

Citation for published version:
Hopton, L 2009, Modelling Institutions using Answer Set Programming: Enhancing the Institution Action
Language. Department of Computer Science Technical Report Series, no. CSBU-2009-06, Department of
Computer Science, University of Bath, Bath. U. K.

Publication date:
2009

Link to publication

©The Author May 2009

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Dec. 2019

https://researchportal.bath.ac.uk/en/publications/modelling-institutions-using-answer-set-programming(568c78da-9d95-44c8-af65-a904607db54c).html

Department of
Computer Science

Technical Report

Undergraduate Dissertation: Modelling Institutions using An-
swer Set Programming: Enhancing the Institution Action
Language

Luke Hopton

Technical Report 2009-06 May 2009
ISSN 1740-9497
Editor: Dr Marina De Vos

Copyright c©May 2009 by the author(s).

Contact Address:
Technical Report Editor
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497
Editor: Dr Marina De Vos

Modelling Institutions using Answer Set Programming:

Enhancing the Institution Action Language

Luke Hopton

Bachelor of Science in Computer Science with Honours
The University of Bath

April 2009

This dissertation may be made available for consultation within the Uni-
versity Library and may be photocopied or lent to other libraries for the
purposes of consultation.

Signed:

Abstract

Institutions are normative multi-agent systems. Cliffe et al. (2005) have developed a model
of multiple interacting institutions in answer set programming (ASP). ASP is a declarative
programming paradigm which provides non-monotonic reasoning. As a part of this work,
they have developed InstAL, an action language which is used for the specification of
institutions. These specifications are then translated into ASP. In this project we enhance
the support for InstAL in two areas. We present an overview of the software engineering
process used to implement InstEdit, an editor for InstAL. InstEdit supports the institution
designer in creating and reasoning about InstAL specifications. We present also InstQL,
the institution query language. This language is designed for the specification of queries
for InstAL institutions. As with InstAL, the semantics of InstQL are given by translation
into ASP. The development of this language is informed by motivating example queries.
These are queries specified in ASP for an existing institution. We demonstrate how these
can be expressed in InstQL and translate them back into ASP to verify the correctness of
the semantics. We discuss how InstQL allows us to perform prediction, postdiction and
planning and identify a restricted form of linear temporal logic that can be expressed in
InstQL. Finally, we present the development of a tool to automate the translation of InstQL
into ASP. We conclude that these additions aid the institution designer when working with
InstAL and provide the foundation for further enhancements.

Acknowledgments

Thanks to Owen Cliffe, Marina de Vos and Julian Padget for not only being the much-
referenced “Cliffe et al”, but also for their help and advice. Special thanks to Marina, my
supervisor, for her guidance throughout.

Thanks also to my family and friends (especially Ell) for love and support. Thanks to my
parents for their financial support also: I literally couldn’t have done it without you.

ii

Modelling Institutions using Answer Set

Programming: Enhancing the Institution Action

Language

Submitted by: Luke Hopton

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author. The
Intellectual Property Rights of the products produced as part of the project belong to the
University of Bath (see http://www.bath.ac.uk/ordinances/#intelprop).
This copy of the dissertation has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with its author and that no quotation
from the dissertation and no information derived from it may be published without the
prior written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the requirements
of the degree of Bachelor of Science in the Department of Computer Science. No portion of
the work in this dissertation has been submitted in support of an application for any other
degree or qualification of this or any other university or institution of learning. Except
where specifically acknowledged, it is the work of the author.

Signed:

Contents

1 Introduction 1

1.1 Problem Description . 1

1.2 Report Structure . 2

1.3 Notational Conventions . 3

2 Literature Review 4

2.1 Agents and Multi-Agent Systems . 4

2.1.1 What is an Agent? . 4

2.1.2 Multi-Agent Systems . 8

2.1.3 Institutions . 9

2.2 Formal Languages for MAS Reasoning . 11

2.2.1 Modal Logic . 12

2.2.2 Event Calculus . 14

2.2.3 Action Languages . 16

2.2.4 ASP . 20

2.3 InstAL . 23

2.3.1 InstAL Language Overview . 23

2.3.2 State of Development . 24

2.4 Summary . 26

3 The Institution Editor 27

3.1 Requirements . 28

3.1.1 Requirements Elicitation . 28

iv

CONTENTS v

3.1.2 Requirements Specification . 30

3.2 High-Level Design . 32

3.3 Low-Level Design & Implementation . 34

3.3.1 Implementing a Text Editor . 34

3.3.2 Integration with InstAL . 36

3.3.3 Integrating the Answer Set Solver 38

3.3.4 Adding Syntax Highlighting . 39

3.3.5 Integrating Queries and Visualisation 41

3.4 Testing . 42

3.5 Summary . 43

4 A Query Language for InstAL 44

4.1 Example Queries . 46

4.1.1 Selected Queries . 46

4.1.2 Analysis of the Examples . 47

4.2 The Institution Query Language . 48

4.2.1 InstQLα – Basic Queries . 48

4.2.2 InstQLβ – Concurrent Events . 52

4.2.3 InstQLγ – Simple Ordering . 54

4.2.4 InstQLδ – Precise Ordering . 55

4.2.5 A Note on Negation . 57

4.3 Example Queries Revisited . 59

4.4 Summary . 61

5 Using the Institution Query Language 62

5.1 Reasoning with InstQL . 62

5.1.1 General Reasoning with InstQL . 62

5.1.2 Agent Reasoning . 65

5.2 Modelling Linear Temporal Logic in InstQL 65

5.2.1 Institutional LTL . 66

5.2.2 Expressing InstLTL in InstQL . 67

CONTENTS vi

5.3 Implementing the Institution Query Language 69

5.3.1 Requirements & Design . 69

5.3.2 Implementation & Testing . 71

5.4 Summary . 72

6 Conclusion 73

6.1 Project Summary . 73

6.2 Evaluation . 74

6.3 Future Work . 76

A InstAL 82

A.1 Institution Model . 82

A.1.1 Model Definition/Syntax . 82

A.1.2 Model Semantics . 85

A.2 InstAL . 88

B Testing Plans 92

B.1 Release Testing . 92

B.2 Component Testing . 95

B.3 Testing the InstQL Translator . 96

C Source Code Listings 98

C.1 InstEdit . 99

C.1.1 SyntaxHighlighter.java . 99

C.1.2 InstEditPanel.java . 102

C.1.3 InstalBuilder.java . 103

C.1.4 Translator.java . 105

C.1.5 InstalTranslator.java . 108

C.1.6 InstqlTranslator.java . 110

C.1.7 AnswerSetSolver.java . 111

C.1.8 Visualiser.java . 115

C.2 InstQL Translator . 117

CONTENTS vii

C.2.1 Parser.pm . 117

C.2.2 Util.pm . 119

D AQL: A Query Language for Action Domains 121

List of Figures

3.1 Use cases for InstEdit . 29

3.2 Sequence diagram without InstEdit . 30

3.3 InstEdit architecture . 33

3.4 Sequence diagram with InstEdit . 33

3.5 Design of InstEdit main screen . 35

3.6 InstEdit main screen . 36

3.7 InstEdit settings screen . 37

3.8 Syntax highlighting architecture. 41

4.1 Current InstAL process. 45

4.2 Proposed InstAL process. 46

5.1 State transition for prediction. 64

5.2 Architecture for the InstQL translator . 70

A.1 Institutional event types. 83

viii

List of Tables

2.1 Abbreviations in C . 18

2.2 Abbreviations in C+ . 20

4.1 InstQL Syntax . 56

B.1 Release testing. 93

B.2 Release testing (continued). 94

ix

Chapter 1

Introduction

1.1 Problem Description

Intelligent agents are computer systems which are capable of autonomous action in order
to achieve their goals (Wooldridge, 2002). A key feature of agents is their ability for
communication and social interaction with other agents – within the context of a multi-
agent system (MAS). Traditionally, MAS have been developed as closed systems where one
organisation is responsible for all participants. In areas such as E-Commerce, there is a
movement towards open systems where agents from different organisations are free to join
and leave the system (Tadjouddine et al., 2008).

Such open systems propose new challenges for their developers. When a system is designed,
it is not known which agents will join and who they will represent. We cannot assume that
participating agents will follow the rules (Viganò and Colombetti, 2007). Enforcing rules
could be achieved by making any action which is not permitted impossible. However, such
a system would be overly restrictive and limiting. For this reason, the agents community
has introduced institutions (Noriega, 1997). These normative multi-agent systems use
concepts such as power, permission and obligation to restrict the behaviour of participating
agents. The aim of institutions is to impose restrictions to protect agents (and the system
itself) from other agents’ actions, without limiting the autonomy of agents (Garcia-Camino
et al., 2005).

Various techniques have been employed for modelling institutions. Among these is the user
of answer set programming (ASP). ASP is attractive for reasoning issues of the kind we see
in the multi-agents system domain for two reasons.

1. It is non-monotonic – if from a we conclude b, then it need be the case that from
a∧ c we conclude b. This makes ASP suited to domains such as MAS where we must
reason with partial information. An agent which gathers more information can alter
its conclusions.

1

CHAPTER 1. INTRODUCTION 2

2. ASP provides two forms of negation: negation as failure and classical negation. The
classical negation “¬x” means x is not true. However, the negation as failure “not x”
means we cannot show x to be true. Some declarative systems, such as Prolog,
associate classical negation with negation as failure. The consequence of this is that
if we cannot prove x, then we conclude that we know x to be false. This means we
must know everything that is true – the closed world assumption. Since ASP does
not associate these two forms of negation, it does not suffer from the closed world
assumption.

Cliffe et al. have developed a model of multiple institutions in ASP (Cliffe et al., 2006). The
approach includes a domain specific action language called InstAL (the institution action
language). This language is used to specify institutions. InstAL specifications are then
translated into ASP to allow reasoning about the institution. Layering an action language
on top of ASP is attractive since it provides a higher-level way to specify institutions. Sim-
ilar work has been done by Lifschitz and Turner (1999) who translate the action language
C into ASP.

Tools have been developed to automate the translation of an institution specified in InstAL
into ASP. An answer set solver can be used to solve the ASP model of the institution. The
model is set up such that the answer sets correspond to traces of the institution. Further
tools allow the traces to be visualised in various formats. This reasoning process is complex:
it requires a number of stages, each with different tools, which are not connected. It is up
to the institution designer to mange this process. While the tools for the reasoning process
exist, there are no tools to support the creation of an institution in InstAL.

This project aims to ease the use of InstAL by developing a toolkit to support this process.
The toolkit will provide support for creating institutions and control the reasoning process.
This will unite the separate stages of reasoning about institutions with InstAL so that the
institution designer can control this process from one system.

InstAL allows us to specify institutions at a high-level and in a domain specific language.
When we come to reason about and query an institution model, this must be done in
ASP. The power of ASP allows a large variety of queries about institutions to be created.
However, creating these queries can be complex. Doing so requires knowledge of how the
institution is modelled in ASP. Since the institution will have been specified in InstAL and
than translated into ASP, we cannot assume that designers have this knowledge.

To solve this problem, the second aim of this project is to design a domain specific query
language. Like InstAL, this will be translated into ASP. This will make reasoning about
institutions easier.

1.2 Report Structure

In Chapter 2 we present an overview of relevant literature. This considers agents, multi-
agent systems and institutions. We then consider some of the alternative formalisms used

CHAPTER 1. INTRODUCTION 3

to model MAS and institutions, including answer set programming. The work of Cliffe
et al. on modelling institutions in ASP and specifying institutions in InstAL is reviewed.
Chapter 2 concludes with a consideration of the current state of the development of InstAL
as a tool for reasoning about institutions.

Chapter 3 describes the software development process of implementing InstEdit – the in-
stitution editor. This tool supports the creating of InstAL specifications and assists control
of the process of reasoning about them. It assumes much of the burden of managing the
tools involved in this process, making modeling institutions easier for the user.

A new query language for institutions specified in InstAL has been created. Chapter 4
discusses the development of this language, InstQL (the institution query language). We
present examples of queries previously specified in ASP and demonstrate how these may
be expressed in InstQL.

The use of InstQL is considered in Chapter 5. We descibe its use in general reasoning about
institutions and relate it to a restricted form of linear temporal logic. Chapter 5 concludes
by presenting the implementation of a tool to automate the translation of InstQL into ASP.

1.3 Notational Conventions

Throughout this work the following conventions are adopted:

1. The symbols > and ⊥ are used to denote true and false (respectively).

2. The powerset of some set S is denoted P(S).

3. Classical negation is denoted by ¬ while negation as failure is denoted not.

4. Arrows of the form ⇒,⇐,⇔ indicate logical implication while arrows of the form
→,←,↔ represent functions etc.

Chapter 2

Literature Review

This chapter presents an overview of the theoretic background which provides the motiva-
tion for this project. It considers existing work in the domain to give an indication of the
approaches taken to the modelling of institutions. Thus it provides an idea as to why it is
worthwhile to enhance the InstAL language as a tool to aid in institutional modelling.

In Section 2.1 the concepts of agents, multi-agent systems and institutions are presented.
Section 2.2 considers some of the approaches that have been taken to provide a formal basis
to allow reasoning about institutions and multi-agent systems, including the use of answer
set programming. Answer set programming has been used as a method for reasoning about
institutions by Cliffe et al, who have developed the InstAL language as part of this work.
Section 2.3 summarises action language InstAL and considers (p24) the current state of
InstAL.

2.1 Agents and Multi-Agent Systems

This section introduces the concepts of agents, multi-agent systems and institutions which
are fundamental to the problem domain of InstAL. This begins by examining the notion
of an agent and considering possible definitions of an agent. Then this is extended to look
at multi-agent systems (p8) where a number of agents interact and a specialised kind of
multi-agent system, the institution is considered.

2.1.1 What is an Agent?

The concept of an agent is a well established one within the field of Computer Science. De-
spite this, there is no universally accepted definition of an agent (Wooldridge, 2002). There
is, however, a generally agreed upon consensus on the kind of properties and behaviours an
agent has and exhibits. The first (and perhaps most fundamental) aspect of this consensus
is autonomy – indeed agents are often referred to as autonomous agents in the literature.

4

CHAPTER 2. LITERATURE REVIEW 5

Maybe those active in the field cannot agree on exactly what an agent is, but it is certainly
true that an agent is not a system which works under human control.

Another concept intrinsically tied to agents is action; agents (autonomously) act in order
to produce some effect(s) (Wooldridge and Jennings, 1995). Action is itself a concept which
is difficult to formally define. Consider the following example from Wooldridge (1992):

“A classic example, due to the philosopher Searle, is that of Gavrilo Princip in
1914: did he pull a trigger, fire a gun, kill Archduke Ferdinand, or start World
War I? Each of these seem to be equally valid descriptions of “the same event”,
and yet trying to isolate that event is notoriously difficult.”

Wooldridge (Wooldridge, 1992; Wooldridge and Jennings, 1995) identifies that, as well as
being autonomous, agent action is often described as rational. This is yet another concept
which is difficult to specify, but intuitively this can be interpreted to mean that agents act
for a reason, in order to achieve some goal or maximise some utility. The implication is
that agents will not perform actions that are detrimental to their own agenda. Of course,
this only raises further question and necessitates further concepts to be defined: what are
goals and what is utility? These concepts will be further considered later in this section.

Another aspect of agents is that we consider them within the context of an environment.
Agents do not exist as systems in isolation – any agent will almost certainly be situated
within an environment. Russel and Norvig present a classification of environments as
follows (cited in Wooldridge, 2002):

Accessible/Inaccessible. An environment is accessible if and only if agents can obtain
complete (up to date) information on it at any given time.

Deterministic/Non-deterministic. An environment is deterministic if and only if any
single action has a guaranteed effect. If there is uncertainty about the outcome of
any action then the environment is non-deterministic.

Static/Dynamic. An environment is static (relative to a given agent) if it does not change
except for the actions of that agent.

Discrete/Continuous. An environment is discrete if there are only a fixed and finite
number of actions and percepts possible within it.

It is fairly apparent that any “interesting” problem will feature an environment in which
several of the following are true: agents must reason with only partial information, effects
of actions may not be guaranteed, a single agent will not be the only thing changing the
environment and the number of possible actions and/or percepts will not necessarily be
fixed or finite. That is to say, the trivial case in which we have an accessible, deterministic,
static and discrete environment is unlikely and probably unreasonable in any system which
approximates the real world.

CHAPTER 2. LITERATURE REVIEW 6

Some additional characteristics that we may commonly expect of agents are (adapted from
Wooldridge and Jennings, 1995; Wooldridge, 2002):

• agents are reactive – able to respond to changes in their environment

• agents are proactive – they are not entirely driven by external factors and are able to
initiate action in order to achieve their goals

• agents are interactive – capable of social activity to work with other agents (or pos-
sibly humans) in order to satisfy their goals

These considerations of what constitutes an agent lead to the concept of a goal. This
corresponds to the high-level notion of goal we may intuitively have; the goal of an agent
is simply something it wants to achieve or bring about. More formally, if an environment,
E, is characterised by a set of discrete1 states E = {e1, . . . , en} then two kinds of tasks for
an agent become apparent:

1. Achievement tasks where the goal is to get the environment state into some desirable
state ei ∈ G ⊆ E

2. Maintenance tasks where the goal is to maintain the environment state and avoid
some “bad” states B ⊆ E

A related concept is that of utility where the utility of a state describes how desirable it is
for an agent. That is, there is some utility function for the agent:

u : E → R (2.1)

This allows an agent to reason about how well it is doing and allows agents to perform
tasks in order to maximise their utility.

Intentional Stance

Perhaps the most common view of agents is the intentional stance, based on the work of the
philosopher Daniel Dennet. Dennet used the phrase intentional system to describe entities
“whose rational behaviour can be predicted by the method of attributing belief, desires
and rational acumen” (Dennet, 1978 (cited in Wooldridge, 2002)). Under the intentional
stance, we interpret the actions of agents in the context of beliefs, desires and intentions
(BDI).

1This does not imply a discrete environment; a continuous environment can be classified as a set of
discrete states. Consider the example where a thermostat agent seeks to maintain the temperature of
a room. The environment is described by a continuous attribute (temperature) but we can impose a
classification such that temperature is a value from {too cold, acceptable, too hot} by simply choosing some
boundary temperatures for these categories.

CHAPTER 2. LITERATURE REVIEW 7

Beliefs are a representation of an agent’s knowledge of its environment, desires are goals
that the agent wants to achieve and intentions are plans to achieve those desires (Georgeff
et al., 1999; Jo et al., 2004). The BDI approach is based on a model of human practical rea-
soning developed by Michael Bratman (Georgeff et al., 1999). Wooldridge (2002) presents
a view of the BDI model which can be summarised as follows: let Bel be the set of possible
beliefs an agent may have, Des be the set of possible desires, Int the set of intentions
and Per a set of percepts (information an agent has sensed about its environment). At
any time, an agent has a set of current beliefs (from the powerset of all possible beliefs –
P(Bel)) and similarly a current set of desires and intentions. Then the agent updates its
beliefs, desires and intentions with the following functions:

• Updating options (i.e. current desires):

options : P(Bel)× P(Int)→ P(Des)

• Filtering possible options to commit to:

filter : P(Bel)× P(Des)× P(Int)→ P(Int)

• Belief revision:
brf : P(Bel)× Per → P(Bel)

The lack of any concrete definition of an agent and the difficulties incurred in trying to
provide a generally applicable definition can be seen as symptomatic of the nature and
use of agents. Agents are a very high-level abstraction which can be used to model social
behaviour; the model is largely human-oriented – an application of Bratman’s model of
human action characterised by beliefs, desires and intentions has become one of the most
accepted ways to reason about agents (Wooldridge, 1992). The very fact that this model
was originally intended for human behaviour should give an indication as to the complexity
of agents. Agents are built to autonomously act in order to achieve some high-level goal;
this goal-oriented behaviour is different to the task-oriented behaviour more typical of
software systems.

Task-oriented behaviour can be viewed as following an algorithm with given input to pro-
duce some output – very much the traditional territory of programs. Agents, by contrast,
are given goals and must achieve these, using artificial intelligence and reasoning mecha-
nisms to decide how. The process by which this can be done depends on their environment
and the actions of other agents (see p8). This is much closer to the way humans work
and explains why the BDI model of human action is so readily applied to software agents.
Agents act in such a complex way it is easier for us to reason about them in the way we
ourselves think and reason than as traditional algorithms.

While agents are certainly autonomous, there is little else we can say about them with
any guarantee. It was identified above that we can expect agents to be reactive, proactive
and interactive but this may not always be the case. Whilst usually an agent will interact

CHAPTER 2. LITERATURE REVIEW 8

with others, there is nothing to prevent design of systems consisting of a single agent;
in such a case there is no need for the agent to interact with others. Equally, we can
imagine an agent that aims to achieve its goals only in the way it responds to changes in
its environment. Such an agent is not really being proactive in generating change in the
environment. Perhaps a little more contrived is the case of an agent which acts regardless
of the environment, but we see that these characteristics are not requirements of an agent.
As Nwana (1996) puts it:

“. . . even within the software fraternity, the word “agent” is really an umbrella
term for a heterogeneous body of research and development. . . When we really
have to, we define an agent as referring to a component of software and/or
hardware which is capable of acting exactingly. . . ”

Agents may be applied to a diverse range of problems – it is the problem domain that will
determine what a suitable agent is for that scenario. This explains why a formal definition
of agents has not been agreed upon. Indeed, such a definition may be of only limited use.
To encompass all the complexity and diversity of many heterogeneous agents, any global
definition would have to be itself complex and broad-reaching. It is perhaps more useful to
define what it means to be an agent for each problem domain in which we intend to deploy
agents.

2.1.2 Multi-Agent Systems

Assuming we have decided upon some definition of an agent, then denoting each agent as
Ai, a näıve definition of a multi-agent system (MAS) would be as follows:

M = 〈{A1, . . . , An}, E〉 (2.2)

That is, a multi-agent system is a set of agents {A1, . . . , An} in some environment E. While
this captures the nature of a MAS at the most basic level, as with the agents themselves,
there are many ways in which we can extend this definition. For example, since each Ai

acts in the environment, Ai defines a “sphere of influence” in E – i.e. those parts of E that
Ai can change (or at least influence the change of) (Wooldridge, 2002). For two agents
Ai and Aj , their spheres of influence may be totally separate or may overlap or may even
coincide. What the definition in (2.2) omits is any consideration of relationships between
agents. For example, the MAS may feature “power” relationships where one agents is the
“boss” of another (Wooldridge, 2002).

Sichman et al. (1994) present a classification of relationships between agents (with respect
to their goals) as follows:

Independence. An agent is independent of another if it can achieve all of its goals without
any actions of the other agent.

CHAPTER 2. LITERATURE REVIEW 9

Unilateral dependence. An agent Ai unilaterally depends on Aj if Ai requires Aj to
perform some actions in order to achieve its goals but Aj can achieve all of its goals
independently of the actions of Ai.

Mutual dependence. Two agents are mutually dependent if they require actions of the
other in order to achieve the same goal.

Reciprocal dependence. Two agents are reciprocally dependent on each other if each
requires the other to perform some actions to achieve different goals.

In addition, a MAS allows for different specifications of goals. Goals can belong to agents
as previously discussed, but in addition collective goals may be assigned to some subset
of the agents in the system (Gaudou et al., 2008). Such cooperation in order to achieve
collective tasks can necessitate to the formation of coalitions; Shehory and Kraus (1998)
explain that:

“The allocation of tasks to groups of agents in necessary when tasks cannot be
performed by single agents or when single agents perform them inefficiently.”

As well as cooperating to achieve collective tasks, agents within a MAS may cooperate to
achieve the goals of individual agents – a “you scratch my back, I’ll scratch yours” type of
situation. Here, individual agents cooperate in order to increase their own utility (Shehory
and Kraus, 1998).

Clearly, the simple definition of a MAS in (2.2) needs to be extended in order to fully capture
what is meant by “multi-agent system”. However, just as with the concept of an agent, MAS
is not a well defined and exact notion. A whole variety of ideas are covered by this term and
what exactly is meant by MAS depends on the context in which it is used. The interactions
that will occur within a MAS depend on the origin and type of agents that will participate.
In the simplest case all agents will have been developed by the same programmer and so
their interactions are no different from those between different components of each agent –
they can be considered all subsystems where the MAS itself is the whole system. Such a
situation is certainly not the norm (Shoham and Tennenholtz, 1995) but will likely involve a
very different formalism of the concept of MAS than one in which “agents are programmed
individually in an unconstrained fashion” (Shoham and Tennenholtz, 1995).

2.1.3 Institutions

One particular type of MAS is the institution (or electronic institution). Institutions are
normative mutli-agent systems in that they impose some form of laws/rules on participat-
ing agents which encourage adherence to “normal” behaviour (as defined by the system
designer(s)). The following example is taken from Shoham and Tennenholtz (1995) to
outline the motivation for norms:

“. . . using the domain of mobile robots for illustration, when two robots note
they are on a collision course with one another, they may either appeal to some

CHAPTER 2. LITERATURE REVIEW 10

central traffic controller for coordination advice, or alternatively they might
engage in a negotiation resulting (say) in each robot moving slightly to its
right. . .Why not adopt a convention, or as we’d like to think of it, a social law,
according to which each robot keeps to the right of the path? If each robot
obeys the convention, we will have avoided all head on collisions without any
need for either a central arbiter or negotiation.”

The italics above have been added to emphasise the fact that if the designer has decided that
all robots will travel on the right to prevent collisions, this will only resolve the situation if
the robots adhere to this norm. If the system does nothing to enforce this norm, then there
is nothing to stop, for example, a robot designer programming his robot to travel down the
centre of a corridor so that it can move past “traffic” on the right. There are reasons that
an agent may not adhere to norms, other than the kind of intentional deviance given in the
previous case. What if an agent breaks down on the right and blocks the way? Other agents
must move from the right, potentially into the path of agents traveling the other way, in
order to pass. As well as introducing some motivation for normative MAS, this example
has illustrated possible reasons why agents may choose to disobey norms (either it may
benefit them in the case of the “speedy” robot or that circumstances prevent compliance).

Institutions are used extensively in so-called open systems or open interaction systems to
define expected behaviour in such systems (e.g. Fornara and Colombetti, 2008; Garcia-
Camino et al., 2005). Garcia-Camino et al. (2005) define the key characteristics of an open
system as:

Heterogeneity – agents within open systems are likely to have been developed by different
organisations, for different purposes, in potentially different languages.

Reliability – open systems must continue to function while individual components are
repaired or replaced.

Accountability/legitimacy – the system must prevent agents from performing “de-
viant” actions which may threaten the functioning of the system.

Societal change – societies represented by open systems are not static and the system
must be able to change to reflect this.

In such a system, “The normative component is fundamental because it can be used to
specify the expected behavior of the interacting agents” (Fornara and Colombetti, 2008) and
it provides a mechanism to constrain agent behaviour without placing too much restriction
on their autonomy (Garcia-Camino et al., 2005). This is because, rather than expressly
forbidding certain actions, an institution is “a set of conventions on how participants are
supposed to act” (Noriega, 1997).

These conventions are expressed in an institution by means of identifying whether actions
are permitted or not. Whether an action is permitted is determined by some conditions
within the institution and/or relating to the agent that performed the action. Equally,

CHAPTER 2. LITERATURE REVIEW 11

institutions may impose obligations – i.e. agents must perform certain actions before some
time frame expires. When an agent performs an action which is not permitted or fails to
perform an action it was obliged to, then that agent has violated the rules of the institution.
The institution will then impose some sanction or violation event (Cliffe et al., 2006) to
punish the agent for the breach of rules (Aldewereld et al., 2006; Fornara and Colombetti,
2008; Garcia-Camino et al., 2005).

In addition to placing constraints on what actions agents should perform, institutions also
provide “new possibilities of actions” (Gaudou et al., 2008). Consider the following example
from (Cliffe et al., 2006):

“. . . a marriage ceremony will only bring about the married state, if the person
performing the ceremony is empowered so to do.”

The issue here is the concept of institutional power – anyone can perform a marriage
ceremony but it will not have the effect of marrying the participants (i.e. bringing about
the “married state”) unless the agent performing the ceremony has the institutional power
to do so. Institutional power is a property of the institution itself; a suitable agent (perhaps
a priest, registrar etc) will perform actions in a marriage ceremony that any agent can
perform. The institution must empower an agent to perform the ceremony meaningfully
in order to bring about the married state. Thus when this agent performs the ceremony,
the institution recognises its effect.

Cliffe et al. (2006) introduce the concept of multi-institutions. This allows us to consider
interactions between different institutions. Rather than modelling large and complex social
structures as a monolithic whole, this allows us to separate out different parts as individual
institutions. This allows:

“. . . the possibility of using institutions as a means for abstraction (capturing
increasing levels of specificity at lower levels) and also as a means for delegation
(whereby one institution relies on the behaviour of another to augment its
function).” (Cliffe et al., 2006)

As with many of the concepts in the multi-agent systems domain, there is no generally
accepted formal definition for an institution. One formal model, that used by the action
language InstAL (p23), is presented in Appendix A.1.

2.2 Formal Languages for MAS Reasoning

There have been many approaches to the formal/logical modelling of agents and MAS. A
formal model is needed to give some semantics to these concepts (which are intuitive, high-
level and somewhat ambiguous notions as detailed in Section 2.1). Giving such a system
formal semantics allows us to reason about the properties and behaviour of MAS and

CHAPTER 2. LITERATURE REVIEW 12

institutions. Just as the lack of consensus as to a general definition of agents was discussed
above (p4), there are many different approaches to logical modelling and reasoning.

A fundamental method used for modelling agents, epistemic logics with modal operators, is
presented in Section 2.2.1. However, there are problems with such logics and so approaches
such as the Event Calculus (Section 2.2.2) and action languages (Section 2.2.3) are con-
sidered. Section 2.2.4 presents an introduction to Answer Set Programming, a declarative
paradigm with well-defined formal semantics. Some more recent work has used ASP in
order to model MAS (De Vos and Vermeir, 2004; Nieuwenborgh et al., 2007) and Cliffe
et al. (2005; 2006; 2007; 2008).

2.2.1 Modal Logic

Modal logic is “the logic of necessity” (Hodges, 2001) – it extends first order logic by
considering necessary and contingent truths. Intuitively, if some proposition is necessarily
true then it must be true. If, however, the proposition is a contingent truth then it might
be true. Much of this section is based on Moore (1985) and Wooldridge and Jennings
(1995).

Modal logic is typically used with the possible-worlds semantics as an epistemic logic for
agent reasoning, an approach based on Hintikka (1962) and Kripke (1963) – modal logics
are an established technique for reasoning about intention. Under the possible-worlds
semantics, an agent believes in a number of different worlds; as the agent gains more
knowledge it is able to eliminate some worlds as not being possible (i.e. those that are
inconsistent with its beliefs). An advantage of such an approach is that is says nothing
about the structure of the agent’s reasoning.

This approach is formulated in normal modal logics which extend the syntax of classical
propositional logic with two new operators (� and ♦) as follows (Wooldridge and Jennings,
1995):

• Let P = {p, q, r, . . .} be a countable set of atomic propositions, then p ∈ P is a
formula

• For formulae φ and ψ then the following are all formulae:

– > (true)

– ¬ψ
– φ ∨ ψ
– �ψ
– ♦ψ

Then a model, M , is:
M = 〈W,R, π〉 (2.3)

CHAPTER 2. LITERATURE REVIEW 13

Where W is a set of possible worlds, R ⊆W ×W is a binary relation on W that indicates
which worlds are possible relative to each other and π is a valuation function that indicates
which propositions are true in a given world (π : W → P(P)). The semantics of such logics
are determined by the satisfaction relation |= which holds between a pair of a model M
and reference world w and a formula as follows:

〈M,w〉 |= >
〈M,w〉 |= p ∈ P ⇐⇒ p ∈ π(w)
〈M,w〉 |= ¬ψ ⇐⇒ 〈M,w〉 2 ψ
〈M,w〉 |= (ψ ∨ φ) ⇐⇒ 〈M,w〉 |= ψ ∨ 〈M,w〉 |= φ
〈M,w〉 |= �ψ ⇐⇒ ∀w′ ∈W · (w,w′) ∈ R⇒ 〈M,w′〉 |= ψ
〈M,w〉 |= ♦ψ ⇐⇒ ∃w′ ∈W · (w,w′) ∈ R⇒ 〈M,w′〉 |= ψ

A formula which is satisfied by some model and world pair is called satisfiable; a formula
which cannot be satisfied by any model/world pair is unsatisfiable. If M = 〈W,R, π〉 and
∀w ∈W · 〈M,w〉 |= f then f is true in M . If a formula is true in each of a class of models,
it is valid in that class. If it is valid under the class of all models then it is valid simpliciter.
If f is valid simpliciter, we denote this |= f .

There are two fundamental axioms of such a modal logic – the first is axiom K :

|= �(ψ ⇒ φ) =⇒ (�ψ ⇒ �ψ) (2.4)

The second is the necessitation rule:

(|= ψ)⇒ (|= �ψ) (2.5)

Such a modal logic is translated into an epistemic logic for a MAS with agents A1, . . . , An

by replacing the operator � with Ki (for each agent). The formula Kiψ means “Ai knows
ψ”. A model becomes M = 〈W, (R1, . . . , Rn), π〉 where Ri defines worlds between which
Ai cannot distinguish. This allows us to reason about what agents know (and what they
know they know as in KiKiψ etc).

Problems of modal methods

In such a system, the fundamental axioms of (2.4) and (2.5) pose a serious problem. From
(2.4) it follows that an agent’s knowledge is closed under implication (logical consequence).
From (2.5) it follows that any agent knows all valid formulae - amongst other things this
includes infinitely many tautologies. These are both counter-intuitive to a definition of
knowledge; combined they form the problem of logical omniscience.

Such epistemic logics are amongst the most fundamental and long-standing approaches to
applying a logical formalisms to agent systems. Various extensions have been made to
address the problem of logical omniscience such as using a meta-language and an object-
language as done by Moore (1985). Wooldridge and Jennings (1995) present a summary of
several such approaches.

CHAPTER 2. LITERATURE REVIEW 14

These methods, however, are all mentalistic approaches in that they focus on “agents’
internal mental states, and attitudes” (Cliffe, 2007). However, there are problems reasoning
in this way, summarised by Cliffe (2007) as:

• mentalistic approaches assume a common rationality for all agents, i.e. all agents will
interpret the same act in the same way

• in general, it is not (practically) verifiable that agents actually held the precondi-
tions for an action in their mental state before performing it (that they “respect the
semantics” of the communication framework (Wooldridge, 1998))

To address these, we need to used models based on social semantics of a system which limit
semantics to those properties that are visible to an external observer. In addition, these
methods are more tailored to the application of modelling institutions as a whole (rather
than individual agents).

In addition, classical first-order logic is monotonic – that is to say that for formulae ψ and
φ, the following is true (Mueller, 2006):

ψ |= φ =⇒ ∀ψ′(ψ ∧ ψ′ |= φ) (2.6)

This means that, in the event of adding more ‘knowledge’ we can draw more conclusions,
but we cannot revise those we have already drawn. Clearly this is not desirable for reasoning
about institutions – if an agent reaches some conclusion we want it to be able to change
its mind about that conclusion if it gains more information. What we need, then, is some
kind of representation which allows for non-monotonic reasoning.

2.2.2 Event Calculus

The Event Calculus (EC) is a many-sorted first-order logic designed for commonsense
reasoning, that addresses time by the notion of events. This section is based on Kowalski
and Sergot (1986) who provide an overview of the EC and Mueller (2006) who provides a
complete definition of EC.

Unlike the situation calculus, which uses global states (“situations”), EC deals with time
periods defined by local events. While the situation calculus uses branching time, time in
EC is linear. The situation calculus suffers from the frame problem – it is necessary to
reason that a relationship in a situation (and is not affected by some event) will continue to
hold in the next situation. The need to deduce inertia in this fashion makes the situation
calculus “so computationally inefficient as to be intolerable” (Kowalski and Sergot, 1986).
McCarthy and Hayes (1969) provide a fuller description of the frame problem.

EC is a many-sorted logic: there is a set of sorts and for each sort in this set a (possibly
empty) set of subsorts. Each constant, variable, function symbol and the arguments to
predicates and function symbols have a specified sort. EC uses three sorts:

1. An event sort.

CHAPTER 2. LITERATURE REVIEW 15

2. A fluent sort (Boolean fluents).

3. A timepoint sort. The subsort of timepoints is the real number sort.

We present here the main predicates of EC as described by Mueller (2006). Variables of
the event sort are denotes e, e1, e2, . . .; similarly the fluent sort is denoted f, fi and the
timepoint sort t, ti.

Happens(e, t) Event e happens at timepoint t.

HoldsAt(f, t) Fluent f is true at timepoint t. If f is false at t we write ¬HoldsAt(f, t).
ReleasedAt(f, t) Fluent f is released from the commonsense law of inertia2 at timepoint

t. If f is bound by the commonsense law of inertia (at t) then we denote this
¬ReleasedAt(f, t).

Initiates(e, f, t) Event e occuring at t will cause f to be true and not released (from the
commonsense law of inertia) after t.

Terminates(e, f, t) Event e occuring at t will cause f to be false and not released after t.

Releases(e, f, t) If e occurs at t then f will be released after t.

Trajectory(f1, t1, f2, t2) If f1 is initiated by an event occuring at t1 and t2 > 0 then f2 will
be true at t1 + t2.

AntiTrajectory(f1, t1, f2, t2) If f1 is terminated by an event at t1 and t2 > 0 then f2 will
be true at t1 + t2.

EC is non-monotonic due to the use of circumscription3. Circumscription is a second-
order logic technique, used in EC to minimise the extension of predicates; it also provides
non-monotonic reasoning as shown below. Consider the following examples (from Mueller
(2006)):

Initiates(SwitchOn, LightOn, t)
Terminates(SwitchOff, LightOn, t)

F = Happens(SwitchOn, 3)

The circumscription of Happens in formula F in this example gives us that:

(e = SwtichOn ∧ t = 3)⇔ Happens(e, t) (2.7)

This enables us to conclude (as we would expect) that HoldsAt(LightOn, 7). But if we
substitute F for F ′ where:

F ′ = Happens(SwitchOn, 3) ∧Happens(SwitchOff, 6)
2The commonsense law of inertia says that unless a fluent is affected by an event, its value persists

unchanged.
3For brevity, no formal definition of circumscription is given here, see Mueller (2006) for such a definition.

CHAPTER 2. LITERATURE REVIEW 16

Then the circumscription of Happens in (2.7) becomes:

(e = SwtichOn ∧ t = 3) ∨ (e = SwitchOff ∧ t = 6)⇔ Happens(e, t) (2.8)

We no longer conclude HoldsAt(LightOn, 7); we now conclude ¬HoldsAt(LightOn, 7) as
expected.

The Event Calculus is based on first-order and second-order logic, making it powerful and
expressive. However, this comes at a computational cost (Cliffe, 2007). In the next section
we consider action languages, reasoning mechanisms that rely instead on propositional
logic.

2.2.3 Action Languages

Action languages allow us to examine the social semantics of an institution. This is achieved
by focusing on the concrete actions performed by agents, rather than their knowledge and
internal mental state (as in epistemic logics). A summary of action languages is given by
Gelfond and Lifschitz (1998).

The following definitions are key in Gelfond and Lifschitz’s descriptions of action languages.

Definition 2.1 A action signature is a triple 〈V,F,A〉 where V, F and A are non-empty
sets. V is a set of value names, F a set of fluent names and A of action names.

The exact meanings of these sets are left abstract, but intuitively fluents represented by
symbols in F are properties which take values from V. Symbols of A represent acts that
can be carried out by participants within the system.

Definition 2.2 A transition system of an action signature 〈V,F,A〉 is a set of states, S,
a valuation function V : F× S → V and a transition relation R ⊆ S ×A× S.

States in S provide some abstract representation the condition of the world at a particular
time. A triple (s,A, s′) ∈ R means that executing action A in state s might result in state
s′. The possible results of executing A in s are given by {s′|(s,A, s′) ∈ R}. Denoting this
set RA, we say that A is executable if and only if RA 6= ∅ and that A is deterministic if and
only if |RA| = 1. The value of some fluent P in state s is V (P, s).

Concurrent execution of actions is achieved by defining a set E of “elementary action
names” and making the action names in A the result of a truth valued function over E:

A = {>,⊥}E (2.9)

Then we use a function A(E) ∈ {>,⊥} for some elementary action, E. To execute A we
then execute all (elementary) actions such that A(E) = >.

CHAPTER 2. LITERATURE REVIEW 17

An action description is propositional if V = {>,⊥}. A propositional interpretation of
some set of symbols X is a valuation for every symbol of X by a function I : X → {>,⊥}.
We denote the value given to P under some interpretation, i, as i(P).

The following sections on the action languages A and C are based on the summaries of
these languages by Gelfond and Lifschitz (1998).

The A Action Language

A uses propositional action signatures of the form 〈{>,⊥},F,A〉.

Definition 2.3 A proposition of A is a statement of the form:

A causes L if F (2.10)

Where A is an action, L a single literal (called the head) and F a (possibly empty) con-
junction of literals.

When F is the empty conjunction we denote this > and we can abbreviate the proposition
to:

A causes L (2.11)

An action description in A is a set of propositions. The transition system for an action
description D is 〈S, V,R〉 where:

• S is the set of all interpretations of F

• V (s, P) = s(P)

• Let E(A, s) be the set of literals, L, such that the proposition

A causes L if F

is in D and the interpretation s satisfies F . Then R is:

R =
{
(s,A, s′)|E(A, s) ⊆ s′ ⊆ E(A, s) ∪ s} (2.12)

There will be at most one s′ for any A and s that satisfies (2.12) – i.e. A is deterministic.
Inertia is also encoded in the language since (2.12) requires that fluent values in s′ were
either caused by the execution of A in s, or were in s already.

The C Action Language

C extends A in several ways: inertia in C is not a part of the language (i.e. we can introduce
it if we wish), C allows for non-deterministic and/or concurrent execution of actions and

CHAPTER 2. LITERATURE REVIEW 18

Proposition Abbreviation For
U causes F if G caused F if > after G ∧ U
inertial F caused F if F after F
inertial F1, . . . , Fn n separate inertial propositions
always F caused F if ⊥ after ¬F
nonexecutable U if F caused ⊥ after F ∧ U
default F if G caused F if F ∧G
U may cause F if G caused F if F after G ∧ U

Table 2.1: Abbreviations in C

C has two classes of proposition: static and dynamic laws. Action descriptions in C are of
the form

〈{>,⊥},F, {>,⊥}E〉
. Note that we also require F ∩E = ∅.

In C a state formula is a propositional combination of fluent names and a formula is a
propositional combination of fluent and elementary action names. A static law is of the
form:

caused F if G (2.13)

A dynamic law is of the form:

caused F if G after U (2.14)

Where F and G are state formulae and U is a formula. As in A, if G = > we can abbreviate
these to get “caused F” and “caused F after U” respectively. We call F the head of the
law. An action description in C is a set of static and dynamic laws.

Let D be an action description in C, then the transition system described by D is 〈S, V,R〉
where:

• S is the set of all interpretations, s, of F such that for each static law “caused F if G”,
then if s satisfies G, s satisfies F

• V (s, P) = s(P)

• R is the set of triples (s,A, s′) where:

– if s′ satisfies G and the static law “caused F if G” is in D then s′ satisfies F

– if s′ satisfies G, s ∪ A satisfies U and the dynamic law “caused F if G after U”
is in D then s′ satisfies F

C features a number of abbreviations to ease use which are given in Table 2.1. In these
laws, F and G are state formulae and U is a propositional combination of elementary action
names (i.e. a formula with no fluent names).

