of the two-part MDL [100].
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A more refined approach is to use the Bayesian MDL [100] that — despite a
different philosophical background — is mathematically identical to Bayesian
model selection as applied here. In that sense, the approach presented in this
chapter can be said to be using the Bayesian MDL model selection criterion.

The latest MDL approach is theoretically optimal as it minimises the worst-
case coding length of the model. Mathematically, it is expressed as the maxi-
mum likelihood normalised by the model complexity, where the model com-
plexity is its coding length summed over all possible model parameter values
[193]. Therefore, given continuous model parameters, as used here, the com-
plexity is infinite, which makes model comparison impossible. In addition,
the LCS structure makes computing the model complexity even for a finite set
of parameters extremely complicated, which makes us doubt that, in its pure
form, the latest MDL measure will be of any use for LCS.

7.5.2 Structural Risk Minimisation

Structural Risk Minimisation (SRM) is based on minimising an upper bounds
on the expected risk Eq. (3.1), given the sum of the empirical risk Eq. (3.2) and a
model complexity metric based on the functional form of the model [221]. The
functional form of the model complexity enters SRM in the form of the model’s
Vapnik-Chervonenkis (VC) dimensions. Having the empirical risk and the VC
dimensions of the model, we can find a model that minimises the expected
risk.

The difficulty of the SRM approach when applied to LCS is to find the VC
dimensions of the LCS model. For linear regression classifiers, the VC dimen-
sions are simply the dimensionality of the input space D». Mixing these mod-
els, however, introduces non-linearity that makes evaluation of the VC dimen-
sions difficult. An additional weakness of SRM is that it deals with worst-case
bounds that do apply to any distribution of the data, which causes the bound
on the expected risk to be quite loose and reduces its usefulness for model
selection [19].

A more powerful approach that provides us with a tighter bound to the ex-
pected risk is to use data-dependent SRM. Such an approach has been applied
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to the Mixtures-of-Expert model in [6, 5]. It still remains to be seen if this ap-
proach can be generalised to the LCS model, such as we have done with the
Bayesian MoE model to provide the Bayesian LCS model. If this is possible,
data-dependent SRM might be a viable alternative for defining the optimal set
of classifiers.

7.5.3 Bayesian Ying-Yang

Bayesian Ying Yang (BYY) defines a unified framework that lets one derive
many statistics-based machine learning methods [246]. It describes the prob-
ability distribution given by the data, and the one described by the model,
and aims at finding models that are closest in distribution to the data. Using
the Kullback-Leibler divergence as a distribution comparison metric results
in maximum likelihood learning, and therefore will cause overfitting of the
model. An alternative is Harmony Learning which is based on minimising the
cross entropy between the data distribution and the model distribution, and
prefers statistically simple distributions, that is, distributions of low entropy.

Even though itis very likely applicable to LCS as it has already been applied to
the Mixtures-of-Expert model [245], there is no clear philosophical background
that justifies the use of the cross entropy. Therefore, the Bayesian approach that
we have introduced in this chapter seems to be a better alternative.

7.5.4 Training Data-based Approaches

It has been shown that penalising the model complexity based on some struc-
tural properties of the model alone cannot compete on all scales with data-
based methods like cross validation [126]. Furthermore, using the training
data rather than an independent test set gives even better results in minimis-
ing the expected risk [13]. Two examples of such complexity measures are
the Rademacher complexity and the Gaussian complexity [14]. Both of them
are defined as the expected error of the model when trying to fit the data per-
turbed by a sequence of either Rademacher random variables (uniform over
{£1}) or Gaussian N (0, 1) random variables. Hence, they measure the model
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complexity by the model’s ability to match a noisy sequence.

Using such methods in LCS would require training two models for the same
model structure, where one is trained with the normal training data, and the
other with the perturbed data. It is questionable if such additional space and
computational effort justifies the application of the methods. Furthermore, us-
ing sampling of random variables to find the model complexity makes it im-
possible to find an analytical expression for the utility of the model and thus
provides little insight in how a particular model structure is selected. Nonethe-
less, it might still be of use as a benchmark method.

7.6 Discussion and Summary

In this chapter we have tackled the core question of LCS: what is the best set
of classifiers that explains the given data? Rather than relying on intuition,
we have approached the question formally by aiming to find the best model
structure M that explains the given data D. More specifically, we have used
the principles of Bayesian model selection to define the best set of classifiers to
be the most likely one given the data, that is, the one that maximises p(M|D).

Computing this probability density requires a Bayesian LCS model that we
have introduced by adding priors to the probabilistic model from Chapter 4.
Additionally, we have increased the flexibility of the classifier models from
univariate to multivariate regression. The requirement of specifying prior pa-
rameters is not a weakness of this approach, but rather a strength, as the pri-
ors make explicit the commonly implicit assumptions made about the data-
generating process.

To find a closed-form solution to p(M|D) we have employed variational
Bayesian inference and have used various approximations to handle the gen-
eralised softmax function that is used to combine the local classifier models
to a global model. Whilst variational Bayesian inference usually provides us
with a lower bound £(¢) on In p(D| M) that is directly related to p(M|D), these
approximations invalidate the lower bound nature of £(g). Even without these
approximations, the use of £(q) for selecting the best set of classifiers depends
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very much on the tightness of the bound, and if this tightness is consistent for
different model structures M. Variational Bayesian inference has been shown
to perform well in practice [219, 19], and the same approximations that we
apply were successfully used for the Mixtures-of-Experts model in [229, 230].
Thus, we can also expect our method to feature good performance when ap-
plied to LCS, but sufficient empirical investigation is required before we can

make more definite statements.

We have introduced the first formal and general definition of what it means
for a set of classifiers to be optimal, using the best applicable of the currently
known model selection approaches. The definition is general as i) it is inde-
pendent of the representation of the matching function, ii) it can be used for
both discrete and continuous input spaces, and iii) it can handle matching by
degree. The reader is reminded that the definition itself is independent of the
variational inference, and thus is not affected by the issues that are introduced
through approximating the posterior. A further significant contribution that
comes with the definition of optimality is a Bayesian model for LCS that goes
beyond the probabilistic model as it makes the prior assumptions about the
data-generating process explicit. Additionally, we for the first time provide
classifier models that can perform multivariate regression rather than only uni-
variate regression, as it was the case in all previous LCS.

After this rather abstract introduction of the definition of the optimal classifier
set and a method of computing the model probability, we continue by provid-
ing a more concrete description of how it can be implemented, and demon-
strate on the basis of a set of simple experiments that the optimality criterion
is indeed able to identify good sets of classifiers.
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Chapter 8

An Algorithmic Description

In the previous chapter we have provided a definition for the optimal set of
classifiers given some data D, based on finding the model structure M, that
is, the set of classifiers, that maximises p(M|D). Additionally, we have shown
how one can use variational Bayesian inference to compute p(M|D) for some
given M and D.

To demonstrate that our definition of the optimal classifier set leads to useful
results, we describe a simple set of algorithms that allows us to demonstrate
its use on a set of regression tasks. We provide two possible approaches to
search the model structure space in order to maximise p(M|D), one based on a
basic genetic algorithm to create a simple Pittsburgh-style LCS, and the other
on sampling from the model posterior p(M|D) by Markov Chain Monte Carlo
(MCMC) methods. These approaches are by no means supposed to act as vi-
able competitors to current LCS, but rather as prototype implementations to
demonstrate the correctness and usefulness of our optimal classifier set defini-
tion. Additionally, when formulating the algorithms in this chapter, we seek
for readability rather than performance. Thus, there might still be plenty of

room for optimisation.

The core of both approaches is the evaluation of p(M|D) and its comparison
for different classifier sets in order to find the best set. We approach the eval-
uation of p(M|D) by variational Bayesian inference, as introduced in the pre-
vious chapter. Thus, with the algorithmic description of how to find p(M|D)
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we also provide a summary of the variational approach and a better under-
standing of how it can be implemented. The drawback of the algorithm as it
is presented here is that it does not scale well with the number of classifiers,
and that it can currently only operate in batch mode. The reader is reminded,
however, that our algorithmic description is only meant to show that our def-
inition of the optimal set of classifiers is a viable one. Future work, described
in Chapter 10, will show how this definition can be incorporated into current
LCS or can kindle the development of new LCS.

We continue by providing a set of functions that in combination allow us to
compute a measure of the quality of a classifier set given the data. As this
measure can subsequently by used by any global search algorithm that is able
to find its maximum in the space of possible model structures, we keep its al-
gorithmic description separate from the model structure search. For the struc-
ture search we provide two simple alternatives in a later section, one based
on genetic algorithms, and another based on sampling the model posterior
p(M|D) by MCMC methods. Finally, we use these approaches to demonstrate
on simple regression tasks that our definition of optimality indeed allows us
to identify a good set of classifiers.

8.1 Computing p(M|D)

In this section we introduce a set of functions that allow us to compute an
approximation to p(M|D) for a given data set D and model structure M. These
functions rely on a small set of global system parameters and constants that are
given in Table 8.1. The functions are presented in a top-down order, starting
with a function that returns p(M|D), and continuing with the sub-functions
that it calls. The functions use a small set of non-standard operators and global
functions that are described in Table 8.2.

We assume the data to be given by the N x Dy input matrix X and the N x
Dy output matrix, as described in Section 7.2.1. The model structure is fully
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Symbol Recom.  Description

[ 1072  Scale parameter of weight vector variance prior

b 10" Shape parameter of weight vector variance prior

ag 1072 Scale parameter of mixing weight vector variance
prior

bs 107*  Shape parameter of mixing weight vector variance
prior

ar 1072 Scale parameter of noise variance prior

b, 10~*  Shape parameter of noise variance prior

ALi(q) 107*  Stopping criterion for classifier update

AsLa(q) 1072  Stopping criterion for mixing model update
AJKL(R||G) 107®  Stopping criterion for mixing weight update

€XP\nin — lowest real number x on system such that exp(z) >
0
1N pax — In(z), where z is the highest real number on system

Table 8.1: Description of the system parameters and constants. These include
the distribution parameters of the priors and hyperpriors, and constants that
parameterise the stopping criteria of parameter update iterations. The recom-
mended values specify rather uninformative priors and hyperpriors, such that
the introduced bias due to these priors is negligible.

defined by the N x K matching matrix M, that is given by
ml(:cl) mK(ar:l)

M = : : . (8.1)

mi(xy) - mg(xy)

Thus, column £ of this matrix specified the degree of matching of classifier £
for all available observations. Note that the definition of M differs from the
one in Chapter 5, where M was a diagonal matrix that specified the matching

for a single classifier.

In addition to the matching matrix, we also need to define the N x Dy mixing
feature matrix ®, that is given by

_¢($N)T_

and thus specifies the feature vector ¢(x) for each observation. In LCS, we
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Fn. /Op. Description

A®B given an a x b matrix or vector A, and ¢ x d matrix or vec-
tor B,and a = ¢,b = d, A® B returns an a x b matrix that
is the result of an element-wise multiplication of A and
B. If a = ¢,d = 1, that is, if B is a column vector with ¢
elements, then every column of A is multiplied element-
wise by B, and the result is returned. Analogously, if
B is a row vector with b elements, then each row of A is
multiplied element-wise by B, and the result is returned.

AoB the same as A ® B, only performing division rather than
multiplication.
Sum'A) returns the sum over all elements of matrix or vector A.

