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A MESHLESS COHESIVE SEGMENTS
METHOD FOR CRACK INITIATION AND

PROPAGATION IN COMPOSITES

E. BARBIERI, M. MEO∗

Department of Mechanical Engineering
University of Bath, BA2 7AY Bath UK

Abstract

A modeling method aimed at eliminating the need of explicit crack representa-
tion in bi-dimensional structures is presented for the simulation of the initiation and
subsequent propagation within composite materials. This is achieved by combin-
ing a meshless method with a physical stress-displacement based criterion known as
Cohesive Model. This model consents to apply a a penalty-based approach to de-
lamination modeling where a variable penalty factor along the crack segment allows
to loosen or tight the two parts according to their relative displacements. Results are
showed for classical single mode loading benchmark cases and compared to experi-
mental results taken from the literature.

Keywords : penalty, meshless, cohesive zone model, delamination

1 INTRODUCTION
Explicit cracks simulation is nowadays one of the most challenging tasks in computa-
tional fracture mechanics, especially for three-dimensional composite structures. Even in
two-dimensional structures, the presence of multiple cracks could be a weighty task to
perform. Moreover methods based on classical fracture mechanics are not always able to
explain the physical process of initiation. Therefore, methods that rely just on the physics
of the problem rather than only the geometry of the fracture would be in this perspective
highly desirable. The main tasks in simulations of cracks are initiation and propagation.
The first one is usually based on the strength of materials theory and employs stress crite-
ria normally based on point or average stress, while propagation is modeled with fracture
mechanics tools based on the evaluation of the energy release rate G.

Cohesive models are based on the Dudgale - Barenblatt [1] cohesive zone approach,
subsequently extended by Hillerborg [2] and Needleman [3], which gives a physical ex-
planations of the failure process, whereas classical fracture mechanics lacks of a physics-
based description [4].
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In the cohesive zone model, it is postulated the existence of a narrow band of vanishing
thickness ahead of a crack tip which represents the fracture process zone. The bonding
of the surfaces of the zone is obtained by cohesive traction, which follows a cohesive
constitutive law. Many different constitutive laws exist, for example the exponential or the
bilinear softening model. These laws are typically regulated by both strength of material
parameters (like the tensile strength) and fracture mechanics based parameters like the
critical fracture energies for the considered fracture mode. Crack growth occurs when a
critical value is reached at which cohesive traction disappears.

Conversely to classical fracture mechanics, the cohesive zone modeling approach does
not involve crack tip stress singularities and failure is regulated by relative displacements
and stresses.

Standard finite elements have the major disadvantage that crack path is highly depen-
dent on the mesh structure, since discontinuities must follow inter-element boundaries,
therefore capturing of a propagating discontinuity is achieved by constant re-meshing of
the structure. This procedure is costly not to mention the degradation of the accuracy of
the solution.

An important progress in this sense has been recently obtained with the introduction of
partition of unity-based methods (PUM) [5] like extended finite element (XFEM) [6], [7],
[8], [9] and meshless methods like Element-Free Galerkin [10] or Reproducing Kernel
Particle Method (RKPM) [11].

In the papers of [12] and [13], a new method called cohesive segments method is
introduced.

In [12] the PUM idea is applied in the context of cohesive cracks. A full non-linear
model is developed, with tractions acting on the cohesive surfaces. These tractions are
depending on the opening displacement (or discontinuos displacement) and used to model
crack propagation in three-points bending test and single edge notched beam.

In [13] these segments are introduced under a FE framweork, similarly to the Ex-
tended Finite Element Method (XFEM). Using a particular instance of a PUM , a con-
tinuous crack is approximated by a set of segments, each one of them split the domain
in two parts. At each of these interfaces, a cohesive model is used in order to simulate
the debonding of the parts. It can be shown that by doing so, the total displacement is
enriched by a sum of Heaviside functions that can effectively represent the discontinuity.
In this way, additional unknowns are introduced to the final algebraic system of equations.
These segments can be introduced at any time of the calculation, whenever a stress-based
failure criteria is satisfied, and the orientation of the onset cohesive segment is given by
the principal direction of the stress. In this way, no explicit representation of the crack sur-
face is needed allowing to model arbitrary crack growth, which is extremely useful when
the crack propagation path is not known a priori. The drawback of this method is that
additional unknowns are introduced at each crack segment. The unknowns are localized
to the nodes of the elements cut by the discontinuity.