CHAPTER 2. LITERATURE REVIEW 19

The C+ Action Language

Giunchiglia et al. (2001) propose C+ an extension to C in order to allow for multi-valued
fluents – that is, in the action signature 〈V,F,A〉 we allow V to be any non-empty set. A
detailed description of C+ (and its extension to (C+)++) is provided by Sergot (2004) while
a summary of C+ is given by Mueller (2006). To do this, the concept of a multi-valued
propositional signature is introduced:

Definition 2.4 A multi-valued propositional signature is a set of symbols called constants
and a non-empty set, Dom(c), of symbols assigned to each constant c (the domain of the
constant).

An atom of a signature, σ, is an expression of the form c = v where c ∈ σ and v ∈ Dom(c).
An interpretation of a signature is a function which maps every constant of the signature
to its domain. We say interpretation I satisfies the atom c = v (denoted I |= c = v) if
I(c) = v. Formulae are propositional combinations of atoms (and satisfaction is extended
to formulae in the normal way for propositional logic). Interpretation I is a model for a
set X of formulae if I satisfies all formulae in X. If all models for X satisfy some formula
F then X entails F (denoted X |= F).

A C+ description has a multi-valued signature σ = σfl ∪ σact where (σfl is a set of fluent
symbols and σact a set of action symbols). A state formula is a formula of σfl and an action
is an interpretation of σact.

Static and dynamic laws in C+ look the same as in C:

caused F if G (2.15)
caused F if G after H (2.16)

Where F and G are state formulae and H is any formula of σ. As in C we call F the head
of the formulae (in (2.15) and (2.16)) and an action description is a set of propositions.
Again, a number of abbreviations are introduced for ease of use (see Table 2.2). In these
abbreviations, F is a state formula, H a formula and α is a Boolean action symbol.

The semantics of the transition system defined by an action description in C+ are different
from those in C in that:

• S is the set of interpretations of σfl which satisfy F ⊂ G for every static law “caused
F if G” in D

• A formula F is caused in the transition (s,A, s′) if either:

– the static law “caused F if G” is in D and s′ |= G

– the dynamic law “caused F if G after H” is in D and s′ |= G ∧ s ∪A |= H

CHAPTER 2. LITERATURE REVIEW 20

Proposition Abbreviation For
α causes F if H caused F if > after α = > ∧H
α1, . . . , αk causes F if H caused F if > after α1 = > ∧ · · · ∧ αk = > ∧H
nonexecutable α1, . . . , αk if H α1, . . . , αk causes ⊥ if H
inertial F caused F if F after F
never F caused ⊥ if F

Table 2.2: Abbreviations in C+

The (C+)++ Action Language

(C+)++ is an extension to C+ that is “designed for representing norms of behaviour and
institutional aspects of (human and computer) societies” (Sergot, 2004). This is achieved
through two main additions:

1. The ability to express “counts as” relationships between actions (cf. “conventional
generation” of events, Goldman 1976 (cited in Cliffe, 2007)).

2. The ability to express permitted states of a transition system and permitted transi-
tions.

The counts as relation (intuitively) tell us that the occurrence of one event (i.e. an action
being performed) is also the occurrence of another. This can be used for the generation
of institutional events from ‘physical’ events. More formally, we define this over types of
transitions (s,A, s′). We add expressions of the form (where α and β are action formulae
i.e. have signature σact):

α counts as β (2.17)

These expressions behave as Boolean fluents so they may be used in the both the head and
body of other propositions. The set of action types is the powerset of action names, P(A).
Transition (s, a, s′) is of type X ⊆ A if and only if a ∈ X.

Permission is handled by state permission laws of the form:

not-permitted F (2.18)

Where F is a fluent formula (i.e. has signature σfl). An action permission law is of the
form :

not-permitted α if ψ (2.19)

Where α is an action formula and ψ a formula.

For a detailed presentation of (C+)++ see (Sergot, 2004).

2.2.4 ASP

Answer Set Programming (ASP) is a declarative logic programming paradigm that allows
for nonmonotonic reasoning. One might ask why ASP should be used when we already

CHAPTER 2. LITERATURE REVIEW 21

have a well-established, declarative, nonmonotonic logic programming language in Prolog?
The answer is that Prolog associates negation as failure with classical negation. These are
two fundamentally different forms of negation; classical negation (e.g. ¬x) corresponds to
“I know x is not true” while the negation as failure, not x, corresponds to “I do not know
that x is true”.

Since Prolog associates negation as failure with classical negation, it makes the closed
world assumption. This is the assumption that a program specification is complete and so
if x being true cannot be derived from the program, then x must be false. ASP features
both classical negation and negation as failure, and so is not subject to the closed world
assumption (Baral, 2003; Cliffe et al., 2005). This is useful in that it allows us to reason
with incomplete information; in the case of agents within an institution, for example, this
is obviously beneficial.

We present here an overview of ASP as formalised in the language AnsProlog∗ (Program-
ming in Logic with Answer Sets) (Baral, 2003). In AnsProlog∗, a term is defined as:

• a variable is a term

• a constant is a term

• for a function symbol f with arity n and terms t1, . . . , tn then f(t1, . . . , tn) is a term

If p is a predicate symbol of arity n then p(t1, . . . , tn) (where t1, . . . , tn are terms) is an
atom. A term or an atom is called gound if it contains no variables. There are three types
of literals in AnsProlog∗:

1. If a is an atom then a and ¬a are literals.

2. If a is an atom then a and not a are naf-literals.

3. If L is a literal then L and not L are gen-literals (called extended literals by Cliffe
et al. (2005)).

A rule4 has the form:

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln. (2.20)

Where each Li is a literal. In the above rule, {L0} is called the head of the rule. If the
head of the rule is empty we may write this using ⊥ as the head (or simply omit the
head altogether as in “← a.”). Such a rule is called a constraint. The body of (2.20) is
L1, . . . ,not Ln. The body should be read as a conjunction. A rule with an empty body is
called a fact :

L← . (2.21)
4The simplified version of a rule from Cliffe et al. (2005) where the head may contain at most one literal

is used, rather than as in Baral (2003) where the head of a rule may contain an arbitrary number of literals.

CHAPTER 2. LITERATURE REVIEW 22

This is abbreviated “L.”. A program is a finite set of rules.

Definition 2.5 For a program P , the set of all ground terms which may appear in P is
called the Herbrand Universe of P . We denote this UP .

For example, given the program P = {a., f(X).} where a is a constant, f is a function
symbol and X is a variable then UP = {a, f(a), f(f(a)), f(f(f(a))), . . .}.

Definition 2.6 For a program P , the set of all ground atoms which may appear in P is
called the Herbrand Base of P . We denote this BP .

A literal is ground if the atom in the literal is ground. A rule is ground if all literals in the
rule are ground. A program is ground is all rules in the program are ground. The ground
version of a program P (denoted ground(P)) can be obtained by the process of grounding
– the values variables can take are determined by the ground terms in the program; rules
are grounded by replacing variables with (all possible combinations) of the ground values
they make take.

Often we use instead AnsDatalog∗, a subset of AnsProlog∗ in which function symbols are
not permitted. Then the Herbrand Universe of an AnsDatalog∗ program is exactly the
finite set of constants of the program.

An answer set of a program P is defined in terms of the stable model semantics (Gelfond
and Lifschitz, 1988). For a program P let Π = ground(P). An Herbrand interpretation of
Π is a subset of BΠ. The rule (2.20) is satisfied by interpretation I of Π under the following
conditions:

• if L0 6= ⊥ then {L1, . . . , Lm} ⊆ I ∧ {Lm+1, . . . , Ln} ∩ I = ∅ =⇒ L0 ∈ I
• if L0 = ⊥ then {L1, . . . , Lm} * I ∨ {Lm+1, . . . , Ln} ∩ I 6= ∅

An Herbrand interpretation of Π which satisfies every rule of Π is called an Herbrand model
of Π. A model, M , is minimal if @M ′(M ′ ⊂M) where M ′ is also an Herbrand model of Π.
AnsDatalog−not is a subset of AnsDatalog∗ in which negation as failure is not allowed.

Definition 2.7 An answer set of an AnsDatalog−not program is a minimal Herbrand model
of that program.

To get from an AnsDatalog∗ program to an AnsDatalog−not program, we use the Gelfond-
Lifschitz reduct (Gelfond and Lifschitz, 1988). Given an AnsDatalog∗ program Π and a set
of ground atoms M then we can obtain an AnsDatalog−not program ΠM as follows:

• Remove from Π any rule containing not p in its body where p ∈M
• Remove from the body of all remaining rules any literal not s where s /∈M

CHAPTER 2. LITERATURE REVIEW 23

We are now able to define the answer sets of a (ground) AnsDatalog∗ program Π.

Definition 2.8 The answer sets of a ground AnsDatalog∗ program Π are all sets of ground
literals M such that M is an answer set of ΠM .

ASP is “powerful and intuitive. . . for modelling reasoning and verification tasks” (Cliffe
et al., 2005). In addition, there are a number of established answer set solvers (i.e. programs
which will take an ASP program and compute answer sets). Two of the most commonly
used are Smodels (Niemelä and Simons, 1997) and DLV (Eiter et al., 1998). Cliffe et al
use action languages in combination with ASP to model and reason about institutions;
an action language is used to model the actions and events then this is mapped to ASP,
allowing us to query and verify the models (Cliffe et al., 2006).

2.3 InstAL

Cliffe et al. (2005; 2006; 2007; 2008) have worked on modelling institutions using ASP. As
part of this work, the language InstAL (institution action language) has been developed
in order to aid the modelling of institutions. InstAL was proposed by Cliffe (2007), this
represents the most detailed source on the language. In addition see (Cliffe et al., 2005)
for their model of institutions, (Cliffe et al., 2006) for an overview of InstAL and (Cliffe
et al., 2008) for an example of the use of InstAL.

Institutions specified in InstAL conform to the formal model of institutions described in
Appendix A.1 (p82). An InstAL specification is translated into an ASP implementation of
the model. The details of this translation and how the model is implemented in ASP are
given by Cliffe (2007).

This section presents a summary of their work in the context of this project. Section 2.3.1
gives a summary of the InstAL language and Section 2.3.2 gives an overview of the current
situation regarding the development of the language.

2.3.1 InstAL Language Overview

This section presents InstAL, the institution action language, by a series of examples. These
examples are taken from Cliffe et al. (2008) in order to illustrate InstAL. They describe
the use of InstAL to model an institution which regulated a single round of bidding in a
Dutch auction. A full presentation of the language is given in Appendix A.2.

An institution specification begins by naming the institution being described:

institution dutch;

InstAL allows the definition of types simply by naming them. The domains of specified

CHAPTER 2. LITERATURE REVIEW 24

types must then be given in separate domain definition files. Types are declared as follows:

type Bidder;
type Auct;

Events are declared giving the type, name and parameters (if any):

create event createdar;
exogenous event annbid(Bidder, Auct);
inst event bid(Bidder, Auct);

Fluents (Boolean properties of the system) are declared similarly:

fluent havebid;
fluent onlybidder(Bidder);

The effects of events on fluents are given using initiation and termination rules and events
can generate other events:

annbid(B, A) generates bid(B, A);
bid(B, A) initiates havebid, onlybidder(B) if not havebid;
bid(B, A) terminates pow(bid(B, A)), perm(bid(B, A)), perm(annbid(B, A));

In the above description, we see two of the three built in fluents:

• fluent perm(Event); – the specified event is permitted

• fluent pow(Event); – the specified event is empowered (i.e. effective)

• fluent obl(Event,Event,Event); – an obligation to perform the first event before
the second occurs; if this is not fulfilled the third event is triggered as a sanction

2.3.2 State of Development

An InstAL problem consists of (from Cliffe, 2007):

• One or more institution descriptions (as defined in Appendix A.2, p88). Each de-
scription describes a single institution or multi-institution system.

• A domain description which defines the domains of types and static properties.

• A trace program providing definitions of the sets of traces to be generated.

• A query program to specify properties of the institution which we are interested in.
This restricts the traces generated to those matching the conditions of the query.

CHAPTER 2. LITERATURE REVIEW 25

Currently, the institution and domain descriptions are written using the InstAL syntax
defined above (in any ASCII text editor). The trace and query programs are written as
ASP programs using the syntax of Smodels (Niemelä and Simons, 1997). Currently there
is a tool which takes the institution and domain descriptions and produces an answer set
program (using Smodels syntax). This, together with the query and trace programs, are
grounded using LParse (part of the Smodels toolset). The grounded program from LParse
is then solved by Smodels (that is, the answer set(s) of the program are computed). There
are tools to visualise the answer sets either as a list of (observable) events in the trace
represented by the answer sets or as a graph showing state transitions. An output graph
is described in the GraphViz language – GraphViz tools are be used to produce a graph
from this.

This set of InstAL and external tools allows successful modelling of and reasoning about
institutions. However, the tool set is in a fairly early stage of development and the following
areas for extension have been identified:

• The need for a more integrated toolset to unite all of these stages involving a number
of separate programs (several of which are “third-party” programs).

• The InstAL language provides a layer of abstraction from ASP that eases the specifi-
cation of institutions and multi-institution systems. No such abstraction is provided
for the query and trace programs which must be specified in ASP directly. The ability
to specify typical queries in a syntax similar to InstAL would be beneficial.

• New output formats could be provided (e.g. output to LATEX)

• Development of an enhanced editor for InstAL with the kind of features we find
typically in IDEs.

• There is no well defined methodology for specifying institutions in InstAL. This can
cause a problem of ‘where to start?’ This could be addressed by either formalising in
the language description the order of an institution specification or just developing
and documenting a ‘best practice’ methodology for the use of InstAL.

With these areas in mind, this project will focus largely on two issues: provided a more com-
prehensive toolset for institution development with InstAL and developing a simple query
language to ease complex reasoning about institutions. Since InstAL generates ordered
traces, queries on institutional models developed in InstAL typically involve determining
properties of these traces, whether any traces exist that allow the system to reach certain
states etc. That is, queries are largely temporal in nature. This means that developing a
query language as part of/to work alongside InstAL can build on temporal logics such as
CTL* (and its various sub-languages) (Emerson and Halpern, 1986) as well as the action
and event based languages already considered. Any query language developed would only
be in an embryonic stage given the scope of this work and so must be designed so that it
could be extended to become fully functional query language in the future.

CHAPTER 2. LITERATURE REVIEW 26

2.4 Summary

An agent is used in the Computer Science community to mean a range of related concepts.
Section 2.1 began by considering the question “What is an agent?”. This showed that,
while we may have an intuitive notion of an agent as some autonomous system that acts
rationally to achieve its goals (whatever they may be), there is no generally agreed (formal)
definition of an agent. Typically, we mean by “agent” a very high-level software system
which performs intelligent and complex reasoning, exhibiting behaviour that is often com-
pared to the way we think and reason. This gives rise to interpretations such as BDI where
agents are considered using models originally intended for reasoning about human thought.

A key part of agent behaviour (usually) is the ability to socially interact with other agents
– hence we use multi-agent systems. In order to impose some constraint and norms on
agents within multi-agent systems, institutions were introduced. These use the concepts
such as permission, obligation, violations and institutional power to allow for constraints
to be imposed on MAS without imposing too great a restriction on agent autonomy.

In order to provide a mechanism for reasoning about agents and MAS, work has been done
on developing formal models. Section 2.2 described a number of approaches to this. One
such approach was the more recent development of answer set programming. This forms
the basis for work on institutional modelling by Cliffe et al, who proposed the language
InstAL as a tool to ease this process. Section 2.3 provided an introduction to InstAL and
described the current state of development (and which areas remain open).

Chapter 3

The Institution Editor

One of the main aims of this project was to develop additional tool support for the de-
velopment of institutions using InstAL. The current state of support of the development
process is given by Cliffe (2007):

• one or more single or multi-institution InstAL descriptions are specified (in ASCII
text)

• a domain definition is specified to ground types and static properties (in ASCII text)

• the InstAL specifications and domain definition are given as input to a command-line
tool which translates these into a set of answer set programs

• a query program is specified in ASP (but see Chapter 4 (p44) for changes made to
this stage)

• a trace program is generated by a command-line tool

• the ASP programs generated from the specifications are combined with the trace and
query and given as input to LParse (Syrjänen, n.d.) which grounds the programs

• the grounded programs are solved by Smodels (Niemelä and Simons, 1997)

• the answer sets computed by Smodels can be visualised:

– using a tool called InstViz

– using a command-line tool which produces a graph described in the language of
GraphViz1

This process is relatively complex and requires a number of separate tools:

1. A text editor to create InstAL specifications.
1http://www.graphviz.org

27

CHAPTER 3. THE INSTITUTION EDITOR 28

2. The translator that generates ASP from InstAL (genasp).

3. A utility to generate the time instants for traces (gentime).

4. An answer set grounder (LParse).

5. An answer set solver (Smodels).

6. A tool to visualize output which may be:

(a) InstViz .

(b) The utility to generate a GraphViz graph (gengraph).

Note also that the development of a query language documented in Chapter 4 adds an
additional tool to translate the new query language into ASP. This tool is referred to in
this chapter as the InstQL translator. A prototype implementation of this tool is detailed
in Section 5.3 (p69).

The highest level goal of developing tool support for InstAL is to create a system that
will allow the user to develop and reason about institution specifications. That is, in
addition to offering functionality to write InstAL specifications, the tool will control the
above reasoning process. This chapter details the development of such a system: InstEdit ,
the institution editor.

3.1 Requirements

Requirements for InstEdit were ascertained by consultation with the InstAL research com-
munity. These are the people who have developed InstAL as a tool to aid in modelling of
institutions. As such, they represent the stakeholders for InstEdit . This section describes
the requirements for InstEdit derived from discussion with this community. The fact that
the intended user base is a small number of academics in the field of computer science
makes the requirements elicitation process relatively straightforward.

3.1.1 Requirements Elicitation

This section gives (informally) the findings of discussion with the system stakeholders.
Since the number of stakeholders is small, requirements were ascertained by informal in-
terviews. This is an expensive technique for requirements elicitation, but the low number
of stakeholders made it possible.

Three use cases for the system are identified (Figure 3.1):

• creating institutions – writing InstAL specifications (including domain definitions)

CHAPTER 3. THE INSTITUTION EDITOR 29

Figure 3.1: Use cases for InstEdit

• creating queries for institutions – writing queries in InstQL (a new query language
for InstAL, see Chapter 4)

• reasoning about institutions – carrying out the process outlined above

The system must support the user in these three use cases. Since both InstAL and InstQL
are written as ASCII text files, this means providing some text editor capabilities. Enhanc-
ing these basic facilities by features such as syntax highlighting, found in many integrated
development environments (IDEs). To support the user in reasoning about institution
specifications, the system must control and co-ordinate the reasoning process outlined at
the start of this chapter.

As previously mentioned, this process involves a number of stages and separate tools. Figure
3.2 presents an analysis of the process as a sequence diagram. This highlights not only the
number of stages and tools involved but also how dependent on the user the process is. The
tools are all largely disjointed and it is up to the user to co-ordinate the process and launch
each stage. Such a situation is undesirable as it requires a lot of effort from the user. To
make reasoning with InstAL easier, the system should hide much of the complexity of the
process from the user.

Current work with InstAL is carried out on the GNU/Linux operating system. The InstAL
tools are written in Perl which is provided by many Linux distributions and LParse and
Smodels also use Linux as their ‘home environment’. However, Perl distributions exist
for other platforms and LParse/Smodels have successfully been ported to other operating
systems (Syrjänen, n.d.). At some future point, a different answer set grounder/solver may
be used. It is desirable to make the system portable so that future development and use of
the InstAL toolkit is not limited to a specific platform.

Work on the system should continue beyond the scope of this project. This project aims to
deliver an initial functional version which can be extended and modified as required by the
InstAL community. They will be responsible for maintaining the system after this project.
The system should be adaptable to cope with possible future changes. For example, at
some future point the answer set solver and grounder used may change as new grounders
such as GrinGo (Gebser et al., 2007) and solvers such as Platypus (Gressmann et al., 2005)
offer faster computation.

CHAPTER 3. THE INSTITUTION EDITOR 30

Figure 3.2: Sequence diagram of the current InstAL reasoning process.

3.1.2 Requirements Specification

In this section we formalise the properties, features and constraints described in the previous
section into a requirements specification for InstEdit . This is split into two parts: a set of
functional requirements describing features of the system and non-functional requirements
describing more abstract constraints.

Functional Requirements

This section presents the functional requirements for InstEdit . Requirements beginning
“The system must...” indicate high priority requirements that must be part of a suc-
cessful system. Failure to deliver any such requirement indicates a failure of the project.
Requirements beginning “The system should...” indicate lower priority requirements. An
implementation failing to deliver some or all of these requirements is considered a (partial)
success.

F1 The system must offer functionality of a simple text editor.

F1.1 The system must be able to save ASCII text files.

F1.2 The system must be able to open saved ASCII text files.

CHAPTER 3. THE INSTITUTION EDITOR 31

F1.3 The system must be able to edit ASCII text files.

F2 The system should provide syntax highlighting to help users detect errors in input.

F3 The system must automate the InstAL reasoning process.

F3.1 The system must provide a link to genasp.

F3.2 The system must provide a link to gentime.

F3.3 The system must provide a link to LParse.

F3.4 The system must provide a link to Smodels.

F3.5 The system should support output as a graph.

F3.5.1 The system should provide a link to gengraph.
F3.5.2 The system should provide a link to GraphViz.

F3.6 The system should provide a link to InstViz .

F3.7 The system should provide a link to the InstQL translator.

In requirements F3.1 to F3.7, by “provide a link to” we mean that the user must be able to
launch the specified external tool from InstEdit . This tool should operate on the relevant
type of file for the institution the user is currently working on. For example, in the case
of LParse (the ASP grounder used) the input should be the ASP representation of the
institution that the user is currently working on. The output and results of doing so must
be made available to the user within InstEdit (where appropriate).

Requirements F1 and F2 support the use cases of creating institutions and queries. Re-
quirement F3 supports the reasoning about institutions use case.

Non-Functional Requirements

Non-functional requirements are constraints on a system rather than specifications of the
functionality that it must provide (Sommerville, 2004). The non-functional requirements
for InstEdit arise from the fact that it is intended to be a system that will continue to evolve
and be maintained by the InstAL research community beyond the scope of this project.

N1 The system should provide a graphical user interface to allow control of the various
tools.

N2 The system must be maintainable.

N2.1 Maintenance documentation (such as APIs) must be produced during develop-
ment to allow others to continue/revise development after the project is com-
plete.

N2.2 The system must be adaptable. The architecture must permit changes of com-
ponents/external tools with minimum impact.

CHAPTER 3. THE INSTITUTION EDITOR 32

N3 The system should be portable and run on as many platforms as possible.

N3.1 The system must run under the GNU/Linux operating system.

With the requirements specified, a testing plan was devised. The testing strategy used is
described in Section 3.4 and the test plan is given in Appendix B.1.

3.2 High-Level Design

The software process used for development was an agile process based on incremental
delivery. The functional requirements for the system (p30) are specified at a high level.
There is scope for flexibility in how a system could satisfy these requirements. This makes
an incremental process beneficial as it provides the ability to explore the requirements
throughout the development process. This section describes the high-level architectural
design of InstEdit ; the following section presents the low-level designs for each increment
as development progressed.

It was decided to implement InstEdit using Java. Java offers GUI support through the
Swing and AWT libraries. Java is a very portable programming language due to its virtual
machine architecture. The Javadoc tool enables generation of APIs from source code com-
ments. Therefore, Java provides support for requirements N1, N2.1 and N3 making it an
appropriate language for this project.

In order to satisfy requirement N2.2, it was necessary to devise a software architecture that
allows for change. The most likely aspect of the system to change is the external tools.
New versions of the InstAL and InstQL tools may be developed or a different answer set
solver and/or grounder may be used. Even a more fundamental change such as using an
alternative formalism to ASP would be reflected by a change in tools use. The process of
writing InstAL specifications as text files and reasoning about them is much less likely to
change. To this end, it was decided to handle all interaction with external tools through
a sub-system. This allows external tools to change, so long as the interface between the
sub-system and the rest of the system remains constant.

Figure 3.3 shows the high-level architecture of InstEdit . Three main sub-systems are iden-
tified:

• GUI – a sub-system to provide a text editor with a graphical interface with which
the user can interact

• translators – a sub-system to control the external tools (since most of the tools per-
form some kind of translation on data e.g. InstAL to ASP, ASP to answer sets etc)

• application – a sub-system to provide utilities for InstEdit e.g. saving/loading settings
such as locations of external tools

CHAPTER 3. THE INSTITUTION EDITOR 33

Figure 3.3: InstEdit architecture

Figure 3.4: Sequence diagram of the InstAL reasoning process using InstEdit

To control the InstAL reasoning process from InstEdit , it was decided that the process
should be split into two major stages. The first stage is translate and solve institution
specification(s) (with optional domain definition and query) to get back answer sets corre-
sponding to traces of the system. The second is to visualise the answer sets, either using
InstViz or GraphViz. The split is made here since one, both or neither visualisation meth-
ods may be used an the answer sets. Splitting the process at this point allows the answer
sets to be saved and then subsequently visualised without needing to translate and solve
the specifications again.

The user will be able to launch these two stages from InstEdit . While the underlying
reasoning process remains unchanged from that shown in Figure 3.2, InstEdit hides this
from the user. From the user’s perspective, the reasoning process becomes a much simplified
version as illustrated in Figure 3.4.

Implementation of this architecture was organised as an incremental process over a number
of feature-boxed versions. These versions cover all the functional requirements.

CHAPTER 3. THE INSTITUTION EDITOR 34

Version 0.1 Develop a text editor. Satisfies requirement F1 (and all sub-requirements).

Version 0.2 Integrate with genasp to allow single institutions to be created and converted
to ASP. Satisfies requirement F3.1.

Version 0.3 Integrate with gentime, LParse and Smodels. This version allows one or
more single institutions, a multi-institution definition and domain definition to be
translated into an ASP program and the answer sets of the program to be calculated.
Satisfies requirements F3.2, F3.3 and F3.4.

Version 0.4 Add syntax highlighting capabilities to the text editor. Satisfies requirement
F2

Version 0.5 Integrate with visualisation tools. Integrate with the InstQL translator. This
version will allow the full reasoning process to be carried out: the user specifies InstAL
institution(s), domain definitions and an InstQL query. These are translated into an
ASP programming which is solved and the answer sets can be visualised using InstViz
or as a state transition graph created by GraphViz. Satisfies requirements F3.5 (and
sub-requirements), F3.6 and F3.7.

Throughout the development process, the following principles were applied:

• All classes were commented with Javadoc style comments. This allows Javadoc to be
run on the code and generate an API for the program. This aids maintenance and
satisfies requirement N2.1.

• The system should be platform independent. For example, all file paths referenced
in code should use a system-dependent file separator (available through the stan-
dard Java library class System) rather than hard-coding any specific file separator.
This practice, combined with the wide availability of the Java runtime environment,
satisfies requirement N3.

3.3 Low-Level Design & Implementation

This section presents the iterative design and implementation process used to deliver the
five increments of InstEdit identified in the previous section.

3.3.1 Implementing a Text Editor

InstEdit 0.1 implemented the core of the GUI sub-system of the overall application. It
provides the main application window which provides the functionality to edit text files.
This satisfies requirements F1, F1.1, F1.2, F1.3 and N1. This section describes the design
and implementation of this increment.

CHAPTER 3. THE INSTITUTION EDITOR 35

Figure 3.5: User interface design for the InstEdit main form.

The first stage of implementing InstEdit was to design the user interface. The interface
designed is simple, more akin to a text editor than a rich IDE. This provides an uncluttered
interface which should not distract the user. The selected design is shown in Figure 3.5.
The features of the design are as follows:

• a menu bar to provide access to commands (such as save or open a file).

• a tabs bar, with tabs titled by the names of files open. InstEdit provides a tabbed
interface which allows the user to work on multiple documents at once within the
same window.

• an editable text area which will display the contents of the open file. Switching to a
different tab will switch to a different text area showing the file open within that tab.

• a status bar to provide information to the user such as position of the caret within
the file.

This design is intended to be simple and familiar. It is influenced by a number of common
text editors and similar applications. To increase usability, the menus in the application
have names which are commonly used such as “File”, “Edit” and “View”. These will
contain options which are typically located on these menus (e.g. “Save” in the “File”
menu), allowing the user to carry over experience in other applications to InstEdit . Figure
3.6 illustrates how this design was realised in the final application.

To facilitate future additions to InstEdit , an abstract class called InstEditPanel was
implemented. This provides the superclass for anything to be displayed within a tab.
This provides a flexible structure since the application can show anything in a tab which
inherits from InstEditPanel. Future modifications can extend this class to provide new
functionality within the tabbed interface. The API for this class specifies simple features
that all components will require such as management of the tab title.

CHAPTER 3. THE INSTITUTION EDITOR 36

Figure 3.6: Screen shot of the final version of the InstEdit main form.

The text area used was an instance of class JTextArea. This is a simple text component
in which all text must have a uniform format. The implementation of InstEdit 0.4 (p39)
delivers a tab with a different type of text area that supports rich formatting. This makes
use of InstEditPanel in that both text areas used are provided within a subclass of
InstEditPanel. The class which displays the text area is called TextAreaPanel. The
simpler text area was used first (rather than using partial features of the more complex
version from the outset) in order to enable a rapid prototype satisfying the requirements
for this increment.

In order to provide user feedback, two listeners were added to the text area. One listens for
key events which represent changes to the file being edited. This allows a label in the status
bar to indicate whether all changes have been saved or not. The application also maintains
this information internally so that it can prompt a user if the application is closed when
there are unsaved changes. These measures prevent a user from accidentally losing work
by forgetting to save. The second listener responds to movement of the caret by updating
the status bar to display its current position within the file. This can help the user find
errors since the external tools may give the line number of an error in a file.

3.3.2 Integration with InstAL

The second increment, InstEdit 0.2, integrates the text editor delivered by the first in-
crement with genasp. This gives us a tool which allows the user to create an InstAL
specification for an institution and then translate it into ASP. This first version of inte-

CHAPTER 3. THE INSTITUTION EDITOR 37

Figure 3.7: Screen shot of the settings tab of InstEdit .

gration is able to translate only a single file at a time, and so allows only translation of
single institutions. Since multi-institutions require multiple single institution specifications
and another file to specify how these institutions interact, translating these is not possible
under InstEdit 0.2. This increment delivered requirement F3.1.

In order to achieve integration, this increment provided the basics of the application and
translators sub-systems. These were combined with the base of the GUI sub-system from
InstEdit 0.1 to allow the user to control the translation process. The integration is achieved
by calling genasp as an external process through the Java runtime environment. This
technique allows a command (as one would normally type at a command-line) to be called
from an application. This provides a simple approach to integrating genasp, a Perl script,
within InstEdit (a Java application). This maintains a loose coupling between the translator
and editor for InstAL. This allows changes to either program without affecting the other.
As outlined in the design 3.2 (see Figure 3.3, p33), the loose coupling is ensured within
InstEdit by providing a class in the translators sub-system to provide the interface for
calling genasp.

Calling genasp in this manner creates the requirement for InstEdit to know where genasp is
located. The application sub-system provides this functionality. This sub-system provides
the facility to store application settings for InstEdit to disk and to load these at runtime.
One such setting stores the location of genasp on the user’s system. In order to allow the
user to manage these settings, a new kind of tab was developed in the GUI sub-system.
This tab has a simple design allowing the user to enter values for settings in fields or
launch dialogs to select values. The final version of this tab is illustrated in Figure 3.7.
The development of InstEditPanel for the first increment made it simple to develop this
new kind of tab and add it within the application.

Another new kind of tab was added to display output from processes to the user. The

CHAPTER 3. THE INSTITUTION EDITOR 38

external tools are all command-line applications which print information and diagnostic
text to the user. When the user launches external tools, a new tab is opened within
InstEdit and output information from the tools is displayed in an uneditable text area on
the tab.

A criticism of the approach adopted by InstEdit in connecting to the external tools is that
these are called synchronously. Translating and solving complex institution descriptions
can take a significant amount of time. While the external processes are running, the user
must wait for the processes to complete. This is unsatisfactory as there is little feedback
to inform the user of which stage in the process the system is executing. A better solution
is to run the external processes asynchronously in a separate thread – this is left for future
development.

When translation is complete, another new tab is opened which displays the ASP program
generated. This uses the same type of tab as for creating the institution, allowing the user
to add to or edit the program if required.

3.3.3 Integrating the Answer Set Solver

Requirements F3.2, F3.3 and F3.4 are satisfied by InstEdit 0.3. This extends the previous
increment to complete the reasoning process up to visualisation of the traces (answer sets).
This required integrating gentime, LParse and Smodels with InstEdit .

While genasp and gentime are command-line programs (and so calling them as external
processes is the most logical way), Smodels offers a C++ library. The Java Native Interface
(JNI) allows Java applications to access C/C++ libraries. This meant Smodels could be
accessed as an external process (in the same manner as for genasp in InstEdit 0.2) or
through the JNI. Using the library through JNI would allow greater control over how
Smodels is integrated with the program. However, this approach was not used because:

• calling LParse and Smodels as external processes provides a looser coupling between
InstEdit and the answer set solver used. Due to requirement N2.2 this is desir-
able. The cost of moving from Smodels to a different solver is minimised using this
approach.

• calling LParse and Smodels as external processes means the link to external tools is
standardised since the InstAL tools are called in this manner.

LParse, Smodels and gentime were all integrated with InstEdit in the same was as genasp
(see p36).

A complete InstAL reasoning problem consists of several files. For each (single) institution
we have an InstAL specification. We also have a multi-institution specification which defines
the operation of the system as a whole and a domain definitions file. To support working
with multiple files, support for projects was added to InstEdit . When creating a project,
the user gives the project a name and specifies where output for that project should be

CHAPTER 3. THE INSTITUTION EDITOR 39

saved. The user may then identify a multi-institution specification, a domain definition,
an InstQL query (added for InstEdit 0.5) and many institution specifications. These are
translated and combined with the time instants program created by gentime and some base
institution programs provided with the InstAL tools (these specify properties of the model
common to all institutions such as inertia of fluents etc). These programs are all grounded
and solved together. The translators sub-system is designed to work with projects. A new
tab type was added, with a similar design to the settings tab, to allow the user to create
and manage projects.

To provide flexibility for the user, three modes of translation are provided:

1. Translate a project from InstAL into ASP, generate a specified number of time in-
stants and solve the programs to compute traces. (This is the complete reasoning
process up to visualisation.)

2. Translate a project from InstAL into ASP. This allows the user to inspect the gener-
ated ASP and if required make additions to the program (for example, query condi-
tions written in ASP and not InstQL).

3. Solve an ASP program. This can be used following step 2 to complete the process.

During the translation process, intermediate representations are saved to the directory
associated with the project. Translating and solving a project takes the institution designer
from the InstAL specification(s) straight to the answer sets. However, the ASP programs
created by genasp and gentime are saved, along with the output of Smodels (the answer
sets). This makes maximum information available to the institution designer for later
review if required.

3.3.4 Adding Syntax Highlighting

InstEdit 0.4 satisfies requirement F2 by providing syntax highlighting. This helps users
spot syntax errors and makes institution specifications more easily readable by highlighting
keywords of InstAL and comments.

As mentioned during the implementation of InstEdit 0.1 (p34), this required using a new
kind of text area which supported multiple formats. The component used is JTextPane
from the Swing library. Much of the functionality of TextAreaPanel (the subclass of
InstEditPanel that contains the text area for InstEdit 0.1) was refactored into a new
class EditorPanel. This extends InstEditPanel and provides the superclass for both
TextAreaPanel and a new class TextPanePanel. TextPanePanel provides an editor that
supports syntax highlighting for InstAL and InstQL documents.

Two types of highlighting are provided by InstEdit : keywords and comments. Three dif-
ferent levels of keyword highlighting are defined: language keywords, event types and pre-
defined types and fluents. The definition of what the keywords are (and which level they
belong to) is specified in an external file. This allows keywords to be added and removed

CHAPTER 3. THE INSTITUTION EDITOR 40

as InstAL develops. The application settings contain the path to this file and a class in the
application subsystem provides the functionality to read this file and load lists of keywords
(of each type). This class then provides a method to determine which keyword list (if any)
a specified string belongs to. In addition, the application settings store the colours in which
to highlight normal text, comments and each level of keywords. This allows the user to
personalise the colour scheme used.

Actually implementing syntax highlighting involves two stages: recognising a change has
occurred in a document and responding by highlighting the affected text. The architec-
ture of Swing allows a document listener to monitor the text area used; the listener will
be notified when any change occurs. Several alternative approaches to highlighting were
considered:

1. A listener monitors the document for changes. As changes occur, the listener high-
lights the affected text.

2. A listener monitors the document for changes. When a change occurs, the listener
stores the affected portion of the document. A highlighter asynchronously performs
the stored highlights.

3. A highlighter asynchronously polls the document at short intervals to see if has
changed since the last poll. If so the changed region is re-highlighted.

Approach 3 was dismissed for the amount of work this would create. The highlighter would
need to maintain a record of the document state to detect changes. This would require
maintaining a copy of the whole document contents in memory, which is computationally
expensive. This method does not make use of the facilities provided by the Swing library.

The first option offers the advantage that changes will be guaranteed to be reflected in the
document instantly. The problem with performing a synchronous highlight in this manner
is that should a large change occur (e.g. pasting of a large volume of text) the user would
have to wait for the highlighting to occur.

For these reasons, method 2 was selected. Each new TextPanePanel starts a syntax high-
lighter in a new thread. A listener for the text area in the panel records the location of
changes and adds these to the end of a first-in-first-out queue. The highlighter monitors
the head of this queue and when the queue is non-empty it removes the item at the head
and highlights the appropriate region. This architecture is given in Figure 3.8.

In order to minimise the effort expended by the highlighter, the implementation seeks to
minimise the area deemed affected by a change. This extends beyond the changed region
because, for example, typing the last letter to complete a keyword affects the entire word
or typing the comment symbol affects the rest of that line. Since InstAL has no multi-line
constructs, only the line of the change is highlighted.

There are two cases when we need to highlight the entire file. The first is when a document
is opened. This is handled by the syntax highlighter automatically since when text is loaded

CHAPTER 3. THE INSTITUTION EDITOR 41

Figure 3.8: Syntax highlighting architecture.

into the text pane, this generates a change which spans the entire document. The second is
when the user changes the application settings. Recall that the application settings define
the colours that the syntax highlighter uses and the location of the file which defines the
keywords to highlight. Changing the settings may change one or both of these properties.
To deal with this case, a method is defined in TextPanePanel to add to the queue an item
which indicates a change spanning the whole document.

3.3.5 Integrating Queries and Visualisation

The final increment of InstEdit completes the reasoning process. It integrates InstEdit
with the InstQL translator, allowing queries to be specified and executed within InstEdit .
In addition, InstEdit is linked with InstViz , gengraph and GraphViz to allow traces to be
visualised. This fulfils requirements F3.5 (and all its sub-requirements), F3.6 and F3.7.

The file paths to tools and library programs for InstAL and InstQL must be known by In-
stEdit . Previous versions stored the path to each required file separately in the application
settings. Since all the tools and programs required for translating and visualising InstAL
are provided in the same directory by the InstAL tools, this was simplified by storing only
the path to that directory. A new class within the application sub-system is then respon-
sible for constructing file paths for the required files from this directory. The same is done
for InstQL. This simplifies access to the external tools.

Syntax highlighting is extended to InstQL. InstQL supports comments in the same format
as InstAL and has its own set of keywords. For simplicity, the InstQL keywords are stored
in the same file as those for InstAL. The syntax highlighting component is then able to
highlight InstAL specifications and InstQL queries since it knows of the keywords for both.
The system at present does not distinguish between the two, since a text area does not
identify the type of document within it. There is no way to signal a highlighting mode to
the highlighter, this is left for a future extension.

As discussed in the high-level design (p32), the reasoning process is split into computing

CHAPTER 3. THE INSTITUTION EDITOR 42

and visualising traces. InstEdit 0.3 (p38) provides the process up to computing traces
(with the exception of queries). InstEdit 0.5 allows the second stage to be carried out. The
user is presented with two methods to visualise traces: InstViz or generating a graph.

When the user opts to generate a graph, gengraph and then GraphViz are called to produce
the graph in PostScript format. Since InstEdit provides only tabs to view/edit text files,
it is not currently possible to view this graph within InstEdit . However, the system design
regarding tabs allows a new kind of tab to be developed and integrated easily that will
allow PostScript files to be viewed within InstEdit . This is left for a future version.

3.4 Testing

In this section we present an overview of the testing process used for InstEdit . The main
testing was black-box release testing to verify that each increment met its requirements.
In addition, white-box component testing was performed for the syntax highlighting com-
ponent of the GUI sub-system. This was the most complex portion of the application to
implement and so additional testing was performed to ensure it functioned correctly.

In general, the functionality of InstEdit specified by the requirements (p30) is simple to
verify. For example, for requirement F1.1, either the system is able to correctly save a file,
or it is not. This makes black-box testing an appropriate strategy for InstEdit .

After each increment was completed, we performed release testing on that increment. We
also performed regression testing for previous increments. This ensured integrating the
new functionality had not caused problems with the existing functionality.

The exception to this strategy was requirement F2. Since this feature is more complex,
white-box testing was performed to make sure the syntax highlighting component func-
tioned correctly. The release testing for InstEdit 0.4 was just regression testing to ensure
implementing syntax highlighting had not caused problems elsewhere in the system.

This testing strategy was efficient in that it ensured that InstEdit meets its requirements
and time intensive white-box testing was used only where appropriate.

Tests 8 and 9 for syntax highlighting revealed a flaw in the highlighting algorithm. The
original implementation deemed the line on which the change occurred (determined by the
location within the document of the start of the change) to be affected. This worked for
normal typing but failed in two cases:

1. Pasting in text that spans several lines. The change starts at the point where the
text was pasted but carries on up to the line where the pasted text ends.

2. Typing return to terminate a line when there is text on that line after the caret. The
change is recorded as occuring on the line where return was pressed but may require
the next line to be highlighted. For example, if the line is terminated part way through
a keyword then this is split into two words which (in general) are not keywords. Since

CHAPTER 3. THE INSTITUTION EDITOR 43

InstAL has single-line comments, terminating the line during a comment moves text
down to the next line and out of the comment.

The algorithm was revised to start highlighting at the beginning of the line on which the
change starts. The highlighting continues until the end of the line on which the change
ends.

3.5 Summary

This chapter described the development process for InstEdit , the institution editor. This
application allows the user to create InstAL specifications and reason about them within
the same system. The InstAL reasoning process requires a number of separate tools. Prior
to InstEdit , the user was responsible for managing this complex process. InstEdit provides
control for much of the process, making development easier.

The requirements for InstEdit were ascertained by informal interviews with the InstAL de-
velopment community. Section 3.1 (p28) describes the process of elicitation and motivation
for the requirements. We then present the functional and non-functional requirements for
InstEdit in Section 3.1.2.

Section 3.2 (p32) discusses the high-level design decisions taken. We decided to implement
InstEdit in Java using an incremental delivery process. The design of InstEdit aims to
deliver an application which is modifiable and maintainable to support a developing research
area. In Section 3.3 (p34) we then describe selected issues arising during the incremental
delivery of InstEdit in accordance with the high-level design.

InstEdit was tested according to a black-box release testing strategy (as discussed in Section
3.4, p42). This is augmented with white-box component testing for the syntax highlighting
element of the system. Testing plans are given in Appendix B.