RowSum(A) given an a x b matrix A, returns a column vector of size
a, where its ith element is the sum of the b elements of
the ith row of A.
Fi xNaN(A,b) replaces all NaN elements in matrix or vector A by b.

Table 8.2: Operators and global functions used in the algorithmic descriptions.

usually have ¢(x) = 1 for all z, and thus also ® = (1,...1)7, but the algorithm
presented here also works for other definitions of ¢.

8.1.1 Model Probability and Evidence

The Function Model Probabi | i ty takes the model structure and the data
as arguments and returns £(q) + Inp(M) as an approximation to the unnor-
malised Inp(M|D). Thus, it replaces the model evidence p(D|M) in Eq. (7.3)
by its approximation £(g). The function assumes that the order of the classi-
fiers can be arbitrarily permutated without changing the model structure and
therefore uses the p(M) given by Eq. (7.4). In approximating In p(M|D), the
function does not add the normalisation constant. Hence, even though the re-
turn values are not proper probabilities, they can still be used for the compari-
son of different model structures, as the normalisation term is shared between
all of them.

The computation of L£(q) + Inp(M) is straightforward: in Lines 2 to 7
we compute and assemble the parameters of the classifiers by calling
Trai nC assi fi er for each classifier £ separately, and providing it with the
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Function Model Probability( M, XY, ®)

Input: matching matrix M, input matrix X, output matrix Y, mixing feature
matrix ®

Output: approximate model probability £(q) + Inp(M)

get K from shape of M
fork — 1to K do
my, < kth column of M
L Wi A br L ar  bh < Traind assifier(mg, X,Y)

P TR TR o) Ty
W AL — (W, .. Wi AT AR
a b, —{ar,...;a },{br,.. . b}
o, by —{aay, - a0y} {bars -, bag }
V, A 'ag, bs — TrainM xing( M, X,Y,® W, A a,, b, a,,b,)
0 — {W, A a,, b, a, b, V,A as, bs}
L(q) < VarBound( M, X Y, ®,0)
return £(q) + In K'!

data and the matching vector m,, for that classifier. After that, the mixing
model parameters are computed in Line 8 by calling Tr ai nM Xi ng, based on
the fully trained classifiers.

Having evaluated all classifiers, all parameters are collected in Line 9 to give
0 and used in Line 10 to compute £(¢) by calling Var Bound. After that, the
function returns £(q) + In K'!, based on Egs. (7.3) and (7.4).

8.1.2 Training the Classifiers

The Function Tr ai nCl assi fi er takes the data X, Y and the matching vec-
tor m;, and returns all model parameters for the trained classifier £. The model
parameters are found by iteratively updating the distribution parameters of
the variational posteriors gy, (W}, 7) and ¢;,(ax) until the convergence crite-
rion is satistied. This criterion is given by the classifier-specific components
Ly (q) of the variational bound L(g), as given by Eq. (7.89). However, rather
than evaluating £ (¢) with the responsibilities 7,,, as done in Eq. (7.89), we use
the matching function my(x,,). The underlying idea is that — as each classifier
is trained independently — we assume that the responsibilities are equivalent
to the matching function values. This has the effect that by updating the clas-
sifier parameters according to Egs. (7.95) — (7.98), we are indeed maximising
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Function Trai nCl assifier( m;, X,Y)

Input: matching vector m;, input matrix X, output matrix Y’

Output: Dy x Dy weight matrix Wy, Dy x Dy covariance matrix A,;l, noise
precision parameters a,,, b, weight vector prior parameters aq, , ba,

get Dy, Dy from shape of X,Y

X — X ®/my

Y, Y ®,my

Aoy Doy, < Aoy bo

a”Tk? ka; — a’l‘? bT

Ly(q) « —o0

while ALy (q) > A;Li(q) do

Et)é(ak) — aak/bak

Ak — Ea(ak)I + Xng

At — (AT

W, «— Y}{:TX,CA,;l

Qr, — Q7 + % Sum( my,)

bry — by + ﬁ(SU”(Y?c ®Yy) — Sum W, @ WiA,) )
E-(7k) < ar,/br,

oy o+ 2P

bak — by + %(ET(T/C) SUIT( W, ® Wk) +DyTI'(AI;1))
Lgres(a) < Li(q)

Li(q) < Var d Bound( X,Y, W, A a,,, by, , day s Doy, M)

ALk(q) < Lr(q) = Lrpres(q)
assert ALy(q) >0

N —1
return Wi, A, ", a., b, aq,, ba

k

Ly (¢), which is not necessarily given if we have r,;, # my(x,), as discussed
in Section 7.3.9. Therefore, every parameter update is guaranteed to increase
Ly;(q), until the algorithm converges.

In more detail, in Lines 2 and 3 we compute the matched input vector X,

and output vector Y}, based on \/my(x)y/mi(x) = mi(z). Note that each
column of X and Y is element-wise multiplied by ,/m;, where the square
root is applied to each element of m, separately. The prior and hyperprior
parameters are initialised with their prior parameter values in Lines 4 and 5.

In the actual iteration, Lines 9 to 14 compute the parameters of the varia-
tional posterior g;;, (W, 1) by the use of Egs. (7.95) — (7.98) and Eq. (7.64).
To get the weight vector covariance A, ' we make use of the equality X/ X =
>, mi(xn) Tzl . The weight matrix W, is evaluated by observing that the jth
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row of YkTXkA,;l, giving wy;, is equivalent to A,;l > Mpe(X0) Xy Ynj. The up-
date of b, uses SUMY}, ® Y} ) that effectively squares each element of Y}, before
returning the sum over all elements, that is Y-, > m(®,)yn;. >, wi; Avwy;
in Eq. (7.98) is computed by observing that it can be reformulated to the sum
over all elements of the element-wise multiplication of W), and W A;.

Lines 15 to 17 update the parameters of the variational posterior ¢, (cy), as
given by Egs. (7.40), (7.41), and (7.72). Here, we use the sum over all squared
elements of W, to evaluate | ; w,{jwkj.

The function determines convergence of the parameter updates in Lines 18 to
21 by computing the change of L;(q) over two successive iterations. If this
change drops below the system parameter A, (¢), then the function returns.
The value of £;(gq) is computed by Function Var Cl Bound, which is described
in Section 8.1.4. Its last argument is a vector of responsibilities for classifier k,
which we substitute by the matching function values for reasons mentioned
above. Each parameter update either increases £ (¢) or leaves it unchanged,
which we have specified in Line 21. If this is not the case, then the implemen-
tation is faulty and/or suffers from numerical instabilities. In the experiments

we have performed, convergence was usually reached after 3—4 iterations.

8.1.3 Training the Mixing Model

Training the mixing model is more complex than training the classifiers, as we
need to use the IRLS algorithm to find the parameters of ¢, (V). The function
Tr ai nM xi ng takes the model structure, data, and the parameters of the fully

trained classifiers, and returns the parameters of the mixing model.

As with training the classifiers, the parameters of the mixing model are found
incrementally, by sequentially updating the parameters of the variational pos-
teriors ¢;,(V'), ¢5(8) and ¢(Z). Convergence of the updates is determined by
monitoring the change of the mixing model-related components £,(gq) of the
variational bound £L(g), as given by Eq. (7.93). If the magnitude of change of
L(q) between two successive iterations is lower than the system parameter
AsLy(q), then the algorithm assumes convergence and returns.
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Function Trai nM xi ng( M, X, Y, ® W A' a, b, a.b,)
Input: matching matrix M, input matrix X, output matrix Y', mixing feature
matrix ®, classifier parameters W, A, a,,b.,a,. b,
Output: Dy x K mixing weight matrix V, (K Dy) x (K Dy ) mixing weight
covariance matrix, mixing weight vector prior parameters ags, bg

get Dy, Dy, Dy, K from shape of X, Y, ® W
V «— Dy x K matrix with elements sampled from A/ (0, (a—ﬂ))

bs
ag — {ag,,...,ag,}, all initialised to ag, = ag
bs — {bg,,...,bg,}, all initialised to bz, = bg
L(q) — —o0

ALy(q) — AsLy(q) +1

while ALy (¢) > AsLr(g) do

V,A,' « Trai nM x\Wei ghts(M, X, Y, & W A"' a,, b, V, as bs)
ag, b — Trai nM xPriors(V,A;")

G—Mxing(M,®,V)

R« Responsibilities(X,Y.G,W,A ' a,,b,)

Ek[,prev(q> — [’M(q)

Ly(q) + Var M xBound( G, R, V, A, as, by)

ALM(q) — [Lam(q) — Lt preo(q)]

return V., A ag, by

The parameters are initialised in Lines 2 to 4 of Tr ai nM Xxi ng. The Dy x K
mixing matrix V' holds the vector v, that corresponds to classifier k in its kth
column. As by Eq. (7.13) the prior on each element of v, is given by a zero-
mean Gaussian with variance 3; ', we initialise each element of V' by sampling
from N (0, bg/az) where we have approximated the value of the random vari-
able (3 by its prior expectation. The distribution parameters for gg(3;) are
initialised by setting them to the prior parameters.

An iteration starts by calling Tr ai nM xWei ght s in Line 8 to get the param-
eters of the variational posterior ¢;;(V'). These are subsequently used in Line
9 to update the parameters of q5(53) for each k by calling Tr ai nM xPri ors.
Lines 10 to 14 determine the magnitude of change of £,,(¢) when compared
to the last iteration. This is achieved by computing the N x K mixing ma-
trix G = (gr(=,)) by calling M xi ng. Based on G, the responsibility matrix
R = (1) is evaluated by calling Responsi bi | i ti es in Line 11. This allows
us to evaluate £,/(¢) in Line 13 by calling Var M xBound, and determine the
magnitude of change AL)(¢) in the next Line, which is subsequently used to
determine if the parameter updated converged. In the experiments we have
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performed, the function usually converged after 5-6 iterations.

We continue by introducing the Functions TrainM xWeights,
TrainM xPriors, Mxing and Responsi bilities that are all used
by Trai nM Xi ng to train the mixing model. Var M xBound is described in
the later Section 8.1.4.

Function M xi ng( M, ®,V)

Input: matching matrix M, mixing feature matrix ®, mixing weight matrix
\%4

Output: N x K mixing matrix G

get K from shape of V'

G — oV

limit all elements of G such that exp,_;, < gnr < Ipax — In K
G —exp(G)@ M

G — G© Rowsun( G)

Fi xNaN( G, 1/K)

return G

Starting with M xi ng, this function is used to compute the mixing matrix G
that contains the values for gi(x,) for each classifier/input combination. It
takes the matching matrix M, the mixing features ®, and the mixing weight
matrix V' as arguments, and returns G.

The mixing matrix G is evaluated by computing Eq. (7.10) in several steps:
firstly, in Line 2, v{ ¢(x,) is computed for each combination of n and k. Before
we can take the exponential of these values, we need to make sure that it does
not cause any overflow /underflow. We do this by limiting the values in G in
Line 3 to a certain range, with the following underlying idea [175]: they are
limited from below by exp,;, to ensure that their exponential is positive, as
we might later take their logarithm. Additionally, they are limited from above
by Inyax —In K such that summing over K such elements does not cause an
overflow. Once this is done, we can take the element-wise exponential and
multiply each element by the corresponding matching function value, as done
in Line 4. This essentially gives us the nominator of Eq. (7.10) for all combina-
tions of n and k. Normalisation over k is performed in the next line by dividing
each element in a certain row by the element sum of this row. If we have rows
in G that were zero before normalisation, we have performed 0/0, which we
fix in Line 6 by assigning equal weights to all classifiers for inputs that are not

211



o 0w 9 &

matched by any classifier. Usually, this should never happen as we only accept
model structures where ) |, my(x,) > 0 for all n. Nonetheless, we have added
this check to ensure that we can even handle these cases gracefully.