In [14] the same approach is used to efficiently simulate dynamic crack propagation.
A first application of the cohesive segments combined with meshless methods rather

than FE, can be found in [15].
When the crack path is known a priori, like in the case of single mode delamination,

the same approach can be used without adding additional unknowns. In this case, the do-
main can be decomposed in two parts connected by a penalty parameter, as also suggested



in [16] and the cohesive segments are located at the edges of the subdomains.
The variational problem is formulated for each sub-domain, then a coupling term

between their displacements is introduced. The coupling term derives from the application
of the cohesive model at the separation, resulting in a final nonlinear set of equations that
must be solved iteratively.

The coupling term is nothing else than a penalty factor defined on the whole contact
segment. Penalty terms are well-known in the meshfree community since, conversely
to FE, the shape functions do not posses the Kronecker condition [17]. This condition
allows in FE to directly impose essential boundary conditions on the nodes located on
the constrained boundaries. For simple constraints, though, a constant penalty factor is
sufficient throughout the whole boundary. The same approach can be used to connect or
disconnect two or more objects.

2 EQUATIONS OF EQUILIBRIUM
Assuming that there are no body or inertia forces, the strong form of the equilibrium
equations along with the boundary conditions can be written as

∇ ·σ = 0 x ∈Ω (1)
nt ·σ = t̄ x ∈ Γt (2)

u = ū x ∈ Γu (3)
nc ·σ = τ(v) x ∈ Γc (4)

where Ω is the entire domain, σ is the Cauchy stress tensor, nt is the normal unity vector
of the boundary Γt where the traction t̄ is prescribed, nc is the normal unity vector of
the boundary Γc where the traction τ(v) is prescribed and Γu is the boundary where the
displacement ū is imposed.

The traction τ depends on the displacement jump v on the cohesive segment Γc, which
divides Ω in two sub-domains Ω1 and Ω2 as in figure 1. The displacement jump v(x) is

Figure 1: Description of the problem



defined as follows
v(x) = u1(x)−u2(x) x ∈ Γc (5)

where u1(x) is the displacement of sub-domain Ω1 and u2(x) is the displacement of sub-
domain Ω2.

Using displacement u as test function for equations (1), (2) and displacement jump v
as test function for equation (4), the variational principle can be written as∫

Ω1

δε
T

σdΩ1 +
∫

Ω2

δε
T

σdΩ2−
∫

Γt1

δuT t̄dΓt1−
∫

Γt2

δuT t̄dΓt2+

α

2
δ

∫
Γu1

(u− ū)2dΓu1 +
α

2
δ

∫
Γu2

(u− ū)2dΓu2 +
∫

Γc

δvT
τdΓc = 0 (6)

where the penalty method is used to enforce essential boundary conditions (3) and α is
called penalty parameter, which is usually a very large number. In all the computations,
an arbitrarily large value of the penalty factor of 1e15 has been used. If the penalty factor
is too low, then constraints are not imposed efficiently, leading to inexact results, while a
penalty factor too high can lead to undesired instabilities during the numerical solution.

Varying this number it is possible to loosen or tighten a certain constraint. This will be
useful in the next sections with the application of the cohesive model at the crack interface
Γc. In equation (6) Γt1 and Γu1 refer to the part of boundaries Γu and Γt that belong to
sub-domain Ω1, whereas Γt2 and Γu2 the ones that belong to Ω2.

3 REPRODUCING KERNEL PARTICLE METHOD
A brief review of the construction of Reproducing Kernel Particle Method (RKPM) shape
functions is reported in this section. For further details please refer to [17] and [18].

In meshfree methods, the shape functions are derived only by relying on nodes rather
than elements, as in FE. Therefore, in theory, no mesh is needed to construct the shape
functions.

The approximation uh(x) of a generic function u(x) can be written as

uh(x) =
N

∑
I=1

φI(x)UI (7)

where φI : Ω→ R are the shape functions (figure 2) and UI is the i-th nodal value located
at the position xI where I = 1, . . . ,N where N is the total number of nodes.