Chapter 4

A Query Language for InstAL

One of the major goals of the project is to design and implement a query language to
operate on institution descriptions written in InstAL. As an action language specific to
institutional modelling, InstAL provides a useful abstraction for the institution designer
away from the underlying formal model specified in ASP. However, this level of abstraction
is lost when it comes to specifying queries about an institution. This is a vital part of the
modelling process but as yet there is no query language and so queries must be specified
in ASP directly. This is undesirable for these reasons:

1. InstAL provides a level of abstraction above ASP making it easier to specify insti-
tutions. This is lost when it comes to query specification and the designer must use
ASP which is more complex than required.

2. In order to write ASP queries for an InstAL specification, the designer is required to
know how the InstAL will be translated into ASP.

3. A fully layered approach with both the specification of the institution(s) and queries
in specific languages would allow the underlying logic to be altered without requiring
any changes to institutions developed in InstAL.

The process of modelling an institution (or several institutions in a multi-institution spec-
ification) using InstAL and the currently available tools (up to the computation of answer
sets) is shown in Figure 4.1 (adpated from Cliffe, 2007). The aim is to develop a query
language in which the user can describe desired queries at a higher level and tools to trans-
late this language into ASP. This will modify the early stages of Figure 4.1 to produce the
development process shown in Figure 4.2.

44

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 45

Figure 4.1: The current InstAL development process.

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 46

Figure 4.2: The proposed new InstAL development process. (Only initial stages shown.)

4.1 Example Queries

To guide the development of a query language for institutional models written in InstAL,
five existing queries are considered. These are taken from an existing institutional model.
The selected model is that of a single bidding round in a Dutch auction as described by Cliffe
et al. (2007; 2008). This is the most complex institution to have been modeled in InstAL
to date. These queries have been selected to cover conditions of differing complexity and
involve reasoning over different parts of the model. It is believed these are representative
of the typical kinds of queries that will be made of models.

4.1.1 Selected Queries

The first case is a simple constraint involving event occurrence. This query states that
answer sets corresponding to traces in which the event badgov occurs at any point should
be excluded. The key part of this condition is that an event occurs at any time.

bad ← occurred(badgov, I), instant(I).
⊥ ← bad.

(Q1)

Similarly, the second query involves the a fluent being true at any time during the execu-
tion. This time, only those answer sets corresponding to traces that satisfy the condition
should be included.

hadconflict ← holdsat(conflict, I), instant(I).
⊥ ← not hadconflict.

(Q2)

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 47

In the third case, the query condition is for an event to occur at the same time as a fluent
is true. Again, only answer sets in which the condition is satisfied should be included.

restarted ← occurred(desdl, I), holdsat(conflict, I),
instant(I).

⊥ ← not restarted.
(Q3)

The fourth case declares a parametrised condition. Whilst in the previous queries we
considered conditions that are true/false of a whole model, this case declares a condition
startstate that is true of a particular fluent. In addition, this query requires that fluent
is true in the state after an event occurs.

startstate(F) ← holdsat(F, I1), occurred(createdar, I0),
next(I0, I1), ifluent(F).

(Q4)

The fifth case is a complex query involving many constraints. This query features the
use of previously declared conditions in subsequent conditions. (Note that one of these,
startstate(F), is the condition specified in query (Q4).)

startstate(F) ← holdsat(F, I1), occurred(createdar, I0),
next(I0, I1), ifluent(F).

restartstate(F) ← holdsat(F, I1), occurred(desdl, I0),
holdsat(conflict, I0),
next(I0, I1), ifluent(F).

missing(F) ← startstate(F), not restartstate(F), ifluent(F).
added(F) ← restartstate(F), not startstate(F), ifluent(F).
invalid ← missing(F), ifluent(F).
invalid ← added(F), ifluent(F).

⊥ ← not invalid.

(Q5)

4.1.2 Analysis of the Examples

The sample queries detailed above (p46) reveal a number of features which should be
possible in an useful query language. All of the queries involve conditions relating to the
occurrence of events and/or the value of fluents. These are the basics properties of a model
in which we are interested in querying. These conditions need to be joined together using
a logical and (indicated in ASP by comma-separated conditions). In addition, in (Q5) we
see the need to join conditions using logical or. This is indicated in the ASP by two rules
for invalid; collectively these read “the institution is invalid if any fluent is missing or
any fluent is added”.

The query language must provide a way for defined conditions to restrict the answer sets of
the model. That is, to make queries effective. In ASP this is done by specifying constraints
(i.e. rules with an empty head). From queries (Q2), (Q3) and (Q5) we see that negation is
required. In ASP, this is provided by negation as failure. Query (Q5) illustrates the use of

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 48

defined conditions as part of further complex conditions. While not strictly necessary, this
is a convenient way to decompose complex conditions and enable reuse of sub-conditions.

Queries (Q1) and (Q2) illustrate conditions where we are interested in events occuring/flu-
ents holding at any point in the model. Query (Q3) involves a simultaneous condition on
events/fluents. Query (Q4) features the specification of an event occuring/a fluent holding
after a condition on another event/fluent.

4.2 The Institution Query Language

In this section, we present the development of successive versions of an institution query lan-
guage. This language is called InstQL (institution query language), to indicate its relation
to InstAL. InstQL has a syntax influenced by that of InstAL in that it provides high-level
declaration of concepts. Whereas in InstAL these are events, fluents and associated rules
for institutions, in InstQL there are two concepts: constraints and conditions. A constraint
is an assertion of a property which must be true of an InstAL model. A condition specifies
a property of an InstAL model. Conditions can be declared in relation to other conditions
and constraints can involve declared conditions. Like InstAL, the semantics of InstQL are
defined in ASP. This makes the language directly executable through the use of an answer
set solver such as DLV (Eiter et al., 1998) or Smodels (Niemelä and Simons, 1997).

InstQL was incrementally specified to simplify the development process. Each version
of the language adds some new functionality to allow a specific type of reasoning. The
initial version provides the base reasoning capabilities and features of the language. Each
successive version then built this to provide new temporal relationships between conditions.

4.2.1 InstQLα – Basic Queries

InstQLα is the simplest variant of InstQL; this initial version provides the basic language
structure. Reasoning over institution specifications concerns the occurrence of events and
value of fluents within the institution(s). The motivation for the design of InstQLα was
to produce a language that allowed the specification of conditions involving events and
fluents. From the example queries (p46) we see that the effect of a query should be to
specify a constraint over the possible answer sets of the model. Therefore, the purpose of
InstQLα is to provide a way to express queries that will restrict the possible traces based
on whether certain events do/do not occur and fluents are (not) true. This section first
prevents the syntax of InstQLα using Backus-Naur Form (BNF) and then the semantics of
the translation of InstQLα into ASP.

InstQLα Syntax

As terminal symbols, InstQLα provides a definition of various types of names which are
built up as follows:

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 49

<variable> ::= [A-Z][a-zA-Z0-9_]*
<variable_list> ::= <variable> , <variable_list> | <variable>
<name> ::= [a-z][a-zA-Z0-9_]*
<param_list> ::= (<variable_list>)
<identifier> ::= <name> <param_list> | <name>

The definition of a variable name given conforms with that of Lparse/Smodels (Niemelä and
Simons, 1997), the underlying answer set grounder and solver used by InstAL. An identifier
gives us an arbitrary name which may have variable parameters – note that InstAL allows
the definition of parametrised events and fluents.

InstQLα provides two predicates which form the basis of all InstQL queries. The first is
happens(Event) – this means the specified event (defined in the corresponding InstAL
specification) occurs at any point during the lifetime of the institution. The second is
holds(Fluent), which means that the specified fluent is true at any point during the
lifetime of the institution. That is:

<predicate> ::= happens(<identifier>) | holds(<identifier>)

Where the identifier corresponds to an event e (in the first case) or a fluent f (in the second
case) that is defined in the InstAL specification. In terms of the model defined in Appendix
A.1 (p82), we have that e ∈ Ei and f ∈ Fi. Negation (as failure) is provided in InstQLα by
the unary operator not:

<literal> ::= not <predicate> | <predicate>

Named conditions may be defined and subsequently referenced by name. This allow com-
plex criteria to be built up using sub-conditions. For example, suppose we have defined a
condition called my cond which specifies some desired property of the institution. We can
then join this with other criteria e.g. “my cond and happens(e)”. Sub-conditions may be
referenced within rules as condition literals:

<condition_literal> ::= not <identifier> | <identifier>

Note that this allows for parametrised conditions to be defined by the definition of an
identifier. The building block of query conditions is the term:

<term> ::= <literal> | <condition_literal>

Terms may be grouped and connected by the connectives and and or which provide logical
conjunction and disjunction.

<conjunction> ::= <term> and <conjunction> | <term>
<disjunction> ::= <conjunction> or <disjunction> | <conjunction>

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 50

This allows us to combine predicates and named conditions with arbitrary combinations of
the logical operators and, or, not. For example:

happens(e1) or holds(f1) and not happens(e3)
or not my_condition and holds(f2)

Note that this definition implicitly gives or higher precedence over and. That is, the
statement “X or Y and Z” is read as “either X is true, or both Y and Z are true”. No
construction is provided to change this order to get the result “(X or Y) and Z”, but we
shall see later that this is can be overcome with the declaration of conditions. Conditions
may be declared using the condition keyword.

<condition_decl> ::= condition <identifier> : <disjunction> ;

This construction defines a condition with the specified name to have a value equal to the
specified disjunction. This allows the condition name to be used as a condition literal.
Constraints specify properties of the institution which must be true.

<constraint> ::= constraint <disjunction> ;

For example, consider the following InstQLα query:

constraint happens(e);

This constraint indicates that only answer sets of the model that correspond to traces in
which e occurs at some point should be considered. That is, we are only interested in those
traces in which e occurs.

To illustrate how this syntax is used to form queries, consider a simple light bulb institution.
The fluent on is true when the bulb is on. The event switch turns the light on or off. We
can require that at some point the light is on:

constraint holds(on);

We can require that the light is never on:

condition light_on: holds(on);
constraint not light_on;

There is some subtlety here in that light on is true if at any instant on is true. Therefore,
if light on is not true, there cannot be an instant at which on was true. See p57 for
further discussion of negation in InstQL. What about if the bulb is broken – the switch is
pressed but the light never comes on? This can be expressed as:

constraint not light_on and happens(switch);

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 51

InstQLα Semantics

The semantics of an InstQLα query are defined by the translation function T which trans-
lates InstQLα code into ASP. This function takes a symbol of InstQLα (as defined above)
and generates a set of (partial) ASP rules. Typically, this set is a singleton; only expres-
sions involving disjunctions generate more than one rule. Set notation is dropped in the
case where a singleton set is generated. The semantics of predicates are defined as follows:

T (happens(e)) = occurred(e, I), instant(I), event(e) (4.1)
T (holds(f)) = holdsat(f, I), instant(I), ifluent(f) (4.2)

For a literal of the form not P (where P is a predicate) the semantics are:

T (not P) = not T (P) (4.3)

For a condition literal the semantics are as follows:

T (conditionName) = conditionName (4.4)
T (not conditionName) = not conditionName (4.5)

A conjunction of terms is handled as follows:

T (t1 and t2 and · · · and tn) = T (t1), T (t2), . . . ,T (tn) (4.6)

A disjunction produces a set of rules. However, this is defined slightly differently for a
condition declaration and a constraint.

T (condition conditionName : C1 or C2 or · · · or Cn;) =
{conditionName← T (Ci). | 1 ≤ i ≤ n} (4.7)

T (constraint C1 or C2 or · · · or Cn;) =
{newName← T (Ci). | 1 ≤ i ≤ n} ∪ {⊥ ← not newName.} (4.8)

Note that the ASP term newName stands for any identifier which is unique within the ASP
program taken by combining the translations of the InstAL description and InstQLα query.
In addition, each time instant I generated in the translation of a predicate represents a name
for a time instant that is unique within the InstQLα query. For example, the translation
of “happens(a) and happens(b)” would be:

occurred(a, I), instant(I), event(a),
occurred(b, J), instant(J), event(b)

Such that I 6= J. Recall that a condition name may be parametrised. Since an InstQL
variable matches a variable for Smodels, no extra work is required in the semantics to
deal with this case. For example, the condition “condition ever(E): happens(E);”
(which just defines an alias for happens) can be translated in accordance with the above

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 52

to get “ever(E) ← occurred(E, I), instant(I), event(E).”. This is the required
construction for a parametrised ASP rule.

Note that the scope of a variable within an InstQL query is bound within the conjunction
within which it is used. This is because the translation of a disjunction will place different
conjunctions within different ASP rules. For example:

constraint not happens(E) or happens(E) and holds(f);

Will be translated to:

c0 ← not occurred(E, I), event(E), instant(I).
c0 ← occurred(E, I), event(E), instant(I),

holdsat(f, J), ifluent(f), instant(J).
⊥ ← not c0.

This means that the two instances of E in the query need not be grounded with the same
event.

Above (p50), we mentioned that the precedence of or over and means that an expression
which means “(X or Y) and Z” cannot be directly expressed. However, the following
InstQLα query has the required meaning:

condition disjunction: X or Y;
constraint disjunction and Z;

This becomes apparent when we apply the translation function to this query. The resulting
ASP program is:

disjunction ← X.
disjunction ← Y.
newName ← disjunction, Z.
⊥ ← not newName.

This tells us to compute only answer sets in which newName is true. This is the case only
when both disjunction and Z are true. Then disjunction is true if either X or Y is true.
This is the result we want.

4.2.2 InstQLβ – Concurrent Events

While InstQLα provides the basics for a query language over InstAL models, it has several
limitations. We may commonly wish to specify queries of the form “X and Y happen
at the same time”. That is, we may wish to talk about events occurring at the same
time as one or more fluents are true, simultaneous occurrence of events or combinations of

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 53

fluents being simultaneously true (and/or false). To allow this kind of reasoning, InstQLβ

introduces the keyword while to indicate that literals are true simultaneously. This allows
while expressions which link multiple literals that must be true simultaneously.

Note that while expressions are only defined over literals constructed from predicates (i.e.
happens and holds) and not condition literals involving condition names. This is because,
for example, a condition may mean “event e never occurs”. It does not make sense to
define an expression that says something like “event d occurs at the same time as (e never
occurs)”.

The syntax of InstQLβ preserves that of InstQLα except that a new statement, the while
expression, is defined and the definition for a term is modified. A while expression is defined
as follows:

<while_expr> ::= <literal> while <while_expr> | <literal>

This means that whereas happens(e) still means “event e occurs at some point during
the institution lifetime” when occurring on its own, the expression happens(e) while
happens(d) means “at some point during the institution lifetime, events d and e happen
simultaneously”. The definition of a term is modified as follows:

<term> ::= <while_expr> | <condition_literal>

Since the rest of the syntax of InstQLβ is identical to that of InstQLα (p48) we see that
while has lower precedence than and (and therefore, or also). That is, the expression “L1

or L2 while L3 and L4” corresponds to “either L1 is true, or L2 and L3 are true at the
same time and L4 is true (at any time)”.

Returning to the light bulb institution, InstQLβ allows us to specify that we want only
traces where the light was turned off at some point:

constraint happens(switch) while holds(on);

Or that at some point the light was turned left on:

constraint holds(on) while not happens(switch);

Again, the semantics of InstQLβ are given in terms of the translation function T . The
semantics of a predicate are redefined as follows:

T (happens(e)) = occurred(e, I) (4.9)
T (holds(f)) = holdsat(f, I) (4.10)

The semantics for a while expression are:

T (L1 while L2 while · · · while Ln) = T (L1), T (L2), . . . , T (Ln), instant(I) (4.11)

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 54

This is such that for each literal, the same instant label is used. The label (which in
InstQLα was unique to each predicate) is now unique to each while expression. That is we
require that, for example:

T (happens(e) while holds(f) and happens(e′) while holds(f′)) =
occurred(e, I), holdsat(f, I), instant(I),
occurred(e′, J), holdsat(f′, J), instant(J)

Where I 6= J. Note that in the special case of a while expression with only one literal we
get:

T (Lw
1) = T (L1), instant(I)

(Where Lw
1 denotes L1 interpreted as a while expression rather than as a literal.) That is,

we get a time instant unique to that literal as in InstQLα – this allows us to still talk about
literals that are true at any time during the institution lifetime. This is because InstQLβ is
defined so that it is a super-language of InstQLα – any InstQLα query is an InstQLβ query
also.

4.2.3 InstQLγ – Simple Ordering

InstQLβ allows us to express query conditions requiring certain literals to be true simulta-
neously. InstQLγ adds the ability to express orderings over events. This is done with the
after keyword. This allows statements of the form:

holds(f1) while not holds(f2) after happens(e1) after happens(e2)

The intended meaning of the above statement is as follows:

• at some time instant k the event e2 occurs

• at some other time instant j the event e1 occurs

• at some other time instant i the fluent f1 is true but the fluent f2 is not true

• these time instants are ordered such that i > j > k (i.e. k is the earliest time instant)

More formally, the syntax of an after expression is defined as:

<after_expr> ::= <while_expr> after <after_expr> | <while_expr>

Then, a term is redefined as:

<term> ::= <after_expr> | <condition_literal>

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 55

As with a while expression, this means that an after expression cannot involve a condition
literal. This is done for the same reason as with a while expression; there is no guarantee
an arbitrary condition relates to some particular moment in time and so it does not make
sense to discuss properties of a model after the condition.

Once again returning to the light bulb institution, InstQLγ allows us to specify a query
which requires the light to be switched twice (or more):

constraint happens(switch) after happens(switch);

Or that once that light has is on, it cannot be switched off again:

condition switch_off: happens(switch) after holds(on);
constraint not switch_off;

The semantics of an after expression are defined as follows:

T (W1 after · · · after Wn) =
T (W1), . . . , T (Wn), after(i1, i2), after(i2, i3), . . . , after(in−1, in)

(4.12)

Where ik is the time instant generated by translating the while expression Wk and after
is a predicate defined in ASP as follows:

after(I, J) ← next(J, I). (4.13)
after(I, J) ← after(I, K), after(K, J), (4.14)

instant(I), instant(J), instant(K).

The rule (4.13) gives us that if i is the next time instant after j, then i is after j. Rule
(4.14) gives us that the after relation is closed under transitivity. That is, if there exists
a time instant k that is after j, such that i is after k, then i is after j also.

The only addition to InstQLβ made by InstQLγ is the after expression. This is defined so
that its simplest case is just a single while expression and we have that any InstQLβ query
is also a query of InstQLγ – again this is a super-language.

4.2.4 InstQLδ – Precise Ordering

InstQLγ allows us reason about orderings of events. For example, we can say “happens(e)
after happens(d)” which means that if some event d occurs between the time instants ti
and ti+1 then the event e occurs between tj and tj+1 such that j ≥ i + 1. However, if we
consider queries (Q4) and (Q4) we see the need to specify properties of the institution in
the very next state after some other property held. That is, we need to say that not
only does something literal hold after some other literal, but that this is precisely one time
instant later.

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 56

Expression Definition
<variable> ::= [A-Z][a-zA-Z0-9_]*
<variable_list> ::= <variable> , <variable_list> | <variable>
<name> ::= [a-z][a-zA-Z0-9_]*
<param_list> ::= (<variable_list>)
<identifier> ::= <name> <param_list> | <name>
<predicate> ::= happens(<identifier>) | holds(<identifier>)
<literal> ::= not <predicate> | <predicate>
<while_expr> ::= <literal> while <while_expr> | <literal>
<after> ::= after(<integer>) | after
<after_expr> ::= <while_expr> <after> <after_expr>

| <while_expr>
<condition_literal> ::= not <identifier> | <identifier>
<term> ::= <after_expr> | <condition_literal>
<conjunction> ::= <term> and <conjunction> | <term>
<disjunction> ::= <conjunction> or <disjunction> | <conjunction>
<condition_decl> ::= condition <identifier> : <disjunction> ;
<constraint> ::= constraint <disjunction> ;

Table 4.1: InstQL Syntax

InstQLδ extends InstQLγ to allow us to specify such precise orderings between literals.
Rather than just providing the facility to specify a literal occurs/holds in the next time
instant, this is generalised to say that a literal happens n time instants after another. That
is, for a fluent that does (not) hold at time instant ti or an event that occurs between ti
and ti+1, we can talk about literals that hold at ti+n or occur between ti+n and ti+n+1.

This is achieved by modifying the definition of an after expression as follows:

<after> ::= after | after(<integer>)
<after_expr> ::= <while_expr> <after> <after_expr> | <while_expr>

An after expression may contain only the after operator from InstQLγ and not use the
new after(n) operator. This means that any InstQLγ query is a query of InstQLδ also. We
have the following inclusions: InstQLα ⊂ InstQLβ ⊂ InstQLγ ⊂ InstQLδ – each successive
version of InstQL is a strict super-language of the previous.

This modified version of the after expression completes the definition of the syntax of
InstQL. Table 4.1 summarises the syntax of the language.

The semantics are given for the binary operator after(n) – these can easily be generalised
for after expressions built of sequences of after(n) operators mixed with after operators.

T (Wi after(n) Wj) = T (Wi), T (Wj), after(ti, tj, n) (4.15)

Where ti and tj are the time instants generated by Wi and Wj respectively. This is defined

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 57

such that we require n > 0. The three-argument form of after is defined in ASP as:

number(1 .. 1000). (4.16)
after(I, J, 1) ← next(J, I). (4.17)
after(I, J, N) ← next(K, I), after(K, J, N− 1), number(N). (4.18)

The predicate number must be defined to restrict the variable N. This is done for the
numbers 1 ≤ n ≤ 1000 since this seems a sufficiently large range to not be limiting1. We
require that in operator after(n), n > 0 and this now imposes a de facto upper limit as
well.

We now provide a concrete example of the translation of an after expression to illustrate
this process:

T (happens(e) while holds(f) after happens(d) after(3) holds(g)) =
occurred(e, ti), event(e), holdsat(f, ti), ifluent(f),
instant(ti), occurred(d, tj), event(d), instant(tj),
holdsat(g, tk), ifluent(g), instant(tk),
after(ti, tj), after(tj, tk, 3).

4.2.5 A Note on Negation

It may be tempting to interpret the InstQLα query “constraint not happens(e);” to
mean “consider only traces where event e never happens”. However, the definition of the
semantics of a literal (predicate rather than condition) given in (4.3) mean that this is not
the case. The translation into ASP of this query is as follows:

n1 ← not occurred(e, I), event(e), instant(I).
⊥ ← not n1.

This says we should include only answer sets for which n1 is true. This is satisfied for
any trace where for some time instant I, the predicate occurred(e, I) is not true. This
means the query means “consider only traces where there exists an instant I such that
e does not occur at I.” The näıve interpretation outlined above corresponds to “consider
only traces where for all instants I, e does not occur at I.”

The ‘for all’ interpretation seems more intuitive in this simple case. The semantics are de-
fined for the ‘there exists’ interpretation for two reasons. Firstly, this parallels the intuitive
interpretation for positive predicates. Consider the query “constraint happens(e);”.
The intuitive (and correct) interpretation is that at some time instant, e happens – not
that e happens at all time instants. Secondly, and more importantly, the existentially
quantified interpretation is correct in the more general case. Consider instead the following
query:

constraint happens(d) while not happens(e);
1Though this can be increased at the cost of grounding efficiency if required.

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 58

The interpretation for this (both the intuitive and the correct one) is that there exists a time
instant such that d happens at this instant and that e does not happen at this time instant.
For expressions involving after and while the interpretation of “not happens(e)” needs
to be that there exists an instant at which e does not occur. In the special case where
these operators are not used, this is not the most intuitive interpretation of the negation.
Treating this case specially would make the semantics of not (applied to a predicate)
context-sensitive which would complicate implementation and understanding of InstQL.

The intended (i.e. universally quantified) interpretation that e never happens can be
achieved as follows:

condition ever(E) : happens(E);
constraint not ever(e);

This translates into ASP as:

ever(E) ← occurred(E, I), event(E), instant(I).
n1 ← not ever(e).
⊥ ← not n1.

This illustrates the fundamental difference between a negated condition and a negated
predicate. The scope of negation in a predicate literal is limited to occurred or holdsat
in the underlying ASP. In a condition literal, however, negation extends over the entire
rule. Therefore, the program above says that ever(E) is true if event E occurs at some
point during the institution lifetime. The condition with temporary name n1, (generated
by translation) is true if it is not true that e ever occurs. That is, e never occurs; the entire
rule is negated. The final rule constrains the answer sets to consider only those in which
n1 is true.

Furthermore, a similar misinterpretation may occur with queries such as:

constraint not happens(d) while happens(e);

A näıve interpretation of this query could be “at no time instant does d occur if e occurs”.
Such an interpretation exaggerates the scope of the negation. The negation applies only
to “happens(d)” and so therefore the correct interpretation is “there exists a time instant
where d does not occur but e does”. The query obtained by swapping “not happens(d)”
and “happens(e)” is equivalent (since the two conditions are in conjunction, which is
commutative) but clarifies this issue. Phrased the other way round, it is not possible to
attribute a scope for the negation beyond “happens(d)”. (This phrasing is shown above
in this section.)

A query to state that d and e must not happen simultaneously can be constructed as
follows:

condition simultaneous : happens(d) while happens(e);
constraint not simultaneous;

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 59

4.3 Example Queries Revisited

Having defined (various versions of) the query language InstQL, we know return to the
example queries for InstAL institutions specified on page 46. This section gives equivalent
InstQL queries to the ASP ones previously used. We then show the translation of these
queries into ASP to illustrate the correctness of InstQL semantics.

For (Q1) the following InstQLα query is equivalent:

condition bad : happens(badgov);
constraint not bad;

(IQ1)

The translation of this into ASP (in accordance with the translation function T) is as
follows:

T (IQ1) = bad← T (happens(badgov)).
n1← T (not bad).
⊥ ← not n1.

= bad← occurred(badgov, I), event(badgov), instant(I).
n1← not bad.

⊥ ← not n1.

This is equivalent to (Q1). The only difference is that the translation has produced an
extra rule for n1. This says that n1 is true if bad is not true. The constraint permits only
answer sets in which n1 is true (and therefore bad is not true). In (Q1), the constraint
permits only answer sets in which bad is not true.

An InstQLα query that is equivalent to (Q2) is:

constraint holds(conflict); (IQ2)

The translation of this into ASP is as follows:

T (IQ2) = n1← T (holds(conflict)).
⊥ ← not n1.

= n1← holdsat(conflict, I), ifluent(conflict), instant(I).
⊥ ← not n1.

This is exactly equivalent to (Q2) with the literal hadconflict renamed to n1.

The following InstQLβ query is equivalent to (Q3):

constraint happens(desdl) while holds(conflict); (IQ3)

The translation of (IQ3) into ASP is as follows:

T (IQ3) = n1← T (happens(desdl) while holds(conflict)).

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 60

⊥ ← not n1.

= n1← T (happens(desdl)), T (holds(conflict)), instant(I).
⊥ ← not n1.

= n1← occurred(desdl, I), event(desdl),
holdsat(conflict, I), instant(I).
⊥ ← not n1.

This is exactly equivalent to (Q3) with the literal restarted renamed to n1.

For (Q4), the following InstQLδ query is equivalent:

condition startstate(F) : holds(F) after(1) happens(createdar); (IQ4)

The translation of this into ASP is as follows:

T (IQ4) = startstate(F)← T (holds(F) after(1) happens(createdar)).
= startstate(F)← T (holds(F)), T (happens(createdar)), next(J, I).
= startstate(F)← holdsat(F, I), ifluent(F), instant(I),

occurred(createdar, J), event(createdar), instant(J), after(I, J, 1).

For (Q5) the following InstQLδ query is equivalent:

condition startstate(F) : holds(F) after(1) happens(createdar);
condition restartstate(F) : holds(F) after(1) happens(desdl)

while holds(conflict);
condition missing(F) : startstate(F) and not restartstate(F);
condition added(F) : restartstate(F) and not startstate(F);
constraint missing(F) or added(F);

(IQ5)

The steps of translating (IQ5) into ASP are omitted for brevity but the translated query
is as follows:

startstate(F) ← holdsat(F, I), ifluent(F), instant(I),
occurred(createdar, J), event(createdar), instant(J),
after(I, J, 1).

restartstate(F) ← holdsat(F, I), ifluent(F), instant(I),
occurred(desdl, J), event(desdl), holdsat(conflict, J),
ifluent(conflict), instant(J), after(I, J, 1).

missing(F) ← startstate(F), not restartstate(F).
added(F) ← restartstate(F), not startstate(F).

n1 ← missing(F).
n1 ← added(F).
⊥ ← not n1.

CHAPTER 4. A QUERY LANGUAGE FOR INSTAL 61

This is equivalent to (Q5). In the rules for startstate(F) and restartstate(F), the
translation of (IQ5) specifies instant(I) for each time instant used in the rule. This is
not necessary since the query also specifies next(J, I) which will be defined only for time
instants. The extra predicates arise from the translation of a while expression where they
are necessary if the expression is not part of an after expression. Apart from this, the
only way the translation of the InstQLδ query differs from the original ASP query is that
invalid is renamed to n1 (i.e. a name generated during translation).

4.4 Summary

This chapter presented InstQL – the institution query language. This new language is
designed for the construction of queries to allow reasoning about institutions specified in
InstAL. InstQL maintains the level of abstraction above the underlying logic (ASP) which
InstAL provides for institution specification. Prior to the advent of InstQL, this abstraction
was lost and the institution designer was forced to specify queries in ASP directly. This
requires knowledge of how an InstAL specification is translated into ASP and ties the
development process to the use of ASP. Having abstraction above ASP at all stages of
development allows the underlying logic to be changed at some future stage if desired.

Section 4.1 introduced motivating examples for InstQL. It presented five queries specified
in ASP for the Dutch auction round institution (Cliffe et al., 2008). These queries represent
the typical reasoning done about institution specifications and so informed the language
design. Then in Section 4.2 we presented a definition of four successive versions of InstQL.
Each version is a strict super-language of the previous that adds new reasoning capabilities.
This section gave the syntax of InstQL as summarised in Table 4.1 and its semantics, defined
by translation into ASP. Finally, Section 4.3 returned to the queries of Section 4.1 and gave
a specification of these same queries in InstQL. In addition, the translation of these queries
back into ASP (in accordance with the definition given in Section 4.2) was given to illustrate
that the InstQL queries are equivalent to their ASP counterparts.

The next chapter discusses practical aspects of reasoning with InstQL. It explains the use of
InstQL for various types of reasoning and details the development of a system to automate
translation of InstQL into ASP.

Chapter 5

Using the Institution Query
Language

Having defined InstQL, the institution query language, in Chapter 4, we know discuss the
practical aspects of reasoning using InstQL. This chapter considers how general reasoning
may be carried out using InstQL. In addition, InstQL is demonstrated to be capable of
expressing a limited version of linear temporal logic (Pnueli, 1977). We then detail the
development of a system which automates the translation of InstQL into ASP that was
outlined in the previous chapter.

5.1 Reasoning with InstQL

Section 4.3 (p59) gave some examples of the use of InstQL to specify queries for InstAL spec-
ifications. This section furthers this by detailing the use of InstQL to accomplish general
reasoning tasks. We describe how to use InstQL to perform three “standard” (Sergot, 2004)
types of computational reasoning: prediction, postdiction and planning. We then discuss
possible uses of InstQL by agents.

5.1.1 General Reasoning with InstQL

Prediction is the problem of ascertaining the resulting state for a given (partial) sequence
of actions and initial state. That is, suppose some transition system is in state S and a
sequence A = a1, . . . , an of actions occurs. Then the prediction problem (S,A) is to decide
the set of states {S′} which may result. Postdiction is the opposite problem – if a system is
in state S′ and we know that A = a1, . . . , an have occurred, then the problem (A,S′) is to
decide the set {S} of states that could have held before A. The planning problem (S, S′)
is to decide which sequence(s) of actions, {A}, will bring about state S′ from state S.

Recall from definition A.3 that a state of an institution is described by those fluents that are

62

CHAPTER 5. USING THE INSTITUTION QUERY LANGUAGE 63

true in the state and those that are false in the state. That is, a state is S = {f1, . . . , fn}∪
¬{g1, . . . , gk} where fi are the fluents true under S and gi those false under S. This may
then be encoded in InstQL as the while expression:

S = holds(f1) while · · · while holds(fn) while
not holds(g1) while · · · while not holds(gk)

(5.1)

When reasoning about institutions, action sequences correspond to sequences of observable
events. InstQL allows reasoning about sequences of any events in EM, including those in
E i

obs. A sequence of events E = e1, . . . , en may be encoded as an after expression. If we
have complete information, then we know that e1 occurred, then e2 at the next time instant
and so on up to en with no other events occurring in between. In this case, we can express
E as follows:

E = happens(en) after(1) · · · after(1) happens(e1) (5.2)

This can be generalised to the case where ei+1 occurs after ei with some known number
k ≥ 0 of events happening in between:

happens(ei+1) after(k + 1) happens(ei)

Alternatively if we do not know k (i.e. we know that ei+1 happens later than ei but zero
or more events occur in between) we can express this as:

happens(ei+1) after happens(ei)

We can combine these cases throughout the formulation of E to represent the amount of
information available.

Given an initial state S and a sequence of events E, the prediction problem (S,E) can be
expressed in InstQL as:

constraint E after(1) S;

This query limits traces to those in which at some point S holds and following S the events
of E occur in sequence. Any traces satisfying this query will then contain the states {S′}.
This permits no observable events to occur between S holding and the first event of E. As
with relations between the events in E, we can use instead after or after(n) as dictated
by the amount on information available.

Given a sequence of events E and a resulting state S′, the postdiction problem (E,S′) can
be expressed as:

constraint S after(1) E;

This requires S to hold in the next instant following the final event of E. Again, a different
form of after can be used if appropriate.

CHAPTER 5. USING THE INSTITUTION QUERY LANGUAGE 64

Figure 5.1: State transition for prediction.

Given a pair of states S and S′ the planning problem (S, S′) can be expressed in InstQL
as:

constraint S’ after S;

This allows any non-empty sequence of observable events to bring about the transition from
S to S′. If we want to consider plans of length k (i.e. E = e1, . . . , ek) then we express this:

constraint S’ after(k) S;

These solutions require at least knowledge of the ordering of events that have occurred.
For the sequence e1, . . . , en we require that e1 < · · · < en (i.e. e1 occurs before e2 etc). It
may be the case that we know two successive events in the sequence are a specific number
of instants apart, but if not we must know that they are one or more time instants apart.
This may not always be the case. For example, in a prediction problem we may know the
initial state and a set of events that have occurred but not the order in which those events
occurred. The general case of this is that we have a set of event sequences (which may be of
length one if we have only a set of events). That is, suppose we know that event sequence
E occurred (with as before, the events of E happening in order) and event sequence E′

also occurred, but we do not know how the events of E relate to those of E′. Näıvely, it
seems we can the solve the modified planning problem (S, {E,E′}) with the query:

constraint E after S and E’ after S;

This query allows only traces such that at some point S held and following this, the events
of E occurred in order and following S the events of E′ also occurred in order. The problem
is is that there is not guarantee that S must hold at the same time in each case. The first
term requires S holds at ti and following ti, E occurs. Then the second term requires that
S holds at tj and following tj , E′ occurs. We cannot be sure ti = tj . Figure 5.1 illustrates
such a situation. A trace of this kind would be permitted by the above query. In general,
when we know that the events of E and E′ and possibly others have happened, this is an
acceptable result. In the case where we know that the only events to have happened are
those of E and E′, we can prevent such a situation through the addition of the following
constraint:

condition between: E after happens(Event) after E’
or E’ after happens(Event) after E;

constraint not between;

CHAPTER 5. USING THE INSTITUTION QUERY LANGUAGE 65

The condition between is true if all the events of E occur, then (some time later) some
other event and then (some time later) those of E′. Similarly, for E′ occurring first. The
constraint excludes traces for which between is true – i.e. only those traces in which no
events occur in between E and E′. Should E and E′ overlap, between will not be true and
so such traces will be permitted.

5.1.2 Agent Reasoning

There are two distinct types of reasoning about institutions. The first is the verification
and exploration of institution properties by institution designers. After specifying an in-
stitution, queries can be used to ensure desired properties of the model and elicit emergent
properties that were perhaps not intended. This is the use of InstQL which has been
discussed up to this point. This is the primary use of InstQL.

The second case for reasoning about an institution is for an agent within that institution
as part of deciding on its actions. If we imagine a system in which an agent has perfect
information about the institution it belongs to, this can be provided by the InstAL spec-
ification of the institution. If the agent also has a system to sense the current institution
state, it could use InstQL queries over the institution specification as part of its reasoning
process.

Two types of goals are common for agents: achievement tasks and maintenance tasks
(Wooldridge, 2002). In an achievement task, the agent attempts to bring about some goal
stateG. If the agent is able to determine the current state C (or at least some approximation
of the current state when the environment is not accessible) then the possible ways in which
G can be brought about are the traces which are solutions to the planning problem (C,G).
This can be determined using InstQL as described above. The agent can then use this
information to aid selection of its next action.

For a maintenance task, there is some state B which the agent seeks to avoid. Again,
solving the planning problem (C,B) will tell the agent ways in which B might be brought
about. It can then attempt to avoid any action which is involved in those traces resulting in
B. Agents can also use prediction as outlined above to assess the consequences of possible
actions.

5.2 Modelling Linear Temporal Logic in InstQL

Linear Temporal Logic (LTL) (Pnueli, 1977) provides us with a formalism for reasoning
about paths of state transition systems. In LTL, we have a set AP of atomic propositions.
The syntax of LTL (L(F,U) in Emerson and Halpern, 1986) is defined as follows:

• p ∈ AP is a formula of LTL

• ¬f is a formula if f is a formula

CHAPTER 5. USING THE INSTITUTION QUERY LANGUAGE 66

• f ∨ g is a formula if f and g are formulae

• f ∧ g is a formula if f and g are formulae

• ♦f is a formula if f is a formula (“eventually f”)

• fUg is a formula if f and g are formulae (“f until g”)

We abbreviate ¬♦¬f by �f (“always f”).

Definition 5.1 A structure is a triple M = (S,X,L) where S is a non-empty set of states,
X a non-empty set of paths and L : S→ P(AP) a labelling function which assigns to each
state a set of propositions true in that state. A path is a non-empty sequence of states
x = s0s1s2 We denote by xk the suffix of path x starting with the kth state. That is
xk = sksk+1sk+2 . . . In addition, we use first(x) to denote the first state in path x.

The semantics of LTL are defined inductively by the relation |= (based on those of Emerson
and Halpern, 1986; Emerson, 1990; Sistla and Clarke, 1985; Heljanko and Niemel, 2003).
Let M = (S,X,L) be a structure and x ∈ X, then:

M,x |= p ∈ AP ⇐⇒ p ∈ L(first(x))
M,x |= ¬f ⇐⇒ M,x 6|= f
M, x |= f ∨ g ⇐⇒ M,x |= f or M,x |= g
M, x |= f ∧ g ⇐⇒ M,x |= f and M,x |= g
M, x |= ♦f ⇐⇒ ∃i ·M,xi |= f
M, x |= fUg ⇐⇒ ∃i ·M,xi |= g ∧ (∀j < i ·M,xj |= f)

5.2.1 Institutional LTL

To apply LTL to institutions, we take for our structureM, a multi-institution system. For
the atomic propositions we take AP = EM ∪ FM. We let S = ΣM, the set of all possible
institutional states. We take for X the set of all possible traces of the system. Traces
implicitly define a set of states since states are implied in the model by those fluents which
are true at a given time.

We define a function events : S → P(EM) such that events(s) denotes the set of events
which occur between ti and ti+1 (where s is the state of M at ti). Since s is itself the set
of fluents true at ti we have that L(s) = s ∪ events(s).
Let xk denote the suffix of x starting at the kth time instant of trace x. We let first(x)
denote the state implied at the first time instant of trace x.

We can then define InstLTL (institutional LTL) as the following restricted form of LTL:

• p ∈ AP is a literal

• ¬p is a literal if p ∈ AP

CHAPTER 5. USING THE INSTITUTION QUERY LANGUAGE 67

• ♦l is a formula if l is a literal (“eventually l”)

• fUe is a formula if f ∈ FM and e ∈ EM (“f until e”)

• ¬f is a formula if f is a formula

• f ∨ g is a formula if f and g are formulae

• f ∧ g is a formula if f and g are formulae

The restriction that ♦ and U can only be applied to literals rather than general formulae
arises from the fact the InstLTL is designed so as to be expressible in InstQL. Again, we
let �p = ¬♦¬p (“always p”).

The semantics of InstLTL are given as follows for some multi-institution system M:

M, x |= p ∈ AP ⇐⇒ p ∈ L(first(x))
M, x |= ¬p ⇐⇒ p /∈ L(first(x))
M, x |= ♦l ⇐⇒ ∃i · M, xi |= l
M, x |= fUe ⇐⇒ ∃i · M, xi |= e ∧ (∀j < i · M, xj |= f)
M, x |= f ∨ g ⇐⇒ M, x |= f orM, x |= g
M, x |= f ∧ g ⇐⇒ M, x |= f andM, x |= g
M, x |= ¬f ⇐⇒ M, x 6|= f

5.2.2 Expressing InstLTL in InstQL

nstLTL (the restricted form of LTL defined above) may be expressed in InstQL. This
section describes how various formulae of LTL may be expressed as conditions in InstQL.
To make a formula f effective (i.e. only compute traces for which f is true) we simply add
a constraint to the query that specifies the condition for f must hold. If we have defined f
by the condition f then this is done by “constraint f;”.

For formulae of the form “♦l” we define the conditions:

condition eventually(E) : happens(E); (5.3)
condition eventually(F) : holds(F); (5.4)

condition eventually not(E) : not happens(E); (5.5)
condition eventually not(F) : not holds(F); (5.6)

This is the reason InstLTL requires that in “♦p”, p is a literal rather than general for-
mula. These conditions only work for event/fluent literals. We also define the following
abbreviation for “¬♦p”:

condition never(P) : not eventually(P); (5.7)

Note the difference between not eventually(P) and eventually not(P) as discussed ear-
lier (p57). The following condition is defined for �p:

condition always(P) : not eventually not(P); (5.8)

CHAPTER 5. USING THE INSTITUTION QUERY LANGUAGE 68

Defining until (pUq) is a more complex. Näıvely, we could attempt to define “f until e” as
follows:

condition false before(F, E) : happens(E) after not holds(F);
condition until(F, E) : not false before(F, E);

This gives us almost what we need. However, translating this into ASP we see that the
condition is too strong:

false before(F, E) ← occurred(E, I), event(E), instant(I),
not holdsat(F, J), ifluent(F), instant(J), after(I, J).

until(F, E) ← not false before(F, E).

We can satisfy false before(f, e) if we can find time instants ti and tj such that tj < ti,
e happens at ti and at tj f is false. That is, f cannot be false before any occurrence of e.
The correct semantics of until are that f cannot be false before the first occurrence of e
(Heljanko and Niemel, 2003).

In order to achieve the correct semantics, we introduce a new fluent to the institution
happened(e) to indicate that event e ∈ EM has happened at any time in the past during
the current trace; this is defined as follows:

ifluent(happened(E)) ← event(E). (5.9)
holdsat(happened(E), I) ← occurred(E, I), event(E), instant(I). (5.10)
holdsat(happened(E), I) ← occurred(E, J), after(I, J),

event(E), instant(I), instant(J). (5.11)

This allows us to then specify fUe for a fluent f and event e as follows:

condition fb(F, E) : not holds(F) while not holds(happened(E));
condition until(F, E) : not fb(F, E) and eventually(E)

and eventually(F);
(5.12)

Recall that M, x |= fUe ⇔ ∃i · M, xi |= e ∧ (∀j < i · M, xj |= f). The condition for
until requires that at some time instant e happens (“eventually(e)”). (Note that we
also specify “eventually(F)” otherwise the variable F will be unrestricted which prevents
it from being grounded.) This satisfies the first half of the definition of the semantics of U .
Suppose then that e does occur and that it first occurs at ti. This means happened(E) will
hold from ti onwards. For fUe to be true we require that f must hold at all time instants
before ti. The condition fb is true if there exists a time instant tj before ti at which f does
not hold. For until(f, e) to be true, fb(f, e) must be false. This means that for all
tj < ti, f must be true as required.