Function Responsi bilities(X,Y,G,W,A ! a,,b,)

Input: input matrix X, output matrix Y, gating matrix G, classifier
parameters W,A"! a,, b,

Output: N x K responsibility matrix R

get K, Dy from shape of Y, G
fork =1to K do
Wi, A ar,, by, < pick from W A~ a, b,

kth column of R « exp <%‘4(¢(am) —Inb,,)

—~1 (5 RowSunm( (Y — XW,")?) +Dy Rowsun( X @ XA;") ))

R—R®G

R — R® RowSun{ R)
Fi xNaN( R, 0)

return R

Based on the gating matrix G and the goodness-of-fit of the classifiers, the
Function Responsi bilities computes the N x K responsibility matrix,
with r,,;, as its nkth element. Its elements are evaluated by following Egs. (7.62),
(7.63), (7.69) and (7.74).

The loop from Line 2 to 5 in Responsi bi | i ti es iterates over all k to fill the
columns of R with the values for p,; according to Eq. (7.62), but without the
term gi(z,)". This is simplified by observing that the term 3~ (y,; — wj;®,)?
which is by Eq. (7.74) part of 3 Ew, (74 (yn; — wy;x,)?), is given for each ob-
servation separately in the vector that results from summing over the rows of
(Y — XW/')?, where the square is taken element-wise. Similarly, I A, 'z,
of the same expectation is given for each observation by the vector that re-
sults from summing over the rows of X ® XA,', based on zlA 'z, =
Ei(af:n)i(Aglmn)i. The values of gi(x,) are added to p, in Line 6, and the
normalisation step by Eq. (7.63) is performed in Line 7. For the same reason
as in the M Xi ng function we need to subsequently replace all NaN values in
R by 0 to not assign responsibility to any classifiers for inputs that are not
matched.

'Note that we are operating on p,,; rather than In p,,;, as given by Eq. (7.62), as we certainly
have gy(x,) = 0 in cases where my(x,) = 0, which would lead to subsequent numerical
problems when evaluating In g (x5,).
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Function Tr ai nM xWei ghts( M, X,Y,® W ,A ™ a,,b,, V. ags, bp)
Input: matching matrix M, input matrix X, output matrix Y, mixing feature
matrix ®, classifier parameters W, A™!, a., b,, mixing weight matrix
V, mixing weight prior parameters ags, bg
Output: Dy x K mixing weight matrix V, (K Dy) x (K Dy ) mixing weight
covariance matrix A}’

Eg(B) «row vector with elements (Z%, ) < )
1

G —Mxing(M,®,V)
R «— Responsibilities(X,Y,G,W A a.b,)
KL(R|G) «+ >
AKL(R||G) «— AJKL(R||G) + 1
while AKL(R||G) > AKL(R||G) do
E —®"(G-R)+V ®@Es(0)
€ — (E117'"7ED\/17E127"'7ED\/27'"7E1K7"'7ED\/K)T
H — Hessi an( ®, G, ag, bp)
Av — —H e
AV «— Dy x K matrix with jkth element
given by ((k — 1)K + j)th element of v
V —V +AV
G—Mxing(M,®,V)
R« Responsibilities(X,Y,G,W,A ' a,,b,)
KLyeo(R|G) < KL(R||G)
KL(R|G) — Sum( R® Fi xNaN(In(G © R),0))
| AKL(R||G) = [KLyeo(R||G) — KL(R|G))|
H — Hessi an( ®,G, ag, bg)
A‘;l - H—l
return V, A}

The Function Tr ai nM xWei ght s approximates the mixing weights varia-
tional posterior ¢, (V') Eq. (7.51) by performing the IRLS algorithm. It takes the
matching matrix, the data and mixing feature matrix, the trained classifier pa-
rameters, the mixing weight matrix, and the mixing weight prior parameters.
As the IRLS algorithm performs incremental updates of the mixing weights V'
until convergence, we do not re-initialise V' every time Tr ai nM xWei ght s is
called, but rather use the previous estimates as their initial values to reduce
the number of iterations that are required until convergence.

As we aim at modelling the responsibilities by finding mixing weights that
make the mixing coefficients given by g (x,) similar to r,,;, we determine con-
vergence by the Kullback-Leibler divergence measure KL(R||G) that measures
the distance between the probability distributions given by R and G. For-
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mally, this is defined by KL(R||G) = >, >, ok In(ge(®yn)/rnr), and is repre-
sented in £y/(q) Eq. (7.93) by the terms E;y(Inp(Z|V) — Ez(Inq(Z)), given
by Eq. (7.82). As the Kullback-Leibler divergence is non-negative and zero if
and only if R = G [235], the algorithm assumes convergence of the IRLS al-
gorithm if the change in KL(R||G) between two successive iterations is below
the system parameter A KL(R||G).

Tr ai nM xWei ght s starts by computing the expectation Ez(5x) for all £ in
Line 1. The IRLS iteration Eq. (6.5) requires the error gradient VE(V') and
the Hessian H, which are by Egs. (7.48) and (7.49) based on the values of
gi(x,) and r,,. Hence, Tr ai nM x\Wi ght s continues by computing G and
R in Lines 2 and 3.

The error gradient VE(V') by Eq. (7.48) is evaluated in Lines 7 and 8. Line 7
uses the fact that ®7(G — R) results in a Dy x K matrix that has the vector
> ulgi(®n) —10;)0(x,) asits jth column. Similarly, V ®Ez(8) results in a matrix
of the same size, with E3(/3;)v; as its jth column. Line 8 rearranges the matrix
E, which has V,, E(V) as its jth column, to the gradient vector e = VE(V).
The Hessian H is assembled in Line 9 by calling the Function Hessi an, and
is used in the next line to compute the vector Av by which the mixing weights
need to be changed according to the IRLS algorithm Eq. (6.5). The mixing
weight vector is updated by rearranging Av to the shape of V' in Line 12, and
adding it to V' in the next line.

As the mixing weights have changed, we recompute G and R with the up-
dated weights, to get KL(R||G), and eventually to use it in the next itera-
tion. The Kullback-Leibler divergence between the responsibilities R and their
model G are evaluated in Line 17, and then compared to its value of the last
iteration to determine convergence of the IRLS algorithm. Note that due to the
use of matrix operations, we do not check for elements in R that are r,;, = 0
due to gx(x) = 0 when computing G © R, which might cause NaN entries
in the resulting matrix. Even though these entries are multiplied by 7,, = 0
thereafter, we first need to replace all of these entries by zero, as otherwise we
would still get 0 x NaN = NaN.

The IRLS algorithm gives us the mean of ¢{,(V') by the mixing weights that

minimise the error function F(V'). We still need to evaluate its covariance
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matrix A(/l, which, by Eq. (7.50), is the inverse Hessian, as evaluated in Line
19. We cannot use the last Hessian computed in the IRLS iteration in Line 9,
because the Hessian depends on G which has changed thereafter.

Function Hessi an( ®, G, ag, bp)

Input: mixing feature matrix ®, mixing matrix G, mixing weight prior
parameters ag, bg

Output: (K Dy) x (K Dy) Hessian matrix H

get Dy, K from shape of V/
H — empty (K Dy ) x (KDy) matrix
fork =1to K do
gi < kth column of G
forj=1tok—1do
g; < jth column of G
Hy, — —®7 (2 ® (g, ©g,))
k’jth Dy X Dy block of H «— ij
jkth Dy x Dy block of H «— Hj;

ag,,bg, — pick from ag, bs
Hyy — @7 (2@ (g1 ® (1—gx))) + %’;I
| kth Dy x Dy block along diagonal of H «+ Hjy

return H

To complete Tr ai nM xWei ght s, let us consider how the Function Hessi an
assembles the Hessian matrix H: it first creates an empty (K Dy ) x (KDy)
matrix that is thereafter filled by its block elements H),; = Hj;, as given by
Eq. (7.49). Here we use the equality

Y d@a) (gx(@n)gi(@a)d(2,)") = @7 (@ © (91 © gj)) (8.3)

for the off-diagonal blocks of H where I;; = 0 in Eq. (7.49), and a similar
relation to get the diagonal blocks of H.

The posterior parameters of the prior on the mixing weights are evaluated ac-
cording to Egs. (7.56), (7.57), and (7.70) in order to get g5(;,) for all k. Function
Trai nM xPri or s takes the parameters of ¢{,(V') and returns the parameters
for all ¢j3(). The posterior parameters are computed by iterating over all &,
and in Lines 5 and 6 by performing a straightforward evaluation of Egs. (7.56)
and (7.57), where in the latter, Eq.(7.70) replaces Ey (v{ vy).
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Function Tr ai nM xPriors(V, A"

Input: mixing weight matrix V, mixing weight covariance matrix A}'
Output: mixing weight vector prior parameters ag, bs

get Dy, K from shape of V'
fork=1to K do
v <« kth column of V
(A\_/l)kk — kth Dy x Dy block along diagonal of A‘_/1
ag, < ag+ 5
bg, — bs+ 5 (Tr (Ay )rx) + v vk)

ag, bﬁ — {aﬁu s 7aﬁx}v {bﬁu s >b5K}
return ag, bs

8.1.4 The Variational Bound

Function Var Bound( M, X,Y, ®,0)

Input: matching matrix M, input matrix X, output matrix Y, mixing feature
matrix ®, trained model parameters 0

Output: variational bound £L(q)

get K from shape of V'
G—Mxing(M,®,V)
R «— Responsibilities(X,Y,G,W A a.b,)
Li(q) <0
fork=1to K do

7, — kth column of R

Li(q) — Lk(q)

+ Var d Bound( X,Y, W, A" ar, by, , Qo s Doy, Tr)

E]u((]) ~— VarM xBound( G, R,V A‘;l, ag, bﬂ)
return Lx(q) + Lu(q)

The variational bound L(q) is evaluated in Function Var Bound according to
Eq. (7.94). The function takes the model structure, the data, and the trained
classifier and mixing model parameters, and returns the value for £(g). The
classifier-specific components £;(q) are computed separately for each clas-
sifier k in Line 8 by calling Var Cl Bound. Note that in contrast to calling
Var Cl Bound with the matching function values of the classifiers, as done
in Function Tr ai nCl assi fi er, we here conform to Eq. (7.89) and provide
Var Cl Bound with the previously evaluated responsibilities. The full varia-
tional bound is found by adding the mixing model-specific components £ (q),
that are computed in Line 8 by a call to Var M xBound, to the sum of all £ (q)’s.
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Function Var Cl Bound( X,Y, W,, A,;l, Arpy bry s Qo Doy s T8)
Input: input matrix X, output matrix Y, classifier parameters
W, A,;l, ar,, br, , Ga,, ba,, responsibility vector 7,

Output: classifier component £ (g) of variational bound

get Dy, Dy from shape of X, Y
ET(Tk) — a’Tk/ka

3 Li1(q) «— ( (ar,) —Inb,, —In2m) Sun( ry)

4 Ly2(q) — ——rk F(E- (1) RowsSum( (Y — XW/[)?) +Dy RowSum( X ® XA )
Li3(q) — —InT(ay) + aoInby + InT(an,) — o, In by, + 2222 4 B2 n A
Lia(q) — Dy(—InT(ar) +ar nb, + (ar — ar)¢(ar,) — ar by — b B ()

@®; N & U

gl s W N =

(=2}

+InT(a,, )+ aTk)
return L;1(q) + Li2(q) + Li3(q) + Lra(q)

By evaluating Eq. (7.89), the Function Var Cl Bound returns the components
of L(q) that are specific to classifier k. It takes the data, the trained classifier
parameters, and the responsibilities with respect to that classifier, and returns
the value for £;(g). This values is computed by splitting Eq. (7.89) into the
components Ly 1(q) to L 4(q), evaluating them one by one, and then returning
their sum. To get £ 2(¢) we have used the same matrix simplifications to get
|yn — Wi, ||> and £ A, 'z, as in Line 5 in Function Responsi bi l i ti es.