The I-th shape function is given in RKPM by the formula

φI(x) =CI(x)w
(

xI−x
ρ

)
∆VI (8)

where C(x) is a corrective term that restore the shape function capability of reproducing
all the terms contained in the basis function p(x). For polynomial basis, for example

pT (x) = (1,x,x2, . . . ,xn) (9)

in 1D case or
pT (x) = (1,x,y,x2,xy,y2) (10)



Figure 2: One-dimensional Shape Functions in RKPM

in 2D case. The corrective term C(x) is

CI(x)︸ ︷︷ ︸
1x1

= pT (0)︸ ︷︷ ︸
1xk

M(x)−1︸ ︷︷ ︸
kxk

pT
(

xI−x
ρ

)
︸ ︷︷ ︸

kx1

(11)

where k is the number of functions in the basis. Note that the corrective term is normally
evaluated in a scaled and translated version to prevent ill-conditioning of the moment
matrix M(x)

M(x) =
N

∑
I=1

p
(

xI−x
ρ

)
pT
(

xI−x
ρ

)
w
(

xI−x
ρ

)
∆VI (12)

The function w(x) is called kernel function having compact support, which means that
they are zero outside and on the boundary of a ball ωI centered in xI . The radius of this
support is given by a parameter called dilatation parameter or smoothing length which
can be found indicated in literature as ρ or dI or a to avoid confusion with the mass density.
According to the norm considered, the shape of the support may vary, for example could
be a circle but also a rectangle. The fact of being compact basically guarantees that the
stiffness matrix in a Galerkin formulation is sparse and band, which is particularly useful
for the computer algorithms of storage and matrix inversion. Examples of kernel functions
are the 3rd order spline

w(ξ) =


2
3 −4ξ2 +4ξ3 0≤ ξ≤ 1

2
4
3 −4ξ+4ξ2− 4

3ξ3 1
2 < ξ≤ 1

0 ξ > 1
(13)

which is C2 or more generally the 2k-th order spline (figure 3 )

w(ξ) =

{
(1−ξ2)k 0≤ ξ≤ 1
0 ξ > 1

(14)

which is Ck−1.



Figure 3: Example of Kernel: 2k− th order spline for different k

The order of continuity of a kernel function is important because it influences the
order of continuity of the shape functions.

Equation (8) derives from a numerical discretization of an integral, therefore the term
∆VI is some measure (i.e. length, area or volume) of ωI . It has been reported in [17]
that choosing ∆VI 6= 1 has no effects on the evaluation of the shape functions. It could be
shown that choosing ∆VI = 1 leads to another type of approximation known as Moving
Least Squares (MLS), which is a quite popular choice of shape functions in other meshless
methods like, for example, the EFG method. Since RKPM is substantially a least squares
method, shape functions do not satisfy the Kronecker condition,

φI(xJ) 6= δIJ ∀I,J = 1 . . .N (15)

This means that essential boundary conditions cannot directly being imposed on the
nodes. Thus, a penalty method is needed for enforcing boundary conditions on displace-
ments.

4 COHESIVE LAW
As mentioned in section 1, a cohesive model is implemented as a stress - displacement
relationship τ(v), where τ is the traction at Γc and v(x) is the displacement jumps defined
in equation (5).

The bilinear stress relative displacement curve is divided into three main parts (fig.
4) and the constitutive equations are the following:

• v ≤ v0: elastic part: traction across the interface increases until it reaches a maxi-
mum, and the stress is linked to the relative displacement via the interface stiffness
K0 :

τ(v) = K0v (16)

• v0 < v ≤ vF : softening part: the traction across the interface decreases until it
becomes equal to zero: the two layers begin to separate. The damage accumulated



at the interface is represented by a variable D, which is equal to zero when there is
no damage and reaches 1 when the material is fully damaged:

τ(v) = (1−D(v))K0v (17)

• v > vF : decohesion part: decohesion of the two layers is complete: there is no
more bond between the two layers, the traction across the interface is null

Figure 4: Bilinear softening model

The shaded area in figure 4 is the energy dissipated per unit area G for a particular mode,
when v= v f the area of the whole triangle is the critical energy dissipated per unit area Gc.
It can be shown [19] that in this case cohesive zone approaches can be related to Griffiths
theory of fracture. Moreover [20] showed that when v0 = v f (which means abrupt load
fall to zero) a perfectly brittle fracture can be simulated.

