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Abstract

Many Csound users may have seen reference to the
SDFT or Sliding Discrete Fourier Transform in re-
cent months. Here we review the basic ideas, and
describe the Csound implementation. The main mu-
sical message is that it is integrated with the f-signals
for the streaming phase vocoder written by one of us
earlier, and so is easy to use. The down side is that
it is slow, and definitely not yet for real-time perfor-
mance. We briefly discuss approaches to improved
performance.
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1 The Sliding Discrete Fourier
Transform

The use of the spectral domain is well known
and there is no reason to reiterate the under-
lying concepts. Most people use an algorithm
called the FFT (Fast Fourier Transform) to cal-
culate the Discrete Fourier transform of a win-
dow of audio signal, and then perform whatever
operation on it they wish. The reconstruction
of the time-domain signal is then performed by
the IFFT (Inverse Fast Fourier Transform) al-
gorithm, together with some averaging process.

The SDFT is an alternative algorithm,
whereby the analysis window is always moved
on by one sample (“hopsize = 1”), and the value
of the DFT for the new window is calculated
from the previous one. That such a process
should exist is not a surprise, as the FFT cal-
culates the spectral components in a window,
and if that window is moved (slid) by one sam-
ple, it is obvious that most of the information
will remain the same. An early music-related
description of this form of the phase vocoder
appears in [1], which highlighted its value for
frequency analysis. More recently the SDFT
was highlighted by James Moorer, Audio in the
New Millennium[2], which in turn formed the
starting point for our own work [3].

The bottom line is that for each frequency
bin the process of moving one involves adding
the new sample, subtracting the sample that has
fallen off the start of the window, and a multipli-
cation (rotation) by a complex value. If we have
a function f(n), represented as discrete samples
f0, f1, . . ., and we assume a window size of N ,
which is to say that we assume that the signal
repeats over that period, then the DFT, start-
ing at time t, is

Ft(n) =
N−1
∑

j=0

fj+te
−2πijn/N ,

where Ft(n) is the value in the nth bucket in
the frequency domain.

As we are moving by 1 sample only:

Ft+1(n)

=
N−1
∑

j=0

fj+t+1e
−2πij n

N

=
N

∑

j=1

fj+te
−2πi(j−1) n

N

=





N−1
∑

j=0

fj+te
−2πij n

N − ft + ft+N



 e2πi n

N

= (Ft(n)− ft + ft+N ) e2πi n

N

We start from all zeros so there is no starting
problem for the first DFT frame.

There are a number of implications of this
formulation, most obviously there is no require-
ment for the window size to be a power of two.
Some of the more surprising implications can be
found in [4]. Here we just draw attention to the
band-width of each bin, which is up to Nyquist,
and so each bin can contribute to any frequency.

But the point of this paper is not to discuss
the mathematics which can be found elsewhere,
but rather the Csound[5; 6; 7] implementation,
and the opcodes that can use it. Before that



we do need to consider an important issue, win-
dowing.

2 Windowing and Sliding

The normal process is to apply an envelope win-
dow to the sample period to improve frequency
resolution and minimise smear. In the SDFT
this cannot be done in the time domain. But it
is well known that convolution in the time do-
main is multiplication in the frequency domain,
and so we apply the window after calculating
the transform. This does impose a slight restric-
tion, that for practical reasons the window type
must be built from cosines. This is acceptable
for rectangular, Hamming, von Hann, Black-
man (and variants), Blackman-Harris, and Nu-
tall. It does not include Kaiser windows which
is pity; we think we have a solution but it is a
compromise, and is currently not implemented.

We are also forced to lose the ability to pro-
vide a window as a ftable, a CUSTOM window.
Technically it would be possible to provide a
user-window facility presented as coefficients of
the cosine, but this does seem rather detailed
for common use!

The windows that are available in the current
implementation are shown in Table 1.

3 Integration into Csound

Due to earlier work by Richard Dobson, and
extended by Victor Lazzarini[8], Csound has
a useful and well constructed streaming phase
vocoder. The process here is to construct a new
DFT frame when sufficient samples have been
obtained, with a restriction that this cannot be
more than once per k-rate frame. Internally
the f-variables have a structure to maintain the
bin values, window size and type and various
housekeeping data. The SDFT implementation
in Csound reuses this structure, so from an el-
ementary user point of view the introduction
of the sliding option has no syntactic change.
All existing use of the pvsXXX opcodes and f-
variables should continue to work after the in-
troduction of sliding.