Function Var M xBound( G, R, V, A, as, bs)

Input: mixing matrix G, responsibilities matrix R, mixing weight matrix V,
mixing covariance matrix A;' mixing weight prior parameters ag, bs

Output: mixing component £,,(q) of variational bound

get Dy, K from shape of V
[,M,l(q) — K (— In F(ag) + as In bﬁ)
fork =1to K do
ag,,bs, < pick from ag, bg

L Laa(q) < Lara(q) +In(ag,) — ag, Inbg,
Lar2(q) < Sum( R® Fi xNaN(In(G @ R),0))
Lara(g) — 3 In Ay + 53
return L1(q) + La2(q) + Lars(q)

Finally, Function Var M xBound takes mixing values and responsibilities, and
the mixing model parameters, and returns the mixing model-specific compo-
nents L£y(q) of L(q) by evaluating Eq. (7.93). As in Var Cl Bound, the com-
putation of £;,(q) is split into the components Ly;1(q), La2(q), and Lyr3(q),
whose sum is returned. £;;(g) contains the components of £,/(g) that de-
pend on the parameters ¢j(3), and is computed in Lines 2 to 5 by iterating
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Function o() Comments

Model Probability NK3D3DyD} K3D} from Trai nM xi ng,
D3, from Tr ai nCl assi fi er
Trai nCl assifier ND3. Dy D3 dueto A;'
Tr ai nM xi ng NK3D3DyD}{  K®DZ4D} from
Trai nM x\Wei ght s

M xi ng NK Dy, -
Responsibilities  NKD%Dy D3 dueto XA;'
Trai nM xWi ghts  NK3DiDyD} (KDy)?dueto H™',
D% from Responsi bilities
Hessi an NK?D} K? due to nested iteration, D?, due
to BT (@ @ (g1 © g,))

Trai nM xPriors KDy —
Var ¢l Bound ND32%Dy D3 dueto XA, ' or |A
Var M xBound NK?D?, (KDy)? due to |A}|

Figure 8.1: Complexity of the different functions with respect to the number
of observations N, the number of classifiers K, the dimensionality of the input
space Dy, the dimensionality of the output space Dy, and the dimensionality
of the mixing feature space Dy

over all k. Ly2(q) is the Kullback-Leibler divergence KL(R|G), as given
by Eq. (7.82), which is computed in the same way as in Line 17 of Function
Trai nM xWei ght s.

8.1.5 Scaling Issues

Let us now consider how the presented algorithm scales with the dimension-
ality of the input space Dy, output space Dy, the mixing feature space Dy, the
number N of observations that are available, and the number K of classifiers.
All O(-) are based on the observation that the multiplication of an a x b ma-
trix with a b x ¢ matrix scales with O(abc), and the inversion and getting the
determinant of an a x a matrix have complexity O(a?) and O(a?), respectively.

Table 8.1 gives an overview of how the different functions scale with N, K, Dy,
Dy and Dy . Unfortunately, even though Model Pr obabi | i ty scales linearly
with N and Dy, it neither scales well with Dy, nor with K and Dy . In all three

cases, the 3rd polynomial is caused by a matrix inversion.
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Considering that D3, is due to inverting the precision matrix Ay, it might be
reducible to D% by using the Sherman-Morrison formula, as shown in Sec-
tion 5.3.5. Dy is the dimensionality of the input space with respect to the clas-
sifier model, and is given by Dy = 1 for averaging classifiers, and by Dy = 2
for classifiers that model straight lines. Thus, it is in general not too high and
D3, will not be the most influential complexity component. In any case, as long
as we are required to maintain a covariance matrix A,;l of size Dy x Dy, the

influence of Dy is unlikely to be reducible below D3

The biggest weakness of the prototype algorithm that we have presented here
is that the number of operations required to find the parameters of the mixing
model scale with K3D},. This is due to the inversion of the (K Dy/) x (K Dy)
Hessian matrix that is required at each iteration of the IRLS algorithm. To
apply variational inference to real-world problems, we would require the al-
gorithm to scale linearly with the number of classifiers K. This is best achieved
by approximating the optimal mixing weights by well-tuned heuristics, as we
have already done for the prior-free LCS model in Chapter 6. The mixing
feature space dimensionality, on the other hand, is usually Dy = 1, and its
influence is therefore negligible.

In summary, the presented algorithm scales with O(NK®D3, Dy D},). While it
might be possible to reduce D3, to D3, it still scales super-linearly with the
number of classifiers K. This is due to the use of the generalised softmax func-
tion that requires the application of the IRLS algorithm to find its parameters.
To reduce the complexity, we either replace the softmax function by another
model that is easier to train, or introduce well-tuned heuristics that provide us

with a good approximation. This issue will be discussed further in Chapter 10.

8.2 Two Alternatives for Model Structure Search

Recall that we have defined the optimal set of classifiers M as the set that max-
imises p(M|D). Therefore, in order to find this optimal set we need to search
the space {M} for the M such that p(M|D) > p(M|D) for all M. This can the-
oretically be approached by any method that is able to find some element in a

set that maximises some function of the elements in that set, such as simulated
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annealing [220], or genetic algorithms [93, 169].

The two methods that we describe here are the ones we have used to test the
usefulness of our optimality definition. They are conceptually simple and not
particularly intelligent, as neither of them uses any information embedded in
the probabilistic LCS model besides the value proportional to Inp(M|D) to
form the search trajectory through the model structure space. Consequently,
there is still plenty of room for improvement.

The reason we introduce two alternatives is i) to emphasise the conceptual
separation between evaluating the quality of a set of classifiers, and searching
for better ones, and ii) to show that we can in theory use any global optimiser
to perform the task of model structure search. As the aim is independent of
the search procedure, reaching this aim only depends on the compatibility of
the search procedure with the model structure space. After having introduced
the two alternatives, we give a short discussion in Section 8.2.3 about their
differences, and what might in general be good guidelines to improve the ef-

fectiveness of searching for good sets of classifiers.

Note that the optimal set of classifiers strongly depends on the chosen rep-
resentation for the matching functions, as we can only find solutions that
we are able to represent. Nonetheless, to keep the description of the meth-
ods representation-independent, we postpone the discussion of components
of the methods that are representation-dependent to the point where we have
to choose some representation; that is, in Section 8.3.

8.2.1 Model Structure Search by a Genetic Algorithm

Genetic algorithms (GA) are a family of global optimisers that are conceptu-
ally based on Darwinian evolution. We expect the reader to be familiar with
their underlying idea and basic implementations, of which an overview can be
found in [93, 169].

An individual in the population that our GA operates on is defined by
an LCS model structure M, and its fitness is given by the value that
Model Probabi | ity returns for this model structure. As the genetic algo-
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rithm seeks to increase the fitness of the individuals in the population, its goal
is to find the model structure that maximises p(M|D). An allele of an indi-
vidual’s genome is given by the representation of a single classifier’s match-
ing function, which makes the genome’s length determined by the number of
classifiers of the associated model structure. As this number is not fixed, the
individuals in the population can be of variable length?.

Starting with an initial population of P randomly generated individuals, a
single iteration of the genetic algorithm is performed as follows: firstly, we
determine the matching matrix M after Eq. (8.1) for each individual, based
on its representation of the matching functions and the input matrix X. This
matching matrix is subsequently used to determine each individual’s fitness
by calling Mbdel Pr obabi | i ty. After that, we create a new population by se-
lecting two individuals from the current population and apply crossover with
probability p. and mutation with probability p,,. The last step is repeated un-
til the new population again holds P individuals. Then, the new population
replaces the current one, and the next iteration begins.

An individual is initially generated by randomly choosing the number of clas-
sifiers it represents, and then initialising the matching function of each of its
classifiers, again randomly. How these matching functions are initialised de-
pends on the representation and is thus discussed later. To avoid the influence
of fitness scaling, we select individuals from the current population by de-
terministic tournament selection with tournament size ¢,. Mutation is again

dependent on the chosen representation, and will be discussed later.

As two selected individuals can be of different length, we cannot apply stan-
dard uniform cross-over but have to use different means: we want the total
number of classifiers to remain unchanged, but as the location of the classi-
fiers in the genome of an individual do not provide us with any information,
we allow their location to change. Thus, we proceed as shown in function
Cr ossover by randomly choosing the new number K and Kj of classifiers

2Variable-length individuals might cause bloat, which is a common problem when using
Evolutionary Computation algorithms with such individuals, as frequently observed in ge-
netic programming [159]. It also plagues some Pittsburgh-style LCS that use variable-length
individuals, such as LS-1 [200] and GAssist [7], and counteracting measures have to be taken
to avoid its occurrence. This is not an issue in our application, as overly complex model struc-
tures will receive a lower fitness due to the preference of the applied model selection criterion
for models of low complexity.
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Function Cr ossover ( M,, M)

Input: two model structures M,, M,
Output: resulting two model structures M., M; after crossover

K,, K, < number of classifiers in M,, M,
M,, M, matching function sets from M,, M,
M/ — M,U M,
K} <+ random integer K such that1 < K < K, + K,
M, — 0
fork =1to K, do
my, «—randomly selected matching function from M
My — MU {my}
M — M\ my
M:w M;) A {Ka + Ky — Kll)ﬂ Mz;}ﬂ {KI;7 MI;}
return M/, M}

in each of the new individuals M/, and M; such that the sum of classifiers
K, + K, = K] + Kj remains unchanged, and each new individual has at least
one classifier. The matching functions of individual M; are determined by ran-
domly picking K; matching functions from either of the old individuals. The
other individual M/, received all the remaining K, + K, — K} matching func-
tions. In summary, we perform crossover by collecting the matching functions
of both individuals, and randomly redistributing them.

For our empirical demonstration we have not specified any particular criteria
to determine the convergence of the genetic algorithm. Rather, we pre-specify
the number of iterations that it performs. Additionally, we use an elitist strat-
egy by separately maintaining the highest-fitness model structure M* that was
found so far. This model structure is not part of the normal population, but is
replaced as soon as a fitter model structure is found.