Two independent parameters are necessary to define a bilinear softening model, i.e.
the interfacial maximum strength τm and the critical energy dissipated per unit area Gc,
since the following relations hold

Gc =
τmv f

2
(18)

τm = K0v0 (19)

where K0 is an arbitrary initial penalty stiffness (dimensionally N/m3) which is usually set
as a large number. Then, once derived v0 and v f , the variable damage D can be calculated
as

D(v) =


0 v≤ v0
v f (v−v0)
v(v f−v0)

if v0 < v≤ vF

1 v > vF

(20)

5 DISCRETIZED EQUATIONS OF EQUILIBRIUM
In general, for a two-dimensional case, (but similar argument can be conducted in the
three-dimensional case), naming t the tangential direction the cohesive segment and n the



normal direction, the stress - relative displacement relationship can be formulated as

τ =

[
τt
τn

]
=

[
Kt(vt) 0

0 Kn(vt)

][
vt
vn

]
=

[
(1−Dt(vt))K0t 0

0 (1−Dn(vn))K0n

][
vt
vn

]
(21)

If a given loading mode has reached 1, the damage variable corresponding to the other
loading mode is set to 1 as well to avoid that the material would still be able to carry
tractions.

In this paper the only cohesive segment is located at the mid-plane, so t corresponds
to axis x and n to axis y. For arbitrary orientations, a transformation matrix would be
necessary to express displacements from the global reference frame to the local one.

Displacement jump in equation (5) can be then expressed as

v =

[
vx
vy

]
=

[
φT

1cU1−φT
2cU2

φT
1cV1−φT

2cV2

]
=

[
φT

1c 0 −φT
2c 0

0 φT
1c 0 −φT

2c

]
U1
V1
U2
V2

= φ̃
T R (22)

where
φ1c = φ1(x) x ∈ Γc (23)

where φ1(x) are the shape functions of sub-domain Ω1, whereas

φ2c = φ2(x) x ∈ Γc (24)

are the shape functions belonging to sub-domain Ω2

φ̃
T =

[
φT

1c 0 −φT
2c 0

0 φT
1c 0 −φT

2c

]
(25)

and RT
1 =

[
U T

1 V T
1
]

is the displacement vector for nodes located in Ω1 whereas RT
2 =[

U T
2 V T

2
]

is the displacement vector for nodes located in Ω2 and RT =
[
R T

1 R T
2
]

is the total displacement vector. Substituting equations (7) and (22) in the variational
principle (6)

δRT
1 K1R1 +δRT

2 K2R2−δRT
1 F1t−δRT

2 F2t +αδRT
1 V1R1−αδRT

1 F1u+

αδRT
2 V2R2−αδRT

2 F2u +δRT
1 (K

δ
11R1−Kδ

12R2)+δRT
2 (−Kδ

12R1 +Kδ
22R1) = 0 (26)

where
Ki =

∫
Ωi

BDBT dΩi i = 1,2 (27)

where D is the stress-strain relationship matrix, B is the differential strain operator matrix

Vi =
∫

Γui

φφ
T dΓui i = 1,2 (28)

Fiu =
∫

Γui

φūdΓui i = 1,2 (29)

Fit =
∫

Γti

φt̄dΓti i = 1,2 (30)



Kδ
11 =

[
Kδu

11 0
0 Kδv

11

]
(31)

Kδ
12 =

[
Kδu

12 0
0 Kδv

12

]
(32)

Kδ
22 =

[
Kδu

22 0
0 Kδv

22

]
(33)

and
Kδu

i j =
∫

Γc

φic Kx(vx) φ jcdΓc i, j = 1,2 (34)

and
Kδv

i j =
∫

Γc

φic Ky(vy) φ jcdΓc i, j = 1,2 (35)

Finally the following nonlinear set of equations can be obtained[
K+αV+Kδ(R)

]
R−F−αFū = f(R) = 0 (36)

where

K =

[
K1 0
0 K2

]
(37)

and

V =

[
V1 0
0 V2

]
(38)

F =

[
F1t
F2t

]
(39)

Fū =

[
F1u
F2u

]
(40)

Kδ =

[
Kδ

11 −Kδ
12

−Kδ T
12 Kδ

22

]
(41)

Equation (36) must be solved iteratively. A commonly used scheme is the Newton-
Rhapson method where the iteration n+1 at a generic load step is obtained from iteration
n by the formula

R(n+1) = R(n)−
(

J(n)
)−1

f(R(n)) (42)

where

J =
∂f
∂R

(43)

In order to obtain the Jacobian matrix J, a linearization of equation (21) is needed.