In essence the SDFT is a transform with an
overlap parameter of 1 sample. That plus the
restriction on the existing pvsanal give the clue
to the way the integration has been done. If the
overlap is less than the ksmps or is small (cur-
rently set to less than 10 but maybe this should
be 2) the sliding format is used. This requires a
transform frame for each of the ksmps samples,
and that happens underneath the user’s view.

The construction of the frames then proceeds
using the formula above rather than the FFT.

The reconstruction of the signal is rather dif-
ferent. In the original Moorer paper in AES
the inverse algorithm is very memory intensive
while looking deceptively similar to the forward
transform. Fortunately there is a better way,
as described in [3]. As we have a transform for
each sample we can treat each frame as a repre-
sentation of a single sample, and then the fun-
damental Discrete Fourier Transform formula

ft =
1

N

N−1
∑

j=0

Ft(j)e
−2πijt/N

applies. There is a choice we can make; if each
frame represents one sample, which one? If we
choose the oldest sample then the t in this for-
mula is zero, and the equation collapses to a
straight addition of the bins! This does intro-
duce a latency of the window size of course.
By considering the middle sample to be repre-
sented by the frame this becomes an alternating
add/subtract formula. A zero latency version is
more expensive, and while we have had it imple-
mented in our experimental code it seems rather
too much.

It should not come as a surprise that such
a simple formula exists, as it is just treating
the reconstruction as an oscillator bank. In
the Csound SDFT implementation of pvsynth
we are using the midpoint version, which is a
good compromise between latency and speed.
We could make an option for alternatives but
that seems a little over-complex.

3.1 Csound Opcodes

The opcode to create a sliding DFT frame is
pvsanal as before. The arguments are not
changed, but if the overlap parameter is 1 or
less than ksmps then sliding is used. In the
manual the example given is

ain in
ffin pvsanal ain,1024,256,2048,0

If this is replaced by

ain in

ffin pvsanal ain,1024,1,2048,0

the sliding mechanism will be used, and the in-
ternal structures will be different, but presented
to the user in the same way.

To reconstruct the signal the opcode
pvsynth is used; if the f-signal is a sliding



Name Index Formula
HAMMING 0 0.53836 − 0.4614 cos(2πn/(N − 1))
HANN 1 0.5− 0.5 cos(2πn/(N − 1))
KAISER 2 unavailable
CUSTOM 3 unavailable
BLACKMAN 4 0.42 − 0.5 cos(2πn/(N − 1)) + 0.08 cos(4πn/(N − 1))
BLACKMAN EXACT 5 0.42659071367153912296 − 0.49656061908856405846 cos(2πn/(N − 1))

+0.076848667239896818572 cos(4πn/(N − 1))
NUTTALLC3 6 0.375 − 0.5 cos(2πn/(N − 1)) + 0.125 cos(4πn/(N − 1))
BHARRIS 3 7 0.44959 − 0.49364 cos(2πn/(N − 1)) + 0.05676 cos(4πn/(N − 1))
BHARRIS MIN 8 0.42323 − 0.4973406 cos(2πn/(N − 1)) + 0.0782792 cos(4πn/(N − 1))
RECT 9 1

Table 1: Window Types available in Csound SDFT

one then the appropriate mechanism is used.
We found it convenient to have a Boolean field
in the f-structure to say that this particular f-
variable is a sliding one.

4 Transforming in the Spectral
Domain

Just translating to and from the spectral do-
main is not very interesting. The value lies in
the transformations. Csound has a rich (and
growing) collection of these, and they all need
to be made aware of the sliding format. In addi-
tion this opens the possibility for a-rate changes
in some cases. In this section we indicate the
progress so far in this. There are three classes;
those known to work, those believed to work but
not completely tested, and those not addressed.

4.1 Verified Transformations

A very common use of the spectral domain is
to change the pitch of a signal. Csound pro-
vides two opcodes for this, pvscale which scales
the frequency components in a harmonic way,
and pvshift which shifts the frequency com-
ponents, stretching/compressing its spectrum.
Both these are implemented with sliding, but
with one important additional feature, the shift
amount (the second argument in both cases)
can optionally be an a-rate variable. This gives
much finer-grained control over the transforma-
tion, and allows a kr value as required else-
where, possibly quite large.

instr 3

al line 400, p3, 500
asig in

fsig pvsanal asig,128,1,128,1
fs pvshift fsig, al, 10

acln pvsynth fs

out acln

endin

instr 4

asig oscili 16000, 440, 1

fsig pvsanal asig,512,1,512,1
fs pvscale fsig, 1.1

acln pvsynth fs
out acln

endin

With the increased bandwidth in each analy-
sis bin it is possible to use a simpler and more
accurate pitch-shifting algorithm, and the slid-
ing form actually is better at preservation of the
amplitude, but we lose the formant-preserving
variant.