Expressing compound formulae joined with the logical connectives ∨,∧,¬ is simple given
that we will have already specified conditions as defined above for sub-formulae. Then for

CHAPTER 5. USING THE INSTITUTION QUERY LANGUAGE 69

“h = ¬f”, “h = f ∧ g” and “h = f ∨ g” (respectively) we have:

condition h : not f; (5.13)
condition h : f and g; (5.14)
condition h : f or g; (5.15)

5.3 Implementing the Institution Query Language

Section 4.2 defines the translation of InstQL into ASP. In this section, we describe the
implementation of a prototype for a tool to automate this translation. This tool is able
to parse InstQL queries and generate the corresponding ASP. This provides the situation
shown in Figure 4.2; the generated query program can be combined with the institution
program (generated from the InstAL specification) to allow reasoning about the institution.

5.3.1 Requirements & Design

The intention for the prototype translator was to produce a system able to automate the
translation process for InstQL (described in 4.2, p48). This enables practical use of InstQL.
The prototype is intended as a ‘proof of concept’ for the automatic translation of InstQL
and not fully functional tool.

With this aim in mind, a simple requirements specification for the translator is outlined
below.

Requirements Specification

Q1 The translator must recognise InstQLδ queries as specified in Table 4.1.

Q1.1 In addition to the syntax defined in Table 4.1, the translator should also support
comments introduced by a “%” which should then extend to the end of the
current line.

Q2 The translator must generate ASP from InstQLδ queries.

Q2.1 The generated ASP must be in a format that will be accepted by Lparse/Smodels
(Syrjänen, n.d.).

Q2.2 The generated ASP must conform to the definition of the translation of InstQL
as given in Section 4.2 (p48).

Q2.2.1 The translator must provide generation of time instants so that literals
within the same while expression use the same time instant.

Q2.2.2 The translator must ensure that literals within different while expressions
use different time instants.

CHAPTER 5. USING THE INSTITUTION QUERY LANGUAGE 70

Figure 5.2: Architecture for the InstQL translator

Q3 The translator must provide a command line interface.

Q3.1 The interface must accept a file path to an InstQL query as an argument.

Q4 The translator must run on any system that supports InstAL.

Q5 The translator must be compatible with InstEdit .

Design

It was decided to implement the translator in two stages; the main stage is a parser that
will parse InstQL queries and generate ASP from it. The other stage is the front end – this
provides a command line utility that takes a filename as an argument and calls the parser
to generate ASP from the contents of this file. This architecture is illustrated in Figure
5.2. The front end satisfies requirement Q3 while the parser satisfies requirements Q1 and
Q2.

The parsing mechanism chosen was recursive descent. This top-down parsing algorithm
allows relatively simple creation of parsers. The language selected for the parser implemen-
tation was Perl, a scripting language with good string-handling facilities. In addition, the
InstAL tools are written in Perl and so this satisfies requirement Q4.

The Perl library module Parse::RecDescent supports the creation of recursive descent
parsers. It was decided to use Parse::RecDescent since this offers a number of advan-
tages. Parse::RecDescent generates recursive descent parsers from the grammars that
they recognise. InstQL was defined by such a suitable grammar (Table 4.1). The grammar
was designed to be right-recursive which allows recursive descent parsing. (Any recursive
references by a rule in the grammar are not the first token mentioned in that rule.) In
addition, Parse::RecDescent automatically splits its input into tokens. This means there
is no need to write a separate lexical analyser.

Since the translation of InstQL into ASP is defined recursively, using a recursive descent
parser means that as rules are recognised they can be translated into ASP ‘on the fly’
without need for first building a parse tree. Translating each kind of rule (as defined in
Section 4.2, p48) can be done as a semantic action once the rule has been recognised by the
parser. This approach greatly simplifies implementation of the parser but the drawback is
that without first building a parse tree, error-handling is difficult.

CHAPTER 5. USING THE INSTITUTION QUERY LANGUAGE 71

The use of Parse::RecDescent means that the traditional approach of writing a lexical
analyser to generate a token stream, a parser to organise the token stream into a parse tree
and a back-end to operate on the parse tree can be simplified to a single component. This
simplified approach is beneficial for this prototype of an InstQL translator.

5.3.2 Implementation & Testing

The InstQL translator was implemented in accordance with the design outlined above. The
source code for the parser is provided in Appendix C.2. As planned in the design section, the
parser generates ASP as it parses the query. This makes the parser implementation match
closely the translation process outlined in Section 4.2 (p48). The parser was implemented
as a Perl module using Parse::RecDescent.

The parser places no restrictions on condition names used. When a condition is defined,
there is no requirement that the name is unique. This allows an alternate form of disjunc-
tion. For example:

condition event fluent(X) : happens(X);
condition event fluent(X) : holds(X);

Translates into ASP as:

event fluent(X) ← occurred(X, I), event(X), instant(I).
event fluent(X) ← holdsat(X, I), ifluent(X), instant(I).

This is equivalent to specifying the condition as:

condition event fluent(X) : happens(X) or holds(X);

A module of utility functions for the parser was implemented. This provide management
of time instant and condition names in order to ensure that when a name is generated it
is unique. This is implemented through counters so that, for example, the time instants
generated are called I0, I1, I2 etc. In order to correctly generate ASP for after expressions,
the utilities module also maintains lists of time instants generated and how far apart these
should occur. At the end of an after expression, these lists are emptied and ASP generated
from them. For example, suppose the instants list contains (I0, I1, I2, I3) and the list of
how far apart these are is (2, 0, 4). The ASP generated in this case is:

after(I0, I1, 2), after(I1, I2), after(I2, I3, 4)

The front-end was implemented as a Perl script which takes a file path as a command-line
argument. This takes the contents of the file (which are expected to be an InstQL query)
and then strips any comments from the query. In accordance with requirement Q1.1, a
comment is any text following a “%” up to the end of that line. This is consistent with
the comment syntax used by InstAL. Handling this in the front-end makes use of Perl’s

CHAPTER 5. USING THE INSTITUTION QUERY LANGUAGE 72

string handling capabilities and makes the parser more readable by separating comments
from the actual language.

The front-end then calls the parser on the query (without comments). Each statement
of the query (condition declaration or constraint, terminated by a semi-colon) produces
an array of ASP rules. The parser returns an array of the results for all statements of
the query. The front-end ‘deciphers’ this output by printing the contents of the arrays to
standard output. This allows the translation of the query to be saved to file by redirecting
the standard output of the process. Alternatively, an external program calling the process
can use the output however it chooses.

Having implemented the translator, is was linked to InstEdit (see Section 3.3.5, p41). This
satisfies requirement Q5. InstEdit was modified so as to be able to call the front-end for the
translator as an external process. InstEditsaves the ASP output from the InstQL parser to
a file. This program and the base InstQL programs (e.g. definition of after) are combined
with the program generated from an institution. This ensures only traces satisfying the
query are returned by the answer set solver.

In order to test the translator, the five sample queries from Section 4.3 (p59) were given
as input to the translator. This provides a form of black-box testing to verify that the
translator works as expected. The results of this testing are given in Appendix B.3.

5.4 Summary

In this chapter we discussed practical aspects of InstQL, the query language introduced
in Chapter 4. These included how InstQL can be used for various kinds of reasoning.
Section 5.1.1 (p62) demonstrated the use of InstQL for the common reasoning patterns of
prediction, postdiction and planning.

Section 5.1.2 (p65) then discussed possible application of these reasoning methods by agents
within an institution. With an agent’s interpretation of the institution represented in
InstAL, the agent can use InstQL to solve planning problems to determine how to achieve
its goals. InstQL also could be used for the agent to predict the effects of its actions.

In Section 5.2 (p65) we introduced InstLTL a restricted form of linear temporal logic (LTL)
that can be represented in InstQL. The details of expressing InstLTL formulae in InstQL
were explained. A prototype of a translator to generate ASP from InstQL queries has been
produced. The development of this translator was then described (Section 5.3, p69).

Chapter 6

Conclusion

6.1 Project Summary

This project set out to enhance InstAL, an action language designed to model institutions.
We sought to do this in two ways: to provide a toolkit to assist institution designers using
InstAL and to design a query language. These were realised as InstEdit , the institution
editor, and InstQL, the institution query language.

Prior to this project, the process of using InstAL was as follows:

• Specify institution(s) in InstAL

• Translate institution(s) into an ASP institution program

• Write an ASP query program for the institution(s)

• Generate an ASP program to define the number of time instants over which to reason

• Combine the institution, query and time programs with some library base programs
(specifying properties of the model) and ground

• Compute the answer sets of the ground program

• Visualise the output (which is a two stage process if an output graph is desired)

The work of this project has simplified this complex process. InstEdit was described in
Chapter 3. This system provides the functionality of a text editor, augmented with syntax
highlighting for InstAL and InstQL. This supports the institution designer at the stage
of creating an institution in InstAL. InstEdit manages the process of reasoning about
institutions for the user.

Multiple InstAL specifications (including domain definition files) can be written in InstEdit .
An InstQL query (Chapter 4) for the system can be written, in the same editor. These

73

CHAPTER 6. CONCLUSION 74

can be grouped together and managed as a project. From InstEdit , a command is available
solve the project. This causes InstEdit to prompt for the number of time instants to use.

The time program is generated. The InstAL specifications and InstQL query are translated
into ASP and combined with the time and base programs. The ASP is grounded and solved.
This is all handled by the InstEdit . The output from these processes is displayed within
InstEdit to inform the user of the results of solving and allow then to identify any errors
in the institution(s).

The user can then launch InstViz from InstEdit to visualise the traces. Alternatively,
another command in InstEdit is available to generate a graph description from the answer
sets and call GraphViz to draw the graph.

Whereas previously queries for InstAL had to be specified in ASP, these can now be written
in InstQL. This domain specific query languages allows the user to reason about institutions
with greater ease. InstQL abstracts the user away from having to define time instants by
allowing for events and fluents to be temporally related using the keywords while and
after.

The translation of InstQL into ASP is defined (Section 4.2, p48). We considered how exist-
ing ASP queries for InstAL can be written in InstQL in Section 4.3 (p59) and demonstrated
that following the translation we get equivalent ASP. The translation of InstQL into ASP
was automated – the development of a tool to perform the translation is given in Section
5.3 (p69).

We introduced InstLTL (institutional linear temporal logic). This restricted form of linear
temporal logic (Pnueli, 1977) can be expressed in InstQL. The details of expressing InstLTL
in InstQL are provided in Section 5.2 (p65).

This project has enhanced InstAL as a tool for institutional modelling. There is now a
dedicated toolkit, InstEdit , which simplifies the process of reasoning about institutions
defined by InstAL. InstEdit supports this process from writing InstAL specifications up to
visualising traces of the institution. We now have a query language that allows us to reason
about properties of InstAL institutions. This language, InstQL, maintains the abstraction
above ASP which InstAL provides for institution specification. It is higer-level than ASP
and expressed in domain specific terms making writing queries easier.

6.2 Evaluation

The process of reasoning about institutions is now all controlled within one system. A
comparison of Figures 3.2 (p30) and 3.4 (p33) illustrates the simplification of this process
for the user that InstEdit provides. In addition, by providing project management and syn-
tax highlighting, InstEdit makes the process of creating institutions (and multi-institution
systems) easier for the institution designer.

InstEdit has been designed in such a way as to permit easy extension. It gives us a base

CHAPTER 6. CONCLUSION 75

platform from which we can develop further functionality to aid development of institutions
(see p 76). Should we wish to use a different answer set solver, this should be a simple
modification thanks to the architecture of InstEdit . This makes InstEdit a useful tool,
though there is scope for numerous extensions to its functionality.

InstQL provides specification of queries at a higher-level than those in ASP. Writing queries
in ASP, we typically talk about when an event or fluent occurs while InstQL abstracts away
from this. For example, in ASP we would write “holdsat(f, i)” (fluent f is true at time
i) while in InstQL we write “holds(f)” (f is true at some point). InstQL makes it easy
to express queries of the form “Does this combination of events and fluents ever happen?”.
For example, Cliffe et al. (2008) specify a query for the Dutch auction round institution
which means “Does a decision deadline ever occur whilst we have more than one bid?”.
The following InstQL query specifies this condition:

constraint happens(desdl) while holds(conflict);

This permits only traces in which the deadline occurs whilst we have multiple bids (and
are in a conflicted state). The semantics of InstQL are implicitly existential. The two
base predicates (happens and holds) mean there exists some time instant at which a
certain event occurs or a certain fluent holds. Universally quantified conditions are possible
indirectly through negation (much as in ASP itself (Eiter et al., 2003)).

The existential semantics of InstQL allow easy formulation of queries where we require
that a certain situation does (not) occur. In more complex situations, the inability to
define time instant variables is a limiting factor in the expressive power of the language.
This is what causes an unrestricted form of LTL to be expressible in InstQL. However, we
demonstrated (p62) that the class of queries that can be expressed in InstQL is sufficient
to solve prediction, postdiction and planning problems.

The experience gained in completing the project means that if it were to be repeated one
major change would be made. The initial survey of the state of InstAL revealed a number
of areas where there was scope for work to be done. This project addresses two such areas:
the tool support and the lack of a query language. The project was successful in addressing
both areas, though both have great scope for further improvement and development. If the
project were to be repeated now, we would focus on only one of these areas. This would
allow a more complete solution to be delivered in a specific area.

The motivation for working on both areas was to create solutions which left the areas in an
‘acceptable state’. InstEdit delivers a text editor that is able to aid and control the InstAL
reasoning process. This toolkit can serve as a base for future development to deliver a
more feature rich IDE. InstQL provides a query language which allow a certain (common)
class of query to be expressed easily. This can be extended to allow further queries to be
specified. These were both deemed high-priority areas were development could have a large
impact on the utility of InstAL. Following the work of this project, neither is an issue but
neither is solved.

CHAPTER 6. CONCLUSION 76

6.3 Future Work

Both InstEdit and InstQL provide a good platform for developing further the support for
institutional modelling. InstEdit in particular is designed to be an extensible tool. Further
features can be added to it to allow it to evolve into a richer development environment. For
example, features such as code completion and syntax error detection could be introduced.
We consider here two possible extensions of InstEdit which we believe would be of great
value.

An institution debugger could be added to InstEdit . This would allow designers to better
understand properties of institutions by stepping through traces. At each step, the debugger
could provide the following information:

• the current institution state

• the observable event, e, that brought about the transition

• the set, E, of events generated by e

• the set of fluents initiated by E

• the set of fluents terminated by E

This would allow an institution designer to ascertain why certain conditions were occuring.
Since this requires stepping through traces, it could be implemented as an alternative
visualisation method.

InstAL supports output in graph format. This provides a state transition graph describing
the institution. Nodes are labelled with fluents and edges with (observable) events. This
provides a description of the institution. This process could be reversed to specify the
institution by its state transition graph. A new tab type could be added to InstEdit to
support visual editing of a graph. Tools could be created to generate an InstAL specification
from this graph.

For InstQL, we discussed (p65) modelling a restricted form of LTL in InstQL. As mentioned
above, the current language definition prevents unrestricted LTL being expressed in InstQL.
The defnition could be expanded to provide a more powerful language allowing all of LTL
to be expressed. This could be extended to other temporal logics such as CTL* (Emerson
and Halpern, 1986).

The InstQL translator is a prototype only and provides poor error handling. Future devel-
opment of this tool is required to produce a more robust translator. We could investigate
the possibility of additional translators to map (subsets of) other related languages such as
(C+)++ (Sergot, 2004) or the Event Calculus into InstQL. This would make using InstAL
accessible to a greater part of the research community.

There is a considerable body of work in the literature on modelling institutions. However,
as noted by Aldewereld et al. (2006), there is no definitive practical method established.

CHAPTER 6. CONCLUSION 77

InstAL represents one such approach. Its treatment of multi-institution systems and basis
in ASP make it unique. This project has begun the process of developing the support for
InstAL required to make it an easy and practical tool for institutional modelling. Future
development can realise this goal.

Bibliography

Aldewereld, H., Dignum, F., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J. A. and
Sierra, C. (2006), Operationalisation of norms for usage in electronic institutions, in
‘AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems’, ACM, New York, NY, USA, pp. 223–225.

Baral, C. (2003), Knowledge Representation, Reasoning and Declarative Problem Solving,
Cambridge University Press.

Cliffe, O. (2007), Specifying and Analysing Institutions in Multi-Agent Systems using An-
swer Set Programming, PhD thesis, Dept. of Computer Science, University of Bath.

Cliffe, O., De Vos, M. and Padget, J. (2005), Specifying and analysing agent-based so-
cial institutions using answer set programming, in ‘Selected revised papers from the
workshops on Agents, Norms and Institutions for Regulated Multi-Agent Systems
(ANIREM) and Organizations and Organization-Oriented Programming (OOOP) at
AAMAS’05’, Springer-Verlag, Utrecht, The Netherlands.

Cliffe, O., De Vos, M. and Padget, J. (2006), Specifying and reasoning about multiple
institutions, in ‘Coordination, Organization, Institutions and Norms in Agent Systems
(COIN’06)’, Japan.

Cliffe, O., De Vos, M. and Padget, J. (2008), Embedding landmarks and scenes in a com-
putational model of institutions, in ‘Coordination, Organizations, Institutions, and
Norms in Agent Systems III’, Vol. 4870 of Lecture Notes in Computer Science, Springer
Berlin/Heidelberg, pp. 41–57.

De Vos, M. and Vermeir, D. (2004), Extending answer sets for logic programming agents,
in ‘Annals of Mathematics and Artificial Intelligence’, Vol. 42, Kluwer Academic Pub-
lishers, The Netherlands, pp. 103 – 139.

Eiter, T., Faber, W., Leone, N. and Pfeifer, G. (2003), ‘Computing preferred answer
sets by meta-interpretation in answer set programming’, Theory Pract. Log. Program.
3(4), 463–498.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G. and Scarcello, F. (1998), The KR system dlv:
Progress report, comparisons and benchmarks, in A. G. Cohn, L. Schubert and S. C.

78

BIBLIOGRAPHY 79

Shapiro, eds, ‘Proceedings Sixth International Conference on Principles of Knowledge
Representation and Reasoning (KR’98)’, Morgan Kaufmann Publishers, pp. 406–417.

Emerson, E. A. (1990), Temporal and modal logic, in J. van Leeuwen, ed., ‘Handbook of
Theoretical Computer Science’, Elsevier, pp. 995–1072.

Emerson, E. A. and Halpern, J. Y. (1986), “‘Sometimes” and “not never” revisited: on
branching versus linear time temporal logic’, Journal of the ACM 33(1), 151–178.

Fornara, N. and Colombetti, M. (2008), Specifying and enforcing norms in artificial intelli-
gence (short paper), in ‘Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008)’, International Foundation for Autonomous Agents and Mul-
tiagent Systems, pp. 1481–1484.

Garcia-Camino, A., Noriega, P. and Rodriguez-Aguilar, J. A. (2005), Implementing norms
in electronic institutions, in ‘AAMAS ’05: Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems’, ACM, New York,
NY, USA, pp. 667–673.

Gaudou, B., Longin, D., Lorini, E. and Tummolini, L. (2008), Anchoring institutions in
agents’ attitudes: towards a logical framework for autonomous multi-agent systems,
in ‘AAMAS ’08: Proceedings of the 7th international joint conference on Autonomous
agents and multiagent systems’, International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, pp. 728–735.

Gebser, M., Schaub, T. and Thiele, S. (2007), GrinGo: A new grounder for answer set pro-
gramming, in ‘Proceedings of the 9th International Conference on Logic Programming
and Nonmonotonic Reasoning’, Lecture Notes in Computer Science, Springer-Verlag,
Tempe, AZ, USA, pp. 266–271.

Gelfond, M. and Lifschitz, V. (1988), The stable model semantics for logic programming,
in ‘Logic Programming: Proceedings of the Fifth International Conference and Sym-
posium’, MIT Press, pp. 1070–1080.

Gelfond, M. and Lifschitz, V. (1998), ‘Action languages’, Electronic Transactions on AI
2, 193–210.

Georgeff, M., Pell, B., Pollack, M., Tambe, M. and Wooldridge, M. (1999), The belief-
desire-intention model of agency, in J. Müller, M. P. Singh and A. S. Rao, eds, ‘Pro-
ceedings of the 5th International Workshop on Intelligent Agents V : Agent Theories,
Architectures, and Languages (ATAL-98)’, Vol. 1555, Springer-Verlag: Heidelberg,
Germany, pp. 1–10.

Giunchiglia, E., Lee, J., Lifschitz, V. and Turner, H. (2001), Causal laws and multi-valued
fluents, in ‘Proceedings of Workshop on Nonmonotonic Reasoning, Action and Change
(NRAC)’.

BIBLIOGRAPHY 80

Gressmann, J., Janhunen, T., Mercer, R., Schaub, T., Thiele, S. and Tichy, R. (2005),
Platypus: A platform for distributed answer set solving, in C. Baral, G. Greco,
N. Leone and G. Terracina, eds, ‘Proceedings of the 8th International Conference
on Logic Programming and Nonmonotonic Reasoning’, Lecture Notes in Computer
Science, Springer-Verlag, Diamante, Italy, pp. 227–239.

Heljanko, K. and Niemel, I. (2003), Bounded LTL model checking with stable models, in
‘Proceedings of the 6th International Conference on Logic Programming and Non-
monotonic Reasoning’, Springer-Verlag, pp. 200–212.

Hodges, W. (2001), Logic, 2nd edn, Penguin Books.

Jo, C.-H., Chen, G. and Choi, J. (2004), A new approach to the BDI agent-based modeling,
in ‘SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing’, ACM,
New York, NY, USA, pp. 1541–1545.

Kowalski, R. and Sergot, M. (1986), A logic-based calculus of events, in ‘New Generation
Computing’, Vol. 4, Ohmsha, Ltd., pp. 67–95.

Lifschitz, V. and Turner, H. (1999), Representing transition systems by logic program-
ming, in ‘Proceedings of the Fifth International Conference on Logic Programming
and Nonmonotonic Reasoning’, pp. 92 – 106.

McCarthy, J. and Hayes, P. (1969), Some philosophical problems from the standpoint
of artificial intelligence, in B. Meltzer and D. Michie, eds, ‘Machine Intelligence 4’,
Edinburgh University Press, pp. 463–502.

Moore, R. C. (1985), A formal theory of knowledge and action, in J. R. Hobbs and R. C.
Moore, eds, ‘Formal Theories of the Commonsense World’, Greenwood Publishing
Group Inc., Westport, CT, USA.

Mueller, E. (2006), Commonsense Reasoning, Morgan Kaufmann, San Francisco, CA.

Niemelä, I. and Simons, P. (1997), Smodels - an implementation of the stable model and
well-founded semantics for normal lp, in ‘LPNMR ’97: Proceedings of the 4th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning’, Springer-
Verlag, London, UK, pp. 421–430.

Nieuwenborgh, D. V., Vos, M. D., Heymans, S. and Vermeir, D. (2007), Hierarchical de-
cision making in multi-agent systems using answer set programming, in ‘Computa-
tional Logic in Multi-Agent Systems’, Vol. 4372 of Lecture Notes in Computer Science,
Springer Berlin/Heidelberg, pp. 20–40.

Noriega, P. (1997), Agent mediated auctions: The Fishmarket Metaphor, PhD thesis,
Universitat Autónoma de Barcelona.

Nwana, H. S. (1996), Software agents: An overview, in ‘Knowledge Engineering Review’,
Vol. 11, Cambridge University Press, pp. 1 –40.

BIBLIOGRAPHY 81

Pnueli, A. (1977), The Temporal Logic of Programs, in ‘19th Annual Symp. on Foundations
of Computer Science’.

Sergot, M. (2004), (C+)++: An action language for modelling norms and institutions,
Technical Report 8, Department of Computing, Imperial College, London.

Shehory, O. and Kraus, S. (1998), ‘Methods for task allocation via agent coalition forma-
tion’, Artif. Intell. 101(1-2), 165–200.

Shoham, Y. and Tennenholtz, M. (1995), ‘On social laws for artificial agent societies: off-
line design’, Artif. Intell. 73(1-2), 231–252.

Sichman, J. S., Conte, R., Demazeau, Y. and Castelfranchi, C. (1994), A social reasoning
mechanism based on dependence networks, in ‘Proc. 12th European Conference on
Artificial Intelligence (ECAI’94)’, Amsterdam, The Netherlands.

Sistla, A. P. and Clarke, E. M. (1985), ‘The complexity of propistional linear temporal
logics’, Journal of the ACM 32(3), 733–749.

Sommerville, I. (2004), Software Engineering, 7th edn, Addison-Wesley.

Syrjänen, T. (n.d.), ‘Lparse 1.0 user’s manual’, Online [Accessed 14 April 2009]. Available
from: http://www.tcs.hut.fi/Software/smodels/.

Tadjouddine, E., Guerin, F. and Vasconcelos, W. (2008), Abstractions for model-checking
game-theoretic properties in auctions, in ‘Proceedings of AAMAS 2008’, Estoril, Por-
tugal.

Viganò, F. and Colombetti, M. (2007), Symbolic model checking of institutions, in ‘ICEC
’07: Proceedings of the ninth international conference on Electronic commerce’, ACM,
New York, NY, USA, pp. 35–44.

Wooldridge, M. (1992), The Logical Modelling of Computational Multi-Agent Systems,
PhD thesis, University of Manchester.

Wooldridge, M. (1998), Verifiable semantics for agent communication languages, in ‘Pro-
ceedings of the Third International Conference on Multi-Agent Systems (ICMAS-98)’,
IEEE Computer Society Press, pp. 349–356.

Wooldridge, M. (2002), An Introduction to MultiAgent Systems, Wiley, England.

Wooldridge, M. and Jennings, N. (1995), Agent theories, architectures, and languages: a
survey, in ‘ECAI-94: Proceedings of the workshop on agent theories, architectures,
and languages on Intelligent agents’, Springer-Verlag, pp. 1–39.

Appendix A

InstAL

This appendix presents work done by Cliffe et al.. Their work on institutions has produced
the action language InstAL and a formal model of multi-institutions which provides the
semantics for InstAL. This work is fundamental to this project and so we summarise it
here. This appendix is based on Cliffe (2007) and Cliffe et al. (2005; 2006; 2008).

A.1 Institution Model

This section presents a summary of the institutional model developed by Cliffe et al. (2006)
(see also Cliffe, 2007). This model is for not only of individual institutions, but also multi-
institution systems where we have multiple, interacting institutions.

A.1.1 Model Definition/Syntax

Definition A.1 A multi-institution system is a tuple M = 〈I1, . . . , In〉 where each Ii is
an institution.

Definition A.2 An institution is a tuple Ii = 〈Ei,Fi, Ci,Gi,∆i〉 where Ei is a set of events,
Fi is a set of fluents, Ci a function defining causal rules (or consequences), Gi an event-
generation function and ∆i is the initial state of the institution.

The set of events Ei is a set of symbols representing those events that can occur in the
institution. It is split into two disjoint subsets, the exogenous or observable events E i

obs and
the institutional events E i

inst. Exogenous events are externally obeservable events such as
communication acts between agents. Institutional events are those created by the semantics
of the institution.

The institutional events are further broken down into two (disjoint) subsets, institutional
actions E i

instact and violation events E i
viol. The violation events are defined so that (at a

82

APPENDIX A. INSTAL 83

Figure A.1: Relationship between event types in the institutional model. If E′ appears
below E in the tree then E′ ⊆ E.

minimum) there is a violation event for each institutional action and each exogenous event:

∀e ∈ E i
obs ∪ E i

instact · viol(e) ∈ E i
viol

Note that additional violation events can be defined as the institution being modelled
requires. The events of multi-institution system are given by:

EM =
n⋃

i=1

Ei (A.1)

The sets EMinst, EMobs, EMviol and EMinstact are defined similarly. We define a subset of the
exogenous events of the multi-institution system as the envioronment states – these are
those events which have a concrete effect on the envioronment ofM. That is EMenv ⊆ EMobs.

A set of institutional creation events are identified E i
+ ⊆ E i

obs. A set of dissolution events
are defined E i× ⊆ E i

instact. The relationship between the sets of events of an institution is
shown in figure A.1.

The set of fluents is broken into domain fluents Di (institution specific fluents) and nor-
mative fluents. The normative fluents are broken down into the following disjoint subsets:

• Wi a set of institutional power fluents of the form pow(j, e) · 1 ≤ j ≤ n, e ∈ Einstact

• Pi a set of permissions of the form perm(e) · e ∈ E i
instact ∪ E i

obs denoting that event e
is permitted. An event e′ is forbidden if perm(e′) /∈ P
• Oi a set of obligations of the form obl(e, d, v) where e, d ∈ Ei and v ∈ E i

inst indicating
an obligation to perform event e before the occurrence of event d or be sanctioned
with violation v (note that v does not have to be a violation event of E i

viol but any
institutional event indicating a failure to satisfy the obligation).

• Si a set of initiating powers of the form inipow(j, f) · 1 ≤ j ≤ n, f ∈ Di indicating
that institution j is able to initiate fluent f in institution i

APPENDIX A. INSTAL 84

• Ti a set of terminating powers of the form termpow(j, f) ·1 ≤ j ≤ n, f ∈ Di indicating
that institution j is able to terminate fluent f in institution i

In addition, for each institution the special fluent live is defined as a member of Fi. This
fluent is unique in that it is independent of institution semantics and indicates that the
institution exists. Any creation event in E i

+ initiates live and any dissolution event in E i×
terminates it (see (A.3) for the definition of initiated and terminated fluents).

The set of fluents for a multi-institution system is defined as:

FM =
n⋃

i=1

Fi (A.2)

The state of an institution is defined by those fluents which are true, i.e. state s ⊆ Fi.
The state of a multi-institution system is a sequence of such states (s1, . . . , sn). Note that
Sergot (2004) uses the state of a (C+)++ description to imply which fluents are true at that
time; Cliffe et al. do the opposite and imply the state through the fluents.

State formulae are used to describe collections of states and are defined as follows:

Definition A.3 The set of all state formulae for institution i, is denoted Xi. Xi = P(Fi∪
¬Fi) where ¬Fi is this set of all the fluents of i negated.

The set of all possible states for an institution is Σi = P(Fi). ForM the set of all possible
states is given by ΣM = Σ1 × · · · × Σn.

The consequence function Ci is defined as follows:

Ci : Xi × Ei → P(FM)× P(FM) (A.3)

The first set of fluents are those initiated by the causal rule and the second set those
terminated by the rule. For stateX and event e, the fluents initiated are denoted as C↑i (X, e)
and those terminated are denoted by C↓i (X, e). Consequences are able to affect fluents in
other institutions (provided the initiating institution has the power to initiate/terminate
those fluents in the target institution).

The event-generation function, Gi, is defined:

Gi : Xi × Ei → P(EMinst) (A.4)

This generation of events corresponds to a “counts as” relation between events (e.g. as in
(C+)++).

For a multi-institution, the set of state formulae is given by XM = P(FM ∪ ¬FM). Event
generation within a multi-institution relates events in different institutions. That is:

GM : XM × (EMinst ∪ EMenv)→ P(EMobs) (A.5)

APPENDIX A. INSTAL 85

This differs from the single institution generation rule in that for an observable event to
generate others, it must have been identified as an environment event. In addition, it is
observable events that are generated within the multi-institution while institutional events
are generated within a single institution. The model requires that only a single observable
event may occur at any time. This is implicitly enforced by generation in single institutions.
Within a multi-institution, it is necessary to enforce this property. This is done by defining
the function PRM : P(EM)→ P(EM) that describes when an event may generate another.
That is, {e′} ∈ PRM(e) if and only if it is possible for e to generate e′.

Definition A.4 For a multi-institution specification,M, the function PRM is defined as:

PRM(E) = { e′ ∈ EM | ∃φ ∈ XM ∃e ∈ E · e′ ∈ GM(φ, e) ∨
∃Ii ∈M ∃e ∈ E ∃φ ∈ Xi · e′ ∈ Gi(φ, e) ∨
∃Ii ∈M ∃e ∈ E ∃e′′ ∈ Ei · obl(e′′, e, e′) ∈ Fi }

That is, the events that could be generated by e are those generated by e within the multi-
institution, those generated within one of the component institutions or arise as a sanction
through not executing e. Denoting by ({e}, PRM)∗ the transitive closure of {e} over PRM
we can then define a constraint on the generation rules of a multi-institution.

Definition A.5 GM is valid with respect to a multi-institution specificationM if and only
if:

∀Ii ∈M ∀{e, e′} ⊆ E i
obs · e′ /∈ ({e}, PRM)∗

A.1.2 Model Semantics

Given a state Sk ∈ Σk and an expression φ ∈ Xk, the satisfaction relation for institution k
is defined as follows:

Sk |= φ⇐

φ = ∅
φ = {p} ∧ p ∈ Si

φ = {¬p} ∧ p /∈ Si

∀p ∈ φ · Sk |= {p}
(A.6)

Given a state SM ∈ ΣM (and where the institution Ik has state Sk), the satisfaction
relation between SM and an expression φ ∈ XM is defined as follows:

SM |= φ⇐

φ = ∅
φ = {p} ∧ ∃Ik ∈M · p ∈ Fi ∧ p ∈ Si

φ = {¬p} ∧ ∃Ik ∈M · p ∈ Fi ∧ p /∈ Si

∀p ∈ φ · SM |= {p}
(A.7)

APPENDIX A. INSTAL 86

Event Generation

Event generation within the institution Ik is given by the functionGR : Σk×P(Ek)→ P(Ek).
This is defined as follows for state S ∈ Σk and events E ⊆ Ek:
GR(S,E) = {e ∈ Ek |

e ∈ E ∨
∃e′ ∈ E, φ ∈ Xk, e ∈ Gk(φ, e′) · e ∈ Ek

instact ∧ S |= pow(e) ∧ S |= φ ∨
∃e′ ∈ E, φ ∈ Xk, e ∈ Gk(φ, e′) · e ∈ Ek

viol ∧ S |= φ ∨
∃e′ ∈ E · e = viol(e′) ∧ S |= ¬perm(e′) ∧ e′ /∈ (Ek

+ ∪ Ek×) ∨
∃e′ ∈ Ek, d ∈ E · S |= obl(e′, d, e) }

(A.8)

There are five cases for events generated by E given in the definition of GR(S,E): events
in E are preserved, empowered generation of institutional actions specified by Gk for the
current state, generation of violations for the current state that are specified in Gk (note that
it is not required these are empowered), violations arising from performing non-permitted
events and sanctions from obligations whose deadline was in E.

Since GR(S,E) preserves events in E, it is monotonic when applied to itself. At each step
of the model, a single observable event is performed which generates some set of events.
The set of all events generated by an observable event eobs ∈ Ek

obs is given by GRω(S, {eobs})
– a fixed-point of GR(S, {eobs}). Such a fixed-point can be reached since GR is monotonic
when applied to itself. Let GRn(S,E) be the function defined recursively as:

GRn(S,E) =
{
GR(S,E) ⇔ n = 1
GRn−1(S,E) ⇔ n ≥ 2

(A.9)

This allows us to give an explicit definition of GRω(S,E).

Definition A.6 GRω(S,E) = E′ such that GR(S,E′) = E′ and there exists n ≥ 1 such
that GRn(S,E) = E′.

The function GR provides the means to obtain the set of events generated by another
such set (in a given state). Fixed-points of the form GRω allow the complete set of events
generated by a given set of events in a given state to be determined (specifically, this
can be used to give the set of all events generated from a particular observable event).
However, these two constructs alone are not sufficient to specify the generation of events
within an institution. They allow (in the current state) for events to be generated before
a creation event occurs, i.e. before the institution actually exists. The event occurrence
function OC : Σk × Ek

obs → P(Ek) is used to obtain the complete set of events generated by
an observable event as follows:

OC(S, eobs) =

∅ ⇐ S |= ¬live ∧ eobs /∈ Ek

+

GRω(S, {eobs}) ⇐ S |= ¬live ∧ eobs ∈ Ek
+

GRω(S, {eobs}) ⇐ S |= live
(A.10)

APPENDIX A. INSTAL 87

In a multi-institution, event generation is given by GM : ΣM × P(EM)→ P(EM):

GM(S,E) = {e ∈ EM | e ∈ E ∨
∃e′ ∈ E, φ ∈ XM · e ∈ GM(φ, e′) ∧ S |= φ ∨
∃Ik ∈M, Sk ∈ S, e′ ∈ Ek

obs · e ∈ OC(Sk, e
′) }

(A.11)

As with GR, since GM preserves events in E we can obtain a fixed-point GMω(S,E).
Event occurrence in a mutli-institution is given by OM : ΣM × EMenv → P(EM):

OM(S, e) = GMω(S, {e}) (A.12)

Event Effects

Initiation of fluents is provided by the function INITI : Σk × Ek
obs → P(Fk).

INITI(S, e) = {p ∈ Fk | ∃e′ ∈ OC(S, e), φ ∈ Xk · p ∈ C↑k(φ, e′) ∧ S |= φ} (A.13)

Just as with the function GR, the case in which an institution is inactive (i.e. has not been
created or has been dissolved) needs to be considered. This is achieved by the function
INIT : Σk × Ek

obs → P(Fk):

INIT (S, e) = {p ∈ Fk |
p ∈ INITI(S, e) ∧ S |= live ∧ ∀e′ ∈ OC(S, e) · e′ /∈ Ek× ∨
(p ∈ INITI(S, e) ∪∆k ∪ {live} ∧ e ∈ Ek

+ ∧ S 6|= live∧
∀e′ ∈ OC(S, e) · e′ /∈ Ek×) }

(A.14)

The first case of INIT gives us that for an active institution fluents are initiated in accor-
dance with the consequence function (provided no event generated by e causes dissolution).
The second case provides initiation of the following fluents:

1. Those specified by the consequence function for e (i.e. those in INITI(S, e)).

2. Those true in the initial state, ∆k.

3. The special live fluent.

This case occurs when the institution is inactive, e is a creation event and no event generated
by e will cause dissolution. Termination of fluents is provided by TERM : Σk×Ek

obs → Fk:

TERM(S, e) = {p ∈ S | ∃e′ ∈ OC(S, e), φ ∈ Xk · p ∈ C↓k(φ, e′) ∧ S |= φ ∨
∃e′, d ∈ Ek · p = obl(e′, d, v) ∧ e′ ∈ OC(S, e) ∨
∃e′, d ∈ Ek · p = obl(e′, d, v) ∧ d ∈ OC(S, e) ∨
∃e′ ∈ OC(S, e) · e′ ∈ Ek× }

(A.15)

The first case deals with termination of fluents as defined by the consequence function Ck.
The second case terminates obligations that have been fulfilled. The third case deals with

APPENDIX A. INSTAL 88

obligations that have been violated (i.e. the deadline has expired). The final case terminates
all fluents in the event of dissolution (note that this includes live if the institution is active).
For termination, it is not necessary to address the case of the institution being inactive
explicitly. If the institution is inactive, then by the definition of INIT , no fluents may be
initiated. Therefore S is empty and so there is nothing to terminate. Note, however, that
the definition of TERM copes with this case since the fluents terminated are those of S
which meet some conditions. When S is empty, nothing can be terminated.

A.2 InstAL

This description of the InstAL language is an overview of that given by Cliffe (2007) who
introduced the language and (Cliffe et al., 2006) which presents a summary. Together these
sources represent the most complete specification of InstAL.

An InstAL specification begins with the declaration of the name of the institution being
modelled:

institution inst_name;

InstAL’s type system is fairy simple – it allows for types to be declared (named) but the
domains of the types do not form part of the specification. Types are declared as follows:

type Agent;

We can then declare in external files the domains of these types such as:

Agent: a1 a2 a3...

In addition to any user defined types, InstAL defines three standard types:

Fluent: The set of all grounded fluent literals that appear in the specification.

Event: The set of all event literals that appear in the specification.

Inst: The set of all unique institution names in a multi-institution specification. In the
case where a single institution is being modelled, then this is a singleton set.

Domain fluents (Di in the model) are declared with the types of any parameters as follows:

fluent fname1(Type1, Type2, ...);
fluent fname2;

APPENDIX A. INSTAL 89

In addition, institutional power, permission and obligation are modelled by the following
implicitly defined fluents:

pow(Event);
perm(Event);
obl(Event, Event, Event);

InstAL allows the definition of static properties which are (semantically) fluents declared
when an institution is specified that cannot be changed by the rules of the institution.
For example, to define a static property corresponding to a relationship between agents
(assuming definition of the agent type):

static father(Agent, Agent);
father(agent1, agent2).

Static properties are used to affect the way the specification is grounded. They cannot be
used in the head of causal rules (see below).

Events are declared as an event type from the following list followed by the event keyword
and then a unique event name (a lowercase identifier) and the types of parameters (if any)
as with fluents. The event types (and how they correspond to the formal model) are:

create: Creation events in E+
exogenous: Observable/exogenous events in Eobs

inst: Institutional events in Einst

violation: Violation events in Eviol

dest: Dissolution events in E×

A fluent literal or an event literal is a fluent or an event with all arguments replaced by
literals from the domains of the argument types. For example if we have the type Agent
then for the following fluent and event:

fluent buyer(Agent);
exogenous event sell(Agent, Agent);

Then (for literals a1 and a2 of type Agent) the following are a fluent and an event literal
respectively:

buyer(a1);
sellto(a2, a1);

APPENDIX A. INSTAL 90

Fluent expressions may be used to qualify the applicability of rules. These are a comma-
separated list of fluent literals (representing a conjunction) such as:

f1, not f2(a), f3(b,c)

The set of all possible fluent expressions in a specification corresponds to the state of states
of the model (Xi). Static expressions do not reference fluent literals.

Variables in InstAL are denoted by capitalised strings or “ ” the special unbound variable.
The static expressions A=B and A!=B can be used to require equality or inequality of variables
(respectively) in a rule.

The initial state of an institution (∆i) is determined by initial rules of the form:

iniitially f1, f2(A), f3(A,B), ... if A!=B, ... ;

An initial rules is defined as the keyword initially followed by one ore more fluents (in
a comma-separated list) followed (optionally) by the if keyword and a condition of one or
more static expressions.

Causal rules correspond to the consequence function Ci of the formal model. These are a
single event (the trigger event) followed by an operator (initiates or terminates) followed
by one or more fluents that are initiated/terminated by the rule followed by (optionally)
the if keyword then one or more fluent/static expressions that identify a condition on the
rule being triggered. For example:

sell(A, O) terminates owns(A, O) if pow(sell(A, O));
buy(B, O) initiates owns(B, O);

A generation rule consists of a trigger event, the generates keyword, one or more events
and optionally a condition of one or more fluent/static expressions. For example:

sellto(A, B) generates transaction(A, B) if A != B;

Multi-Institution Specifications

The specification of a multi-institution system begins with the name of the system:

multi mname;

Then envioronment events are defined (the set EMenv in the model). These are as with
other event definitions but using the env event type. The types used as parameters of
environment events are taken from the individual institutions in the system.

The last part of the system specification is generation of events which occur accross insti-
tutions – i.e. for when events in one institution trigger events in one or more others. The

APPENDIX A. INSTAL 91

syntax of this is exactly the same as for generation rules in a single institution, the events
involved are simply drawn from all of the institutions in the system.