This completes the description of the genetic algorithm that we have used. It
is kept deliberately simple to not distract from the task it has to solve, which
is to find the model structure that maximises p(M|D). In the presented form,
it might be considered as being a simple Pittsburgh-style LCS .
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8.2.2 Model Structure Search by Markov Chain Monte Carlo

Our use of the MCMC algorithm provides a sample sequence Mj, Mo, ...
from the model structure space that follows a Markov chain with steady state
probabilities p(M|D), and thus allows us to sample from p(M|D) [19]. As
such a sampling process takes more samples from high-probability model
structures, the sample sequence spends more time in high-probability areas of
p(M|D). Hence, the MCMC algorithm can be seen as a stochastic hill-climber
that aims at finding the M that maximises p(M|D). The algorithm presented
here is based on a similar algorithm developed for CART model search in [63].

The sample sequence is generated by the Metropolis-Hastings algorithm [104],
which is give by the following procedure: given an initial model structure M,,
a candidate model structure M’ is created in step ¢ + 1, based on the current
model structure M,. This candidate is accepted, that is, M,.; = M’, with
probability

(8.4)

(p(Mt\M’) p(M'|D) 1)
pM!'|My) p(M[D)" ")
and otherwise rejected, in which case the sequence continues with the previous
model, that is, M;;; = M;. p(M;|M’) and p(M’|M;) are the probability dis-
tributions that describes the process of generating the candidate model M’. As
the search procedure tends to prefer model structures that improve p(M|D), it
is prone to spending many steps in areas of the model structure space where
p(M|D) is locally optimal. To avoid being stuck in such areas, we perform ran-
dom restarts after a certain number of steps, which are executed by randomly

reinitialising the current model structure.

The initial model structure M, as well as the model structure after a random
restart, is generated by randomly initialising K classifiers, where K needs to
be given. We assume that the matching function of a classifier can be initialised
by sampling from the probability distribution p(my,). Thus, M, is generated by
taking K samples from p(my). The exact form of p(m;,) depends on the chosen
representation, and thus will be discussed later.

A new candidate model structure M’ is created from the current model struc-
ture M, with K; classifiers similarly to the procedure in [63], by choosing one
of the following actions:
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change. Picks one classifier of M, at random, and reinitialises its matching
function by taking a sample from p(my,).

add. Adds one classifier to M,, with a matching function sampled from p(my),
resulting in K, + 1 classifiers.

remove. Removes one classifier from M, at random, resulting in K, — 1 clas-

sifiers.

The actions are chosen by taking samples from the discrete random variable
A € {change, add, remove}, where we assume p(A = add) = p(A = remove)
and p(A = change) = 1 — 2p(A = add).

Let us now consider how to compute the acceptance probability Eq. (8.4) for
each of these actions. We have p(M|D) x p(D|M)p(M|K)p(K) by Bayes’ The-
orem, where, different to Eq. (7.3), we have separated the number of classi-
fiers K from the model structure M. As in Eq. (7.4), we assume a uniform
prior over the unique models, giving p(K) o 1/K!. Additionally, every clas-
sifier in M is created independently by sampling from p(my,), which results in
p(M|K) = p(my)¥. Using variational inference, the model evidence is approx-
imated by the variational bound p(D| M) o exp(L(q)), where L4(q) denotes
the variational bound of model M. Thus, in combination we have

p(./\/l”’D) ~ eXP(ﬁM'(q))p(mk)K'(K’!)*l
PMID) ™ exp(La, (¢))p(m) Kt (K1) -1

(8.5)
where K’ denotes the number of classifiers in M’.

We get the model transition probability p(M’|M,) by marginalising over the
actions A, to get

p(M'|M;) = p(M'|M;, A= change)p(A = change)
+p(M'|M;, A = add)p(A = add)
+p(M'|M;, A = remove)p(A = remove), (8.6)

and a similar expression for p(M,|M’). When we choose action add, then
K' = K;+ 1, and p(M'|M;, A = change) = p(M'|M;, A = remove) = 0,
as neither the action change nor the action remove cause a classifier to be added.
M, and M’ differ in a single classifier that is picked from p(my), and there-
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fore p(M|M’, A = add) = p(my). Similarly, when choosing the action remove
for M,, an arbitrary classifier is picked with probability 1/K;, and therefore
p(M'|M,;, A = remove) = 1/K,. The action change requires choosing a clas-
sifier with probability 1/K, and reinitialising it with probability p(my), giving
p(M'|M,, A = change) = p(my)/K;. The reverse transitions p(M;|M’) can be
evaluated by observing that the only possible action that causes the reverse
transition from M’ to M, after the action add is the action remove, and vice
versa. Equally, change causes the reverse transition after performing action

change.

Overall, the candidate model M’ that was created by add from M, is accepted
by Eq. (8.4) with probability

. <p(/\/lt|./\/l’, A = remove)p(A = remove) p(M'|D) 1)
" p(MIM;, A = add)p(A = add)  p(M,[D)’
~ min (exp (L (q) — L, (q) — 2In(K; + 1)), 1), (8.7)

where we have used our previous assumption p(A = add) = p(A = remove),
K' = K;+1, and Eq. (8.5). When choosing the action remove, on the other hand,
the candidate model M is accepted with probability

. ( MM, A = add)p(A = add)  p(M'|D) 1)
p(M'|M;, A = remove)p(A = remove) p(M,;|D)’
~ min (exp (Lar(q) — L, (q) —2In K;), 1), (8.8)

based on K’ = K; — 1, and Eq. (8.5). Note that in case of having K’ = 0,
the variational bound will be £/(q) = —o0, and the candidate model will be
always rejected, which confirms that a model without a single classifier is of
no value. Finally, a candidate model M’ where a single classifier from M, has
been changed by action change is accepted with probability

i <p(/\/lt]/\/l’, A = change)p(A = change) p(M’|D) 1)
p(M'|M;, A = change)p(A = change) p(M,|D)’
~ min (exp (Lar(q) — L, (), 1) - (8.9)

To summarise, the MCMC algorithm starts with a randomly initialised model
structure M, with K| classifiers and at each step ¢ + 1 performs either change,
add, or remove to create a candidate model structure M’ from M, that is either
accepted (M4, = M’) with a probability that, dependent on the chosen action,
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is given by Eq. (8.7), (8.8) or (8.9), and otherwise rejected (M1 = M,).

8.2.3 Building Blocks in Classifier Sets

As apparent from the above descriptions, the most pronounced difference be-
tween the GA and the MCMC search procedures is that the MCMC search only
considers a single model structure at a time, while the GA operates on a pop-
ulation of them simultaneously. This parallelism allows the GA to maintain
several competing model structure hypotheses that might contain valuable
building blocks to form better model structures. In GA, building blocks refer
to a group of alleles that in combination provide a part of the solution [93].
With respect to our model structure search, a building block is a subset of the
classifiers in a model structure that in combination provides a good model for
a subset of the data. A good model structure search maintains such building
blocks and recombines them with other building blocks to form new model
structure hypotheses.

Do such building blocks really exist in the LCS model that we have provided,
and in LCS in general? Let us consider a simple example where the model
structure contains a single classifier that matches all inputs with about equal
probability. The only sensible action that MCMC search can perform is to add
another classifier to see if it improves the model structure, which results in
a classifier that matches all observations about equally, and a possibly more
specific classifier that concentrates on a subset of the data. Only in rare cases
will such a combination provide a better model for the data (see Section 8.3.3
for an example where it does). Rather, the globally matching classifier should
be rearranged such that it does not directly compete with the specific classifier
in modelling its part of the data. The resulting pair of classifiers would then
cooperate to model a part of the data and can be seen as a building block of
a potentially good model structure. Thus, while these building blocks exist,
they are not exploited when using the MCMC algorithm for model structure
search.

When using a GA for model structure search, on the other hand, the pop-
ulation of individuals can contain several potentially useful building blocks,
and it is the responsibility of the crossover operator to identify and recombine
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them. As shown in [214], uniform crossover generally yields better results
that one-point and two-point crossover. The crossover operator that we use
aims at using uniform crossover for variable-length individuals. Further im-
provement in identifying building blocks can be made by using Estimation of
Distribution Algorithms (EDAs) [185], but as there are currently no EDAs that
directly apply to our problem structure [151] this is a possible topic of future

research.

8.3 Empirical Demonstration

To demonstrate the usefulness of the optimality criterion that we have intro-
duced in the last chapter, we use the previously described algorithms to find
a good set of classifiers for a set of simple regression tasks. These tasks are
kept simple in the sense that the number of classifiers that are expected to
be required are low, such that the O(K?) complexity of Model Probabi ity
does not cause any computational problems. Additionally, the crudeness of
the model structure search procedures does not allow us to handle problems
where the best solution is given by a complex agglomeration of classifiers. All
regression tasks have Dy = 1 and Dy = 1 such that we can visualise the results
easily. The mixing features are given by ¢(z) = 1 for all . Not all functions are
standardised, but their domain is always within [-1:4] and their range is within
[-1:1]. For all experiments we have used classifiers that model straight lines,
and have used uninformative priors and hyperpriors as given in Table 8.1.

Even though the prime problems that most new LCS are tested against are
Multiplexer problems of various lengths [240], we consider them as a challenge
for the model structure search rather than the optimality criterion and thus
have omitted them from our test set. Rather, we add a significant amount of
noise to the data, as our aim is to provide a criterion that provides the minimal
model, and can separate the underlying patterns from the noise, given that
enough data is available.

Firstly, we introduce the two different representations that are used for the
matching functions, and then continue by describing the four regression tasks,

their aim, and our results, one by one.
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8.3.1 Representations

The two representations that we are using are matching by radial-bases func-
tions, and matching by soft intervals. Starting with matching by radial-basis
functions, we now describe their matching functions, and how these are ini-

tialised and mutated.

Matching by Radial-Basis Functions

The matching function for matching by radial-basis functions is defined by

ma(z) = exp <L($ _ M)?) , (8.10)

2072

which is an unnormalised Gaussian that is parameterised by a scalar ;;, and
a positive spread o;. Thus, the probability of classifier k& matching input «
decreases with the distance from py, where the strength of the decrease is
determined by o4. If o; is small, then the matching probability decreases
rapidly with the squared distance of = from ;. Note that, as m;(z) > 0 for
all —oo < x < o0, all classifiers match all inputs, even if only with a very low
probability. Thus, we always guarantee that >, m;(z,) > 0 for all n, that is,
that all inputs are matched by at least one classifier, as required. Examples for
the shape of the radial-basis matching function are shown in Figure 8.2. We
have chosen this matching function to demonstrate matching by probability
— a feature that has not been available in LCS before.

Rather than declaring p, and oy, directly, we specify the matching parameters
0 < a, <100and 0 < b, < 50 that give py, = [+ (u—1)a;,/100 and o7 = 107%/1,
where [, u] is that range of the input z. Thus, a; determines the centre of the
classifier, where 0 and 100 specify the lower and higher end of z, respectively.
oy is given by by, such that 107°° < 07 < 1, and a low b, gives a wide spread
of the classifier matching function. A new classifier is initialised by randomly
choosing a;, uniformly from [0,100), and b uniformly from [0,50). The two
values are mutated by adding a sample from N (0, 10) to a;, and a sample from
N(0,5) to by, but ensuring thereafter that they still conform to 0 < a; < 100
and 0 < b, < 50. The reason we operate on ai, b, rather than , oy, is that it
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Matching by Radial Basis Functions
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Figure 8.2: Matching probability for matching by radial basis functions for
different parameters. Classifiers 1, 2, and 3 all have their matching functions
centred on y; = e = pz = 0.5, but have different spreads oy = 0.1, 02 = 0.01,
o3 = 1. This visualises how a larger spread causes the classifier to match a
larger area of the input space with higher probability. The matching function
of classifier 4 is centred on 4 = 0.8 and has spread o, = 0.2, showing that
p controls the location z of the input space where the classifier matches with
probability 1.

simplifies the mutation operation by making it independent of the range of
for 411, and allows for non-linearity with respect to 0. Alternatively, one could
simply acquire the mutation operator from [52].