Another common use is the spectral freeze.
Csound provides pvsfreeze which can also be
used in a sliding fashion, but is otherwise un-
changed

instr 1

kl line 100, p3, 1000

asig oscili 16000, kl, 1
fsig pvsanal asig,128,1,128,1

ktrig oscil 1.5, 2, 1
ktrig = abs(ktrig)

fou pvsfreeze fsig,ktrig,ktrig

aa pvsynth fou
out aa

endin

There are different ways of filtering in the
spectral domain. The pvstencil provides one,
using a masking function table. For example

instr 2
kl line 100, p3, 1000

asig oscili 16000, kl, 1



fsig pvsanal asig,128,1,128,1

fcln pvstencil fsig, 0, 1, 1

acln pvsynth fcln
out acln

endin

with f1 0 4096 10 1 in the score.
The last of the verified opcodes is pvsmix

which does a spectral mix of two signals, taking
the largest amplitude from each matching pair
of bins

instr 5

a2 diskin2 "latedemo.wav", 1
f2 pvsanal a2,1000,1,1000,1

asig in

fsig pvsanal asig,1000,1,1000,1
fs pvsmix fsig, f2

acln pvsynth fs
out acln

endin

The previous version of pvscent to calcu-
late the spectral centroid of a signal has been
changed to return either a k-rate answer or an
a-rate one. In practice the a-rate values may
need to be smoothed by another lowpass filter
before use.

instr 8

a1 in
fsig pvsanal a1,1024,1,1024,1

kcen pvscent fsig
adm oscil 32000, kcen, 1

out adm

endin

The opcode pvsmaska modifies the ampli-
tudes of the bins using a table of modification
values. This works essentially unchanged

asig buzz 20000,199,50,1
fsig pvsanal asig,1024,1,1024,1

kmod linseg 0,p3/2,1,p3/2,0

fsig2 pvsmaska fsig,2,kmod
aout pvsynth fsig2

out aout

The values in the bins can be smoothed using
a 1st order lowpass IIR filters with time-varying
cutoff frequency; this is the same as in the non-
sliding case.

asig in
fim pvsanal asig,1024,1,1024,1

fou pvsmooth fim, 0.01, 0.01
aout pvsynth fou

out aout

4.2 Converted but Untested or

Different Transformations

It is only time that has not permitted the full
checking of these opcodes.

Another filtering opcode pvsfilter filters one
stream according to a second. This opcode runs
but at present produces rather different (but in-
teresting!) output. The same is true for pvs-

bin; this could return the a-rate values, but so
far it is limited to returning the values at that
start of each k-cycle.

The opcode pvscross has unverified code
that may work and pvsinfo, the information
opcode has not been changed, but should work
the same — it does not give an explicit state-
ment that it is doing sliding, but the overlap
value includes that.

4.3 Non-functional Transformations

The modified opcodes fall into two major cat-
egories; those which have just not yet been
looked at and those that have major design
questions.

The first category includes pvsdemix, pvs-

morph, pvspitch, pvsifd, pvsosc, pvsblur

and pvsarp.
The problematic opcodes are those that read

and write, as the data from the sliding variant
is much larger. Reading externally generated
PVOC-EX data will not work either, unless that
is generated at 1 sample overlap, and the utility
to do that needs to be written. The opcodes
here are pvsdiskin, pvsftr, pvsftw, pvsfread,
pvsin, pvsout, pvsdisp, pvsfwrite, pvsvoc,
pvsbuffer, and pvsbufread.

As we are already using an oscillator-bank to
reconstruct the signal there is no need for the
pvsadsyn opcode.

5 Musical Uses

The addition of the SDFT to the established
streaming phase vocoder creates what we call
a Sliding Phase Vocoder (SPV). The two most
significant aspects of the SPV are the synthe-
sis by oscillator bank (with each bin able to
contain any frequency below the Nyquist limit),
and the single-sample update. Thus, any modi-
fication that can be applied to an additive oscil-
lator bank can be employed in the SPV. With
the conventional hopping phase vocoder, pitch
modulation is a familiar process, but limited to
relatively low modulation rates by the low anal-
ysis rate. At the lowest rates, vibrato and other
sweeping effects can be applied to a sound; at