A single InstAL specification describes either one institution or one multi-institution sys-
tem. As previously mentioned, we also have a domain definition identifying constants of
each type in the institution(s).

Appendix B

Testing Plans

B.1 Release Testing

In this section, we present the results of realease testing. This was a black-box testing
process. After each increment was implemented, the tests for all earlier increments were
repeated as regression tests. These are not shown in the testing plan unless there was
a change to the testing procedure. No black-box testing was performed for InstEdit 0.4
(see Section B.2 for white-box testing performed instead). We need not test every error
condition since we are not testing the external tools here, only that InstEdit can call them
correctly.

92

APPENDIX B. TESTING PLANS 93

R
el

ea
se

T
es

t
R

eq
.

D
es

cr
ip

ti
on

E
x
p
ec

te
d

R
es

u
lt

A
ct

u
al

R
es

u
lt

P
as

s?
0.

1
1

F
1.

1,
F
1.

3
E

di
t

a
fil

e
in

In
st

E
di

t,
sa

ve
it

an
d

op
en

in
a

te
xt

ed
it

or
C

ha
ng

es
vi

si
bl

e
C

ha
ng

es
vi

si
bl

e
Y

es

0.
1

2
F
1.

2
O

pe
n

a
fil

e
C

on
te

nt
s

di
sp

la
ye

d
C

on
te

nt
s

di
sp

la
ye

d
Y

es
0.

2
3

F
3.

1
T
ra

ns
la

te
va

lid
in

st
it

ut
io

n
A

SP
sh

ow
n

A
SP

sh
ow

n
Y

es
0.

2
4

F
3.

1
T
ra

ns
la

te
in

va
lid

in
st

it
ut

io
n

E
rr

or
m

es
sa

ge
fr

om
g
e
n
a
s
p

sh
ow

n
E

rr
or

sh
ow

n
Y

es

0.
2

5
F
3.

1
R

eq
ue

st
tr

an
sl

at
e

fo
r

in
va

lid
fil

e
pa

th
E

rr
or

m
es

sa
ge

sh
ow

n
E

rr
or

sh
ow

n
Y

es

0.
3

6
F
3.

2
G

en
er

at
e

“a
bc

”
ti

m
e

in
st

an
ts

E
rr

or
m

es
sa

ge
sh

ow
n

N
ot

hi
ng

ha
pp

en
s

N
o

0.
3

7
F
3.

2
G

en
er

at
e

5
ti

m
e

in
st

an
ts

5
in

st
an

ts
ge

ne
r-

at
ed

5
in

st
an

ts
ge

ne
r-

at
ed

Y
es

0.
3

8
F
3.

1,
F
3.

2,
F
3.

3,
F
3.

4
So

lv
e

a
pr

oj
ec

t
w

it
h

no
in

st
i-

tu
ti

on
s

E
rr

or
m

es
sa

ge
E

rr
or

m
es

sa
ge

Y
es

0.
3

9
F
3.

1,
F
3.

2,
F
3.

3,
F
3.

4
So

lv
e

a
pr

oj
ec

t
w

it
h

1
in

st
it

u-
ti

on
bu

t
w

it
ho

ut
ou

tp
ut

lo
ca

-
ti

on
sp

ec
ifi

ed

E
rr

or
m

es
sa

ge
O

ut
pu

t
w

ri
tt

en
to

w
or

ki
ng

di
re

ct
or

y
N

o

0.
3

10
F
3.

1,
F
3.

2,
F
3.

3,
F
3.

4
So

lv
e

a
pr

oj
ec

t
w

it
h

on
e

in
st

i-
tu

ti
on

T
ra

ns
la

ti
on

su
c-

ce
ss

fu
l

T
ra

ns
la

ti
on

su
c-

ce
ss

fu
l

Y
es

0.
3

11
F
3.

1,
F
3.

2,
F
3.

3,
F
3.

4
So

lv
e

a
pr

oj
ec

t
w

it
h

2
in

st
it

u-
ti

on
s

T
ra

ns
la

ti
on

su
c-

ce
ss

fu
l

T
ra

ns
la

ti
on

su
c-

ce
ss

fu
l

Y
es

0.
3

12
F
3.

1,
F
3.

2,
F
3.

3,
F
3.

4
So

lv
e

a
pr

oj
ec

t
w

it
h

2
in

st
it

u-
ti

on
s

an
d

a
do

m
ai

n
de

fin
it

io
n

T
ra

ns
la

ti
on

su
c-

ce
ss

fu
l

T
ra

ns
la

ti
on

su
c-

ce
ss

fu
l

Y
es

0.
3

13
F
3.

1,
F
3.

2,
F
3.

3,
F
3.

4
So

lv
e

a
pr

oj
ec

t
w

it
h

2
in

st
i-

tu
ti

on
s,

do
m

ai
n

de
fin

it
io

n
an

d
m

ul
ti

-i
ns

ti
tu

ti
on

T
ra

ns
la

ti
on

su
c-

ce
ss

fu
l

T
ra

ns
la

ti
on

su
c-

ce
ss

fu
l

Y
es

T
ab

le
B

.1
:

R
el

ea
se

te
st

in
g.

APPENDIX B. TESTING PLANS 94

R
el

ea
se

T
es

t
R

eq
.

D
es

cr
ip

ti
on

E
x
p
ec

te
d

R
es

u
lt

A
ct

u
al

R
es

u
lt

P
as

s?
0.

5
14

F
3.

7
So

lv
e

a
pr

oj
ec

t
w

it
h

a
qu

er
y

T
ra

ns
la

ti
on

su
c-

ce
ss

fu
l

an
d

tr
ac

es
re

fle
ct

qu
er

y

T
ra

ns
la

ti
on

su
c-

ce
ss

fu
l

an
d

tr
ac

es
re

fle
ct

qu
er

y

Y
es

0.
5

15
F
3.

6
L
au

nc
h

In
st

V
iz

on
an

sw
er

se
ts

In
st

V
iz

op
en

s
In

st
V

iz
op

en
s

Y
es

0.
5

16
F
3.

6
L
au

nc
h

In
st

V
iz

be
fo

re
co

m
-

pu
ti

ng
an

sw
er

se
ts

E
rr

or
m

es
sa

ge
N

ot
po

ss
ib

le
:

m
us

t
se

le
ct

an
sw

er
se

ts
to

vi
su

al
is

e

Y
es

0.
5

17
F
3.

5
G

en
er

at
e

gr
ap

h
fr

om
an

sw
er

se
ts

P
os

tS
cr

ip
t

gr
ap

h
pr

od
uc

ed
P
os

tS
cr

ip
t

gr
ap

h
pr

od
uc

ed
Y

es

0.
5

18
F
3.

5
G

en
er

at
e

gr
ap

h
be

fo
re

co
m

-
pu

ti
ng

an
sw

er
se

ts
E

rr
or

m
es

sa
ge

N
ot

po
ss

ib
le

:
m

us
t

se
le

ct
an

sw
er

se
ts

to
vi

su
al

is
e

Y
es

T
ab

le
B

.2
:

R
el

ea
se

te
st

in
g

(c
on

ti
nu

ed
).

APPENDIX B. TESTING PLANS 95

B.2 Component Testing

Due to the complexity of syntax highlighting, it was decided to perform white-box compo-
nent testing on this part of the system. Examining the code revealed the following cases:

1. Keyword at line start. A line begins with the keyword “institution”; there is text
after keyword.

• Expected result: Keyword highlighted.

• Actual result: Keyword highlighted.

• Pass/fail: Pass.

2. Keyword in middle of line. A line contains the keyword “event”; there is text either
side of the keyword.

• Expected result: Keyword highlighted.

• Actual result: Keyword highlighted.

• Pass/fail: Pass.

3. Keyword at line end. A line ends with the keyword “institution”; there is text before
keyword.

• Expected result: Keyword highlighted.

• Actual result: Keyword highlighted.

• Pass/fail: Pass.

4. Comment at line start. A line starts with “%”.

• Expected result: Whole line highlighted as comment.

• Actual result: Whole line highlighted as comment.

• Pass/fail: Pass.

5. Comment in middle of line. Comment symbol typed in middle of a line of text.

• Expected result: Comment symbol and all following text on that one line
(only) highlighted as comment.

• Actual result: Comment symbol and all following text on that one line (only)
highlighted as comment.

• Pass/fail: Pass.

6. Comment at line end. A lines ends with “%”.

• Expected result: Comment symbol only highlighted as keyword.

• Actual result: Comment symbol only highlighted as keyword.

APPENDIX B. TESTING PLANS 96

• Pass/fail: Pass.

7. Keyword in comment. Type a keyword after comment symbol.

• Expected result: Keyword highlighted as comment.

• Actual result: Keyword highlighted as comment.

• Pass/fail: Pass.

8. Break a keyword onto multiple lines by pressing return part-way through keyword.

• Expected result: Both parts of keyword are unhighlighted.

• Actual result: Part of keyword before return is unhighlighted. Part following
return (i.e. moved on to next line) remains highlighted.

• Pass/fail: Fail.

9. Paste multiple-lines of text into document: “inst event e; \n % comment”.

• Expected result: Keywords “inst” and “event” highlighted. Comment high-
lighted.

• Actual result: Keywords “inst” and “event” highlighted. Comment not high-
lighted.

• Pass/fail: Fail.

10. Change application settings. Alter the colour of comment highlighting. (There is no
need to check changing keywords since whenever settings change, same code is called
regardless of what changed.)

• Expected result: Comments in open documents rehighlighted to new colour.

• Actual result: Comments in open documents rehighlighted to new colour.

• Pass/fail: Pass.

11. Remove path to keywords file from application settings.

• Expected result: Keywords in all open documents lose their highlighting.
(The application is able to cope without having keywords defined.)

• Actual result: Keywords in all open documents lose their highlighting.

• Pass/fail: Pass.

B.3 Testing the InstQL Translator

In order to test the InstQL translator, it was used to test the sample queries from section
4.3 (p59). This section gives the output from the translator for these queries. It can be
verified that this output matches the correct translation of these queries into ASP described
in section 4.3 (up to the names generated during the translation).

APPENDIX B. TESTING PLANS 97

(Note that due to a mistake in the InstAL tools, “occurred” is spelt “occured”. For
compatibility with InstAL, this is replicated in the InstQL translator.)

For query (IQ1) the output was:

bad : − occured(badgov, I7), event(badgov), instant(I7).
c0 : − not bad.

: − not c0.

For query (IQ2) the output was:

c1 : − holdsat(conflict, I15), ifluent(conflict), instant(I15).
: − not c1.

For query (IQ3) the output was:

c2 : − occured(desdl, I23), event(desdl), holdsat(conflict, I23),
ifluent(conflict), instant(I23).

: − not c2.

For query (IQ4) the output was:

startstate(F) : − holdsat(F, I33), ifluent(F), instant(I33),
occured(createdar, I35), event(createdar),
instant(I35), after(I33, I35, 1).

For query (IQ5) the output was:

startstate(F) : − holdsat(F, I45), ifluent(F), instant(I45),
occured(createdar, I47), event(createdar),
instant(I47), after(I45, I47, 1).

restartstate(F) : − holdsat(F, I57), ifluent(F), instant(I57),
occured(desdl, I59), event(desdl),
holdsat(conflict, I59), ifluent(conflict),
instant(I59), after(I57, I59, 1).

missing(F) : − startstate(F), not restartstate(F).
added(F) : − restartstate(F), not startstate(F).
c3 : − missing(F).
c3 : − added(F).

: − not c3.

Appendix C

Source Code Listings

Full code source code is provided by electronic submission and on CD. We present here
only a subset of the code written.

For InstEdit , we include the syntax highlighter, InstEditPanel (the superclass for all
components that are displayed in tabs) and the classes to translate data. InstalBuilder
provides the interface between the GUI and translators sub-systems and the remaining
classes form the translators sub-system.

For InstQL, we give the back end of the InstQL translator.

98

APPENDIX C. SOURCE CODE LISTINGS 99

C
.1

In
st

E
d
it

C
.1

.1
S
y
n
ta

x
H

ig
h
li
g
h
te

r.
ja

v
a

p
a
c
k
a
g
e

lc
h

2
1

.
in

s
t
a

l
.
g
u

i
.
s
y
n
t
a
x

;

im
p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
g
u

i
.
T

e
x
tP

a
n
e
P

a
n
e
l
;

im
p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
la

n
g
u
a
g
e

.
K

e
y
w

o
rd

s
;

im
p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
la

n
g
u
a
g
e

.
L

a
n
g
u
a
g
e
C

o
n
s
t
a
n
t
s
;

im
p
o
r
t

ja
v
a

.
u

t
il

.
A

r
r
a
y
L

is
t
;

im
p
o
r
t

ja
v
a

.
u

t
il

.
Q

u
e
u
e
;

im
p
o
r
t

ja
v
a
x

.
s
w

in
g

.
t
e
x
t

.∗
;

/
∗∗ ∗

A
n
e
w

S
y
n
t
a
x
H

ig
h
li

g
h
t
e
r

is
s
t
a
r
t
e
d

fo
r

e
a
c
h

T
e
x
tP

a
n
e
P

a
n
e
l

to
m

o
n
it

o
r

fo
r

∗
c
h
a
n
g
e
s

in
th

e
u
n
d
e
r
ly

in
g

D
o
c
u
m

e
n
t

(
b
y

w
a
y

o
f

P
e
n
d
in

g
H

ig
h
li

g
h
ts

)
a
n
d

∗
r
e
s
p
o
n
d

b
y

p
e
r
fo

r
m

in
g

s
y
n
ta

x
h
i
g
h
li

g
h
t
i
n

g
.

∗
@

a
u
th

o
r

L
u
k
e

H
o
p
to

n
∗/

p
u
b
li

c
c
la

s
s

S
y
n

t
a
x
H

ig
h

li
g
h

t
e
r

e
x
t
e
n
d
s

T
h
re

a
d

{
p
r
iv

a
t
e

T
e
x
tP

a
n
e
P

a
n
e
l

p
a
r
e
n
t
;

p
r
iv

a
t
e

H
ig

h
li

g
h

t
S

t
y

le
s

s
t
y

le
s

;

/
∗∗ ∗

C
r
e
a
te

s
a

n
e
w

S
y
n
ta

x
H

ig
h
li

g
h
t
e
r

to
h
i
g
h
li

g
h
t

th
e

d
o
c
u
m

e
n
t

d
is

p
la

y
e
d

∗
in

th
e

s
p
e
c
i
f
i
e
d

p
a
n
e
l
.

∗
@

p
a
ra

m
p
a
r
e
n
t

P
a
n
e
l

t
h
a
t

t
h
i
s

h
i
g
h
li

g
h
t
e
r

w
o
r
k
s

o
n

.
∗/

p
u
b
li

c
S

y
n

t
a
x
H

ig
h

li
g
h

t
e
r
(
T

e
x
tP

a
n
e
P

a
n
e
l

p
a
r
e
n
t
)

{
t
h
is

.
p
a
r
e
n
t

=
p
a
r
e
n
t
;

s
t
y

le
s

=
n
e
w

H
ig

h
li

g
h

t
S

t
y

le
s

(
)

;
} /
∗∗ ∗

S
t
a
r
t
s

th
e

s
y
n
ta

x
h
i
g
h
li

g
h
t
i
n

g
p
r
o
c
e
s
s

fo
r

th
e

p
a
r
e
n
t

p
a
n
e
l
.

∗
T

h
e

h
i
g
h
li

g
h
t
e
r

k
e
e
p
s

h
i
g
h
li

g
h
t
i
n

g
u
n

t
i
l

i
t

is
in

te
r
r
u
p
te

d
,

∗
a
t

w
h
ic

h
p
o
in

t
i
t

e
x
i
t
s

.
∗/

p
u
b
li

c
v
o
id

ru
n

(
)

{
Q

u
e
u
e<

P
e
n
d
in

g
H

ig
h
li

g
h
t
>

jo
b

s
=

p
a
r
e
n
t
.
g
e
t
H

ig
h

li
g
h

t
L

is
t

(
)

;

P
e
n

d
in

g
H

ig
h

li
g
h

t
p
h

;

/
/

k
e
e
p

g
o
in

g
u
n

t
i
l

w
e

a
r
e

in
t
e
r
r
u
p
t
e
d

w
h
il
e

(
t
r
u
e

)
{

/
/

d
o

a
ll

jo
b
s

in
q
u
e
u
e

w
h
il
e

(
(
p
h

=
jo

b
s

.
p

o
ll

(
)
)

!=
n
u
ll

)
{

h
ig

h
li

g
h

t
(
p
h

)
;

/
/

d
o

h
i
g
h
li

g
h
t
i
n

g
} t
r
y

{ /
/

w
a
it

fo
r

m
o
re

jo
b
s

s
y
n
c
h
r
o
n
iz

e
d

(
p
a
r
e
n
t
)

{
p
a
r
e
n
t
.
w

a
it

(
)

;
}

}
c
a
t
c
h

(
I
n

t
e
r
r
u

p
t
e
d

E
x
c
e
p

t
io

n
ie

)
{

/
/

w
h
e
n

th
e

th
r
e
a
d

is
in

te
r
r
u
p
te

d
,

i
t

s
h
o
u
ld

c
e
a
s
e

e
x
e
c
u
ti

o
n

r
e
t
u
r
n

;
}

}
} /
∗∗ ∗

P
e
r
fo

r
m

s
th

e
s
y
n
ta

x
h
i
g
h
li

g
h
t
i
n

g
fo

r
a

s
p
e
c
i
f
i
c

jo
b

.
∗

@
p
a
ra

m
jo

b
I
n
fo

r
m

a
ti

o
n

o
n

th
e

h
i
g
h
li

g
h
t
i
n

g
ta

s
k

to
b
e

p
e
r
fo

r
m

e
d

.
∗/

p
r
iv

a
t
e

v
o
id

h
ig

h
li

g
h

t
(
P

e
n

d
in

g
H

ig
h

li
g
h

t
jo

b
)

{
S
ty

le
d
D

o
c
u
m

e
n
t

d
o
c

=
(
S
ty

le
d
D

o
c
u
m

e
n
t
)

jo
b

.
g
e
tD

o
c
u
m

e
n
t
(
)

;

in
t

o
f
f
s
e
t

=
jo

b
.
g
e
t
O

ff
s
e
t

(
)

;
in

t
jo

b
S

t
a
r
t

=
g
e
t
L

in
e
S

t
a
r
t
(
d
o
c

,
o

f
f
s
e
t

)
;

in
t

jo
b
L

e
n
g
t
h

=
jo

b
.
g
e
t
L

e
n
g
t
h

(
)

;
in

t
jo

b
E

n
d

=
g
e
t
L

in
e
E

n
d

(
d
o
c

,
o

f
f
s
e
t

+
jo

b
L

e
n
g
t
h

)
;

APPENDIX C. SOURCE CODE LISTINGS 100

in
t

i
=

jo
b

S
t
a
r
t

;

/
/

h
i
g
h
li

g
h
t

o
n
e

li
n

e
a
t

a
ti

m
e

w
h
il
e

(
i

<
jo

b
E

n
d

&
&

i
>

=
0
)
{

h
ig

h
li

g
h

t
L

in
e

(
d
o
c

,
i
)
;

i
=

g
e
t
L

in
e
E

n
d

(
d
o
c

,
i
)
;

i
=

g
e
t
L

in
e
S

t
a
r
t
(
d
o
c

,
+
+

i
)
;

}
} /
∗∗ ∗

H
ig

h
li

g
h
t
s

a
s
in

g
le

li
n

e
o
f

a
d
o
c
u
m

e
n
t
.

∗
@

o
a
ra

m
d
o
c

D
o
c
u
m

e
n
t

to
h
i
g
h
li

g
h
t

in
.

∗
@

p
a
ra

m
s
t
a
r
t

S
t
a
r
t

in
d
e
x

o
f

li
n

e
w

it
h
in

d
o
c
.

∗/
p
r
iv

a
t
e

v
o
id

h
ig

h
li

g
h

t
L

in
e

(
S
ty

le
d
D

o
c
u
m

e
n
t

d
o
c

,
in

t
s
t
a
r
t
)

{
in

t
e
n
d

=
g
e
t
L

in
e
E

n
d

(
d
o
c

,
s
t
a
r
t
)
;

in
t

le
n

g
t
h

=
e
n
d
−

s
t
a
r
t

;

i
f

(
le

n
g
t
h

<
=

0
)
{

r
e
t
u
r
n

;
} /
/

i
n

i
t
i
a
ll

y
,

h
i
g
h
li

g
h
t

w
h
o
le

li
n

e
a
s

n
o
r
m

a
l

t
e
x
t

to
f
i
x

so
m

e
/
/

is
s
u
e
s

w
it

h
in

s
e
r
t
s

p
ic

k
in

g
u
p

e
x
i
s
t
i
n

g
s
t
y
le

s
S

im
p

le
A

t
t
r
ib

u
t
e
S

e
t

s
a
s

=
s
t
y

le
s

.
g
e
t
S

t
y

le
(

K
e
y
w

o
rd

s
.N

O
N
E

)
;

d
o
c

.
s
e
t
C

h
a
r
a
c
t
e
r
A

t
t
r
ib

u
t
e
s
(
s
t
a
r
t

,
le

n
g
t
h

,
s
a
s

,
t
r
u
e

)
;

S
t
r
in

g
s
;

t
r
y

{ s
=

d
o
c

.
g
e
t
T

e
x
t
(
s
t
a
r
t

,
le

n
g
t
h

)
;

}
c
a
t
c
h

(
B

a
d
L

o
c
a
t
io

n
E

x
c
e
p
t
io

n
b

le
)

{
S
y
st

e
m

.
e
r
r

.
p

r
in

t
ln

(
”
B

a
d

lo
c
a
t
io

n
:

s
t
a
r
t=

”
+

s
t
a
r
t

+
”

,
le

n
g
t
h

t=
”

+
le

n
g
t
h

)
;

r
e
t
u
r
n

;
} /
/

c
h
e
c
k

fo
r

c
o
m

m
e
n
ts

in
t

c
m

t
=

s
.
in

d
e
x
O

f
(
L

a
n
g
u
a
g
e
C

o
n
s
t
a
n
t
s
.C

O
M

M
E
N
T

)
;

i
f

(
c
m

t
!=

−1
)
{

in
t

c
o
m

m
e
n
tS

ta
rt

=
s
t
a
r
t

+
c
m

t
;

in
t

co
m

m
en

tE
n
d

=
g
e
t
L

in
e
E

n
d

(
d
o
c

,
c
o
m

m
e
n
tS

ta
rt

)
;

in
t

c
o
m

m
e
n
tL

e
n
g
th

=
co

m
m

en
tE

n
d
−

c
o
m

m
e
n
tS

ta
rt

;
S

im
p

le
A

t
t
r
ib

u
t
e
S

e
t

c
m

tA
tt

r
=

s
t
y

le
s

.
g
e
tC

o
m

m
e
n
tS

ty
le

(
)

;

d
o
c

.
s
e
t
C

h
a
r
a
c
t
e
r
A

t
t
r
ib

u
t
e
s
(
c
o
m

m
e
n
tS

ta
rt

,
c
o
m

m
e
n
tL

e
n
g
th

,
c
m

tA
tt

r
,

t
r
u
e

)
;

} /
/

h
i
g
h
li

g
h
t

k
e
y
w

o
r
d
s

u
p

to
c
o
m

m
e
n
t

(
i
f

a
n
y
)

S
t
r
in

g
B

u
il

d
e
r

b
u

ff
e
r

=
n
e
w

S
t
r
in

g
B

u
il

d
e
r

(
)

;

fo
r

(
in

t
i

=
0
;

i
<

s
.
le

n
g
t
h

(
)

;
i+

+
)
{

i
f

(
c
m

t
!=

−1
&
&

i
>

=
c
m

t
)

{
b
r
e
a
k

;
}

/
/

s
to

p
h
i
g
h
li

g
h
t
i
n

g
a
t

c
o
m

m
e
n
t

S
t
r
in

g
c

=
s
.
s
u

b
s
t
r
in

g
(
i
,

i
+

1
)
;

b
o
o
le

a
n

d
e
li

m
=

c
.
m

a
tc

h
e
s
(

L
a
n
g
u
a
g
e
C

o
n
s
t
a
n
t
s
.R

E
G

E
X

D
E
L
IM

IT
E
R

)
;

i
f

(
!
d
e
li

m
)

{
b

u
ff

e
r

.
a
p
p
e
n
d

(
c
)
;

} i
f

(
d
e
li

m
&
&

b
u

ff
e
r

.
le

n
g
t
h

(
)

>
0
)
{

in
t

w
o
r
d
S
t
a
r
t

=
s
t
a
r
t

+
i
−

b
u

ff
e
r

.
le

n
g
t
h

(
)

;

h
ig

h
li

g
h
t
K

e
y
w

o
r
d

(
d
o
c

,
b

u
ff

e
r

.
t
o
S

t
r
in

g
(
)

,
w

o
r
d
S
t
a
r
t
)
;

b
u

ff
e
r

.
d

e
le

t
e

(
0

,
b

u
ff

e
r

.
le

n
g
t
h

(
)
)
;

} i
f

(
i

=
=

s
.
le

n
g
t
h

(
)
−

1
&
&

b
u

ff
e
r

.
le

n
g
t
h

(
)

>
0
)
{

in
t

w
o
r
d
S
t
a
r
t

=
s
t
a
r
t

+
i
−

b
u

ff
e
r

.
le

n
g
t
h

(
)

+
1
;

h
ig

h
li

g
h
t
K

e
y
w

o
r
d

(
d
o
c

,
b

u
ff

e
r

.
t
o
S

t
r
in

g
(
)

,
w

o
r
d
S
t
a
r
t
)
;

APPENDIX C. SOURCE CODE LISTINGS 101

b
u

ff
e
r

.
d

e
le

t
e

(
0

,
b

u
ff

e
r

.
le

n
g
t
h

(
)
)
;

}
}

} /
∗∗ ∗

H
ig

h
li

g
h
t
s

a
k
e
y
w

o
r
d

in
a

s
t
y
le

d
d
o
c
u
m

e
n
t
.

∗
@

p
a
ra

m
d
o
c

D
o
c
u
m

e
n
t

to
h
i
g
h
li

g
h
t

in
.

∗
@

p
a
ra

m
s

K
e
y
w
o
rd

to
h
i
g
h
li

g
h
t
.

∗
@

p
a
ra

m
e
n
d

S
t
a
r
t

in
d
e
x

o
f

s
w

it
h
in

d
o
c
.

∗/
p
r
iv

a
t
e

v
o
id

h
ig

h
li

g
h
t
K

e
y
w

o
r
d

(
S
ty

le
d
D

o
c
u
m

e
n
t

d
o
c

,
S

t
r
in

g
s

,
in

t
s
t
a
r
t
)
{

in
t

t
y
p
e

=
K

e
y
w

o
rd

s
.
t
y
p
e
O

f
(
s
)
;

S
im

p
le

A
t
t
r
ib

u
t
e
S

e
t

k
e
y
A

t
t
r

=
s
t
y

le
s

.
g
e
t
S

t
y

le
(
t
y
p
e
)
;

d
o
c

.
s
e
t
C

h
a
r
a
c
t
e
r
A

t
t
r
ib

u
t
e
s
(
s
t
a
r
t

,
s
.
le

n
g
t
h

(
)

,
k
e
y
A

t
t
r

,
t
r
u
e

)
;

} /
∗∗ ∗

R
e
tu

r
n
s

th
e

in
d
e
x

w
it

h
in

th
e

d
o
c
u
m

e
n
t

o
f

th
e

e
n
d

o
f

th
e

li
n

e
∗

(
d
e
te

r
m

in
e
d

b
y

a
s
in

g
le

li
n

e
fe

e
d

c
h
a
r
a
c
te

r
<

c
o
d
e
>
\n

<
/
c
o
d
e
>

)
∗

c
o
n
ta

in
in

g
<

c
o
d
e
>

o
ff

s
e
t
<

/
c
o
d
e
>

o
r

th
e

e
n
d

o
f

th
e

d
o
c
u
m

e
n
t

∗
(
w

h
ic

h
e
v
e
r

is
e
n
c
o
u
n
te

r
e
d

f
i
r
s
t
)
.

∗
@

p
a
ra

m
d
o
c

D
o
c
u
m

e
n
t

to
s
e
a
r
c
h

.
∗

@
p
a
ra

m
o
f
f
s
e
t

O
ff

s
e
t

w
it

h
in

d
o
c
u
m

e
n
t

to
b
e
g
in

s
e
a
r
c
h

.
∗

@
r
e
tu

r
n

I
n
d
e
x

o
f

e
n
d

o
f

li
n

e
c
o
n
ta

in
in

g
<

c
o
d
e
>

o
ff

s
e
t
<

/
c
o
d
e

>
,

∗
o
r

<
c
o
d
e
>
−1

<
/
c
o
d
e
>

i
f

s
o
m

e
th

in
g

w
e
n
t

w
r
o
n
g
.

∗/
p
r
iv

a
t
e

in
t

g
e
t
L

in
e
E

n
d

(
D

o
c
u
m

e
n
t

d
o
c

,
in

t
o

f
f
s
e
t

)
{

in
t

i
=

o
f
f
s
e
t

;

i
f

(
i

>
d
o
c

.
g
e
t
L

e
n
g
t
h

(
)
)

{
r
e
t
u
r
n

−
1
;

} S
t
r
in

g
s

=
”
”

;

w
h
il
e

(
i

<
=

d
o
c

.
g
e
t
L

e
n
g
t
h

(
)

&
&

!
s
.
e
q
u

a
ls

(
”
\n

”
)
)

{
t
r
y

{ s
=

d
o
c

.
g
e
t
T

e
x
t
(
i+

+
,

1
)
;

}
c
a
t
c
h

(
B

a
d
L

o
c
a
t
io

n
E

x
c
e
p
t
io

n
b

le
)

{
/
/

T
O
D
O

h
a
n
d
le

t
h
i
s

n
ic

e
ly

?
S
y
st

e
m

.
e
r
r

.
p

r
in

t
ln

(
b

le
.
g
e
t
M

e
s
s
a
g
e

(
)

+
”

”
+

b
le

.
o
ff

s
e
t
R

e
q
u

e
s
t
e
d

(
)
)
;

r
e
t
u
r
n

−
1
;

}
} r
e
t
u
r
n

i
−

1
;

} /
∗∗ ∗

G
e
ts

th
e

in
d
e
x

w
it

h
in

th
e

d
o
c
u
m

e
n
t

o
f

th
e

s
t
a
r
t

o
f

th
e

li
n

e
c
o
n
ta

in
in

g
∗

o
f
f
s
e
t
.

L
in

e
s
t
a
r
t

is
d
e
te

r
m

in
e
d

b
y

a
s
in

g
le

n
e
w

li
n

e
c
h
a
r
a
c
te

r
.

∗
@

p
a
ra

m
d
o
c

D
o
c
u
m

e
n
t

to
s
e
a
r
c
h

.
∗

@
p
a
ra

m
o
f
f
s
e
t

S
t
a
r
t
in

g
in

d
e
x

.
∗

@
r
e
tu

r
n

I
n
d
e
x

o
f

li
n

e
s
t
a
r
t

o
r

0
i
f

d
o
c
u
m

e
n
t

s
t
a
r
t

fo
u
n
d

b
e
fo

r
e

li
n

e
∗

s
t
a
r
t

o
r

<
c
o
d
e
>
−1

<
/
c
o
d
e
>

i
f

s
o
m

e
th

in
g

w
e
n
t

w
r
o
n
g
.

∗/
p
r
iv

a
t
e

in
t

g
e
t
L

in
e
S

t
a
r
t
(
D

o
c
u
m

e
n
t

d
o
c

,
in

t
o

f
f
s
e
t

)
{

i
f

(
o

f
f
s
e
t

=
=

0
)
{

r
e
t
u
r
n

0
;

} in
t

i
=

o
f
f
s
e
t

+
1
;

S
t
r
in

g
s

=
”
”

;

w
h
il
e

(
i

>
0

&
&

!
s
.
e
q
u

a
ls

(
”
\n

”
)
)

{
t
r
y

{ i
−−

;
i
f

(
i

=
=

0
)
{

r
e
t
u
r
n

0
;

} s
=

d
o
c

.
g
e
t
T

e
x
t
(
i
−

1
,

1
)
;

}
c
a
t
c
h

(
B

a
d
L

o
c
a
t
io

n
E

x
c
e
p
t
io

n
b

le
)

{
S
y
st

e
m

.
e
r
r

.
p

r
in

t
ln

(
b

le
.
g
e
t
M

e
s
s
a
g
e

(
)

+
”

”
+

b
le

.
o
ff

s
e
t
R

e
q
u

e
s
t
e
d

(
)
)
;

r
e
t
u
r
n

−
1
;

APPENDIX C. SOURCE CODE LISTINGS 102

}
} r
e
t
u
r
n

i
;

}
} C

.1
.2

In
st

E
d
it

P
a
n
e
l.
ja

v
a

p
a
c
k
a
g
e

lc
h

2
1

.
in

s
t
a

l
.
g
u

i
.
c
o
m

p
o
n
e
n
ts

;

im
p
o
r
t

ja
v
a
x

.
s
w

in
g

.
J
P

a
n
e
l
;

im
p
o
r
t

ja
v
a
x

.
s
w

in
g

.
J
O

p
ti

o
n
P

a
n
e

;

/
∗∗ ∗

A
n

a
b
s
t
r
a
c
t

im
p
le

m
e
n
ta

ti
o
n

o
f

a
p
a
n
e
l

w
h
ic

h
s
h
o
u
ld

b
e

th
e

s
u
p
e
r
c
la

s
s

∗
fo

r
a
n
y

c
o
m

p
o
n
e
n
t

d
is

p
la

y
e
d

a
t

”
to

p
le

v
e
l
”

w
it

h
in

a
ta

b
o
n

th
e

m
a
in

∗
fo

r
m

.
∗

@
se

e
lc

h
2
1

.
i
n

s
t
a
l
.
g
u
i
.M

a
in

F
o
rm

∗
@

a
u
th

o
r

L
u
k
e

H
o
p
to

n
∗/

p
u
b
li

c
a
b
s
t
r
a
c
t

c
la

s
s

I
n

s
t
E

d
it

P
a
n

e
l

e
x
t
e
n
d
s

J
P

a
n
e
l
{

/
∗∗

T
it

le
fo

r
t
h
i
s

p
a
n
e
l
.
∗/

p
r
o
t
e
c
t
e
d

S
t
r
in

g
t
i
t
l
e

=
”
”

;

p
r
iv

a
t
e

b
o
o
le

a
n

s
a
v
e
R

e
q
u
ir

e
d

=
f
a
ls

e
;

p
u
b
li

c
I
n

s
t
E

d
it

P
a
n

e
l
(
)

{
s
u
p
e
r
(
)

;
} /
∗∗ ∗

C
r
e
a
te

s
a

n
e
w

p
a
n
e
l

t
h
a
t

w
i
ll

u
s
e

th
e

s
p
e
c
i
f
i
e
d

L
a
y
o
u
tM

a
n
a
g
e
r
.

∗
@

p
a
ra

m
lm

M
a
n
a
g
e
r

to
u
s
e
.

∗/
p
u
b
li

c
I
n

s
t
E

d
it

P
a
n

e
l
(
ja

v
a

.
a
w

t
.
L

a
y
o
u
tM

a
n
a
g
e
r

lm
)

{
s
u
p
e
r
(
lm

)
;

}

/
∗∗ ∗

G
e
ts

th
e

t
i
t
l
e

fo
r

t
h
i
s

p
a
n
e
l
.

∗
@

r
e
tu

r
n

T
it

le
.

∗/
p
u
b
li

c
S

t
r
in

g
g
e
t
T

it
le

(
)

{
r
e
t
u
r
n

t
i
t
l
e

;
} /
∗∗ ∗

S
e
ts

th
e

t
i
t
l
e

fo
r

t
h
i
s

p
a
n
e
l
.

∗
@

p
a
ra

m
t
i
t
l
e

N
ew

t
i
t
l
e

.
∗/

p
u
b
li

c
v
o
id

s
e
t
T

it
le

(
S

t
r
in

g
t
i
t
l
e

)
{

t
h
is

.
t
i
t
l
e

=
t
i
t
l
e

;
} /
∗∗ ∗

S
a
v
e
s

th
e

c
o
n
te

n
ts

o
f

t
h
i
s

p
a
n
e
l

a
s

a
p
p
r
o
p
r
ia

te
fo

r
p
a
n
e
l

ty
p
e

.
∗/

p
u
b
li

c
a
b
s
t
r
a
c
t

v
o
id

s
a
v
e

(
)

;

/
∗∗ ∗

A
”
s
a
v
e

a
s
”

o
p
e
r
a
ti

o
n

.
B
y

d
e
fa

u
lt

,
t
h
i
s

is
a
n

a
li

a
s

fo
r

∗
<

c
o
d
e
>

s
a
v
e
(
)
<

/
c
o
d
e
>

b
u
t

s
u
b
c
la

s
s
e
s

m
a
y

o
v
e
r
r
id

e
t
h
i
s

∗
m

e
th

o
d

to
p
r
o
v
id

e
o
n
e

w
h
ic

h
p
r
o
m

p
ts

∗
fo

r
a

n
e
w

lo
c
a
t
io

n
p
r
io

r
to

s
a
v
in

g
.

∗/
p
u
b
li

c
v
o
id

s
a
v
e
A

s
(
)

{
s
a
v
e

(
)

;
} /
∗∗ ∗

S
e
ts

a
f
la

g
to

in
d
ic

a
t
e

t
h
a
t

t
h
i
s

p
a
n
e
l

h
a
s

∗
u
n
s
a
v
e

c
h
a
n
g
e
s

m
a
d
e
.

∗/
p
u
b
li

c
v
o
id

r
e
q
u

ir
e
S

a
v
e

(
)

{
s
a
v
e
R

e
q
u
ir

e
d

=
t
r
u
e

;
} /
∗∗ ∗

S
e
ts

a
f
la

g
to

in
d
ic

a
t
e

t
h
a
t

n
o

c
h
a
n
g
e
s

n
e
e
d

APPENDIX C. SOURCE CODE LISTINGS 103

∗
s
a
v
in

g
in

t
h
i
s

p
a
n
e
l
.

∗/
p
u
b
li

c
v
o
id

u
n

r
e
q
u

ir
e
S

a
v
e

(
)

{
s
a
v
e
R

e
q
u
ir

e
d

=
f
a
ls

e
;

} /
∗∗ ∗

C
h
e
c
k
s

to
s
e
e

i
f

a
ll

c
h
a
n
g
e
s

m
a
d
e

in
t
h
i
s

p
a
n
e
l

a
r
e

s
a
v
e
d

.
∗

@
r
e
tu

r
n

T
r
u
e

i
f

a
ll

c
h
a
n
g
e
s

a
r
e

s
a
v
e
d

o
r

f
a
ls

e
i
f

th
e
r
e

a
r
e

∗
c
h
a
n
g
e
s

t
h
a
t

n
e
e
d

s
a
v
in

g
.

∗/
p
u
b
li

c
b
o
o
le

a
n

is
S

a
v
e
d

(
)

{
r
e
t
u
r
n

!
s
a
v
e
R

e
q
u
ir

e
d

;
} /
∗∗ ∗

C
h
e
c
k
s

to
s
e
e

i
f

t
h
i
s

p
a
n
e
l

is
u
n
s
a
v
e
d

a
n
d

i
f

s
o

p
r
o
m

p
ts

fo
r

a
s
a
v
e
.

∗
(
F
o
r

u
s
e

o
n

c
lo

s
e

e
tc

w
h
e
n

c
u
r
r
e
n
t

d
o
c
u
m

e
n
t

is
n
o
t

s
a
v
e
d

.)
∗/

p
u
b
li

c
v
o
id

s
a
v
e
C

h
e
c
k

(
)

{
i
f

(
s
a
v
e
R

e
q
u
ir

e
d

)
{

S
t
r
in

g
t
i
t
l
e

=
”
S
a
v
e

c
h
a
n
g
e
s
?
”

;
S

t
r
in

g
m

sg
=

”
\”

”
+

g
e
t
T

it
le

(
)

+
”
\”

is
u
n
s
a
v
e
d

.
”

;

m
sg

+
=

”
\n

D
o

y
o
u

w
is

h
t
o

s
a
v
e

t
h
e

c
h
a
n
g
e
s
?
”

;
in

t
r
e
t
u

r
n

V
a
l

=
J
O

p
ti

o
n
P

a
n
e

.
s
h
o
w

C
o
n
fi

r
m

D
ia

lo
g

(
t
h
is

,
m

sg
,

t
it

le
,

J
O

p
ti

o
n
P

a
n
e

.Y
E
S

N
O

O
P
T

IO
N

)
;

i
f

(
r
e
t
u

r
n

V
a
l

=
=

J
O

p
ti

o
n
P

a
n
e

.Y
E
S

O
P
T

IO
N

)
{

s
a
v
e

(
)

;
}

}
} /
∗∗ ∗

U
se

d
w
h
e
n

th
e

p
a
n
e
l

is
a
b
o
u
t

to
b
e

c
lo

s
e
d

.
T

h
is

a
ll

o
w

s
s
u
b
c
la

s
s
e
s

to
∗

s
a
f
e
ly

e
x
i
t

a
n
d

fr
e
e

u
p

r
e
s
o
u
r
c
e
s

e
tc

i
f

n
e
c
e
s
s
a
r
y

.
T

h
e

d
e
fa

u
lt

∗
im

p
le

m
e
n
ta

ti
o
n

p
r
o
v
id

e
d

h
e
r
e

d
o
e
s

n
o
th

in
g

(
s
u
b
c
la

s
s
e
s

t
h
a
t

d
o

n
o
t

n
e
e
d

∗
to

d
o

a
n
y
th

in
g

n
e
e
d

n
o
t

o
v
e
r
r
id

e
th

e
m

e
th

o
d
)
.

∗/
p
u
b
li

c
v
o
id

c
lo

s
e

(
)

{/
/

n
o
th

in
g

is
d
o
n
e

b
y

d
e
fa

u
lt

}

} C
.1

.3
In

st
a
lB

u
il
d
e
r.

ja
v
a

p
a
c
k
a
g
e

lc
h

2
1

.
in

s
t
a

l
.
g
u

i
;

im
p
o
r
t

ja
v
a
x

.
s
w

in
g

.
J
F

il
e
C

h
o
o
s
e
r

;
im

p
o
r
t

ja
v
a

.
io

.∗
;

im
p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
a
p
p

.
P

r
o
je

c
t

;
im

p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
g
u

i
.
c
o
m

p
o
n
e
n
ts

.
F

il
e
F

il
t
e
r
F

a
c
t
o
r
y

;
im

p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
t
r
a
n

s
la

t
o
r
s

.∗
;

/
∗∗ ∗

R
e
s
p
o
n
s
ib

le
fo

r
c
o
n

t
r
o
ll

in
g

th
e

b
u
il

d
p
r
o
c
e
s
s
.

T
h
a
t

is
,

c
a
ll

i
n

g
∗

th
e

v
a
r
io

u
s

t
r
a
n

s
la

t
o
r
s
.

∗
@

a
u
th

o
r

L
u
k
e

H
o
p
to

n
∗/

p
u
b
li

c
c
la

s
s

I
n

s
t
a
lB

u
il

d
e
r

{
p
r
iv

a
t
e

P
r
o
je

c
t

p
r
o
je

c
t

;
p
r
iv

a
t
e

M
a
in

F
o
rm

m
f
;

/
∗∗ ∗

C
r
e
a
te

s
a

n
e
w

I
n
s
t
a
lB

u
il

d
e
r
.