Matching by Soft Intervals

Matching by soft intervals is similar to the interval matching that was intro-
duced in XCS by Wilson in [242], with the difference that we are using soft
boundaries on the intervals. We have chosen to represent the interval by soft
boundaries rather than hard boundaries to express the fact that we are never
absolutely certain about the exact location of these boundaries, and to avoid
the need to explicitly care about having each input matched by at least one

classifier.

To avoid the representational bias of the centre/spread representation of [242],

we use the lower/upper bound representation that was introduced and anal-

229



ysed in [206]. The softness of the boundary is provided by an unnormalised
Gaussian that is attached to both sides of the interval within which the classi-
fier matches with probability 1. To avoid the boundaries from being too soft,
we include them partially in the interval. More precisely, when specifying the
interval for classifier k by its lower bound [; and upper bound u;, we want
exactly one standard deviation of the Gaussian to lie inside this interval, and
additionally require 95% of the area underneath the matching function to be
inside this interval. More formally, we need 0.95(b;, + V27oy,) = by, to hold to
have the interval b, = u;, — I}, specify 95% of the area underneath the matching
function, where b}, gives the width of the interval where the classifier matches
with probability 1, and we have used the fact that the area underneath an un-
normalised Gaussian with standard deviation ¢ is v/27o. The requirement of
the specified interval extending by one standard deviation to either side of the
Gaussian is satisfied by b, + 0.6827+/270y, = by, based on the fact that the area
underneath the unnormalised Gaussian within one standard deviation from
its centre is 0.6827+/270. Solving these equations with respect to b, and o}, for

a given by, results in

_ sl by ~ 0.0662b (8.11)
Ok T 1068272 kT YR '
b, = by —0.6827v 270y, ~ 0.8868b. (8.12)

Thus, about 89% of the specified interval are matched with probability 1, and
the leftover 5.5% to either side are matched according to one standard devia-

tion of a Gaussian. Therefore, the matching function for soft interval matching

is given by
exp (—gh(z—1)?) ifw <1,
k
my(z) = q exp —5r(z — u}C)Q) if v > uj, (8.13)
k
1 otherwise,

where [}, and v}, are the lower and upper bound of the interval that the classifier
matches with probability 1, and are given by [} ~ [, + 0.0566b; and u), ~ uy —
0.05660y, such that uj, — [}, = bj,.. Figure 8.3 shows examples for the shape of the
matching function for soft interval matching.

We perform initialisation of a classifier £ by following [206], and sample

and uy, from a uniform distribution over [/, u|, which is the range of =. If [, >
uy, then their values are swapped. While in [206, 242], the boundary values
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Matching by Soft Intervals
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Figure 8.3: Matching probability for matching by soft interval for different
parameters. Classifiers 1 and 2 are adjacent as [; = 0, u; = I = 0.2, and
uy = 0.5. The area where these two classifiers overlap shows that the classifiers
do not match their full interval with probability 1 due to the soft boundaries
of the intervals. Nonetheless, 95% of the area beneath the matching function
are within the specified interval. Classifier 3 matches the interval I3 = 0.7,
ug = 0.9. Comparing the boundary of classifier 2 and 3 shows that the spread
of the boundary grows with the width of the interval that it matches.

are mutated by a uniform random variable, we rather sample a Gaussian to
make small changes more likely than large changes. Thus, the boundaries
after mutation are given by perturbing both bounds by N (0, (u — )/10), that
is, a sample from a zero-mean Gaussian with a standard deviation that is a
10th of the range of z. After that we again make sure that | < [;, < u;, < u by
swapping and bounding their values if required.

Even though both matching functions are only introduced for the case when
Dy = 1, they can be easily extended to higher-dimensional input spaces. In
the case of radial-basis function matching, the matching function is specified
by a multivariate Gaussian, analogous to the hyper-ellipsoidal conditions for
XCS [41, 52]. Matching by a soft interval becomes slightly more complex due
to the interval-specification of the matching function, but its computation can
be simplified by defining the matching function as the product of one single-

dimensional matching function per dimension of the input space.
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8.3.2 Generated Function

Classifiers and Mixed Model for Generated Function
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Figure 8.4: Classifier models, mixed model and available data for the gener-
ated function.

To see if the optimality criterion is correct if the data conforms to the un-
derlying assumptions of the model, we firstly test it on a function that was
generated to conform to these assumptions. The data is generated by tak-
ing 300 samples from 3 linear classifiers with models A (y]0.05 + 0.52,0.1),
N(y|2 — 42,0.1), and N (y| — 1.5 4+ 2.52,0.1) which use radial-basis function
matching with (i, 0?) parameters (0.2, 0.05), (0.5, 0.01), (0.8, 0.05) and mixing
weights v; = 0.5,v, = 1.0,u3 = 0.4, respectively. A plot of the classifiers’
means, their generated function mean, and the available data can be found in
Figure 8.4.

We have tested both the GA and MCMC model structure search, where the
GA is in this and all other experiments initialised with a population of size
P = 20, crossover and mutation probability p. = p,, = 0.4, and tournament
size t; = 5. The number of classifiers in each of the individuals is sampled
from the binomial distribution 5(8,0.5), such that, on average, an individual
has 4 classifiers. The performance of the GA model structure search is not sen-
sitive to the initial size of the individuals and gives similar results for different

initialisations of its population.

The result after a single run with 250 GA iterations are shown in Figure 8.5.
As can be seen, the model was not correctly identified as the number of
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Figure 8.5: Plots showing the best found model structure for the generated
function using GA model structure search, and fitness and average number
of classifiers over the GA iterations. Plot (a) shows the available data, the
model of the classifiers, and their mixed prediction with 1 standard devia-
tion to either side, and additionally the mean of the generating function. The
matching function parameters of the classifiers are ;; = 0.09, 07 = 0.063 and
pa = 0.81,035 = 0.006. Plot (b) shows the maximum, average, and minimum
fitness of the individuals in the population after each GA iteration. The mini-
mum fitness is usually below the lower edge of the plot. The plot also shows
the average number of classifiers for all individuals in the current population.

classifiers of the best found individual is 2 rather than the desired 3, with
L(q) —In K! ~ 118.81. Nonetheless, the generated function mean is still within
the first standard deviation of the predicted mean.

The MCMC model structure search was applied to the same data, using for this
and all further experiments 10 restarts with 500 steps each, and p(A = add) =
p(A = remove) = 1/4. Thus, we use the same number of model structure
evaluations as with the GA. The initial number of classifiers is after each restart
sampled from the binomial distribution B(8,0.5), resulting in 4 classifiers on

average.

As can be seen in Figure 8.6, MCMC model structure search performed better
than the GA by correctly identifying all 3 classifiers with £(g) —In K'! ~ 174.50,
indicating a higher p(M|D) than for the one found by the GA. While the dis-
covered model structure is not exactly that of the data-generating process, it is
surprisingly similar, given the rather crude search procedure. The reject rate
of the MCMC algorithm was about 96.9%, which shows that the algorithm

quickly finds a local optimum and remains there.
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Figure 8.6: Plots showing the best discovered model structure for the gen-
erated function using MCMC model structure search, and variational bound
and number of classifiers over the MCMC steps. Plot (a) shows the available
data, the model of the classifiers, and their mixed prediction with 1 standard
deviation to either side, and additionally the mean of the generating function.
The matching function parameters of the classifiers are y; = 0.16,07 = 0.01,
po = 0.461, 02 = 0.025, and p3 = 0.78, 03 = 0.006. Plot (b) shows the variational
bound £L(q) for each step of the MCMC algorithm, and clearly visualises the
random restarts after 500 steps. It also shows the number of classifiers K in
the current model structure for each step of the MCMC search.

8.3.3 Sparse, Noisy Data

While the noise of the generated function is rather low and there is plenty of
data available, the next experiment investigates if the optimality criterion can
handle more noise and less data. For this purpose we take a test function from
[230], where it was used to test the performance of the Bayesian MoE model
with a fixed model structure. The function is given by f(z) = 4.25(e " —4e "+
3e73 + N(0,0.2) over 0 < z < 4, and is shown in Figure 8.7, together with the
200 sampled observations. In [230], the added noise had variance 0.44, but we
have reduced it to 0.2, as otherwise no pattern was apparent in the data. We
assume that the Bayesian MoE model was only able to identify a good model
despite the high noise due to its pre-determined model structure.

Again using radial-basis function matching, the GA and MCMC settings are
the same as in the previous experiment, except for the initial number of clas-
sifiers, which is in both cases sampled from B(4,0.5). As before, the result is
insensitive to this number. The best discovered model structures are shown in
Figure 8.8 for the GA, with £(¢) — In K! ~ —159.07, and in Figure 8.9 for the
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Figure 8.7: Plot showing the test function used in [230], and the 200 available
observations.

MCMC, with £(g) — In K! ~ —158.55. The MCMC search had a reject rate of
about 97.0% over its 5000 steps.

Both the GA and the MCMC search resulted in about the same model structure
which at the first sight seems slightly surprising: looking at Figure 8.7, one
would initially expect the function to be modelled by a flat line over 1.5 < x <
4, and 2 straight lines for the bump at around = = 0.4, requiring altogether
3 classifier. The model structure search, however, has identified a model that
only requires 2 classifiers by having a global classifier that models the straight
line, interleaved by a specific classifier that models the bump. This clearly
shows that our optimality criterion prefers simpler models over more complex
ones, in addition to the ability of handling rather noisy data.

8.3.4 Function with Variable Noise

One of the disadvantages of XCS, as discussed in Section 7.1.1, is that the de-
sired mean absolute error of each classifier is globally specified by the system
parameter ¢). Therefore, XCS cannot properly handle data where the noise
level varies significantly over the input space. The optimality criterion we

have devised assumes constant noise variance at the classifier level, but does
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Figure 8.8: Plots similar to the ones in Figure 8.5, when using a GA for model
structure search applied to the function as given in [230]. The best discovered
model structure is given by 1 = 0.52, 07 = 0.016 and py = 3.32, 02 = 1.000.
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Figure 8.9: Plots similar to the ones in Figure 8.6, when using MCMC model
structure search applied to the function as given in [230]. The best discovered
model structure is given by 1 = 0.56, 07 = 0.025 and py = 2.40, 09 = 0.501.

not make such an assumption at the global level. Thus, it can handle cases
where each classifier requires to accept a different level of noise, as we will
show with the following experiment.

Similar, but not equal to [230], we use a function that has two different noise
levels. The function is given for —1 < z < 1by f(z) = —1 — 2z + N(0,0.6) if
xr <0,and f(z) = —1+ 2z + N(0,0.1) otherwise. Thus, the V-shaped function
has a noise variance of 0.6 below z = 0, and a noise variance of 0.1 above
it. Its mean and 200 data points that are used as the data set are shown in
Figure 8.10. To assign each classifier to a clear interval of the input space, we

use soft interval matching functions.
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Figure 8.10: Plot showing the mean of the function with variable noise, and
the 200 observations that are available from this function.