τ
(n+1) = τ

(n)+
∂τ

∂v

(
v(n+1)−v(n)

)
= τ

(n)+T
(

v(n+1)−v(n)
)

(44)



where

T =
∂τ

∂v
=


∂Kx

∂vx
0

0
∂Ky

∂vy

=

−
∂Dx

∂vx
K0x 0

0 −
∂Dy

∂vy
K0y

 (45)

Deriving equation (20)
∂D
∂v

=
v f v0

v2(v f − v0)
(46)

Substituting (45) into (6), the expression of the Jacobian (43) can be obtained as

J = K+αV+KT (47)

where

KT =

[
KT 11 KT 12
KT

T 12 KT 22

]
(48)

where

KT 11 =

[
KT 11x 0

0 KT 11y

]
(49)

KT 12 =

[
KT 12x 0

0 KT 12y

]
(50)

KT 22 =

[
KT 22x 0

0 KT 22y

]
(51)

KTi jl =
∫

Γc

φic

(
Kl(vl)−Kl0

v f v0

vl(v f − v0)

)
φ jcdΓc i, j = 1,2 l = x,y (52)

As reported in [21] and [22], such numerical scheme could fail to converge due to the
softening nature of the cohesive model. Moreover, the choice of the penalty values is
important since it could lead to large unbalanced forces and shoot the iteration beyond its
radius of convergence.

One of the remedies for the overshoot can be a damping loop inside the Newton -
Rhapson iteration, i.e. reduce the step-length by a power of 2 until satisfactory reduction
of the residual is achieved. Even though this approach is quite efficient, it might be too
slow, since a key factor in obtaining an accurate solution is the choice of sufficiently short
load increments. This means that the solution of most problems could be computationally
inconvenient.

In order to accelerate the Newton process, a cubic polynomial line search (LS) algo-
rithm has been used [23]. Another drawback of the Newton-Rhapson algorithms is that
their (quadratic) convergence is guaranteed only if the guess solution is close enough to
the real solution. LS algorithms are instead globally convergent, since they may converge
independently from the starting point.

6 NUMERICAL RESULTS
Five numerical applications regarding single mode delamination are presented in this sec-
tion. The fracture modes studied are mode I with two Double Cantilevered Beam (DCB)



tests (figure 5) and mode II with an End Loaded Split test (ELS) (figure 6) and an End
Notched Flexure (ENF) test. (figure 7). In table2, for the DCB tests, Gc = GIc the critical
energy release rate is related to mode I and τm is the maximum interlaminar traction stress,
while for the ELS and ENF tests, Gc = GIIc related to mode II and τm is the maximum
interlaminar shear stress. For mode II loading, the interfaces are here supposed friction-
less. All the specimens are subjected to a variable vertical applied displacement v, at each
load step a nonlinear problem has been solved according to the scheme in equation (42).
A reaction force F has been calculated when the algorithm satisfied convergence criteria.
In order to simulate an initial delamination (indicated with a0), penalty stiffnesses were
set to zero at the pre-crack. A plane strain of tension is supposed.for all the cases. A
rectangular grid of nodes is used for all the cases. The numerical quadrature employed is
the Gaussian quadrature and three Gaussian points per triangular element were used. The
simulations were carried out using an in-house meshfree code.