∗
@

p
a
ra

m
m

f
P

a
r
e
n
t

fo
r
m

fo
r

t
h
i
s

b
u
il

d
e
r

.
∗/

p
u
b
li

c
I
n

s
t
a
lB

u
il

d
e
r
(
M

a
in

F
o
rm

m
f)

{
t
h
is

.m
f

=
m

f
;

} /
∗∗ ∗

G
e
n
e
r
a
te

s
A
S
P

fr
o
m

th
e

m
a
in

p
r
o
je

c
t

o
f

th
e

p
a
r
e
n
t

fo
r
m

o
f

APPENDIX C. SOURCE CODE LISTINGS 104

∗
t
h
i
s

b
u
il

d
e
r

.
∗/

p
u
b
li

c
v
o
id

in
s
t
a
lT

o
A

s
p

(
)

{
P

r
o
je

c
t

p
=

m
f
.
g
e
t
M

a
in

P
r
o
je

c
t
(
)

;

i
f

(
p

=
=

n
u
ll

)
{

r
e
t
u
r
n

;
} O

u
tp

u
tP

a
n
e
l

o
u
t

=
m

f
.
o
u
tp

u
tT

a
b

(
t
r
u
e

)
;

P
r
in

t
S
t
r
e
a
m

p
s

=
o
u
t
.
g
e
t
P

r
in

t
S
t
r
e
a
m

(
)

;
I
n

s
t
a
lT

r
a
n

s
la

t
o
r

it
=

n
e
w

I
n

s
t
a
lT

r
a
n

s
la

t
o
r
(
p
s
)
;

/
/

g
e
t

f
i
le

p
a
t
h

to
A
S
P

g
e
n
e
r
a
te

d
S

t
r
in

g
[
]

p
a
t
h
s

=
it

.
t
r
a
n

s
la

t
e

(
p

)
;

i
f

(
p
a
t
h
s

=
=

n
u
ll

)
{

r
e
t
u
r
n

;
} /
/

d
is

p
la

y
A
S
P

g
e
n
e
r
a
te

d
T

e
x
t
A

r
e
a
P

a
n
e
l

t
a
p

=
n
e
w

T
e
x
t
A

r
e
a
P

a
n
e
l
(
)

;

i
f

(
t
a
p

.
o
p
e
n

(
p
a
t
h
s

[0
])

)
{

m
f
.a

d
d
T

a
b

(
ta

p
,

f
a
ls

e
)
;

}

} /
∗∗ ∗

G
e
n
e
r
a
r
e
s

A
S
P

fr
o
m

th
e

m
a
in

p
r
o
je

c
t

o
f

th
e

p
a
r
e
n
t

fo
r
m

o
f

t
h
i
s

∗
b
u
il

d
e
r

a
n
d

th
e
n

c
o
m

p
u
te

s
th

e
a
n
s
w

e
r

s
e
t
s
.

∗
@

p
a
ra

m
n

N
u
m

b
e
r

o
f

ti
m

e
in

s
ta

n
c
e
s

to
g
e
n
e
r
a
te

.
∗/

p
u
b
li

c
v
o
id

in
s
t
a
lT

o
A

n
s
w

e
r
S

e
t
s
(
in

t
n

)
{

P
r
o
je

c
t

p
=

m
f
.
g
e
t
M

a
in

P
r
o
je

c
t
(
)

;

i
f

(
p

=
=

n
u
ll

)
{

r
e
t
u
r
n

;
} O

u
tp

u
tP

a
n
e
l

o
u
t

=
m

f
.
o
u
tp

u
tT

a
b

(
t
r
u
e

)
;

P
r
in

t
S
t
r
e
a
m

p
s

=
o
u
t
.
g
e
t
P

r
in

t
S
t
r
e
a
m

(
)

;
I
n

s
t
a
lT

r
a
n

s
la

t
o
r

it
=

n
e
w

I
n

s
t
a
lT

r
a
n

s
la

t
o
r
(
p
s
)
;

/
/

g
e
t

f
i
le

p
a
t
h

to
A
S
P

g
e
n
e
r
a
te

d
S

t
r
in

g
[
]

p
a
t
h
s

=
it

.
t
r
a
n

s
la

t
e

(
p

)
;

i
f

(
p
a
t
h
s

=
=

n
u
ll

)
{

r
e
t
u
r
n

;
} A

n
s
w

e
r
S
e
t
S
o
lv

e
r

a
s
s

=
n
e
w

A
n
s
w

e
r
S
e
t
S
o
lv

e
r
(
p
s

,
n

)
;

a
s
s

.
t
r
a
n

s
la

t
e

(
p
a
t
h
s

[0
]
,

p
a
t
h
s

[1
]
,

p
.
is

M
u

lt
iI

n
s
t
it

u
t
io

n
(
)
)
;

} /
∗∗ ∗

C
o
m

p
u
te

s
a
n
s
w

e
r

s
e
t
s

o
f

th
e

s
p
e
c
i
f
i
e
d

p
r
o
g
r
a
m

.
∗

@
p
a
ra

m
in

s
t

P
a
th

to
A
S
P

i
n

s
t
i
t
u
t
i
o
n

a
l

m
o
d
e
l
.

∗
@

p
a
ra

m
q
r
y

P
a
th

to
A
S
P

q
u
e
r
y

.
∗

@
p
a
ra

m
m

u
lt

i
I
f

tr
u
e

,
t
r
e
a
t
s

p
r
o
g
r
a
m

a
s

m
u
lt

i−
i
n

s
t
i
t
u
t
i
o
n

m
o
d
e
l
.

∗
@

p
a
ra

m
n

N
u
m

b
e
r

o
f

ti
m

e
in

s
ta

n
c
e
e
s

to
g
e
n
e
r
a
te

.
∗/

p
u
b
li

c
v
o
id

a
s
p
T

o
A

n
s
w

e
rS

e
ts

(
S

t
r
in

g
in

s
t

,
S

t
r
in

g
q
ry

,
b
o
o
le

a
n

m
u
lt

i
,

in
t

n
)

{
O

u
tp

u
tP

a
n
e
l

o
u
t

=
m

f
.
o
u
tp

u
tT

a
b

(
t
r
u
e

)
;

P
r
in

t
S
t
r
e
a
m

p
s

=
o
u
t
.
g
e
t
P

r
in

t
S
t
r
e
a
m

(
)

;

A
n
s
w

e
r
S
e
t
S
o
lv

e
r

a
s
s

=
n
e
w

A
n
s
w

e
r
S
e
t
S
o
lv

e
r
(
p
s

,
n

)
;

a
s
s

.
t
r
a
n

s
la

t
e

(
in

s
t

,
q
ry

,
m

u
lt

i
)
;

} /
∗∗ ∗

P
r
o
m

p
ts

fo
r

a
fi

le
n
a
m

e
a
n
d

g
e
n
e
r
a
te

s
a

g
r
a
p
h

fr
o
m

i
t
.

∗/
p
u
b
li

c
v
o
id

g
r
a
p
h

(
)

{
S

t
r
in

g
f
i
l
e

=
g
e
t
A

n
s
w

e
r
S
e
t
s
(
)

;

i
f

(
f
i
l
e

=
=

n
u
ll

)
{

r
e
t
u
r
n

;
} O

u
tp

u
tP

a
n
e
l

o
u
t

=
m

f
.
o
u
tp

u
tT

a
b

(
t
r
u
e

)
;

P
r
in

t
S
t
r
e
a
m

p
s

=
o
u
t
.
g
e
t
P

r
in

t
S
t
r
e
a
m

(
)

;

APPENDIX C. SOURCE CODE LISTINGS 105

V
is

u
a
li

s
e
r

v
=

n
e
w

V
is

u
a
li

s
e
r
(
p
s
)
;

v
.
c
r
e
a
t
e
G

r
a
p
h

(
f
i
l
e

)
;

} /
∗∗ ∗

P
r
o
m

p
ts

fo
r

a
fi

le
n
a
m

e
a
n
d

d
is

p
la

y
s

i
t

in
I
n
s
tV

iz
.

∗/
p
u
b
li

c
v
o
id

in
s
t
v

iz
(
)

{
S

t
r
in

g
f
i
l
e

=
g
e
t
A

n
s
w

e
r
S
e
t
s
(
)

;

i
f

(
f
i
l
e

=
=

n
u
ll

)
{

r
e
t
u
r
n

;
} O

u
tp

u
tP

a
n
e
l

o
u
t

=
m

f
.
o
u
tp

u
tT

a
b

(
t
r
u
e

)
;

P
r
in

t
S
t
r
e
a
m

p
s

=
o
u
t
.
g
e
t
P

r
in

t
S
t
r
e
a
m

(
)

;

V
is

u
a
li

s
e
r

v
=

n
e
w

V
is

u
a
li

s
e
r
(
p
s
)
;

v
.
la

u
n

c
h

I
n

s
t
V

iz
(

f
i
l
e

)
;

} /
∗∗ ∗

G
e
ts

p
a
th

to
a

f
i
le

c
o
n
ta

in
in

g
a
n
s
w

e
r

s
e
t
s

b
y

p
r
o
m

p
ti

n
g

u
s
e
r
.

∗
@

r
e
tu

r
n

A
b
s
o
lu

te
f
i
le

p
a
t
h

o
r

n
u
ll

i
f

s
e
le

c
t
io

n
c
a
n
c
e
ll

e
d

.
∗/

p
r
iv

a
t
e

S
t
r
in

g
g
e
t
A

n
s
w

e
r
S
e
t
s
(
)

{
J
F

il
e
C

h
o
o
s
e
r

c
h

o
o
s
e
r

=
n
e
w

J
F

il
e
C

h
o
o
s
e
r
(
)

;

c
h

o
o
s
e
r

.
s
e
t
D

ia
lo

g
T

it
le

(
”
C

h
o
o
se

a
n
s
w

e
r

s
e
t
s

t
o

sh
o
w

”
)
;

c
h

o
o
s
e
r

.
a
d

d
C

h
o
o
s
a
b

le
F

il
e
F

il
t
e
r
(

F
il

e
F

il
t
e
r
F

a
c
t
o
r
y

.
a
n
s
w

e
r
S
e
t
s
(
)
)
;

in
t

r
e
t
u

r
n

V
a
l

=
c
h

o
o
s
e
r

.
s
h
o
w

D
ia

lo
g

(
m

f
,

”
S
h
o
w

”
)
;

i
f

(
r
e
t
u

r
n

V
a
l

=
=

J
F

il
e
C

h
o
o
s
e
r

.A
P
P
R
O

V
E

O
P
T
IO

N
)

{
r
e
t
u
r
n c
h

o
o
s
e
r

.
g
e
t
S

e
le

c
t
e
d

F
il

e
(
)

.
g
e
t
A

b
s
o
lu

t
e
P

a
t
h

(
)

;
}

e
ls

e
{

r
e
t
u
r
n

n
u
ll

;
}

}
} C

.1
.4

T
ra

n
sl

a
to

r.
ja

v
a

p
a
c
k
a
g
e

lc
h

2
1

.
in

s
t
a

l
.
t
r
a
n

s
la

t
o
r
s

;

im
p
o
r
t

ja
v
a

.
io

.∗
;

/
∗∗ ∗

T
r
a
n
s
la

to
r

is
th

e
s
u
p
e
r
c
la

s
s

fo
r

a
ll

c
o
m

p
o
n
e
n
ts

w
h
ic

h
p
e
r
fo

r
m

so
m

e
∗

t
r
a
n
s
la

t
io

n
.

I
t

p
r
o
v
id

e
s

n
o
r
m

a
l

a
n
d

e
r
r
o
r

o
u
tp

u
t

s
tr

e
a
m

s
.

E
it

h
e
r

o
f

th
e
s
e

∗
c
a
n

b
e

s
a
f
e
ly

i
n

i
t
i
a
li

s
e
d

to
n
u
ll

,
w

h
ic

h
p
r
e
v
e
n
ts

o
u
tp

u
t

b
e
in

g
p
r
in

te
d

.
∗

T
r
a
n
s
la

to
r

a
ls

o
p
r
o
v
id

e
s

u
t
i
li

t
i
e
s

fo
r

h
a
n
d
li

n
g

p
r
o
c
e
s
s

I
/
O

.
∗

@
a
u
th

o
r

L
u
k
e

H
o
p
to

n
∗/

p
u
b
li

c
a
b
s
t
r
a
c
t

c
la

s
s

T
r
a
n

s
la

t
o
r

{

/
∗∗

O
u
tp

u
t

s
tr

e
a
m

to
u
s
e
.
∗/

p
r
o
t
e
c
t
e
d

P
r
in

t
S
t
r
e
a
m

o
u
t

=
S
y
st

e
m

.
o
u
t
;

/
∗∗

E
r
r
o
r

s
tr

e
a
m

to
u
s
e
.
∗/

p
r
o
t
e
c
t
e
d

P
r
in

t
S
t
r
e
a
m

e
r
r

=
S
y
st

e
m

.
e
r
r

;

/
∗∗ ∗

C
r
e
a
te

s
a

T
r
a
n
s
la

to
r

t
h
a
t

w
i
ll

u
s
e

th
e

s
p
e
c
i
f
i
e
d

s
tr

e
a
m

∗
fo

r
a
ll

o
u
tp

u
t
.

∗
@

p
a
ra

m
o
u
t

O
u
tp

u
t

s
tr

e
a
m

.
∗/

p
u
b
li

c
T

r
a
n

s
la

t
o
r
(
P

r
in

t
S
t
r
e
a
m

o
u
t
)

{
t
h
is

.
o
u
t

=
o
u
t
;

t
h
is

.
e
r
r

=
o
u
t
;

} /
∗∗ ∗

C
r
e
a
te

s
a

T
r
a
n
s
la

to
r

t
h
a
t

w
i
ll

u
s
e

th
e

s
p
e
c
i
f
i
e
d

s
tr

e
a
m

s

APPENDIX C. SOURCE CODE LISTINGS 106

∗
fo

r
o
u
tp

u
t
.

∗
@

p
a
ra

m
o
u
t

O
u
tp

u
t

s
tr

e
a
m

fo
r

t
h
i
s

T
r
a
n
s
la

to
r
.

∗
@

p
a
ra

m
e
r
r

E
r
r
o
r

s
tr

e
a
m

fo
r

t
h
i
s

T
r
a
n
s
la

to
r
.

∗/
p
u
b
li

c
T

r
a
n

s
la

t
o
r
(
P

r
in

t
S
t
r
e
a
m

o
u
t

,
P

r
in

t
S
t
r
e
a
m

e
r
r
)

{
t
h
is

.
o
u
t

=
o
u
t
;

t
h
is

.
e
r
r

=
e
r
r

;
} /
∗∗ ∗

P
r
in

ts
th

e
s
p
e
c
i
f
i
e
d

s
t
r
in

g
to

th
e

o
u
tp

u
t

s
tr

e
a
m

,
th

e
n

te
r
m

in
a
te

s
th

e
∗

li
n

e
.

I
f

th
e

s
p
e
c
i
f
i
e
d

o
u
tp

u
t

s
tr

e
a
m

is
n
u
ll

,
d
o
e
s

n
o
th

in
g

(
i
.
e
.

p
r
in

t
in

g
∗

is
n
u
ll
−

s
a
fe

)
.

∗
@

p
a
ra

m
s

S
tr

in
g

to
p
r
in

t
.

∗/
p
u
b
li

c
v
o
id

p
r
in

t
O

u
t
(
S

t
r
in

g
s
)
{

i
f

(
o
u
t

!=
n
u
ll

)
{

o
u
t
.
p

r
in

t
ln

(
s
)
;

}
} /
∗∗ ∗

P
r
in

ts
th

e
s
p
e
c
i
f
i
e
d

s
t
r
in

g
to

th
e

e
r
r
o
r

s
tr

e
a
m

,
th

e
n

te
r
m

in
a
te

s
th

e
∗

li
n

e
.

I
f

th
e

s
p
e
c
i
f
i
e
d

o
u
tp

u
t

s
tr

e
a
m

is
n
u
ll

,
d
o
e
s

n
o
th

in
g

(
i
.
e
.

p
r
in

t
in

g
∗

is
n
u
ll
−

s
a
fe

)
.

∗
@

p
a
ra

m
s

S
tr

in
g

to
p
r
in

t
.

∗/
p
u
b
li

c
v
o
id

p
r
in

t
E

r
r
(
S

t
r
in

g
s
)
{

i
f

(
e
r
r

!=
n
u
ll

)
{

e
r
r

.
p

r
in

t
ln

(
s
)
;

}
} /
∗∗ ∗

P
r
in

ts
to

th
e

o
u
tp

u
t

s
tr

e
a
m

fo
r

t
h
i
s

t
r
a
n
s
la

t
o
r

a
ll

o
u
tp

u
t

∗
fr

o
m

th
e

s
p
e
c
i
f
i
e
d

p
r
o
c
e
s
s

,
∗

@
p
a
ra

m
p

P
r
o
c
e
s
s

to
h
a
n
d
le

o
u
tp

u
t

fr
o
m

.
∗/

p
r
o
t
e
c
t
e
d

v
o
id

p
r
o
c
e
s
s
O

u
t
p
u
t
(
P

r
o
c
e
s
s

p
)

{
t
r
y

{

/
/

r
e
a
d

o
u
tp

u
t

fr
o
m

th
e

p
r
o
g
r
a
m

In
p
u
t
S
t
r
e
a
m

in
=

p
.
g
e
t
In

p
u
t
S
t
r
e
a
m

(
)

;
B

u
ff

e
r
e
d
R

e
a
d
e
r

r
e
a
d

=
n
e
w

B
u
ff

e
r
e
d
R

e
a
d
e
r
(

n
e
w

In
p
u
t
S
t
r
e
a
m

R
e
a
d
e
r
(
in

)
)
;

S
t
r
in

g
li

n
e

;
S

t
r
in

g
B

u
il

d
e
r

b
u

il
d

e
r

=
n
e
w

S
t
r
in

g
B

u
il

d
e
r
(
1
0
0
)

;

w
h
il
e

(
(

li
n

e
=

r
e
a
d

.
r
e
a
d

L
in

e
(
)
)

!=
n
u
ll

)
{

b
u

il
d

e
r

.
a
p
p
e
n
d

(
li

n
e

)
;

b
u

il
d

e
r

.
a
p
p
e
n
d

(
”
\n

”
)
;

} r
e
a
d

.
c
lo

s
e

(
)

;

i
f

(
b

u
il

d
e
r

.
le

n
g
t
h

(
)

>
0
)
{

p
r
in

t
O

u
t
(”
I
n

s
t
E

d
it

:
I
n

fo
:

E
x
t
e
r
n

a
l

p
r
o
c
e
s
s

o
u
t
p
u
t

.
.
.
”
)
;

p
r
in

t
O

u
t
(
b

u
il

d
e
r

.
t
o
S

t
r
in

g
(
)
)
;

p
r
in

t
O

u
t
(”
I
n

s
t
E

d
it

:
I
n

fo
:

.
.
.

e
n
d

o
f

p
r
o
c
e
s
s

o
u
t
p
u
t
.\

n
”
)
;

o
u
t
.
fl

u
s
h

(
)

;
}

}
c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{
h

a
n

d
le

E
r
r
o
r
(
io

e
)
;

}
} /
∗∗ ∗

P
r
in

ts
to

th
e

e
r
r
o
r

s
tr

e
a
m

fo
r

t
h
i
s

t
r
a
n
s
la

t
o
r

a
ll

e
r
r
o
r
s

∗
fr

o
m

th
e

s
p
e
c
i
f
i
e
d

p
r
o
c
e
s
s

,
∗

@
p
a
ra

m
p

P
r
o
c
e
s
s

to
h
a
n
d
le

e
r
r
o
r
s

fr
o
m

.
∗/

p
r
o
t
e
c
t
e
d

v
o
id

p
r
o
c
e
s
s
E

r
r
o
r
s
(
P

r
o
c
e
s
s

p
)

{
t
r
y

{ /
/

r
e
a
d

e
r
r
o
r
s

fr
o
m

th
e

p
ro

g
ra

m
m

In
p
u
t
S
t
r
e
a
m

in
=

p
.
g
e
t
E

r
r
o
r
S
t
r
e
a
m

(
)

;

B
u
ff

e
r
e
d
R

e
a
d
e
r

r
e
a
d

=
n
e
w

B
u
ff

e
r
e
d
R

e
a
d
e
r
(

n
e
w

In
p
u
t
S
t
r
e
a
m

R
e
a
d
e
r
(
in

)
)
;

APPENDIX C. SOURCE CODE LISTINGS 107

S
t
r
in

g
B

u
il

d
e
r

b
u

il
d

e
r

=
n
e
w

S
t
r
in

g
B

u
il

d
e
r
(
1
0
0
0
)

;
S

t
r
in

g
li

n
e

=
r
e
a
d

.
r
e
a
d

L
in

e
(
)

;

w
h
il
e

(
li

n
e

!=
n
u
ll

)
{

b
u

il
d

e
r

.
a
p
p
e
n
d

(
li

n
e

)
;

b
u

il
d

e
r

.
a
p
p
e
n
d

(
”
\n

”
)
;

li
n

e
=

r
e
a
d

.
r
e
a
d

L
in

e
(
)

;
} r
e
a
d

.
c
lo

s
e

(
)

;

i
f

(
b

u
il

d
e
r

.
le

n
g
t
h

(
)

>
0
)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
I
n

fo
:

E
x
t
e
r
n

a
l

p
r
o
c
e
s
s

e
r
r
o
r
s

.
.
.
”
)
;

p
r
in

t
E

r
r
(
b

u
il

d
e
r

.
t
o
S

t
r
in

g
(
)
)
;

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
I
n

fo
:

.
.
.

e
n
d

o
f

p
r
o
c
e
s
s

e
r
r
o
r
s

.\
n
”
)
;

e
r
r

.
fl

u
s
h

(
)

;
}

}
c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{
h

a
n

d
le

E
r
r
o
r
(
io

e
)
;

}
} /
∗∗ ∗

W
r
it

e
s

d
a
ta

fr
o
m

o
n
e

s
tr

e
a
m

to
a
n
o
th

e
r
.

∗
@

p
a
ra

m
in

S
o
u
r
c
e

s
tr

e
a
m

.
∗

@
p
a
ra

m
o
u
t

D
e
s
ti

n
a
ti

o
n

s
tr

e
a
m

.
∗/

p
u
b
li

c
s
t
a
t
ic

v
o
id

p
ip

e
(
In

p
u
t
S
t
r
e
a
m

in
,

O
u
tp

u
tS

tr
e
a
m

o
u
t
)

t
h
r
o
w

s
IO

E
x
c
e
p
t
io

n
{

B
u
ff

e
r
e
d
R

e
a
d
e
r

r
=

n
e
w

B
u
ff

e
r
e
d
R

e
a
d
e
r
(

n
e
w

In
p
u
t
S
t
r
e
a
m

R
e
a
d
e
r
(
in

)
)
;

B
u

ff
e
r
e
d

W
r
it

e
r

w
=

n
e
w

B
u

ff
e
r
e
d

W
r
it

e
r
(

n
e
w

O
u
tp

u
t
S
tr

e
a
m

W
r
it

e
r
(
o
u
t
)
)
;

S
t
r
in

g
li

n
e

=
r
.
r
e
a
d

L
in

e
(
)

;

w
h
il
e

(
li

n
e

!=
n
u
ll

)
{

w
.
w

r
it

e
(
li

n
e

)
;

w
.
n
e
w

L
in

e
(
)

;

li
n

e
=

r
.
r
e
a
d

L
in

e
(
)

;
} r

.
c
lo

s
e

(
)

;
w

.
fl

u
s
h

(
)

;
w

.
c
lo

s
e

(
)

;
} /
∗∗ ∗

H
a
n
d
le

s
a
n

e
x
c
e
p
ti

o
n

b
y

r
e
p
o
r
t
in

g
i
t

o
n

th
e

e
r
r
o
r

s
tr

e
a
m

.
∗/

p
r
o
t
e
c
t
e
d

v
o
id

h
a
n

d
le

E
r
r
o
r
(
E

x
c
e
p
t
io

n
e
)
{

p
r
in

t
E

r
r
(
”

I
n

s
t
E

d
it

:
E

r
r
o
r
:

”
+

e
.
g
e
t
M

e
s
s
a
g
e

(
)
)
;

} /
∗∗ ∗

P
r
in

ts
a

m
e
s
s
a
g
e

to
o
u
tp

u
t

to
in

fo
r
m

o
f

c
o
m

p
le

ti
o
n

o
f

ta
s
k

.
∗/

p
r
o
t
e
c
t
e
d

v
o
id

c
o
m

p
le

t
e
M

e
s
s
a
g
e

(
)

{
p
r
in

t
O

u
t
(
”

I
n

s
t
E

d
it

:
I
n

fo
:

D
o
n
e
!
”
)
;

} /
∗∗ ∗

F
lu

s
h
e
s

b
o
th

o
u
tp

u
t

s
tr

e
a
m

s
.

∗/
p
u
b
li

c
v
o
id

fl
u

s
h

(
)

{
o
u
t
.
fl

u
s
h

(
)

;
e
r
r

.
fl

u
s
h

(
)

;
} /
∗∗ ∗

W
r
it

e
s

th
e

o
u
tp

u
t

fr
o
m

a
p
r
o
c
e
s
s

to
f
i
le

.
∗/

p
u
b
li

c
v
o
id

o
u
t
p
u
t
T

o
F

il
e
(
P

r
o
c
e
s
s

p
,

S
t
r
in

g
f
i
l
e

)
{

t
r
y

{ /
/

r
e
a
d

o
u
tp

u
t

fr
o
m

th
e

p
r
o
g
r
a
m

In
p
u
t
S
t
r
e
a
m

in
=

p
.
g
e
t
In

p
u
t
S
t
r
e
a
m

(
)

;
B

u
ff

e
r
e
d
R

e
a
d
e
r

r
e
a
d

=
n
e
w

B
u
ff

e
r
e
d
R

e
a
d
e
r
(

n
e
w

In
p
u
t
S
t
r
e
a
m

R
e
a
d
e
r
(
in

)
)
;

S
t
r
in

g
li

n
e

;
B

u
ff

e
r
e
d

W
r
it

e
r

w
r
it

e
r

=
n
e
w

B
u

ff
e
r
e
d

W
r
it

e
r
(

n
e
w

F
il

e
W

r
it

e
r
(

f
i
l
e

)
)
;

APPENDIX C. SOURCE CODE LISTINGS 108

w
h
il
e

(
(

li
n

e
=

r
e
a
d

.
r
e
a
d

L
in

e
(
)
)

!=
n
u
ll

)
{

w
r
it

e
r

.
w

r
it

e
(
li

n
e

)
;

w
r
it

e
r

.
n
e
w

L
in

e
(
)

;
} r
e
a
d

.
c
lo

s
e

(
)

;
w

r
it

e
r

.
fl

u
s
h

(
)

;
w

r
it

e
r

.
c
lo

s
e

(
)

;

}
c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{
h

a
n

d
le

E
r
r
o
r
(
io

e
)
;

}
} /
∗∗ ∗

S
t
r
ip

s
<

c
o
d
e
>

e
x
t
<

/
c
o
d
e
>

fr
o
m

<
c
o
d
e
>

f
i
le

<
/
c
o
d
e

>
,

i
f

p
r
e
s
e
n
t
.

∗
@

p
a
ra

m
f
i
le

F
il

e
n
a
m

e
to

s
t
r
i
p

fr
o
m

.
∗

@
p
a
ra

m
e
x
t

E
x
te

n
s
io

n
to

s
t
r
i
p

o
f
f
.

∗
@

r
e
tu

r
n

S
tr

ip
p
e
d

fi
le

n
a
m

e
.

∗/
p
u
b
li

c
s
t
a
t
ic

S
t
r
in

g
s
t
r
ip

E
x
t
e
n

s
io

n
(
S

t
r
in

g
f
il

e
,

S
t
r
in

g
e
x
t
)

{
i
f

(
!
e
x
t
.
s
t
a
r
t
s
W

it
h

(
”

.
”
)
)

{
e
x
t

=
”

.
”

+
e
x
t
;

} i
f

(
!

f
i
l
e

.
e
n
d
sW

it
h

(
e
x
t
)
)

{
r
e
t
u
r
n

f
i
l
e

;
} in

t
id

x
=

f
i
l
e

.
le

n
g
t
h

(
)
−

e
x
t
.
le

n
g
t
h

(
)

;

r
e
t
u
r
n

f
i
l
e

.
s
u

b
s
t
r
in

g
(
0

,
id

x
)
;

}
} C

.1
.5

In
st

a
lT

ra
n
sl

a
to

r.
ja

v
a

p
a
c
k
a
g
e

lc
h

2
1

.
in

s
t
a

l
.
t
r
a
n

s
la

t
o
r
s

;

im
p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
a
p
p

.
A

p
p

li
c
a
t
io

n
S

e
t
t
in

g
s

;
im

p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
a
p
p

.
I
n

s
t
a
lT

o
o
ls

M
a
n

a
g
e
r
;

im
p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
a
p
p

.
P

r
o
je

c
t

;

im
p
o
r
t

ja
v
a

.
io

.∗
;

im
p
o
r
t

ja
v
a

.
u

t
il

.
V

e
c
t
o
r
;

/
∗∗ ∗

I
n
s
t
a
lT

r
a
n
s
la

t
o
r

p
r
o
v
id

e
s

th
e

f
u
n

c
t
i
o
n

a
li

t
y

to
t
r
a
n

s
la

t
e

In
s
tA

L
c
o
d
e

∗
in

to
A
S
P

.
T

h
a
t

is
,

in
t
h
i
s

v
e
r
s
io

n
i
t

c
a
ll

s
th

e
g
e
n
a
s
p

u
t
i
li

t
y

(
b
y

O
w
en

∗
C

li
f
f
e

)
a
s

a
n

e
x
t
e
r
n
a
l

p
r
o
c
e
s
s
.

∗
@

a
u
th

o
r

L
u
k
e

H
o
p
to

n
∗/

p
u
b
li

c
c
la

s
s

I
n

s
t
a
lT

r
a
n

s
la

t
o
r

e
x
t
e
n
d
s

T
r
a
n

s
la

t
o
r

{

/
/

G
e
n
a
sp

u
s
e
a
g
e
:

/
/

g
e
n
a
s
p

[−
m

m
u
lt

i
f
i
le

]
[−

d
d
o
m

a
in

]
[−

o
o
u
tp

u
t
]

<
fi

le
n
a
m

e
1

>
..

.

/
∗∗ ∗

C
r
e
a
te

s
a
n

I
n
s
t
a
lT

r
a
n
s
la

t
o
r

t
h
a
t

w
i
ll

u
s
e

th
e

s
p
e
c
i
f
i
e
d

s
tr

e
a
m

∗
fo

r
a
ll

o
u
tp

u
t
.

∗
@

p
a
ra

m
o
u
t

O
u
tp

u
t

s
tr

e
a
m

.
∗/

p
u
b
li

c
I
n

s
t
a
lT

r
a
n

s
la

t
o
r
(
P

r
in

t
S
t
r
e
a
m

o
u
t
)

{
s
u
p
e
r
(
o
u
t
)
;

} /
∗∗ ∗

C
r
e
a
te

s
a
n

I
n
s
t
a
lT

r
a
n
s
la

t
o
r

t
h
a
t

w
i
ll

u
s
e

th
e

s
p
e
c
i
f
i
e
d

s
tr

e
a
m

s
∗

fo
r

o
u
tp

u
t
.

∗
@

p
a
ra

m
o
u
t

O
u
tp

u
t

s
tr

e
a
m

.
∗/

p
u
b
li

c
I
n

s
t
a
lT

r
a
n

s
la

t
o
r
(
P

r
in

t
S
t
r
e
a
m

o
u
t

,
P

r
in

t
S
t
r
e
a
m

e
r
r
)

{
s
u
p
e
r
(
o
u
t

,
e
r
r
)
;

} /
∗∗ ∗

T
a
k
e
s

a
p
r
o
je

c
t

a
n
d

t
r
a
n

s
la

t
e
s

th
e

In
s
tA

L
f
i
le

s
to

A
S
P

.
∗

@
p
a
ra

m
p

P
r
o
je

c
t

to
t
r
a
n

s
la

t
e

.

APPENDIX C. SOURCE CODE LISTINGS 109

∗
@

r
e
tu

r
n

P
a
th

w
h
e
r
e

o
u
tp

u
t

w
a
s

w
r
it

t
e
n

o
r

∗
<

c
o
d
e
>

n
u
ll

<
/
c
o
d
e
>

i
f

s
o
m

e
th

in
g

w
e
n
t

w
r
o
n
g

a
t

in
d
e
x

0
,

∗
q
u
e
r
y

p
a
th

(
o
r

<
c
o
d
e
>

n
u
ll

<
/
c
o
d
e
>

)
a
t

in
d
e
x

1
.

∗/
p
u
b
li

c
S

t
r
in

g
[
]

t
r
a
n

s
la

t
e

(
P

r
o
je

c
t

p
)

{
S

t
r
in

g
[
]

r
e
s
u

lt
=

n
e
w

S
t
r
in

g
[
2

]
;

S
t
r
in

g
cm

d
=

b
u
il
d
C

o
m

m
a
n
d

(
p

)
;

i
f

(
cm

d
=
=

n
u
ll

)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

E
r
r
o
r

t
r
a
n

s
la

t
in

g
p

r
o
je

c
t

\”
”

+
p

.
g
e
tN

a
m

e
(
)

+
”
\”

”
)
;

fl
u

s
h

(
)

;
r
e
t
u
r
n

n
u
ll

;
} p

r
in

t
O

u
t
(
”

I
n

s
t
E

d
it

:
I
n

fo
:

E
x
e
c
u
t
in

g
co

m
m

a
n
d

:
”
)
;

p
r
in

t
O

u
t
(
cm

d
+

”
\n

”
)
;

/
/

c
a
ll

th
e

co
m

m
a
n
d

t
r
y

{ P
r
o
c
e
s
s

p
r
o
c

=
R

u
n
ti

m
e
.
g
e
tR

u
n
ti

m
e
(
)

.
e
x
e
c
(
cm

d
)
;

/
/

p
r
in

t
o
u
tp

u
t
,

th
e
n

e
r
r
o
r
s

,
th

e
n

r
e
p
o
r
t

t
h
a
t

w
e

a
r
e

d
o
n
e

p
r
o
c
e
s
s
O

u
t
p
u
t
(
p
r
o
c
)
;

p
r
o
c
e
s
s
E

r
r
o
r
s
(
p
r
o
c
)
;

c
o
m

p
le

t
e
M

e
s
s
a
g
e

(
)

;
fl

u
s
h

(
)

;

r
e
s
u

lt
[1

]
=

t
r
a
n

s
la

t
e
Q

u
e
r
y

(
p

)
;

r
e
s
u

lt
[0

]
=

b
u
il

d
O

u
t
p
u
t
P

a
t
h

(
p

)
;

r
e
t
u
r
n

r
e
s
u

lt
;

}
c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{
p

r
in

t
E

r
r
(
”

I
n

s
t
E

d
it

:
E

r
r
o
r
:

”
+

io
e

.
g
e
t
M

e
s
s
a
g
e

(
)
)
;

r
e
t
u
r
n

n
u
ll

;
}

} /
∗∗

∗
B

u
il

d
s

a
co

m
m

o
n
d

to
g
e
n
e
r
a
te

A
S
P

u
s
in

g
<

c
o
d
e
>

g
e
n
a
s
p

<
/
c
o
d
e
>

∗
fo

r
th

e
s
p
e
c
i
f
i
e
d

p
r
o
je

c
t
.

∗
@

p
a
ra

m
p

P
r
o
je

c
t

to
b
u
il

d
o
u
tp

u
t

fo
r
.

∗
@

r
e
tu

r
n

C
o
m

m
a
n
n
d

to
t
r
a
n

s
la

t
e

p
r
o
je

c
t

in
to

A
S
P

,
o
r

∗
<

c
o
d
e
>

n
u
ll

<
/
c
o
d
e
>

i
f

a
n

e
r
r
o
r

o
c
c
u
r
s
.

∗/
p
r
iv

a
t
e

S
t
r
in

g
b
u
il
d
C

o
m

m
a
n
d

(
P

r
o
je

c
t

p
)

{
I
n

s
t
a
lT

o
o
ls

M
a
n

a
g
e
r

m
a
n

=
I
n

s
t
a
lT

o
o
ls

M
a
n

a
g
e
r
.
g
e
tM

a
n
a
g
e
r
(
)

;

i
f

(
m

a
n

=
=

n
u
ll

)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

I
d
o
n

’
t

k
n
o
w

w
h
e
re

In
st

A
L

is
!
”
)
;

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

C
h
e
c
k

a
p

p
li

c
a
t
io

n
s
e
t
t
in

g
s

(
E

d
it

−>
S

e
t
t
in

g
s
)
.
”
)
;

r
e
t
u
r
n

n
u
ll

;
} /
/

q
u
o
te

s
m

e
ss

u
p

o
n

li
n
u
x

,
b
u
t

m
a
y

b
e

r
e
q
u
ir

e
d

o
n

w
in

d
o
w

s
.
.
.
.

/
/

S
tr

in
g

cm
d

=
g
e
n
a
s
p

+
”
−o

\”
”

+
o
u

t
f
i
le

+
”
\”

\”
”

+
i
n

f
i
le

+
”
\”

”
;

S
t
r
in

g
cm

d
=

m
a
n

.
g
e
n
a
s
p

(
)

;

S
t
r
in

g
m

=
p

.
g
e
t
M

u
lt

iP
a
t
h

(
)

;

i
f

(m
!=

n
u
ll

&
&

!m
.
e
q
u

a
ls

(
”
”
)
)

{
cm

d
+
=

”
−m

”
+

m
;

} S
t
r
in

g
d

=
p

.
g
e
tD

o
m

a
in

P
a
th

(
)

;

i
f

(
d

!=
n
u
ll

&
&

!d
.
e
q
u

a
ls

(
”
”
)
)

{
cm

d
+
=

”
−d

”
+

d
;

} S
t
r
in

g
o

=
b
u
il

d
O

u
t
p
u
t
P

a
t
h

(
p

)
;

cm
d

+
=

”
−o

”
+

o
;

V
e
c
t
o
r
<

S
t
r
in

g
>

in
s
t
s

=
p

.
g
e
t
I
n

s
t
it

u
t
io

n
s

(
)

;

APPENDIX C. SOURCE CODE LISTINGS 110

i
f

(
in

s
t
s

=
=

n
u
ll

||
in

s
t
s

.
s
iz

e
(
)

=
=

0
)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

P
r
o
je

c
t

m
u
st

h
a
v
e

a
t

le
a
s
t

”
+

”
o
n
e

in
s
t
it

u
t
io

n
t
o

t
r
a
n

s
la

t
e

.
”
)
;

r
e
t
u
r
n

n
u
ll

;
} fo

r
(
S

t
r
in

g
s

:
in

s
t
s
)

{
cm

d
+
=

”
”

+
s
;

} r
e
t
u
r
n

cm
d

;

} /
∗∗ ∗

C
r
e
a
te

s
a

f
i
le

p
a
t
h

fo
r

o
u
tp

u
t

fo
r

th
e

g
iv

e
n

p
r
o
je

c
t
.

∗
@

p
a
ra

m
p

P
r
o
je

c
t

b
e
in

g
t
r
a
n
s
la

t
e
d

.
∗/

p
r
iv

a
t
e

S
t
r
in

g
b
u
il

d
O

u
t
p
u
t
P

a
t
h

(
P

r
o
je

c
t

p
)

{
S

t
r
in

g
o

=
p

.
g
e
t
O

u
t
p

u
t
D

ir
e
c
t
o
r
y

(
)

;

i
f

(
o

!=
n
u
ll

&
&

!
o

.
e
q
u

a
ls

(
”
”
)
)

{
S

t
r
in

g
s
e
p

=
S
y
st

e
m

.
g
e
t
P

r
o
p

e
r
t
y

(
”

f
i
l
e

.
s
e
p

a
r
a
t
o
r
”
)
;

i
f

(
!
o

.
e
n
d
sW

it
h

(
s
e
p

)
)

{
o

+
=

s
e
p

;
} /
/

k
i
l
l

w
h
it

e
s
p
a
c
e

in
n
a
m

e
a
n
d

a
d
d

e
x
te

n
s
io

n
o

+
=

p
.
g
e
tN

a
m

e
(
)

.
r
e
p

la
c
e
A

ll
(
”

[
\t

]
”

,
”
”
)

+
”

.
lp

”
;

r
e
t
u
r
n

o
;

}
e
ls

e
{

/
/

n
o

o
u
tp

u
t

o
p
ti

o
n

s
o

ju
s
t

u
s
e

p
r
o
je

c
t

n
a
m

e
r
e
t
u
r
n

p
.
g
e
tN

a
m

e
(
)

.
r
e
p

la
c
e
A

ll
(
”

[
\t

]
”

,
”
”
)

+
”

.
lp

”
;

}
} /
∗∗

∗
T

r
a
n
s
la

te
s

th
e

q
u
e
r
y

fo
r

a
p
r
o
je

c
t
.

∗
@

p
a
ra

m
p

P
r
o
je

c
t

to
t
r
a
n

s
la

t
e

.
∗

@
r
e
tu

r
n

P
a
th

to
t
r
a
n
s
la

t
e
d

q
u
e
r
y

.
∗/

p
r
iv

a
t
e

S
t
r
in

g
t
r
a
n

s
la

t
e
Q

u
e
r
y

(
P

r
o
je

c
t

p
)

{
S

t
r
in

g
q
r
y

=
p

.
g
e
tQ

u
e
ry

P
a
th

(
)

;

/
/

n
o

q
u
e
r
y

to
t
r
a
n

s
la

t
e

!
i
f

(
q
r
y

=
=

n
u
ll

||
q
r
y

.
e
q
u

a
ls

(
”
”
)
)

{
r
e
t
u
r
n

n
u
ll

;
} I
n

s
t
q

lT
r
a
n

s
la

t
o
r

t
r
a
n

s
=

n
e
w

I
n

s
t
q

lT
r
a
n

s
la

t
o
r
(
o
u
t

,
e
r
r
)
;

r
e
t
u
r
n

t
r
a
n

s
.
t
r
a
n

s
la

t
e

(
q
r
y

)
;

}

} C
.1

.6
In

st
q
lT

ra
n
sl

a
to

r.
ja

v
a

p
a
c
k
a
g
e

lc
h

2
1

.
in

s
t
a

l
.
t
r
a
n

s
la

t
o
r
s

;

im
p
o
r
t

ja
v
a

.
io

.∗
;

im
p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
a
p
p

.
In

s
t
q
lT

o
o
ls

M
a
n
a
g
e
r
;

/
∗∗ ∗

P
r
o
v
id

e
s

th
e

a
b
i
lu

i
t
y

to
t
r
a
n

s
la

t
e

In
s
tQ

L
q
u
e
r
ie

s
in

to
A
S
P

∗
th

r
o
u
g
h

th
e

e
x
t
e
r
n
a
l

In
s
tQ

L
t
o
o
ls

e
t
.