We have again applied both GA and MCMC search with the same settings as
before, and an initial number of classifiers sampled from B(8,0.5). The best
discovered model structures are shown for the GA in Figure 8.11, with £(q) +
In K! ~ —63.12, and for MCMC search in Figure 8.12, with a slightly better
L(q) + In K! ~ —58.59. The reject rate of the MCMC search was about 96.6%.

In both cases, the model structure search was able to identify two classifiers
with different noise variance. The difference in the modelled noise variance is
clearly visible in both Figure 8.11 and 8.12 by the plotted prediction standard
deviation. Thus, we have demonstrated that the classifier set optimality crite-
rion is suitable for data where the level of noise differs for different areas of

the input space.

8.3.5 A Slightly More Complex Function

To demonstrate the limitations of the model structure search methods as in-
troduced in this chapter, we perform the last experiment on a slightly more
complex function. The function we have used is the noisy sinusoid given over
the range —1 < = < 1by f(z) = sin(2rx) + N (0,0.15), as shown in Figure 8.13.
We are again using soft interval matching to clearly specify the area of the in-
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Figure 8.11: Plots similar to the ones in Figure 8.5, where GA model struc-
ture search was applied to a function with variable noise. The best discovered
model structure is given by /[; = —0.82,4; = 0.08 and [, = 0.04, uy = 1.00.
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Figure 8.12: Plots similar to the ones in Figure 8.6, where MCMC model struc-
ture search was applied to a function with variable noise. The best discovered
model structure is given by /; = —0.98, 4y = —0.06 and Iy = 0.08, us = 0.80.

put space that a classifier models. The data set is given by 300 samples from

f(z).

Both GA and MCMC search are initialised as before, with the number of clas-
sifiers sampled from B(8,0.5). The GA search identified 7 classifiers with
L(q) +In K! ~ —155.68, as shown in Figure 8.14. It is apparent that the model
can be improved by reducing the number of classifiers to 5 and moving them
to adequate locations. However, as can be seen in Figure 8.14(b), the GA ini-
tially was operating with 5 classifiers, but was not able to find good interval
placements, as the low maximum fitness shows. Once it increased the num-
ber of classifiers to 7, at around the 60th iteration, it was able to provide a
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Figure 8.13: Plot showing the mean of the noisy sinusoidal function, and the
300 observations that are available from this function.

fitter model structure, but at the cost of an increased number of classifiers. It
maintained this model up to the 250th iteration without finding a better one,
which indicates that the genetic operators need to be improved and require
better tuning to the representation used in order to make the GA perform bet-
ter model structure search.

That the inappropriate model can be attributed to a weak model structure
search rather than a failing optimality criterion becomes apparent when con-
sidering the result of the MCMC search with a superior £(¢q) — In K'! ~ —29.39,
as shown in Figure 8.15. The discovered model is clearly better, which is also
reflected in a higher p(M|D). Note, however, that this model was not discov-
ered after all restarts of the MCMC algorithm. Rather, model structures with
6 or 7 classifiers were sometimes preferred, as Figure 8.15(b) shows. This indi-
cates that a further increase of the problem complexity will very likely cause
the MCMC search to fail as well.

8.4 Summary

In this chapter we have developed simple algorithms that search for the op-
timal set of classifiers given some data, and have used these algorithms to
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Figure 8.14: Plots similar to the ones in Figure 8.5, using GA model structure
search applied to the noisy sinusoidal function. The best discovered model
structure is given by l; = —0.98,u; = —0.40, [, = —0.78,uy = —0.32, l3 =
—0.22,u3 = 0.16, [, = —0.08,uy = 0.12, 5 = 0.34, us = 0.50, s = 0.34, ug = 1.00,
and I7 = 0.60, uy = 0.68.

demonstrate, on the basis of four regression tasks, the adequacy of our defini-
tion for the optimal classifier set.

As a basis of evaluating the quality of a set of classifiers as specified by
the model structure M, we have provided functions that perform vari-
ational Bayesian inference, as described in the previous chapter, to ap-
proximate the model probability p(M|D). More specifically, the function
Model Probabi | ity takes the model structure M and the data D as argu-
ments and returns an approximation to the unnormalised model probability.
Thus, in addition to the theoretical treatment of variational inference in the
previous chapter, we show in this chapter how it can be implemented. Due to
required complex procedure of finding the mixing weight vectors to combine
the localised classifier models to a global model, the described implementation
scales unfavourably with the number of classifiers K. As a topic of future re-
search, we might reduce this complexity by replacing the generalised softmax
function by well-tuned heuristics.

To emphasise that in theory any global optimisation procedure can be used to
find the best set of classifiers, we have introduced two methods to find the M
that maximises p(M|D). On one hand, we have described a GA that operates
in a Pittsburgh-style LCS way, and on the other hand, we have introduced
a stochastic hill-climber based on MCMC to sample p(M|D). Both methods
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Figure 8.15: Plots similar to the ones in Figure 8.6, using MCMC model
structure search applied the noisy sinusoidal function. The best discovered
model structure is given by iy = —1.00,u; = —0.68, I = —0.62,us = —0.30,
lg = —024, Uz = 014, l4 = 034, Uy = 078, and l5 = 074, Uy = 0.98.

are rather crude, but sufficient to demonstrate the abilities of our optimality

criterion.

Using the introduced optimisation algorithms, we have shown by a set of re-
gression tasks that our definition of the best set of classifiers i) is able to dif-
ferentiate between patterns in the data and noise, ii) prefers simpler model
structures over more complex ones, and iii) can handle data where the level of
noise differs for different areas of the input space. These features have not been
available in any LCS before, without the requirement of manually tuning sys-
tem parameters that influence not only the model structure search procedure
but also the definition of what resembles a good set of classifiers. Being able
to handle different levels of noise is a feature that has, to our knowledge, not
been available in any LCS before, regardless of how the system parameters are
tuned. While it is certainly useful for regression and classification, it might ad-
ditionally be able to solve the issue of long-path learning in sequential decision
tasks, as we will discuss in the following chapter.
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Chapter 9

Towards Reinforcement Learning
with LCS

Having until now concentrated on how LCS can handle regression tasks, let
us return to the prime motivator for LCS, which are sequential decision tasks.
There has been little theoretical LCS work that concentrates on these tasks
(for example, [30, 227]) despite some obvious problems that need to be solved
[11,12,76]. At the same time, other machine learning methods have constantly
improved their performance in handling these tasks [127, 28, 207], based on
extensive theoretical advances. In order to catch up with these methods, LCS
need to refine their theory if they want to be able to feature competitive per-
formance. In this chapter we provide a strong basis for further theoretical

development and discuss some currently relevant issues.

Sequential decision tasks are, in general, characterised by having a set of states
and actions, where an action performed in a particular state causes a transition
to the same or another state. Each transition is mediated by a scalar reward,
and the aim is to perform actions in particular states such that the sum of re-
wards received is maximised in the long run. How to choose an action for a
given state is determined by the policy. Even though the space of possible poli-
cies could be searched directly, a more common and more efficient approach is
to learn for each state the sum of future rewards that one can expect to receive

from that state, and derive the optimal policy from that knowledge.
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The core of Dynamic Programming (DP) is how to learn the mapping between
states and their associated expected sum of rewards, but to do so requires a
model of the transition probabilities and the rewards that are given. Reinforce-
ment Learning (RL), on the other hand, aims at learning this mapping, known
as the value function, at the same time as performing the actions, and as such
improves the policy simultaneously. It can do so either without any model of
the transitions and rewards — known as model-free RL — or by modelling the
transitions and rewards from observations and then using DP methods based
on these models to improve the policy — known as model-based RL. In this chap-
ter we mainly concentrate on model-free RL as it is the variant that has been
used most frequently in LCS.

If the state space is large or even continuous then the value function is not
learned for each state separately but rather modelled by some function ap-
proximation technique. However, this limits the quality of the discovered pol-
icy by how close the approximated value function is to the real value function.
Furthermore, the shape of the value function is not known beforehand, and
so the function approximation technique has to be able to adjust its resources
adaptively. Considering that LCS provide such adaptive regression models,
they seem to be a key candidate for approximating the value function of RL
methods; and this is in fact exactly what LCS are used for when applied to
sequential decision tasks: they act as adaptive value function approximation

methods to aid learning the value function of RL methods.

Due to early LCS pre-dating common RL methods, they have not always been
characterised as approximating the value function. In fact, the first comparison
between RL and LCS was done in [73], where Dorigo and Bersini show that a
Very Simple CS without generalisation and a slightly modified implicit bucket
brigade is equivalent to tabular Q-Learning. A more general study shows how
evolutionary computation can be used for reinforcement learning [174], but ig-
nores the development of XCS [240], where Wilson explicitly uses Q-Learning
as the RL component.

Recently, there has been some confusion [47, 226, 143] about how to correctly
implement RL in XCS(F), and this has caused XCS(F) to be modified in various
ways. To prevent further confusion, we show in this chapter how to correctly

derive variants of Q-Learning that use LCS function approximation from first
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principles. This not only provides a formal basis for combining LCS with RL,
and as such gains from formal developments in RL, but also shows that XCS(F)
already performs correct RL without the need for modifications. Furthermore,
the derivations can act as an example for any LCS that aims at solving sequen-

tial decision tasks as the procedure is conceptually always the same.

To appropriately link LCS into RL we firstly need to introduce the formal ba-
sis for RL, which is formed by various DP methods. We aim at keeping this
introduction brief and provide a longer LCS-related version in [78]. Nonethe-
less, we discuss some stability issues that RL is known to have when the value
function is approximated, as these are particularly relevant — though mostly
ignored — when combining RL with LCS. Hence, after showing how to de-
rive the use of Q-Learning with LCS from first principles in Section 9.3 and
discussing the recent confusion around XCS(F), we show in Section 9.4 how
to analyse the stability of RL when used with LCS. Learning of long action
sequences is another issue that XCS is known to struggle with [11], and even
though a solution is proposed in [12], we show in Section 9.5 that this solution
does not apply to all problem cases. On the upside, the classifier set optimal-
ity criterion from Chapter 7 might not suffer from the same problems, as we
will discuss in Section 9.5.4. But firstly, let us define sequential decision tasks
more formally in Section 9.1, and introduce DP and RL methods that provide
solutions to such tasks in Section 9.2.

9.1 Problem Definition

We will concentrate on problems that are solvable by reinforcement learning
and are therefore describable by a Markov Decision Process (MDP). To stay
close to the notation that is common in the literature [17, 213], we assign to
some of the previously used symbols a new meaning. The definitions given in
this section are similar to the ones in [17, 78].
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9.1.1 Markov Decision Processes

Let X be the set of states € X’ of the problem domain, that we assume to be
of finite size! N, and hence we will map to the natural numbers N. We have
previously defined X as being the input space, but as the states are identified
by the input that is determined by the environmental state, we use state and
input interchangeably. In every state x; € X we can perform an action a out of
a finite set A that causes a state transition to x,;. The probability of getting to
state x; after performing action a in state x; is given by the transition function
p(x;|x;, @), which is a probability distribution over X', conditional on X x A.
Each such transition is meditated by a scalar reward r,,.,(a), defined by the
reward function r : X x X x A — R. The positive discount factor v € R with
0 < v < 1 determines the preference of immediate reward over future reward.
Therefore, the MDP that describes the problem is defined by the quintuple
{X, A, p,r,7}*. We have previously used ~ to denote the step size for gradient-
based incremental methods in Chapter 5. In this chapter, the step size will be
denoted by « to conform to the RL literature [213].