Figure 1: Spectrum of simple Transformational
FM

higher rates the effect is more granular in na-
ture, as the pitch shift is constant within each
frame, frames being summed with overlaps to
generate the output. With the SPV, the pos-
sibility arises to perform genuine per-sample
modulation at the full range of audio rates. In-
deed, we can mimic classic FM this way. Con-
sidering a plain FM patch such as:

instr 10
amod oscili 1.5,500,1

acar oscili 16000,1000*(1+amod),1
aout dcblock acar

out aout

endin

We can implement a corresponding frequency-
domain FM patch:

instr 1

amod oscili 500,500,1 ; modulator

acar oscili 16000,1000,1 ; carrier
fcar pvsanal acar,1000,1,1000,1

; frequency-domain FM
fs pvshift fcar,amod,0

asig pvsynth fs

aout dcblock asig
out aout

endin

The spectrum of this signal is given in Figure 1.
However, there is the equal possibility to derive
input from an arbitrary external source, which
we have accordingly termed Transformational
FM (TFM):

instr 2

; carrier is input audio

acar in
; 1KHz modulator

amod oscili 0.2,1000,1
fcar pvsanal acar,1000,1,1000,1

fs pvscale fcar,1 + amod,0

asig pvsynth fs

aout dcblock asig

out aout
endin

Here we use pvscale to preserve the harmonic-
ity of the source, while noting that as pvscale
takes a ratio argument, the resulting FM side-
bands will not correspond to those of classic
FM (while still being of musical value[4]). An
alternative formulation we have used success-
fully (but not so far using Csound) employs
a näıve peak-finding algorithm, and applies a
common linear shift to the group of bins asso-
ciated with each peak. The required shift fac-
tor for each group is calculated from the fre-
quency at the detected peak. While this could
certainly be implemented as an opcode, it is
our hope that the recently introduced stream-
ing partial-tracking opcodes[9] can themselves
be adapted to use the SDFT. Of course in ap-
plying TFM in this way some care must be
taken with the choice of input sound, as it is
all too easy to transform a harmonically dense
input into sheer noise; but we have obtained a
range of satisfying transformations of a number
of harmonically rich monophonic instrumental
sounds, from horn and trumpet to a glocken-
spiel.

As in the example of Adaptive FM [10] it is
also possible to incorporate pitch tracking into
the TFM process (not least since the analysis in-
formation is already present), so that the mod-
ulation ratios can be maintained as the source
instrument or voice changes pitch. The two
techniques differ in that AFM is a time-domain
technique based on a variable delay line (and re-
quiring a separate analysis stream), while TFM
(which can be used adaptively but is more
general) employs audio-rate frequency-domain
modulation. The possibilities are indeed limited
largely by our imagination, especially when we
realise that with TFM we do not have to confine
ourselves to an identical modulation to all bins.

In using TFM, the reduced latency afforded
by the SPV will make pvoc that much more at-
tractive for interactive real-time performance,
once suitably powerful hardware is available.

6 Some Thoughts and HiPAC

Clearly this is work in progress. The untested
opcodes will be tested soon, and the opcodes
that were overlooked will get attention. What
to do about read/write and external data needs
some reflection and advice.



There is also one important caveat. This pro-
cess is not fast. We will repeat that: THIS

PROCESS IS NOT FAST, and so do not ex-
pect to use it in real-time performance, at least
until hardware improves and our next research
project is funded. For example the transforma-
tional FM example would need about a 45GHz
Intel processor to be real-time.

More technical information about the pro-
cess can be found in the slides presented at
ICMC2007 which are available[11] with audio
examples.

We are addressing the speed issue by investi-
gating one important feature of the SDFT, that
it is totally parallel. The calculation for each bin
is independent of the others, and so the process
is a candidate for SIMD-style parallelism. With
generous access to hardware and software prod-
ucts provided by ClearSpeed Plc[12], we are
starting a number of projects in HiPAC (High
Performance Audio Computing). In addition
to continuing development of the systems de-
scribed in this paper, in particular we are inves-
tigating the applications of SIMD to physical
models.

7 Conclusions

We have presented the Sliding Discrete Fourier
Transform as a practical tool within Csound,
and hence via the Csound plugin class
csoundapi~, in Pure Data[13]. Other systems
can access the code now via OSC, but it would
not be too hard to incorporate in other systems.
At present the computational cost is high, and
this limits the application to out-of-real-time
calculations. However we are already progress-
ing with parallel SIMD-style implementations,
and it can be seen that it may produce a good
use for multiple-core computers.

Our experience with Transformational FM
leads us to believe that there are many such
musical uses in this area waiting for faster hard-
ware.
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