∗
@

a
u
th

o
r

L
u
k
e

H
o
p
to

n
∗/

p
u
b
li

c
c
la

s
s

I
n

s
t
q

lT
r
a
n

s
la

t
o
r

e
x
t
e
n
d
s

T
r
a
n

s
la

t
o
r

{
p
u
b
li

c
I
n

s
t
q

lT
r
a
n

s
la

t
o
r
(
P

r
in

t
S
t
r
e
a
m

o
u
t
)

{
s
u
p
e
r
(
o
u
t
)
;

} p
u
b
li

c
I
n

s
t
q

lT
r
a
n

s
la

t
o
r
(
P

r
in

t
S
t
r
e
a
m

o
u
t

,
P

r
in

t
S
t
r
e
a
m

e
r
r
)

{

APPENDIX C. SOURCE CODE LISTINGS 111

s
u
p
e
r
(
o
u
t

,
e
r
r
)
;

} /
∗∗ ∗

T
r
a
n
s
la

te
s

a
n

In
s
tQ

L
q
u
e
r
y

in
to

A
S
P

.
∗

@
p
a
ra

m
f
i
le

F
il

e
p
a
t
h

to
In

s
tQ

L
q
u
e
r
y

to
t
r
a
n

s
la

t
e

.
∗

@
r
e
tu

r
n

F
il

e
p
a
t
h

to
t
r
a
n
s
la

t
e
d

A
S
P

q
u
e
r
y

.
∗/

p
u
b
li

c
S

t
r
in

g
t
r
a
n

s
la

t
e

(
S

t
r
in

g
f
i
l
e

)
{

In
s
t
q
lT

o
o
ls

M
a
n
a
g
e
r

m
a
n

=
In

s
t
q
lT

o
o
ls

M
a
n
a
g
e
r
.
g
e
tM

a
n
a
g
e
r
(
)

;

i
f

(
m

a
n

=
=

n
u
ll

)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

I
d
o
n

’
t

k
n
o
w

w
h
e
re

In
st

Q
L

is
!
”
)
;

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

C
h
e
c
k

a
p

p
li

c
a
t
io

n
s
e
t
t
in

g
s

(
E

d
it

−>
S

e
t
t
in

g
s
)
.
”
)
;

fl
u

s
h

(
)

;
r
e
t
u
r
n

n
u
ll

;
} S

t
r
in

g
cm

d
=

m
a
n

.
in

s
t
q

l
(
)

;

cm
d

+
=

”
”

+
f
i
l
e

;

p
r
in

t
O

u
t
(
”

I
n

s
t
E

d
it

:
I
n

fo
:

E
x
e
c
u
t
in

g
co

m
m

a
n
d

:
”
)
;

p
r
in

t
O

u
t
(
cm

d
+

”
\n

”
)
;

S
t
r
in

g
o
u

t
F

il
e

=
s
t
r
ip

E
x
t
e
n

s
io

n
(

f
il

e
,

”
iq

l
”
)
;

o
u

t
F

il
e

+
=

”
.
q
u
e
r
y

.
lp

”
;

t
r
y

{ F
il

e
w

d
=

n
e
w

F
il

e
(
m

a
n

.
g
e
t
P

a
t
h

(
)
)
;

P
r
o
c
e
s
s

p
=

R
u
n
ti

m
e
.
g
e
tR

u
n
ti

m
e
(
)

.
e
x
e
c
(
cm

d
,

n
u
ll

, w
d
)
;

p
r
o
c
e
s
s
E

r
r
o
r
s
(
p

)
;

o
u
t
p
u
t
T

o
F

il
e
(
p

,
o
u

t
F

il
e

)
;

fl
u

s
h

(
)

;
r
e
t
u
r
n

o
u

t
F

il
e

;
}

c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{

h
a
n

d
le

E
r
r
o
r
(
io

e
)
;

fl
u

s
h

(
)

;
r
e
t
u
r
n

n
u
ll

;
}

}
} C

.1
.7

A
n
sw

e
rS

e
tS

o
lv

e
r.

ja
v
a

p
a
c
k
a
g
e

lc
h

2
1

.
in

s
t
a

l
.
t
r
a
n

s
la

t
o
r
s

;

im
p
o
r
t

ja
v
a

.
io

.∗
;

im
p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
a
p
p

.
A

p
p

li
c
a
t
io

n
S

e
t
t
in

g
s

;
im

p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
a
p
p

.
I
n

s
t
a
lT

o
o
ls

M
a
n

a
g
e
r
;

im
p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
a
p
p

.
In

s
t
q
lT

o
o
ls

M
a
n
a
g
e
r
;

/
∗∗ ∗

T
a
k
e
s

A
S
P

g
e
n
e
r
a
te

d
b
y

In
s
tA

L
(<

c
o
d
e
>

g
e
n
a
s
p

<
/
c
o
d
e
>

)
a
n
d

∗
s
o
lv

e
s

i
t

to
p
r
o
d
u
c
e

a
n

o
u
tp

u
t

a
n
s
w

e
r

s
e
t
.

S
o
lv

in
g

is
d
o
n
e

b
y

∗
a
n

e
x
t
e
r
n
a
l

c
a
ll

to
L
P

a
r
s
e
/
S
m

o
d
e
ls

.
A

ss
u
m

e
s

L
P

a
r
s
e

a
n
d

S
m

o
d
e
ls

∗
a
r
e

in
p
a
th

.
∗

@
a
u
th

o
r

L
u
k
e

H
o
p
to

n
∗/

p
u
b
li

c
c
la

s
s

A
n
s
w

e
r
S
e
t
S
o
lv

e
r

e
x
t
e
n
d
s

T
r
a
n

s
la

t
o
r

{

/
∗∗

H
o
w

to
c
a
ll

L
P

a
r
s
e
.
∗/

p
r
iv

a
t
e

s
t
a
t
ic

f
in

a
l

S
t
r
in

g
L
P
A

R
S
E

=
”

lp
a
r
s
e
”

;

/
∗∗

H
o
w

to
c
a
ll

S
m

o
d
e
ls

.
∗/

p
r
iv

a
t
e

s
t
a
t
ic

f
in

a
l

S
t
r
in

g
S
M

O
D

E
L
S

=
”
s
m

o
d
e
ls

”
;

/
/

d
e
fa

u
lt

n
u
m

b
e
r

o
f

a
n
s
w

e
r

s
e
t
s

to
r
e
tu

r
n

:
p
r
iv

a
t
e

s
t
a
t
ic

f
in

a
l

in
t

N
U

M
S
E
T

S
=

1
0
;

p
r
iv

a
t
e

in
t

in
s
t
a
n

c
e
s

=
0
;

p
r
iv

a
t
e

I
n

s
t
a
lT

o
o
ls

M
a
n

a
g
e
r

m
a
n

;
p
r
iv

a
t
e

In
s
t
q
lT

o
o
ls

M
a
n
a
g
e
r

iq
lm

a
n

;

APPENDIX C. SOURCE CODE LISTINGS 112

/
∗∗ ∗

C
r
e
a
te

s
a
n

A
n
s
w

e
r
S
e
tS

o
lv

e
r

t
h
a
t

w
i
ll

u
s
e

th
e

s
p
e
c
i
f
i
e
d

s
tr

e
a
m

∗
fo

r
a
ll

o
u
tp

u
t
.

∗
@

p
a
ra

m
o
u
t

O
u
tp

u
t

s
tr

e
a
m

.
∗

@
p
a
ra

m
n

N
u
m

b
e
r

o
f

ti
m

e
in

s
ta

n
c
e
s

to
g
e
n
e
r
a
te

.
∗/

p
u
b
li

c
A

n
s
w

e
r
S
e
t
S
o
lv

e
r
(
P

r
in

t
S
t
r
e
a
m

o
u
t

,
in

t
n

)
{

s
u
p
e
r
(
o
u
t
)
;

in
s
t
a
n

c
e
s

=
n

;
} /
∗∗ ∗

C
r
e
a
te

s
a
n

A
n
s
w

e
r
S
e
tS

o
lv

e
r

t
h
a
t

w
i
ll

u
s
e

th
e

s
p
e
c
i
f
i
e
d

s
tr

e
a
m

s
∗

fo
r

o
u
tp

u
t
.

∗
@

p
a
ra

m
o
u
t

O
u
tp

u
t

s
tr

e
a
m

.
∗

@
p
a
ra

m
e
r
r

E
r
r
o
r

s
tr

e
a
m

.
∗

@
p
a
ra

m
n

N
u
m

b
e
r

o
f

ti
m

e
in

s
ta

n
c
e
s

to
g
e
n
e
r
a
te

.
∗/

p
u
b
li

c
A

n
s
w

e
r
S
e
t
S
o
lv

e
r
(
P

r
in

t
S
t
r
e
a
m

o
u
t

,
P

r
in

t
S
t
r
e
a
m

e
r
r

,
in

t
n

)
{

s
u
p
e
r
(
o
u
t

,
e
r
r
)
;

in
s
t
a
n

c
e
s

=
n

;
} /
∗∗ ∗

U
s
e
s

L
P

a
r
s
e
/
S
m

o
d
e
ls

to
c
o
m

p
u
te

th
e

a
n
s
w

e
r

s
e
t
s

fo
r

th
e

∗
f
i
le

s
p
e
c
i
f
i
e
d

.
T

h
e

f
i
le

s
h
o
u
ld

c
o
n
ta

in
t
e
x
t

s
u
i
t
a
b
le

a
s

∗
in

p
u
t

fo
r

L
P

a
r
s
e

(
i
.
e
.

a
<

c
o
d
e

>
.l

p
<

/
c
o
d
e
>

f
i
le

)
.

∗
@

p
a
ra

m
in

s
t

I
n

s
t
i
t
u
t
i
o
n

a
l

m
o
d
e
l

to
s
o
lv

e
.

∗
@

p
a
ra

m
q
r
y

Q
u
e
r
y

to
u
s
e
.

P
a
s
s

<
c
o
d
e
>

n
u
ll

<
/
c
o
d
e
>

to
n
o
t

u
s
e

a
q
u
e
r
y

.
∗

@
p
a
ra

m
m

u
lt

i
I
f

tr
u
e

,
c
o
m

p
u
te

s
fo

r
a

m
u
lt

i
∗

r
a
th

e
r

th
a
n

s
in

g
le

i
n

s
t
i
t
u
t
i
o
n

.
∗/

p
u
b
li

c
v
o
id

t
r
a
n

s
la

t
e

(
S

t
r
in

g
in

s
t

,
S

t
r
in

g
q
ry

,
b
o
o
le

a
n

m
u
lt

i
)

{
m

a
n

=
I
n

s
t
a
lT

o
o
ls

M
a
n

a
g
e
r
.
g
e
tM

a
n
a
g
e
r
(
)

;
iq

lm
a
n

=
In

s
t
q
lT

o
o
ls

M
a
n
a
g
e
r
.
g
e
tM

a
n
a
g
e
r
(
)

;
i
f

(
m

a
n

=
=

n
u
ll

)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

I
d
o
n

’
t

k
n
o
w

w
h
e
re

In
st

A
L

is
!
”
)
;

fl
u

s
h

(
)

;
r
e
t
u
r
n

;
} i
f

(
iq

lm
a
n

=
=

n
u
ll

)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

I
d
o
n

’
t

k
n
o
w

w
h
e
re

In
st

Q
L

is
!
”
)
;

fl
u

s
h

(
)

;
r
e
t
u
r
n

;
} /
/

g
r
o
u
n
d

p
r
o
g
r
a
m

a
n
d

c
o
ll

e
c
t

o
u
tp

u
t

In
p
u
t
S
t
r
e
a
m

in
=

g
ro

u
n
d

(
in

s
t

,
q
ry

,
m

u
lt

i
)
;

/
/

s
o
lv

e
g
r
o
u
n
d

p
r
o
g
r
a
m

s
o
lv

e
(
in

s
t

,
in

)
;

c
o
m

p
le

t
e
M

e
s
s
a
g
e

(
)

;
fl

u
s
h

(
)

;
} /
∗∗ ∗

C
r
e
a
te

s
a

co
m

m
a
n
d

t
h
a
t

w
i
ll

s
t
a
r
t

a
n
e
w

p
r
o
c
e
s
s

to
g
r
o
u
n
d

∗
th

e
s
p
e
c
i
f
i
e
d

f
i
le

.
∗

@
p
a
ra

m
in

s
t

P
a
th

to
th

e
fi

le
n
a
m

e
to

s
o
lv

e
.

∗
@

p
a
ra

m
q
r
y

Q
u
e
r
y

to
u
s
e

,
o
r

n
u
ll

.
∗

@
r
e
tu

r
n

C
o
m

m
a
n
d

to
s
o
lv

e
f
i
le

,
o
r

n
u
ll

i
f

s
o
m

e
th

in
g

w
e
n
t

w
r
o
n
g

∗
(
e
.
g
.

p
a
th

w
a
s

n
u
ll

/
e
m

p
ty

)
.

∗/
p
r
iv

a
t
e

S
t
r
in

g
b
u
il
d
G

ro
u
n
d
C

o
m

m
a
n
d

(
S

t
r
in

g
in

s
t

,
S

t
r
in

g
q
ry

,
b
o
o
le

a
n

m
u
lt

i
)

{
i
f

(
in

s
t

=
=

n
u
ll

||
in

s
t

.
e
q
u

a
ls

(
”
”
)
)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

F
il

e
n
a
m

e
r
e
q
u

ir
e
d

t
o

g
ro

u
n
d

.
”
)
;

r
e
t
u
r
n

n
u
ll

;
} S

t
r
in

g
b
a
s
e

=
g
e
t
B

a
s
e
P

r
o
g
r
a
m

s
(
m

u
lt

i
)
;

i
f

(
b
a
s
e

=
=

n
u
ll

)
{

APPENDIX C. SOURCE CODE LISTINGS 113

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

P
ro

b
le

m
fi

n
d

in
g

b
a
s
e

p
r
o
g
r
a
m

s
.
”
)
;

r
e
t
u
r
n

n
u
ll

;
} S

t
r
in

g
t
im

e
=

b
u
il
d
T

im
e
N

a
m

e
(
in

s
t
)
;

i
f

(
!
g
e
n
e
r
a
t
e
T

im
e
(
t
im

e
)
)

{
r
e
t
u
r
n

n
u
ll

;
} S

t
r
in

g
cm

d
=

L
P
A

R
S
E

+
”

”
+

in
s
t

+
”

”
+

b
a
s
e

+
”

”
+

t
im

e
;

/
/

a
d
d

q
u
e
r
y

a
n
d

In
s
tQ

L
li

b
r
a
r
y

f
i
le

s
i
f

q
u
e
r
y

is
p
r
e
s
e
n
t

i
f

(
q
r
y

!=
n
u
ll

)
{

S
t
r
in

g
q
ry

T
im

e
=

iq
lm

a
n

.
ti

m
e
P

ro
g
ra

m
(
)

;

cm
d

+
=

”
”

+
q
r
y

+
”

”
+

q
ry

T
im

e
;

S
t
r
in

g
q
r
y
P

r
e
d

e
f

=
iq

lm
a
n

.
p
r
e
d
e
fs

P
r
o
g
r
a
m

(
)

;

cm
d

+
=

”
”

+
q
r
y
P

r
e
d

e
f
;

} r
e
t
u
r
n

cm
d

;
} /
∗∗ ∗

B
u
il

d
s

a
fi

le
n
a
m

e
fo

r
a

f
i
le

c
o
n
ta

in
in

g
ti

m
e

in
s
t
a
n
t
s
.

∗
@

p
a
ra

m
f
i
le

p
a
t
h

P
a
th

to
p
r
o
g
r
a
m

t
h
a
t

ti
m

e
w

i
ll

b
e

a
s
s
o
c
ia

t
e
d

w
it

h
.

∗
@

r
e
tu

r
n

A
n
e
w

f
i
le

p
a
t
h

w
h
e
r
e

th
e

a
s
s
o
c
ia

t
e
d

ti
m

e
p
r
o
g
r
a
m

s
h
o
u
ld

b
e

∗
s
to

r
e
d

.
∗/

p
r
iv

a
t
e

S
t
r
in

g
b
u
il
d
T

im
e
N

a
m

e
(
S

t
r
in

g
f
il

e
p

a
t
h

)
{

f
il

e
p

a
t
h

=
s
t
r
ip

E
x
t
e
n

s
io

n
(
fi

le
p

a
t
h

,
”

lp
”
)
;

r
e
t
u
r
n

f
il

e
p

a
t
h

+
”

.
t
im

e
”

;
} /
∗∗ ∗

B
u
il

d
s

a
fi

le
n
a
m

e
fo

r
a
n
s
w

e
r

s
e
t
s

o
u
tp

u
t

fr
o
m

s
m

o
d
e
ls

.
∗

@
p
a
ra

m
f
i
le

p
a
t
h

P
a
th

to
b
u
il

d
fr

o
m

.
∗

@
r
e
tu

r
n

N
ew

f
i
le

p
a
t
h

to
s
t
o
r
e

a
n
s
w

e
r

s
e
t
s
.

∗/
p
r
iv

a
t
e

S
t
r
in

g
b
u
il

d
A

n
sw

e
rN

a
m

e
(
S

t
r
in

g
f
il

e
p

a
t
h

)
{

f
il

e
p

a
t
h

=
s
t
r
ip

E
x
t
e
n

s
io

n
(
fi

le
p

a
t
h

,
”

lp
”
)
;

r
e
t
u
r
n

f
il

e
p

a
t
h

+
”

.
sm

o
u
t
”

;
} /
∗∗ ∗

R
u
n
s

a
p
r
o
c
e
s
s

to
g
r
o
u
n
d

th
e

p
r
o
g
r
a
m

s
p
e
c
i
f
i
e
d

.
∗

@
p
a
ra

m
in

s
t

L
o
c
a
ti

o
n

o
f

i
n

s
t
i
t
u
t
i
o
n

p
r
o
g
r
a
m

to
g
r
o
u
n
d

.
∗

@
p
a
ra

m
q
r
y

Q
u
e
r
y

to
u
s
e

o
r

n
u
ll

.
∗

@
p
a
ra

m
m

u
lt

i
I
s

th
e

p
r
o
g
r
a
m

a
m

u
lt

i−
i
n

s
t
i
t
u
t
i
o
n

m
o
d
e
l?

∗
@

r
e
tu

r
n

I
n
p
u
t

s
tr

e
a
m

c
o
n
ta

in
in

g
o
u
tp

u
t

fr
o
m

g
r
o
u
n
d
in

g
,

∗
o
r

<
c
o
d
e
>

n
u
ll

<
/
c
o
d
e
>

i
f

s
o
m

e
th

in
g

w
e
n
t

w
r
o
n
g
.

∗/
p
r
iv

a
t
e

In
p
u
t
S
t
r
e
a
m

g
ro

u
n
d

(
S

t
r
in

g
in

s
t

,
S

t
r
in

g
q
ry

,
b
o
o
le

a
n

m
u
lt

i
)

{
S

t
r
in

g
cm

d
=

b
u
il
d
G

ro
u
n
d
C

o
m

m
a
n
d

(
in

s
t

,
q
ry

,
m

u
lt

i
)
;

/
/

m
a
k
e

s
u
r
e

w
e

h
a
v
e

a
co

m
m

a
n
d

to
e
x
e
c
u
te

i
f

(
cm

d
=
=

n
u
ll

)
{

r
e
t
u
r
n

n
u
ll

;
} p

r
in

t
O

u
t
(
”

I
n

s
t
E

d
it

:
I
n

fo
:

E
x
e
c
u
t
in

g
co

m
m

a
n
d

:
”
)
;

p
r
in

t
O

u
t
(
cm

d
+

”
\n

”
)
;

t
r
y

{ P
r
o
c
e
s
s

p
=

R
u
n
ti

m
e
.
g
e
tR

u
n
ti

m
e
(
)

.
e
x
e
c
(
cm

d
)
;

/
∗

In
so

m
e

c
a
s
e
s

lp
a
r
s
e

w
a
s

n
o
t

in
d
ic

a
t
in

g
e
n
d

o
f

s
tr

e
a
m

∗
w
h
e
n

th
e
r
e

w
e
r
e

n
o

e
r
r
o
r
s

w
h
ic

h
c
a
u
s
e
s

t
h
i
s

to
b
lo

c
k

∗
w

it
h

lp
a
r
s
e

in
th

e
”
p
ip

e
w

a
it

”
s
t
a
t
e

∗/
/
/

p
r
o
c
e
s
s
E

r
r
o
r
s
(
p
)
;

/
/

d
is

p
la

y
e
r
r
o
r
s

b
u
t

n
o
t

o
u
tp

u
t

r
e
t
u
r
n

p
.
g
e
t
In

p
u
t
S
t
r
e
a
m

(
)

;

APPENDIX C. SOURCE CODE LISTINGS 114

}
c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{
h

a
n

d
le

E
r
r
o
r
(
io

e
)
;

r
e
t
u
r
n

n
u
ll

;
}

} /
∗∗ ∗

S
o
lv

e
s

a
n

A
S
P

p
r
o
g
r
a
m

.
∗

@
p
a
ra

m
in

I
n
p
u
t

fo
r

s
o
lv

in
g
−

o
u
tp

u
t

fr
o
m

g
r
o
u
n
d
in

g
.

∗
@

p
a
ra

m
f
i
le

p
a
t
h

O
r
ig

in
a
l

A
S
P

f
i
le

b
e
in

g
s
o
lv

e
d

.
∗

@
r
e
tu

r
n

F
il

e
p
a
t
h

to
o
u
tp

u
t

fr
o
m

s
o
lv

e
r
.

∗/
p
r
iv

a
t
e

S
t
r
in

g
s
o
lv

e
(
S

t
r
in

g
fi

le
p

a
t
h

,
In

p
u
t
S
t
r
e
a
m

in
)

{
i
f

(
in

=
=

n
u
ll

)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
N

o
o
u
t
p
u
t

fr
o
m

g
r
o
u
n
d
in

g
−

n
o
t
h
in

g
t
o

s
o
lv

e
!
”
)
;

r
e
t
u
r
n

n
u
ll

;
} t
r
y

{ S
t
r
in

g
cm

d
=

S
M

O
D

E
L
S

+
”

”
+

g
e
tN

u
m

b
e
rA

n
sw

e
rS

e
ts

(
)

;

p
r
in

t
O

u
t
(
”

I
n

s
t
E

d
it

:
I
n

fo
:

E
x
e
c
u
t
in

g
co

m
m

a
n
d

:
”
)
;

p
r
in

t
O

u
t
(
cm

d
)
;

P
r
o
c
e
s
s

p
=

R
u
n
ti

m
e
.
g
e
tR

u
n
ti

m
e
(
)

.
e
x
e
c
(
cm

d
)
;

O
u
tp

u
tS

tr
e
a
m

o
u
t

=
p

.
g
e
t
O

u
t
p
u
t
S
t
r
e
a
m

(
)

;

/
/

c
o
p
y

d
a
ta

fr
o
m

in
to

o
u
t

p
ip

e
(
in

,
o
u
t
)
;

S
t
r
in

g
o
u

t
F

il
e

=
b
u
il

d
A

n
sw

e
rN

a
m

e
(
f
il

e
p

a
t
h

)
;

o
u
t
p
u
t
T

o
F

il
e
(
p

,
o
u

t
F

il
e

)
;

p
r
o
c
e
s
s
E

r
r
o
r
s
(
p

)
;

p
r
in

t
O

u
t
(”
I
n

s
t
E

d
it

:
I
n

fo
:

A
n
sw

e
r

s
e
t
s

w
r
it

t
e
n

o
n

”
+

o
u

t
F

il
e

)
;

r
e
t
u
r
n

o
u

t
F

il
e

;

}
c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{
h

a
n

d
le

E
r
r
o
r
(
io

e
)
;

r
e
t
u
r
n

n
u
ll

;
}

} /
∗∗ ∗

G
e
ts

th
e

n
u
m

b
e
r

o
f

a
n
s
w

e
r

s
e
t
s

to
c
o
m

p
u
te

.
∗/

p
r
iv

a
t
e

in
t

g
e
tN

u
m

b
e
rA

n
sw

e
rS

e
ts

(
)

{
A

p
p

li
c
a
t
io

n
S

e
t
t
in

g
s

a
p
p

=
A

p
p

li
c
a
t
io

n
S

e
t
t
in

g
s

.
g
e
t
S

e
t
t
in

g
s

(
)

;
S

t
r
in

g
n

=
a
p
p

.
g
e
t
P

r
o
p

e
r
t
y

(
A

p
p

li
c
a
t
io

n
S

e
t
t
in

g
s

.N
U

M
A

N
S
W

E
R

S
E
T
S
)
;

/
/

u
s
e

d
e
fa

u
lt

i
f

n
o

p
r
o
p
e
r
ty

is
s
p
e
c
i
f
i
e
d

i
f

(
n

=
=

n
u
ll

||
n

.
t
r
im

(
)

.
e
q
u

a
ls

(
”
”
)
)

{
r
e
t
u
r
n

N
U

M
S
E
T

S
;

} t
r
y

{ in
t

i
=

I
n

t
e
g
e
r

.
p

a
r
s
e
I
n

t
(
n

)
;

r
e
t
u
r
n

i
;

}
c
a
t
c
h

(
N

u
m

b
e
rF

o
rm

a
tE

x
c
e
p
ti

o
n

n
fe

)
{

r
e
t
u
r
n

N
U

M
S
E
T

S
;

}
} /
∗∗ ∗

R
e
tu

r
n
s

th
e

b
a
s
e

p
r
o
g
r
a
m

s
r
e
q
u
ir

e
d

to
c
o
m

p
u
te

a
ll

t
r
a
c
e
s

o
f

a
n

∗
i
n

s
t
i
t
u
t
i
o
n

.
T

h
is

is
d
i
f
f
e
r
e
n

t
fo

r
s
in

g
le

a
n
d

m
u
lt

i
i
n

s
t
i
t
u
t
i
o
n

s
.

∗
@

p
a
ra

m
m

u
lt

i
I
f

tr
u
e

,
g
e
t
s

th
e

m
u
lt

i−
i
n

s
t
i
t
u
t
i
o
n

p
r
o
g
r
a
m

s
.

∗
@

r
e
tu

r
n

S
tr

in
g

g
iv

in
g

lo
c
a
t
io

n
s

to
r
e
q
u
ir

e
d

p
r
o
g
r
a
m

s
.

∗/
p
r
iv

a
t
e

S
t
r
in

g
g
e
t
B

a
s
e
P

r
o
g
r
a
m

s
(
b
o
o
le

a
n

m
u
lt

i
)

{
S

t
r
in

g
b

=
m

a
n

.
b
a
se

P
ro

g
ra

m
(
)

;

S
t
r
in

g
t
;

i
f

(
m

u
lt

i
)

{

APPENDIX C. SOURCE CODE LISTINGS 115

t
=

m
a
n

.
m

u
lt

iT
r
a
c
e
P

r
o
g
r
a
m

(
)

;
}

e
ls

e
{

t
=

m
a
n

.
t
r
a
c
e
P

r
o
g
r
a
m

(
)

;
} r
e
t
u
r
n

b
+

”
”

+
t
;

} /
∗∗ ∗

G
e
n
e
r
a
te

s
ti

m
e

in
s
ta

n
c
e
s

u
s
in

g
th

e
g
e
n
ti

m
e

u
t
i
li

t
y

b
y

O
w
en

C
li

f
f
e

.
∗

T
h
e

n
u
m

b
e
r

o
f

in
s
ta

n
c
e
s

to
g
e
n
e
r
a
te

is
s
p
e
c
i
f
i
e
d

in
th

e
c
o
n
s
tr

u
c
to

r
∗

fo
r

A
n
s
w

e
r
S
e
tS

o
lv

e
r
.

∗
@

p
a
ra

m
n

N
u
m

b
e
r

o
f

ti
m

e
in

s
t
a
n
t
s

to
g
e
n
e
r
a
te

.
∗

@
p
a
ra

m
f
i
le

p
a
t
h

F
il

e
p
a
t
h

to
s
a
v
e

ti
m

e
to

.
∗

@
r
e
tu

r
n

T
r
u
e

i
f

a
n
d

o
n
ly

i
f

ti
m

e
g
e
n
e
r
a
te

d
s
u
c
c
e
s
s
f
u
ll

y
.

∗
@

se
e

#
A

n
s
w

e
r
S
e
tS

o
lv

e
r
(
P

r
in

tS
tr

e
a
m

,
in

t
)

∗
@

se
e

#
A

n
s
w

e
r
S
e
tS

o
lv

e
r
(
P

r
in

tS
tr

e
a
m

,
P

r
in

tS
tr

e
a
m

,
in

t
)

∗/
p
r
iv

a
t
e

b
o
o
le

a
n

g
e
n
e
r
a
t
e
T

im
e
(
S

t
r
in

g
f
il

e
p

a
t
h

)
{

S
t
r
in

g
g
e
n
t
im

e
=

m
a
n

.
g
e
n
t
im

e
(
)

;

S
t
r
in

g
cm

d
=

g
e
n
t
im

e
+

”
”

+
in

s
t
a
n

c
e
s

;

t
r
y

{ p
r
in

t
O

u
t
(”
I
n

s
t
E

d
it

:
I
n

fo
:

G
e
n
e
r
a
t
in

g
”

+
in

s
t
a
n

c
e
s

+
”

t
im

e
in

s
t
a
n

c
e

(
s
)
.
”
)
;

P
r
o
c
e
s
s

p
=

R
u
n
ti

m
e
.
g
e
tR

u
n
ti

m
e
(
)

.
e
x
e
c
(
cm

d
)
;

In
p
u
t
S
t
r
e
a
m

in
=

p
.
g
e
t
In

p
u
t
S
t
r
e
a
m

(
)

;
F

il
e
O

u
t
p
u
t
S
t
r
e
a
m

o
u
t

=
n
e
w

F
il

e
O

u
t
p
u
t
S
t
r
e
a
m

(
f
il

e
p

a
t
h

)
;

/
/

w
r
it

e
to

f
i
le

p
ip

e
(
in

,
o
u
t
)
;

p
r
o
c
e
s
s
E

r
r
o
r
s
(
p

)
;

r
e
t
u
r
n

t
r
u
e

;
}

c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{
h

a
n

d
le

E
r
r
o
r
(
io

e
)
;

r
e
t
u
r
n

f
a
ls

e
;

}

}
} C

.1
.8

V
is

u
a
li
se

r.
ja

v
a

p
a
c
k
a
g
e

lc
h

2
1

.
in

s
t
a

l
.
t
r
a
n

s
la

t
o
r
s

;

im
p
o
r
t

ja
v
a

.
io

.∗
;

im
p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
a
p
p

.
A

p
p

li
c
a
t
io

n
S

e
t
t
in

g
s

;
im

p
o
r
t

lc
h

2
1

.
in

s
t
a

l
.
a
p
p

.
I
n

s
t
a
lT

o
o
ls

M
a
n

a
g
e
r
;

/
∗∗ ∗

A
ll

o
w

s
v
i
s
u
a
li

s
a
t
i
o
n

o
f

a
n
s
w

e
r

s
e
t
s

u
s
in

g
e
it

h
e
r

∗
I
n
s
tV

iz
(
p
a
r
t

o
f

th
e

In
s
tA

L
t
o
o
ls

e
t
)

o
r

∗
<

a
h
r
e
f=

”
h
t
t
p

:/
/
w
w
w

.
g
r
a
p
h
v
iz

.
o
r
g
”>

G
r
a
p
h
v
iz

<
/
a
>

.
∗

@
a
u
th

o
r

L
u
k
e

H
o
p
to

n
∗/

p
u
b
li

c
c
la

s
s

V
is

u
a
li

s
e
r

e
x
t
e
n
d
s

T
r
a
n

s
la

t
o
r

{
p
r
iv

a
t
e

s
t
a
t
ic

f
in

a
l

S
t
r
in

g
D
O
T

=
”
d
o
t
−T

p
s
”

;

p
r
iv

a
t
e

I
n

s
t
a
lT

o
o
ls

M
a
n

a
g
e
r

m
a
n

=
n
u
ll

;

/
∗∗ ∗

C
r
e
a
te

s
a

n
e
w

V
is

u
a
li

s
e
r

t
h
a
t

w
i
ll

d
is

p
la

y
in

fo
r
m

a
ti

o
n

a
n
d

∗
e
r
r
o
r
s

o
n

th
e

s
p
e
c
i
f
i
e
d

s
tr

e
a
m

.
∗/

p
u
b
li

c
V

is
u

a
li

s
e
r
(
P

r
in

t
S
t
r
e
a
m

o
u
t
)

{
s
u
p
e
r
(
o
u
t
)
;

} /
∗∗ ∗

C
r
e
a
te

s
a

n
e
w

V
is

u
a
li

s
e
r

t
h
a
t

w
i
ll

d
is

p
la

y
in

fo
r
m

a
ti

o
n

a
n
d

∗
e
r
r
o
r
s

o
n

th
e

s
p
e
c
i
f
i
e
d

s
tr

e
a
m

s
.

∗/
p
u
b
li

c
V

is
u

a
li

s
e
r
(
P

r
in

t
S
t
r
e
a
m

o
u
t

,
P

r
in

t
S
t
r
e
a
m

e
r
r
)
{

s
u
p
e
r
(
o
u
t

,
e
r
r
)
;

}

APPENDIX C. SOURCE CODE LISTINGS 116

/
∗∗ ∗

G
e
n
e
r
a
te

s
a

G
r
a
p
h
v
iz

g
r
a
p
h

(
in

P
o
s
tS

c
r
ip

t
fo

r
m

a
t
)

fr
o
m

th
e

∗
s
p
e
c
i
f
i
e
d

f
i
le

.
∗

@
p
a
ra

m
f
i
le

p
a
t
h

P
a
th

to
f
i
le

c
o
n
ta

in
in

g
a
n
s
w

e
r

s
e
t
s
.

∗/
p
u
b
li

c
v
o
id

c
r
e
a
t
e
G

r
a
p
h

(
S

t
r
in

g
f
il

e
p

a
t
h

)
{

m
a
n

=
I
n

s
t
a
lT

o
o
ls

M
a
n

a
g
e
r
.
g
e
tM

a
n
a
g
e
r
(
)

;
i
f

(
m

a
n

=
=

n
u
ll

)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

I
d
o
n

’
t

k
n
o
w

w
h
e
re

In
st

A
L

is
!
”
)
;

fl
u

s
h

(
)

;
r
e
t
u
r
n

;
} S

t
r
in

g
d

o
t
F

il
e

=
ru

n
G

e
n
g
ra

p
h

(
f
il

e
p

a
t
h

)
;

i
f

(
d

o
t
F

il
e

=
=

n
u
ll

)
{

r
e
t
u
r
n

;
} ru

n
D

o
t
(
d

o
t
F

il
e

)
;

c
o
m

p
le

t
e
M

e
s
s
a
g
e

(
)

;
fl

u
s
h

(
)

;
} /
∗∗ ∗

R
u
n
s

g
e
n
g
r
a
p
h

to
g
e
n
e
r
a
te

a
G

r
a
p
h
v
iz

f
i
le

fr
o
m

th
e

s
p
e
c
i
f
i
e
d

∗
f
i
le

c
o
n
ta

in
in

g
a
n
s
w

e
r

s
e
t
s
.

∗/
p
r
iv

a
t
e

S
t
r
in

g
ru

n
G

e
n
g
ra

p
h

(
S

t
r
in

g
f
il

e
p

a
t
h

)
{

S
t
r
in

g
cm

d
=

m
a
n

.
g
e
n
g
r
a
p
h

(
)

;
S

t
r
in

g
o
F

il
e

=
s
t
r
ip

E
x
t
e
n

s
io

n
(
fi

le
p

a
t
h

,
”
sm

o
u
t
”
)

+
”

.
d
o
t
”

;
S

t
r
in

g
o
u
t

=
”−

o
”

+
o
F

il
e

;

cm
d

+
=

”
”

+
o
u
t

+
”

”
+

f
il

e
p

a
t
h

;

t
r
y

{ p
r
in

t
O

u
t
(
”

I
n

s
t
E

d
it

:
I
n

fo
:

C
a
ll

in
g

co
m

m
a
n
d

:
”
)
;

p
r
in

t
O

u
t
(
cm

d
)
;

P
r
o
c
e
s
s

p
=

R
u
n
ti

m
e
.
g
e
tR

u
n
ti

m
e
(
)

.
e
x
e
c
(
cm

d
)
;

p
r
o
c
e
s
s
O

u
t
p
u
t
(
p

)
;

p
r
o
c
e
s
s
E

r
r
o
r
s
(
p

)
;

fl
u

s
h

(
)

;
r
e
t
u
r
n

o
F

il
e

;
}

c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{
h

a
n

d
le

E
r
r
o
r
(
io

e
)
;

fl
u

s
h

(
)

;
r
e
t
u
r
n

n
u
ll

;
}

} /
∗∗ ∗

R
u
n
s

G
r
a
p
h
v
iz

(<
c
o
d
e
>

d
o
t
<

/
c
o
d
e
>

)
to

g
e
n
e
r
a
te

a
P

o
s
tS

c
r
ip

t
g
r
a
p
h

∗
fr

o
m

th
e

s
p
e
c
i
f
i
e
d

f
i
le

.
∗

@
p
a
ra

m
f
i
le

p
a
t
h

P
a
th

to
a

<
c
o
d
e

>
.d

o
t
<

/
c
o
d
e
>

f
i
le

.
∗/

p
r
iv

a
t
e

v
o
id

ru
n
D

o
t
(
S

t
r
in

g
f
il

e
p

a
t
h

)
{

S
t
r
in

g
cm

d
=

D
O
T

;
S

t
r
in

g
o
F

il
e

=
s
t
r
ip

E
x
t
e
n

s
io

n
(
fi

le
p

a
t
h

,
”
d
o
t
”
)

+
”

.
p
s
”

;

cm
d

+
=

”
”

+
f
il

e
p

a
t
h

+
”
−o

”
+

o
F

il
e

;

t
r
y

{ p
r
in

t
O

u
t
(
”

I
n

s
t
E

d
it

:
I
n

fo
:

C
a
ll

in
g

co
m

m
a
n
d

:
”
)
;

p
r
in

t
O

u
t
(
cm

d
)
;

P
r
o
c
e
s
s

p
=

R
u
n
ti

m
e
.
g
e
tR

u
n
ti

m
e
(
)

.
e
x
e
c
(
cm

d
)
;

p
r
o
c
e
s
s
O

u
t
p
u
t
(
p

)
;

p
r
o
c
e
s
s
E

r
r
o
r
s
(
p

)
;

p
r
in

t
O

u
t
(
”

I
n

s
t
E

d
it

:
I
n

fo
:

W
ro

te
”

+
o
F

il
e

)
;

}
c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{
h

a
n

d
le

E
r
r
o
r
(
io

e
)
;

}
} /
∗∗ ∗

L
a
u
n
c
h
e
s

I
n
s
tV

iz
to

d
is

p
la

y
a
n
s
w

e
r

s
e
t
s
.

∗
@

p
a
ra

m
f
i
le

p
a
t
h

F
il

e
c
o
n
ta

in
in

g
a
n
s
w

e
r

s
e
t
s
.

APPENDIX C. SOURCE CODE LISTINGS 117

∗/
p
u
b
li

c
v
o
id

la
u

n
c
h

I
n

s
t
V

iz
(
S

t
r
in

g
f
il

e
p

a
t
h

)
{

m
a
n

=
I
n

s
t
a
lT

o
o
ls

M
a
n

a
g
e
r
.
g
e
tM

a
n
a
g
e
r
(
)

;
i
f

(
m

a
n

=
=

n
u
ll

)
{

p
r
in

t
E

r
r
(”
I
n

s
t
E

d
it

:
E

r
r
o
r
:

I
d
o
n

’
t

k
n
o
w

w
h
e
re

In
st

A
L

is
!
”
)
;

fl
u

s
h

(
)

;
r
e
t
u
r
n

;
} S

t
r
in

g
w

d
=

m
a
n

.
g
e
t
P

a
t
h

(
)

;

t
r
y

{ S
t
r
in

g
cm

d
=

m
a
n

.
in

s
t
v

iz
(
)

+
”

”
+

f
il

e
p

a
t
h

;

p
r
in

t
O

u
t
(
”

I
n

s
t
E

d
it

:
I
n

fo
:

C
a
ll

in
g

co
m

m
a
n
d

:
”
)
;

p
r
in

t
O

u
t
(
cm

d
)
;

/
/

u
s
e

In
s
tA

L
d
ir

e
c
t
o
r
y

a
s

w
o
r
k
in

g
d
ir

e
c
t
o
r
y

/
/

(
I
n
s
tV

iz
r
e
q
u
ir

e
s

c
o
n
fi

g
f
i
le

s
in

t
h
a
t

d
ir

e
c
t
o
r
y

)
P

r
o
c
e
s
s

p
=

R
u
n
ti

m
e
.
g
e
tR

u
n
ti

m
e
(
)

.
e
x
e
c
(
cm

d
,

n
u
ll

, n
e
w

F
il

e
(w

d
)
)
;

p
r
o
c
e
s
s
O

u
t
p
u
t
(
p

)
;

p
r
o
c
e
s
s
E

r
r
o
r
s
(
p

)
;

c
o
m

p
le

t
e
M

e
s
s
a
g
e

(
)

;
}

c
a
t
c
h

(
IO

E
x
c
e
p
t
io

n
io

e
)

{
h

a
n

d
le

E
r
r
o
r
(
io

e
)
;

}
f
in

a
ll

y
{

fl
u

s
h

(
)

;
}

}

} C
.2

In
st

Q
L

T
ra

n
sl

a
to

r

C
.2

.1
P
a
rs

e
r.

p
m

#
In

st
Q

L
:
:
P

a
r
s
e
r
.p

m
b
y

L
u
k
e

H
o
p
to

n
#

A
r
e
c
u

r
s
iv

e
d

e
s
c
e
n

t
p

a
r
s
e
r

fo
r

In
st

Q
L

.

p
a
c
k
a
g
e

In
st

Q
L

:
:
P

a
r
s
e
r
;

#
T
O
D
O

E
r
r
o
r

h
a
n

d
li

n
g

is
p
o
o
r
.