The aim is for every state to choose the action that maximises the reward in
the long run, where future rewards are possibly valued less that immediate
rewards. A possible solution is represented by a policy 1 : X — A, which
returns the chosen action ¢ = pu(x) for any state x € X. With a fixed pol-
icy p, the MDP is reduced to a Markov chain with transition probabilities
p(xjlz;) = p(xj|zi, a = p(z;)), and rewards 1, = 14,5, ((;)). In such cases
we usually operate with the expected reward r};, = >, p*(x;[x;)ry, ,,. This
reward expresses what we would expect to receive when in state x; we are

choosing an action according to policy .

! Assuming a finite state space simplifies the presentation. Extending it to a continuous state
space requires considerably more technical work. For examples of an analysis of reinforcement
learning in continuous state spaces see [130, 179].

2The problem definition and with it the solution to the problem changes when the discount
rate v is changed. Thus, it is important to consider the discount rate « as part of the problem
rather than a tunable parameter. This fact is ignored in some LCS research, where the discount
rate is modified to make the task seemingly easier to learn, when, in fact, the task itself is
changed.
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9.1.2 The Value Function, the Action-Value Function and

Bellman’s Equation

The approach taken by dynamic programming (DP) and reinforcement learn-
ing (RL) is to define a value function V' : X — R that expresses for each state
how much reward we can expect to receive in the long run. While we have pre-
viously used V' to denote the mixing weight vectors, we will not need to refer
to them in this chapter and hence avoid any ambiguity. Let ;1 = {0, 11, . .. } be
a sequence of policies where we use policy i, at time ¢, starting at time ¢ = 0.
Then, the reward that is accumulated after n steps when starting at state x,
called the n-step return V! for state x, is given by

n—1
Vnﬂ(w) =E (fy"R(iBn) + Z ’ytr’nl;ZZt-HL |£Bo = il:) , (9.1)
t=0

where {z, x, ...} is the sequence of states, and R(z,) denotes the expected
return that we will receive when starting from state x,,. The return differs from

the reward in that it implicitly considers future reward.

In finite horizon cases, where n < oo, the optimal policy p is the one that max-
imises the expected return for each state € X, giving the optimal n-step re-
turn V' () = max, V*(x). Finite horizon cases can be seen as a special case of
infinite horizon cases with zero-reward absorbing states [17]. For infinite horizon
cases, the expected return when starting at state = is analogously to Eq. (9.1)

given by
n—1
Vi(a) = lim E (Z ik lwo = ;c) : (9.2)
t=0

The optimal policy is the one that maximises this expected return for each
state © € X, and results in the optimal value function V*(x) = max, V*(x).
Therefore, knowing ¥, we can infer the optimal policy by

p () = argmaxE (ry(a) + yV*(z') |2, a) . (9.3)

acA
Thus, the optimal policy is given by choosing the action that maximises the ex-
pected sum of immediate reward and the discounted expected optimal return
of the next state. This reduces our goal of finding the policy that maximises

the reward in the long run to learning the optimal value function, which is the
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approach taken by DP and RL. In fact, Sutton conjectures that

“All efficient methods for solving sequential decision problems
determine (learn or compute) value functions as an intermediate
step.”

which he calls the “Value-Function Hypothesis” [210].

In some cases, such as if we do not have a model of the transition function,
we cannot evaluate the expectation in Eq. (9.3). Then, it is easier to work with
the action-value function @) : X x A — R that estimates the expected return
Q(x, a) when taking action « in state &, and is for some policy p defined by

n—oo

n—1
Q"(x,a) = lim E (rmorl(a) + ’yZ'ytr;‘wm\mo =, a)
t=1

= E(ryw(a) +yV*(x)|z,a). (94)

We get V' from Q" by V#(x) = Q"(x, u(x)). Given that we know the opti-
mal action-value function @Q*, getting the optimal policy ;* is simplified from
Eq. (9.3) to

' (x) = argmax Q*(x, a), (9.5)
acA

that is, by choosing the action a in state  that maximises the expected return
given by Q*(x, a).

Note that V* and Q* are related by V*(x) = Q*(x, p*(x)) = max,c4 Q*(, a).
Combining this relation with Eq. (9.4) gives us Bellman's Equation

V*(x) = maxE(ry(a) + yV*(x')|x, a), (9.6)

acA

which relates the optimal values of different states to each other, and to which
tinding the solution forms the core of DP. Similarly, Bellman'’s equation for a fixed
policy pu is given by

Vi(x) = E(rt , +yVH(x")|x). (9.7)

xx!
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9.1.3 Problem Types

The three basic classes of infinite horizon problems are stochastic shortest path
problems, discounted problems, and average reward per step problems, of
which a description can be found in [17, 78]. We will only consider discounted
problems and stochastic shortest path problems, where for the latter we re-
strict ourself to so-called proper policies that are guaranteed to reach the de-
sired terminal state. As the analysis of stochastic shortest path problems is
very similar to discounted problems, we only deal with discounted problems
explicitly. These are characterised by v < 1 and a bounded reward function to
make the values V*(x) well defined.

9.1.4 Matrix Notation

Rather than representing the value function for each state explicitly, it is con-
venient to exploit the finiteness of A and collect the values for each state into
a vector, which also simplifies the notation. Let V' = (V(x,),...,V(zy))” be
the vector of size N that contains the values of the value function V' for each
state ,,. Let V* and V* denote the vectors that contain the optimal value
function V* and the value function V* for policy 1, respectively. Similarly, let
P" = (p(x;]|x;)) denote the transition matrix of the Markov chain for a fixed
policy p, and let 7+ = (r¥ ,....r# )T be the vector consisting of the expected

rewards when following this policy. With these definitions, we can rewrite
Bellman’s Equation for a fixed policy Eq. (9.7) by

Vi =l +yP'VH (9.8)
We will use this notation extensively in further developments.
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9.2 Dynamic Programming and

Reinforcement Learning

Recall that in order to find the optimal policy .*, we aim at learning the optimal
value function V* by Eq. (9.6), or the optimal action-value function Q* for cases
where the expectation in Egs. (9.6) and (9.3) is hard or impossible to evaluate.

In this section we introduce some common methods in RL that learn these
functions while traversing the state space, without building a model of the
transition and reward function. These methods are simulation-based approx-
imations to DP methods, and their stability is determined by the stability of
the corresponding DP method. Hence, we first introduce the DP methods that
they are based on, from which we derive the RL methods.

9.2.1 Dynamic Programming Operators

Bellman’s Equation (9.6) is a set of equations that cannot be solved analyti-
cally. Fortunately, several methods have been developed that make finding its
solution, all of which are based on the DP operators 7" and 7,.

The operator 7' is given a value vector V' and returns a new value vector that
is based on Bellman’s Equation (9.6). The ith element (7'V'); of the resulting
vector T'V is given by

(TV)i =max > p(@;|z;,a) (re, (@) +7V5) 99)

$]'€X

Similarly, for a fixed policy . the operator 7), is based on Eq. (9.7), and is given
by
@V)i= Y vl (e, 1Y) 9.10)

a:jEX

which, in matrix notation, is 7,V = r* + yP"V..

The probably most important property of both 7" and 7, is that they form a

contraction mapping to the maximum norm [17]; that is, given two arbitrary
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vectors V', V’, we have

ITV = TV'||s < 4|V = V|, and 9.11)
1T,V =T,V < AV =V, 9.12)

where ||V |« = max; |V;| is the maximum norm of V. Thus, every update
with T" or 7}, reduces the maximum distance between V' and V' by at least the
factor v. Applying them repeatedly will therefore lead us to some fixed point
TV = V or 1T,V =V, that is, according to the Banach Fixed Point Theorem
[233], unique.

Further properties of the DP operators are that the optimal value vector V* and
the value vector V* for policy V* are the unique vectors that satisfy T7V* = V*
and T,V* = V*, respectively, which follows from Bellman’s Equations (9.6)
and (9.7). As these vectors are the fixed points of 7"and 7),, applying the opera-
tors repeatedly causes convergence to these vectors, thatis, V* = lim,,_.o 7"V,
and V* = lim,, o, T}V for an arbitrary V, where 7™ and 7} denote n applica-
tions of 7"and 7, respectively. A policy . is optimal if and only if 7, V* = TV™*.
Note that there can be several optimal policies [17].

9.2.2 Value Iteration and Policy Iteration

The method of value iteration is a straightforward application of the contrac-
tion property of 7" and is based on applying 7" repeatedly to an initially arbi-
trary value vector V until it converges to the optimal value vector V*. Conver-
gence can only be guaranteed after an infinite number of steps, but the value
vector V is usually already close to V* after few iterations.

As an alternative to value iteration, policy iteration will converge after a finite
number of policy evaluation and policy improvement steps. Given a fixed policy
pu, policy evaluation finds the value vector for this policy by solving 7, V#* =
V#t, The policy improvement steps generates a new policy .1 based on the
current V#, such that 7, V# = TV*# .  Starting with an initially random
policy /i, the sequence of policies {/w, f11, ... } generated by iterating policy
evaluation and policy improvement is guaranteed to converge to the optimal

policy within a finite number of iterations [17].
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Various variants to these methods exist, such as asynchronous value iteration,
that at each application of 7" only updates a single state of V. Modified policy
iteration performs the policy evaluation step by approximating V* by T}V
for some small n. Asynchronous policy iteration mixes asynchronous value
iteration with policy iteration by at each step either i) updating some states
of V' by asynchronous value iteration, or ii) improving the policy of some set
of states by policy improvement. Convergence criteria for these variants are

given in [17].

9.2.3 Approximate Dynamic Programming

If N is large, we prefer to approximate the value function rather than repre-
senting the value for each state explicitly. Let V denote the vector that holds
the value function approximations for each state, as generated by a function
approximation technique as an approximation to V. Approximate value iter-
ation is performed by approximating the value iteration update V1, = TV,
by

Vi =TV, (9.13)

where II is the approximation operator that, for the used function approxima-
tion technique, returns the value function estimate approximation Vt+1 that is
closest to Vi1 = TV, by Vi, = argmin;, |V — V;,1||. As shown in [25], this
procedure might, due to the nonlinearity of 7', diverge when used even with
the most common approximation architectures, such as linear or quadratic re-
gression, local weighted regression, or neural networks. As shown in [95], sta-
bility is guaranteed if the approximation is a non-expansion to the maximum
norm, that is, if for any two V', V' the approximation operator II conforms
to [IIV — IIV'||w < ||V — V'||«. This requirement is satisfied by the class
of averagers, which contain “[...] local weighted averaging, k-nearest neigh-
bour, Bézier patches, linear interpolation, bilinear interpolation on a square
(or cubical, etc.) mesh, as well as simpler methods like grids and other state
aggregations.” [95].

Approximate policy iteration, on the other hand, has less stability problems,
as the operator 7}, used for the policy evaluation step is linear. While the pol-
icy improvement step is performed as for standard policy iteration, the policy
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evaluation step is based on an appro