W
e
ll

fo
r
m

e
d

In
st

Q
L

w
il

l
p
r
o
d
u
c
e

#
c
o
r
r
e
c
t

A
S
P

b
u
t

b
a
d
ly

fo
rm

e
d

In
st

Q
L

c
a
n

b
e

”
u

n
p

r
e
d

ic
t
a
b

le
”

.

u
s
e

s
t
r
ic

t
;

u
s
e

P
a
r
s
e

:
:
R

e
c
D

e
s
c
e
n
t
;

u
s
e

In
st

Q
L

:
:
U

t
il

;

m
y

$
g
ra

m
m

a
r

=
q
{

#
n
o
t
e

t
h

a
t

in
t
e
g
e
r
s

a
r
e

o
n
ly

u
s
e
d

in
a
ft

e
r
(
n

)
s
t
a
t
e
m

e
n

t
s

#
t
h

e
s
e

r
e
q

u
ir

e
n

>
0

,
t
h
is

is
e
n

fo
r
c
e
d

s
y

n
t
a
c
t
ic

a
ll

y
IN

T
E
G

E
R

:
/
[1
−

9
][

0
−

9
]∗

/

N
A
M

E
:

/
[a
−z

]
[
a
−z

A
−Z

0
−9

]∗
/

{
$
r
e
t
u

r
n

=
$
it

e
m

[
1

]
;
}

V
A
R
N
A
M

E
:

/
[A
−Z

]
[
a
−z

A
−Z

0
−9

]∗
/

{
$
r
e
t
u

r
n

=
$
it

e
m

[
1

]
;
}

v
a

r
li

s
t

:
V
A
R
N
A
M

E
”

,”
v

a
r
li

s
t

{
$
r
e
t
u

r
n

=
”
$
it

e
m

[1
]
,

$
it

e
m

[3
]
”

;
}

|
V
A
R
N
A
M

E
{

$
r
e
t
u

r
n

=
$
it

e
m

[
1

]
;
}

p
a
ra

m
s
:

”
(
”

v
a

r
li

s
t

”
)
”

{
$
r
e
t
u

r
n

=
”
(
$
it

e
m

[2
])

”
;
}

id
e
n

t
if

ie
r

:
N
A
M

E
p
a
ra

m
s

{
$
r
e
t
u

r
n

=
$
it

e
m

[
1

]
.
$
it

e
m

[
2

]
;

}
|

N
A
M

E
{

$
r
e
t
u

r
n

=
$
it

e
m

[
1

]
;
}

v
a

r
id

e
n

t
if

ie
r

:
id

e
n

t
if

ie
r

|
V
A
R
N
A
M

E

N
E
G

:
”
n
o
t
”

p
r
e
d

ic
a
t
e

:
”
h
a
p
p
e
n
s
(
”

<
c
o
m

m
it

>
v

a
r

id
e
n

t
if

ie
r

”
)
”

{
m

y
$
in

s
t
a
n

t
=

In
st

Q
L

:
:
U

t
il

:
:
in

s
t
a
n

t
(
)

;

APPENDIX C. SOURCE CODE LISTINGS 118

#
a

t
y
p
o

in
In

st
A

L
s
p

e
ll

s
o
c
c
u

r
r
e
d

a
s

”
o
c
c
u
r
e
d

”
−

t
h
is

is
#

r
e
f
le

c
t
e
d

h
e
r
e

$
r
e
t
u

r
n

=
”
o
c
c
u
r
e
d

(
$
it

e
m

[3
]
,

$
in

s
t
a
n

t
)

,
e
v
e
n
t
(
$
it

e
m

[3
])

”
;

}
|

”
h

o
ld

s
(
”

<
c
o
m

m
it

>
v

a
r

id
e
n

t
if

ie
r

”
)
”

{
m

y
$
in

s
t
a
n

t
=

In
st

Q
L

:
:
U

t
il

:
:
in

s
t
a
n

t
(
)

;
$
r
e
t
u

r
n

=
”

h
o
ld

s
a
t
(
$
it

e
m

[3
]
,

$
in

s
t
a
n

t
)

,
if

lu
e
n

t
(
$
it

e
m

[3
])

”
;

}
|

<
e
r
r
o
r
?>

l
i
t
e
r
a

l
: N

E
G

p
r
e
d

ic
a
t
e

{
$
r
e
t
u

r
n

=
”
$
it

e
m

[1
]

$
it

e
m

[2
]
”

;
}

|
p

r
e
d

ic
a
t
e

c
o

n
d

it
io

n
li

t
e
r
a

l
:

N
E
G

id
e
n

t
if

ie
r

{
$
r
e
t
u

r
n

=
”
$
it

e
m

[1
]

$
it

e
m

[2
]
”

;
}

|
id

e
n

t
if

ie
r

w
h

il
e

e
x
p

r
:

l
i
t
e
r
a

l
”

w
h

il
e
”

w
h

il
e

e
x
p

r
{

$
r
e
t
u

r
n

=
”
$
it

e
m

[1
]
,

$
it

e
m

[3
]
”

;
}

|
l
i
t
e
r
a

l {
m

y
$
i

=
In

st
Q

L
:
:
U

t
il

:
:
in

s
t
a
n

t
(
)

;
$
r
e
t
u

r
n

=
”
$
it

e
m

[1
]
,

in
s
t
a
n

t
(
$
i
)
”

;
In

st
Q

L
:
:
U

t
il

:
:
p

u
s
h

I
n

s
t
a
n

t
(
)

;
In

st
Q

L
:
:
U

t
il

:
:
n

e
x
t
I
n

s
t
a
n

t
(
)

;
}

A
F
T
E
R

:
”

a
ft

e
r
(
”

IN
T
E
G

E
R

”
)
”

{
In

st
Q

L
:
:
U

t
il

:
:
p
u
s
h
A

ft
e
r
(
$
it

e
m

[2
])

;
}

|
”

a
ft

e
r
”

{
In

st
Q

L
:
:
U

t
il

:
:
p
u
s
h
A

ft
e
r
(
0
)

;
}

a
ft

e
r

e
x

p
r

:
w

h
il

e
e
x
p

r
A
F
T
E
R

a
ft

e
r

e
x

p
r

{
$
r
e
t
u

r
n

=
”
$
it

e
m

[1
]
,

$
it

e
m

[3
]
”

;
}

|
w

h
il

e
e
x
p

r
{

m
y

$
a

=
In

st
Q

L
:
:
U

t
il

:
:
a
ft

e
r

(
)

;
i
f
(
$
a

)
{

$
a

=
”

,
$
a
”

;
}

$
r
e
t
u

r
n

=
$
it

e
m

[
1

]
.

$
a

;
}

#
e
a
c
h

t
im

e
w

e
t
r
y

a
n
d

m
a
tc

h
a

te
rm

,
e
m

p
ty

in
s
t
a
n

t
s
t
a
c
k

te
rm

:
{

In
st

Q
L

:
:
U

t
il

:
:
e
m

p
t
y
S
t
a
c
k
s
(
)

;
}

a
ft

e
r

e
x

p
r

{
$
r
e
t
u

r
n

=
$
it

e
m

[
2

]
;
}

|
c
o

n
d

it
io

n
li

t
e
r
a

l

c
o
n

ju
n

c
t
io

n
:

te
rm

”
a
n
d
”

c
o
n

ju
n

c
t
io

n
{

$
r
e
t
u

r
n

=
”
$
it

e
m

[1
]
,

$
it

e
m

[3
]
”

;
}

|
te

rm
{

$
r
e
t
u

r
n

=
”
$
it

e
m

[1
]
”

;
}

d
is

ju
n

c
t
io

n
:

c
o
n

ju
n

c
t
io

n
”
o
r
”

d
is

ju
n

c
t
io

n
{

m
y

$
r
e
f

=
$
it

e
m

[
3

]
;

m
y

@
a
rr

a
y

=
@

$
r
e
f
;

u
n

s
h

if
t
(
@

a
rr

a
y

,
$
it

e
m

[1
])

;
$
r
e
t
u

r
n

=
\@

a
rr

a
y

;
}

|
c
o
n

ju
n

c
t
io

n
{

m
y

@
c
o
n
j

=
(
$
it

e
m

[1
])

;
$
r
e
t
u

r
n

=
\@

c
o
n
j
;
}

c
o
n

d
it

io
n

d
e
c
l
:

”
c
o
n

d
it

io
n

”
<

c
o
m

m
it

>
id

e
n

t
if

ie
r

”
:
”

d
is

ju
n

c
t
io

n
”

;
”

{
m

y
$
n
a
m

e
=

$
it

e
m

[
3

]
;

m
y

$
r
e
f

=
$
it

e
m

[
5

]
;

m
y

@
c
o
n
ju

n
c
t
io

n
s

=
@

$
r
e
f
;

m
y

@
r
e
s
u

lt
;

m
y

$
i

=
0
;

fo
r
e
a
c
h

(
@

c
o
n
ju

n
c
t
io

n
s
)

{

APPENDIX C. SOURCE CODE LISTINGS 119

@
r
e
s
u

lt
[
$
i
]

=
$
n
a
m

e
.

”
:−

”
.

$
.

”
.
”

;
$
i+

+
;

} $
r
e
t
u

r
n

=
\@

r
e
s
u

lt
;

}

c
o
n

s
t
r
a
in

t
:

”
c
o
n

s
t
r
a
in

t
”

d
is

ju
n

c
t
io

n
”

;
”

{
m

y
$
n
a
m

e
=

In
st

Q
L

:
:
U

t
il

:
:
c
o
n

d
it

io
n

(
)

;
m

y
$
r
e
f

=
$
it

e
m

[
2

]
;

m
y

@
c
o
n
ju

n
c
t
io

n
s

=
@

$
r
e
f
;

m
y

@
r
e
s
u

lt
;

m
y

$
i

=
0
;

fo
r
e
a
c
h

(
@

c
o
n
ju

n
c
t
io

n
s
)

{
@

r
e
s
u

lt
[
$
i
]

=
$
n
a
m

e
.

”
:−

”
.

$
.

”
.
”

;
$
i+

+
;

} @
r
e
s
u

lt
[
$
i
]

=
”
:−

n
o
t

$
n
a
m

e
.
”

;
$
r
e
t
u

r
n

=
\@

r
e
s
u

lt
;

}

s
t
a
t
e
m

e
n
t
:

c
o
n

d
it

io
n

d
e
c
l

|
c
o
n

s
t
r
a
in

t

s
t
a
r
t

:
s
t
a
t
e
m

e
n
t
(
s
)

}; su
b

g
e
t
P

a
r
s
e
r

{
m

y
$
p

a
r
s
e
r

=
P

a
r
s
e

:
:
R

e
c
D

e
s
c
e
n
t−

>
n
e
w

(
$
g
ra

m
m

a
r
)
;

r
e
t
u
r
n

$
p

a
r
s
e
r

;
} 1

;

C
.2

.2
U

ti
l.
p
m

#
In

st
Q

L
:
:
U

t
il

.p
m

b
y

L
u
k
e

H
o
p
to

n
#

P
r
o
v
id

e
s

h
e
lp

e
r

fu
n

c
t
io

n
s

fo
r

t
h
e

In
st

Q
L

p
a
r
s
e
r

.

p
a
c
k
a
g
e

In
st

Q
L

:
:
U

t
il

;

m
y

$
in

s
t
a
n

t
=

0
;

m
y

$
c
o
n

d
it

io
n

=
0
;

m
y

@
in

s
t
a
n

t
s

=
(
)

;
m

y
@

a
ft

e
r
s

=
(
)

;

#
In

c
r
e
m

e
n
t
s

t
h
e

in
s
t
a
n

t
c
o
u

n
t
e
r
.

su
b

n
e
x
t
I
n

s
t
a
n

t
{

$
in

s
t
a
n

t
+

+
;

} #
G

e
ts

t
h
e

c
u

r
r
e
n

t
in

s
t
a
n

t
v

a
r
ia

b
le

.
su

b
in

s
t
a
n

t
{

r
e
t
u
r
n

”
I
”

.
$
in

s
t
a
n

t
;

} #
G

e
ts

t
h
e

n
e
x
t

c
o
n

d
it

io
n

n
a
m

e
.

#
C

o
n
d
it

io
n

c
o
u

n
t
e
r

is
in

c
r
e
m

e
n
t
e
d

.
su

b
c
o
n

d
it

io
n

{
r
e
t
u
r
n

”
c
”

.
$
c
o
n

d
it

io
n

+
+

;
} #

P
u
s
h
e
s

c
u

r
r
e
n

t
in

s
t
a
n

t
o
n
t
o

in
s
t
a
n

t
s
t
a
c
k

.
su

b
p

u
s
h

I
n

s
t
a
n

t
{

p
u
sh

(
@

in
s
t
a
n
t
s

,
in

s
t
a
n

t
(
)
)
;

} #
E

m
p
ti

e
s

t
h
e

in
s
t
a
n

t
a
n
d

a
ft

e
r

s
t
a
c
k
s

.
su

b
e
m

p
t
y
S
t
a
c
k
s
{

@
in

s
t
a
n

t
s

=
(
)

;
@

a
ft

e
r
s

=
(
)

;
} #

B
u

il
d

s
a
n

e
x
p

r
e
s
s
io

n
o
f

t
h
e

fo
rm

”
a
ft

e
r
(
i0

,
i1

)
,

a
ft

e
r
(
i1

,
i2

)
,
.
.
.
”

#
fr

o
m

t
h
e

in
s
t
a
n

t
s
t
a
c
k

a
n
d

t
h
e
n

e
m

p
t
ie

s
t
h
e

s
t
a
c
k

.
su

b
a
ft

e
r

{
#

la
s
t

w
h
il
e

e
x
p

r
e
s
s
io

n
w

il
l

h
a
v
e

m
a
tc

h
e
d

t
w

ic
e

,
#

o
n
c
e

in
”

a
ft

e
r

::
=

w
h

il
e

A
F
T
E
R

a
ft

e
r
”

a
n
d

t
h
e
n

o
n
c
e

in
#

”
a
ft

e
r

::
=

w
h

il
e
”

s
o

d
is

c
a
r
d

p
e
n

u
lt

im
a
t
e

in
s
t
a
n

t
fr

o
m

#
f
i
r
s
t

(
in

c
o
r
r
e
c
t
)

m
a
tc

h
m

y
$
la

s
t

=
p
o
p

(
@

in
s
t
a
n

t
s
)
;

p
o
p

(
@

in
s
t
a
n

t
s
)
;

APPENDIX C. SOURCE CODE LISTINGS 120

p
u
sh

(
@

in
s
t
a
n
t
s

,
$
la

s
t
)
;

m
y

$
n

=
@

in
s
t
a
n

t
s

;
i
f
(
$
n

<
=

1
)
{

r
e
t
u
r
n

”
”

;
} m

y
$
i
;

m
y

$
s

=
”
”

;

fo
r

(
$
i

=
0
;

$
i

<
$
n
−

1
;

$
i+

+
)
{

$
s

.=
”

a
ft

e
r
(
$
in

s
t
a
n

t
s

[
$
i
]
,

$
in

s
t
a
n

t
s

[
$
i
+

1
]”

;

m
y

$
a

=
$
a
ft

e
r
s

[
$
i
]
;

#
s
p

e
c
if

y
h
o
w

fa
r

a
p

a
r
t

in
s
t
a
n

t
s

a
r
e

i
f
(
$
a

)
{ $

s
.=

”
,

$
a

)
”

;
}

e
ls

e
{ $

s
.=

”
)
”

;
}

i
f
(
$
i

<
$
n
−2

)
{

$
s

.=
”

,
”

;
}

} #
e
m

p
ty

in
s
t
a
n

t
s
t
a
c
k

@
in

s
t
a
n

t
s

=
(
)

;
@

a
ft

e
r
s

=
(
)

;

r
e
t
u
r
n

$
s
;

} #
P

u
s
h
e
s

a
n
u
m

b
e
r

o
n
t
o

t
h
e

a
ft

e
r

v
a
lu

e
s

s
t
a
c
k

.
su

b
p
u
s
h
A

ft
e
r

{
m

y
$
n

=
s
h

if
t

;
p
u
sh

(
@

a
ft

e
r
s

,
$
n

)
;

} 1
;

Appendix D

AQL: A Query Language for
Action Domains

In this appendix we present a paper on AQL – a reinterpretation of InstQL as a query
language for general action domains modelled in ASP and not just for institutions. Note
that the following paper is not the exclusive work of the author of this report.

121

AQL : A Query Language for Action Domains Modelled
using Answer Set Programming

Luke Hopton, Owen Cliffe, Marina De Vos, and Julian Padget

Department of Computer Science
University of Bath, BATH BA2 7AY, UK

lch21@bath.ac.uk,{occ,mdv,jap}@cs.bath.ac.uk

Abstract. We present a new general purpose query and constraint language for
reasoning about action domains that allows the processing of simultaneous events
or actions, definition of conditions and reasoning about fluents and actions. AQL provides
a simple declarative syntax for the specification of constraints on the histories (the
combination of action traces and state transitions) within the modelled domain.
Its semantics is provided by the translation of AQL queries into AnsProlog and
thus AQL acquires the benefits of the reasoning power provided by ASP: the
answer sets of programs obtained from combining the query and the domain de-
scription correspond to those histories of the domain changing over time that
satisfy the query. The result is a simple, high-level query and constraint language
that builds on ASP and through the synthesis of features offers a more flexible,
versatile and intuitive approach compared to existing languages. Furthermore,
due to the use of AnsProlog , AQL can also be used to reason about partial
histories.

1 Introduction

Action domains are a useful mechanism for modelling a variety of domains such as
planning, protocol definition, normative frameworks [1, 5, 6]. Given an action descrip-
tion we can use existing computational techniques, such as Answer Set Programming
for verifying or examining properties of these models. it is desirable that such a sys-
tem should allow designers to specify model properties with a high degree of flexibility
while offering qualitative properties of succinctness and human readability.

Action languages[3, 12] are a way of describing the effects formally using a frag-
ment of natural language. Central to action languages is notion of a transition system:
with every action (or the combined effects of simultaneous actions) the environment
changes. Traditionally action languages are split into two distinct parts: an action de-
scription language and a query language. As the names indicate, the former is used the
describe the effects of actions resulting in the definition of the transition system. The
latter serves to query or reason about the underlying transition system described by the
action language.

In this paper, we present a new action query and constraint language AQL whose
semantics is provided by ASP. AQL can be used in two ways: as a tool to select certain
paths in the transition system or to model-check a particular path. AQL extends existing
query language to allow for simultaneous actions, the definition of conditions which can

then be used to create more complex queries. Furthermore, AQL does not rely on the use
of any action description language but can be used on top of a AnsProlog description
or used in conjunction with any action language description that maps to AnsProlog .

The remainder of the paper is set out as follows: in §2 and §3 we provide some
context on answer set programming and on action domains, before giving a functional
description of the AQL language in §4. Subsequently, we illustrate its usage for reason-
ing about action domains in general (§5) and in the setting of a small case study (§6).
We conclude in §7 with a discussion of related work and future developments.

2 Answer Set Programming

In answer set programming ([2]) a logic program is used to describe the requirements
that must be fulfilled by the solutions of a certain problem. For the purposes of this
paper, we provide a brief and informal overview.

Answer set semantics is a model-based semantics for normal logic programs. Fol-
lowing the notation of [2], we refer to the language over which the answer set semantics
is defined as AnsProlog.

An AnsProlog program consists of a set of rules of the form a : −B,not C. with
a being and atom and B,C being (possibly empty) sets of atoms. a is called the head
of the rule, while B ∪ not C is the body. The rule can be read as: “if we know all
atoms in B and we do not know any atom in C, then we must know a”. Rules with an
empty body are called facts, as the head is always considered known. An interpretation
is a truth assignment to all atoms in the program. Often only those literals that are
considered true are mentioned, as all the other are false by default (negation as failure).

The semantics of programs without negation (effectively horn clauses) are simple
and uncontroversial, the Tp (immediate consequence) operator is iterated until a fixed
point it reached. The Gelfond-Lifschitz reduct is used to deal with negation as failure.
This takes a candidate set and reduces the program by removing any rule that depends
on the negation of an atom in the set and removing all remaining negated atoms. Answer
Sets are candidate sets that are also models of the corresponding reduced programs. The
uncertain nature of negation-as-failure gives rise to several answer sets, which are all
solutions to the problem that has been modelled.

Algorithms and implementations for obtaining answer sets of logic programs are
referred to as answer set solvers. Some of the most popular and widely used solvers are
DLV[9], SMODELS[15] and CLASP[11].

3 Action Domains

In action domains[12, 10] we are interested in the effect of actions or events on the
environment. This can be modelled as a state transition where each state is a set of
fluents that are considered true. Fluents not mentioned are considered false with respect
to that state. The effect of an action or, when modelling simultaneous events and actions,
the combined effects of all events taking place at a certain time, moves the domain to
a new state. When moving between states, fluents may be initiated or terminated. For

every set of actions/events and a given state, there will be exactly one corresponding
state.

A very simple example is a light-switch domain. In one state, the light is on. Flicking
the switch moves the domain to a state in which the light is off.

When reasoning about action domains, we are not necessarily interested the effects
of just one action. More often, we want to see the result of a sequence of actions. When
allowing for simultaneous actions or events, this could become a sequence of sets of
actions, one set for every time instance. Such a sequence is referred to as a trace. With
each trace we have a corresponding sequence of states. By interleaving a sequence of
states and the corresponding trace, we obtain a history of our action domain.

Planning[19] is probably the best known example of action domains and the reason-
ing used in such environments. Traces here correspond to the sequence of actions the
planner needs take in order to achieve a goal.

Action domains can be studied using a variety of formalisms. In this paper we are
interested in the use of answer set programming as a way of representing and reasoning
about action domains, their traces and histories. When modelled using ASP, histories
are obtained as answer sets.

Although action domains can be directly modelled using ASP, often action lan-
guages, languages especially designed for action domains, are used to provide a useful
abstraction for the designer. This allows the designer to focus on the specifics of the
domain rather than having to specify concepts like inertia that are common to every
domain. The action language description can then be translated to an AnsProlog pro-
gram.

A variety of AnsProlog based action languages exist ranging from a general lan-
guages like A [12], C [13] and DLV-K [8] to domain-specific ones like InstAL [4] for
normative multi-agent systems or [7] which was designed for biological networks.

The action language aside, a given action domain could give rise to a vast number of
valid traces and associated histories. Often not all of them are equally useful for the task
at hand and selection criteria have to be applied. While this can be done by adding rules
and constraints to the answer set program, we would like to offer the designer the same
sort of level of abstraction as is provided by action languages. Action query languages,
like the language AQL which we will introduce later, provide a formal natural language-
style of specifying properties of histories. Just like action description languages, the
semantics of the query language can be provided by ASP.

Traditionally action query languages provide a model-checking functionality: given
a history and a formula, it can be verified whether the formula is satisfied by the history.
Our query language, AQL can be used this way but, additionally, can be used to produce
only those histories that satisfy the given query. In a way, the query act as constraint on
the set of all histories. This is the reason why we refer to AQL as a query and constraint
language. However, what we are doing is the same as conventional query languages.
We first state assumptions about the types of histories in which we are interested - the
should have and should not have properties and then encode the conditions which we
want to show or disprove over those models. But instead of starting with a given history,
we are able to generate all the histories that would satisfy the query.

Expression Definition
<variable> ::= [A-Z][a-zA-Z0-9]*
<variable list> ::= <variable> , <variable list> | <variable>
<name> ::= [a-z][a-zA-Z0-9]*
<param list> ::= (<variable list>)
<identifier> ::= <name> <param list> | <name>
<predicate> ::= happens(<identifier>) | holds(<identifier>)
<literal> ::= not <predicate> | <predicate>
<while expr> ::= <literal> while <while expr> | <literal>
<after> ::= after(<integer>) | after
<after expr> ::= <while expr> <after> <after expr> |

<while expr>
<condition literal> ::= not <identifier> | <identifier>
<term> ::= <after expr> | <condition literal>
<conjunction> ::= <term> and <conjunction> | <term>
<disjunction> ::= <term> or <disjunction> | <term>
<condition decl> ::= condition <identifier> : <disjunction>; |

condition <identifier> : <conjunction>;
<constraint> ::= constraint <disjunction> ; |

condition <identifier> : <conjunction>;
Table 1. InstQL Syntax

4 AQL

In this section we introduce the query language, AQL , that can be used directly with
an AnsProlog program representing the action domain or with any action language.

Given an action domainM, we use EM1 to denote the set of all actions and events
in the action domain M while FM is the set of all available fluents. Following con-
vention, we assume that the truth of a fluent F ∈ F at a given state I is represented as
holdsat(F, I), while an event or an action E ∈ E is modelled as occurred(E, I). We
further assume that the state instances are modelled as instant(I) for each instance I .
The ordering of instances is established by next(I1, I2), with the final instance defined
as final(I).

AQL has two basic concepts: (i) constraint: an assertion of a property that must be
satisfied by a valid trace, and (ii) condition: a specification of properties that can be
imposed on a trace. Conditions can be declared in relation to other conditions and con-
straints can involve declared conditions. Table 1 summarises the syntax of the language,
while the remainder of this section discusses in detail the elements of the language and
their semantics.

Variables and Identifiers: As terminal symbols, AQL provides a definition of various
types of names which are built up as follows:

<variable>::= [A-Z][a-zA-Z0-9_]*
<variable_list>}::= <variable> , <variable_list> | <variable>
<name> ::= [a-z][a-zA-Z0-9_]*
<param_list>} ::= (<variable_list>)
<identifier>} ::= <name> <param_list> | <name>

1 When it is clear from the context we will not mention the action domain

The definition of a variable conforms to that of Lparse/Smodels [16]. An identifier is an
arbitrary name which may have variable parameters, that enables the parameterisation
of events and fluents.

Predicates: AQL provides two predicates that form the basis of all AQL queries. The
first is happens(Event), meaning that the specified event should occur at some point
during the lifetime of the institution. The second is holds(Fluent), which means that
the specified fluent is true at any point during the lifetime of the institution. That is:

<predicate> ::= happens(<identifier>) | holds(<identifier>)

where the identifier corresponds to an event e (in the first case) or a fluent f (in the
second case).M.

Negation (as failure) is provided by the unary operator not:
<literal> ::= not <predicate> | <predicate>

To construct complex queries, it is often easier to break them up in sub-queries, or in
AQL terminology, sub-conditions. For example, suppose we have defined a condition
called my cond which specifies some desired property. We can then join this with other
criteria e.g. “my cond and happens(e)”. Sub-conditions may be referenced within
rules as condition literals:

<condition_literal> ::= not <identifier> | <identifier>

Note that this allows for parameterised conditions to be defined by the definition of an
identifier.

Conditions: The building block of query conditions is the term:
<term> ::= <after_expr> | <condition_literal>

The after expression also allows for the more simpler constructs of <literal> and
<while expr>. Terms may be grouped and connected by the connectives and and or

which provide logical conjunction and disjunction.
<conjunction> ::= <term> and <conjunction> | <term>
<disjunction> ::= <term> or <disjunction> | <term>

On its own, this does not allow us create arbitrary combinations of predicates and named
conditions and the logical operators and, or, not. To do so we need to be able declare
conditions:

<condition_decl> ::= condition <identifier> : <disjunction>
| condition <identifier> : <conjunction>;

This construction defines a condition with the specified name to have a value equal
to the specified disjunction or conjunction. This allows the condition name to
be used as a condition literal.

Constraints: Constraints specify properties of the trace which must be true:
<constraint> ::= constraint <disjunction> | <conjunction> ;

For example, consider the following AQL query:
constraint happens(e);

This indicates that only traces in which event e occurs at some point should be consid-
ered. That is, we are only interested in those traces in which e occurs.

Example queries: To illustrate how this language is used to form queries, consider a
simple light bulb action domain. The fluent on is true when the bulb is on. The event
switch turns the light on or off. We can require that at some point the light is on:

constraint holds(on);

We can require that the light is never on:
condition light_on: holds(on);
constraint not light_on;

There is some subtlety here in that light on is true if at any instant on is true. There-
fore, if light on is not true, there cannot be an instant at which on was true. And what
if the bulb is broken – the switch is pressed but the light never comes on? This can be
expressed as:

constraint not light_on and happens(switch);

Using condition names, we can create arbitrary logical expressions. The statement that
event e1 and either event e2 or e3 should occur can be expressed as follow:

condition disj: happens(e2) or happens(e3);
condition conj: happens(e1) and disj;

Query Semantics: The semantics of an AQL query is defined by the translation func-
tion T which translates AQL into AnsProlog . This function takes a fragment of AQL
and generates a set of (partial) AnsProlog rules. Typically, this set is a singleton; only
expressions involving disjunctions generate more than one rule. The semantics of pred-
icates are defined as follows:

T (happens(e)) = occurred(e, I)
T (holds(f)) = holdsat(f, I)

For a literal of the form not P (where P is a predicate) the semantics are:

T (not P) = not T (P)

while for a condition literal they are:

T (conditionName) = conditionName

T (not conditionName) = not conditionName

and a conjunction of terms is:

T (t1 and t2 and · · · and tn) = T (t1), T (t2), . . . ,T (tn)

A disjunction translates to more than one rule. However, this is defined slightly differ-
ently depending on whether it is within a condition declaration or a constraint.

T (condition conditionName : t1 or t2 or · · · or tn;) =
{conditionName← T (ti). | 1 ≤ i ≤ n}

T (constraint t1 or t2 or · · · or tn;) =
{newName← T (ti). | 1 ≤ i ≤ n}∪
{⊥ ← not newName.}

Note that the AnsProlog term newName denotes any identifier that is unique within the
AnsProlog program that is the combination of the query and the action program. In ad-
dition, each time instant I generated in the translation of a predicate represents a name
for a time instant that is unique within the AQL query. Recall that a condition name
may be parameterised: since an AQL variable translates to a variable in Smodels, no
additional machinery is required. For example, the condition “condition ever(E):

happens(E);” (which just defines an alias for happens) is translated to “ever(E)
← occurred(E, I), instant(I), event(E).”.

Concurrent Events and Fluents: We may wish to specify queries of the form “X and
Y happen at the same time”. That is, we may wish to talk about events occurring at the
same time as one or more fluents are true, simultaneous occurrence of events or combi-
nations of fluents being simultaneously true (and/or false). For this situation, AQL has
the keyword while to indicate that literals are true simultaneously. Such while ex-
pressions are only defined over literals constructed from predicates (that is, happens
and holds) and not condition literals involving condition names. This is because, for
example, a condition may mean “event e never occurs”. It does not make sense to de-
fine an expression that says something like “event d occurs at the same time as (e never
occurs)”. A while expression is defined as follows:

<while_expr> ::= <literal> while <while_expr> | <literal>

The while-operator has higher precedence than and and or.
Returning to the light bulb example, we can now specify that we want only traces

where the light was turned off at some point:
constraint happens(switch) while holds(on);

Or that at some point the light was turned left on:
constraint holds(on) while not happens(switch);

The semantics for while is;

T (L1 while L2 while · · · while Ln) = T (L1), T (L2), . . . , T (Ln), instant(I)

Event and Fluent Ordering: The language allows for the expression of orderings over
events. This is done with the after keyword. This allows statements of the form:

holds(f1) while not holds(f2) after happens(e1)
after happens(e2)

This should be read as: (i) at some time instant k the event e2 occurs (ii) at some other
time instant j the event e1 occurs (iii) at some other time instant i the fluent f1 is true
but the fluent f2 is not true (iv) these time instants are ordered such that i > j > k (that
is, k is the earliest time instant) However, in some cases we need to say not only that a
given literal holds after some other literal, but that this is precisely one time instant later.
Rather than just providing the facility to specify a literal occurs/holds in the next time
instant, this is generalised to say that a literal holds n time instants after another. That
is, for a fluent that does (not) hold at time instant ti or an event that occurs between ti
and ti+1, we can talk about literals that hold at ti+n or occur between ti+n and ti+n+1.
The syntax of an after expression is:

<after> ::= after | after(<integer>)
<after_expr> ::= <while_expr> <after> <after_expr> |

<while_expr>

An after expression may contain only the after operator or the after(n) operator,
depending on how precisely the gap between the two operands is to be specified.

Once again returning to the light bulb example, we can now specify a query which
requires the light to be switched twice (or more):

constraint happens(switch) after happens(switch);

Or that once that light has is on, it cannot be switched off again:

condition switch_off: happens(switch) after holds(on);
constraint not switch_off;

We give the semantics for the binary operator after(n). This can easily be generalised
for after expressions built of sequences of after(n) operators mixed with after op-
erators.

T (Wi after(n) Wj) = T (Wi), T (Wj), after(ti, tj, n)

Where ti and tj are the time instants generated by Wi and Wj respectively. This is
defined such that we require n > 0.

We now provide a concrete example of the translation of an after expression to
illustrate this process:

T (happens(e) while holds(f) after happens(d) after(3) holds(g)) =
occurred(e, ti), event(e), holdsat(f, ti), ifluent(f),
instant(ti), occurred(d, tj), event(d), instant(tj),
holdsat(g, tk), ifluent(g), instant(tk),
after(ti, tj), after(tj, tk, 3).

5 Reasoning with AQL

Following the description of AQL in the preceding section, we now illustrate how it
can be used to perform three common tasks[18] in computational reasoning: prediction,
postdiction and planning.

Prediction is the problem of ascertaining the resulting state for a given (partial)
sequence of actions and initial state. That is, suppose some transition system is in state
S and a sequence A = a1, . . . , an of actions occurs. Then the prediction problem
(S, A) is to decide the set of states {S′} which may result. Postdiction is the converse
problem: if a system is in state S′ and we know that A = a1, . . . , an have occurred,
then the problem (A,S′) is to decide the set {S} of states that could have held before
A. The planning problem (S, S′) is to decide which sequence(s) of actions, {A}, will
bring about state S′ from state S.

Identifying States: A state is described by the set of fluents that are true S = {f1, . . . , fn}
where fi are the fluents. States containing or not containing given fluents may be iden-
tified in AQL using the while operator:

holds(f_1) while ... while holds(f_n) while
not holds(g_1) while ... while not holds(g_k)

where f1...k are fluents which must hold in the matched state and g1...k are those fluents
that do not.

Describing Event Ordering: A sequence of events E = e1, . . . , en may be encoded as
an after expression. If we have complete information, then we know that e1 occurred,
then e2 at the next time instant and so on up to en with no other events occurring in
between. In this case, we can express E as follows:

happens(e_n) after(1) ... after(1) happens(e_1)

This can be generalised to the case where ei+1 occurs after ei with some known number
k ≥ 0 of events happening in between:

happens(e_i+1) after(1) ... after(k+1) happens(e_i)

Alternatively if we do not know k (that is, we know that ei+1 happens later than ei but
zero or more events occur in between) we can express this as:

happens(e_i+1) after happens(e_i)

We can combine these cases throughout the formulation of E to represent the amount
of information available.

The Prediction Problem: Given an initial state S and a sequence of events E, the
prediction problem (S, E) can be expressed in AQL as:

constraint E after(1) S;

This query limits traces to those in which at some point S holds after which the events
of E occur in sequence. The answer sets that satisfy this query will then contain the
states {S′}.

The Postdiction Problem: Given a sequence of events E and a resulting state S′, the
postdiction problem (E,S′) can be expressed as:

constraint S after(1) E;

This requires S to hold in the next instant following the final event of E.

The Planning Problem: Given a pair of states S and S′ the planning problem (S, S′)
can be expressed in AQL as:

constraint S’ after S;

This allows any non-empty sequence of events to bring about the transition from S to
S′. If we want to consider plans of length k (i.e. E = e1, . . . , ek) then we express this:

constraint S’ after(k) S;

6 A Case Study

As a case study we will look a fragment of the Dutch auction protocol with only one
round of bidding. In this protocol a single agent is assigned to the role of auctioneer,
and one or more agents play the role of bidders. The purpose of the protocol as a whole
is either to determine a winning bidder and a valuation for a particular item on sale, or
to establish that no bidders wish to purchase the item. Consequently, conflict — where
two bids are received “simultaneously” — is treated as an in-round state which takes
the process back to the beginning. The protocol is summarised as follows:
1. Round starts: auctioneer selects a price for the item and informs each of the bidders

present of the starting price. The auctioneer then waits for a given period of time
for bidders to respond.

2. Bidding: upon receipt of the starting price, each bidder has the choice whether to
send a message indicating their desire to bid on the item at that price or not.

3. Bid processing: at the end of the prescribed period of time, if the auctioneer has
received a single bid from a given agent, then the auctioneer is obliged to inform
each of the participating agents that this agent has won the auction.

4. No bids: if no bids are received at the end of the prescribed period of time, the
auctioneer must inform each of the participants that the item has not been sold.

5. Multiple bids: if more than one bid was received then the auctioneer must inform
every agent that a conflict has occurred.

6. Termination: the protocol completes when an announcement is made indicating that
an item is sold or that no bids have been received.

7. Conflict resolution: in the case where a conflict occurs then the auctioneer must
re-open the bidding and re-start the round in order to resolve the conflict.
Based on the protocol description above, the following agent actions are defined:

the auctioneer announces a price to a given bidder (annprice), the bidder bids on the
current item (annbid), the auctioneer announces a conflict to a given bidder (annconf)
and the auctioneer announces that the item is sold (annsold) or not sold (annunsold)
respectively.

In addition to the agent actions we also include a number of time-outs indicating the
three external events—that are independent of agents’ actions—that affect the protocol.
For each time-out we define a corresponding protocol event suffixed by dl indicating a
deadline in the protocol:
priceto, pricedl: A time-out indicating the deadline by which the auctioneer must

have announced the initial price of the item on sale to all bidders.
bidto, biddl: A time-out indicating the expiration of the waiting period for the auc-

tioneer to receive bids for the item.
decto, decdl: A time-out indicating the deadline by which the auctioneer must have

announced the decision about the auction to all bidders
Protocols provide a precise description what participants are allowed and not al-

lowed to do. When agents perform prohibited actions, the protocol will generate a vio-
lation event viol(E) indicating that an action E has occurred which was not permitted
by the protocol. The protocol could then enforce penalties on the violating participant.
When the auctioneer violates the protocol, an event badgov occurs and the auction
dissolves.

At the beginning of the protocol and each time the bidding has to start all over again
due to a conflict, the protocol will initialise the environment or state such that bidding
can proceed according to the rules.

A simple query for verifying this protocol is to look at those traces in which the
auctioneer violates the protocol. This can be expressed as follows

condition bad: happens(badgov);
constraint bad;

Alternatively, we could look at all the traces in which the protocol is never violated by
one of the bidders.

condition bad: happens(viol(E));
constraint not bad;

We would also like to be able to find those traces where more than one bidder entered
a bid, resulting in a conflict, before the end of bidding is announced. This can be ex-
pressed as follows:

constraint happens(decdl) while holds(conflict);

The use of parameterised conditions is illustrated in the following statement that enu-
merates all the fluents that are true when the protocol has just started, which is indicated
by the occurrence of the event createdar:

condition startstate(F): holds(F) after(1) happens(createdar);

The following query can be used to verify the protocol. The protocol states that if more
than one bidder bids for the good, the protocol needs to restart completely. This implies
that all the fluents from the beginning of the protocol need to be reinstated and all others
have to be terminated. The query checks if this has been done. If we still obtain a trace
with this query we know something has gone wrong with design of the protocol.

condition startstate(F): holds(F) after(1) happens(createdar);
condition restartstate(F): holds(F) after(1) happens(decdl)

while holds(conflict);
condition missing(F): startstate(F) and not restartstate(F);
condition added(F): restartstate(F) and not startstate(F);
constraint missing(F) or added(F);

7 Discussion

In [12], the authors present three query languages: P,Q,R. Queries expressed in those
languages can also be expressed using AQL . The action query language P has only
two constructs : now L and necessarily F after A1, ..., An, where L refers
to a fluent or its negation, F is a fluent and where Ai are actions. These queries can
be encoded in AQL using the techniques discussed in Section 5. now L can be written
as constraint happens(An) after(1) ... after(1) happens(A1) after(1)

holds(L) while necessarily F after A1, ..., An is expressed as holds(F)
after(1) happens(An) after(1) ... after(1) happens(A1). Similar tech-
niques can be used for the query languagesQ andR. Given the event ordering technique
used, we can assign specific times to each of the fluents.

While AQL can perform the same reasoning as those query languages, it can do
much more. Not only can simultaneous events and fluents be modelled, AQL allows us
to construct more complex queries using disjunctions and conjunctions of conditions.
Furthermore, AQL allows us to reason with incomplete information, thus fully exploit-
ing the reasoning power of the underlying ASP.

LTL[17] is a logic commonly used for model-checking domains involving linear
time. In [14], answer set programming was put forward as a mechanism for model
checking asynchronous concurrent systems a generalisation. They demonstrated that
answer set programming could be used as bounded LTL model-checking for 1-safe Petri
nets. Originally, LTL only refers to states and as a general observation, the merging
of actions and fluents inside LTL is non-trivial as one is merging state-relative and
transition-relative concepts. This tends[3] to lead to restrictions on formulae that can
be used. The same is true for AQL . It can be shown that for a subset of a formulae,
LTL-queries can be mapped to AQL queries.

As it stands AQL is already a very intuitive and versatile query and constraint lan-
guage for actions domains. The language is succinct and does not contain any over-
head (i.e. no operator can be expressed as a function of other operators). However,
from a software engineering point of view, we could make the language more acces-
sible by providing commonly used constructs as part of the language. To this end, we
plan to incorporate constructs such as eventually(F), never(F), always(F),

before(F), before(E), and an if-construct to express conditions on events or flu-
ents. For the same reasons, we plan to add time specific happens(E,I) and hold(F,I)
and the possibility to construct general logical expression without the need for condition
statements.

At the moment AQL only supports linear time. For certain domains, other ways of
representing time might be more appropriate. While linear time assumes implicit uni-
versal quantification over all paths in the transition function, branching time allows for
explicit existential and universal quantification of all paths and alternating time offers
selective quantification over those paths that are possible outcomes. While linear and
branching time are natural ways of describing time in closed domains, alternative time
is more suited to open domains.

References

[1] A. Artikis, M. Sergot, and J. Pitt. Specifying electronic societies with the Causal Calculator.
In F. Giunchiglia, J. Odell, and G. Weiss, editors, Proceedings of Workshop on Agent-
Oriented Software Engineering III (AOSE), LNCS 2585. Springer, 2003.

[2] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge Press, 2003.

[3] Diego Calvanese and Moshe Y. Vardi. Reasoning about actions and planning in LTL action
theories. In Proc. KR-02, 2002.

[4] Owen Cliffe. Specifying and Analysing Institutions in Multi-Agent Systems using Answer
Set Programming. PhD thesis, University of Bath, 2007.

[5] Owen Cliffe, Marina De Vos, and Julian A. Padget. Answer set programming for represent-
ing and reasoning about virtual institutions. In Katsumi Inoue, Ken Satoh, and Francesca
Toni, editors, CLIMA VII, volume 4371 of Lecture Notes in Computer Science, pages 60–
79. Springer, 2006.

[6] Owen Cliffe, Marina De Vos, and Julian A. Padget. Specifying and reasoning about multi-
ple institutions. In Javier Vazquez-Salceda and Pablo Noriega, editors, COIN 2006, volume
4386 of Lecture Notes in Computer Science, pages 63–81. Springer, 2007.

[7] Steve Dworschak, Susanne Grell, Victoria J. Nikiforova, Torsten Schaub, and Joachim Sel-
big. Modeling biological networks by action languages via answer set programming. Con-
straints, 13(1-2):21–65, 2008.

[8] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. The
DLVK Planning System. In Sergio Flesca, Sergio Greco, Nicola Leone, and Giovam-
battista Ianni, editors, European Conference, JELIA 2002, volume 2424 of LNAI, pages
541–544, Cosenza, Italy, September 2002. Springer Verlag.

[9] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello.
The KR system dlv: Progress report, comparisons and benchmarks. In Anthony G. Cohn,
Lenhart Schubert, and Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Repre-
sentation and Reasoning, pages 406–417. Morgan Kaufmann, San Francisco, California,
1998.

[10] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson
Turner. Nonmonotonic causal theories. Artificial Intelligence, Vol. 153, pp. 49-104, 2004.

[11] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-Driven Answer Set Solv-
ing. In Proceeding of IJCAI07, pages 386–392, 2007.

[12] Michael Gelfond and Vladimir Lifschitz. Action languages. Electron. Trans. Artif. Intell.,
2:193–210, 1998.

[13] Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal explana-
tion: preliminary report. In AAAI ’98/IAAI ’98: Proceedings of the fifteenth national/tenth
conference on Artificial intelligence/Innovative applications of artificial intelligence, pages
623–630, Menlo Park, CA, USA, 1998. American Association for Artificial Intelligence.

[14] Keijo Heljanko and Niemelä. Ilkka. Bounded ltl model checking with stable models. In
LPNMR2001, LNAI, pages 200–212. Springer-Verlag Berlin Heidelberg, 2001.

[15] I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-
founded semantics for normal LP. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors,
Proceedings of the 4th International Conference on Logic Programing and Nonmonotonic
Reasoning, volume 1265 of LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.

[16] Ilkka Niemelä and Patrik Simons. Smodels - an implementation of the stable model and
well-founded semantics for normal lp. In LPNMR ’97: Proceedings of the 4th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning, pages 421–430,
London, UK, 1997. Springer-Verlag.

[17] A. Pnueli. The Temporal Logic of Programs. In 19th Annual Symp. on Foundations of
Computer Science, 1977.

[18] Marek Sergot. (C+)++: An action language for modelling norms and institutions. Technical
Report 8, Department of Computing, Imperial College, London, June 2004.

[19] Lifschitz Vladimir. Action languages, answer sets and planning. In The Logic Program-
ming Paradigm: a 25-Year perspective, pages 357–373. Springer, 1999.