Table 1: Elastic properties of the specimens

T300/977-2 from [21] XAS-913C from [20] Ref. [24] PEEK from [21]
E11 150 GPa 126 GPa 130 GPa 122.7 GPa
E22 11 GPa 7.5 GPa 8 GPa 10.1 GPa
G12 6 GPa 4.981 GPa 5 GPa 5.5 GPa
ν12 0.25 0.281 0.27 0.25

Table 2: Geometry and inteface properties of the specimens

DCB T300/977-2 DCB XAS-913C ELS Ref. [24] ENF PEEK ENF T300/977-2
L 150 mm 100 mm 105 mm 102 mm 100 mm
b 1.98 mm 1.5 mm 1.525 mm 1.56 mm 1.98 mm
w 20 mm 30 mm 24 mm 25.4 mm 10 mm
a0 55 mm 30 mm 60 mm 39.3 mm 30 mm
Gc 268 J/m2 263 J/m2 856 J/m2 1719 J/m2 1450 J/m2

τ 45 MPa 57 MPa 48 MPa 100 MPa 40 MPa

Figure 5: Double Cantileverd Beam: geometry and boundary conditions



Figure 6: End Loaded Split: geometry and boundary conditions

Figure 7: End Notched Flexure: geometry and boundary conditions

6.1 Mode I Double Cantilevered Beam: first test
The first case is a DCB test from [21] for a (0◦24) T300/977-2 carbon fiber-reinforced
epoxy laminate. Elastic properties and geometry along with interface parameters are re-
sumed in tables 1 and 2 (where w is the plate width).

A comparison with the experimental test is shown in figure 9, as it can be observed
the numerical model can predict the applied relative displacement at which the delamina-
tion starts (around 5 mm) and the correspondent maximum reaction force (62 N). Once
reached the critical opening displacement, the delamination propagates through the mid-
plane (figure 8) .

6.2 Mode I Double Cantilevered Beam: second test
The second DCB case is from [20] for a XAS-913C carbon-fiber epoxy composite. The
properties and the initial conditions are reported in tables 1 and 2. The plate has been
modeled as figure 5 and there is only a slight difference between the experimental test and
the numerical results regarding the reaction force (figure 10). In figures 11 are depicted
the stress color plot for the longitudinal stress σx (figure 11(a)) and the shear stress τxy
(figure 11(b)). As expected, it could be noted that each delaminated arm behaves like a
cantilevered beam in bending constrained at the delamination tip. The same distribution
can be identified in the next examples.

6.3 Mode II End Loaded Split
Delamination of mode II (sliding mode) has been modeled as in figure 6 with a loading
displacement applied at the free end of the bottom plate. Properties and geometry are



Figure 8: Delamination Stages for DCB test T300/977-2: transverse stress σy plot

Figure 9: Reaction Force for DCB test T300/977-2 : continuous line: numerical ; squared
line: experimental



Figure 10: Reaction Force for DCB test XAS-913C : continuous line: numerical ; squared
line: experimental

(a) σx

(b) τxy

Figure 11: Delamination stress plot for DCB test XAS-913C



summarized in tables 1 and 2. Experimental results are taken from [24]. From figure
12 it can be observed that the model can capture the trend with a minor difference from
the experimental test. The critical opening displacement is around 15 mm, after that the
delamination advances quite rapidly (figures 13 and 14 ). The delamination is complete
(split) for a displacement of 21 mm, after that the two beams respond separately to the
loads.

Figure 12: Reaction Force for ELS test : continuous line: numerical ; squared line: ex-
perimental

6.4 Mode II End Notched Flexure: first test
Another example of Mode II loading is an ENF test where a displacement is applied in the
middle of a simply supported beam with an initial delamination length (three-point bend-
ing). Experimental results are taken from [21] and geometry and properties (AS4/PEEK)
are resumed in tables 1 and 2. Once again a good agreement can be observed between
the experimental and the numerical results. The critical opening displacement is perfectly
predicted with a difference in the resulting reaction force. Delamination phases can be
observed from figure 16.

6.5 Mode II End Notched Flexure: second test
Final example is a ENF test for a graphite/epoxy material T300/977-2 (same specimen of
DCB test in subsection 6.1 but with different width) taken from [25] whose elastic and
interface properties are resumed in tables 1 and 2.

The figure 17 shows a comparison with FE decohesion elements which has been the
most widely used technique for delamination modeling. As it can seen, results are very
similar. Moreover the curve is much smoother than the previous case. This is mainly due
to convergence issues as mentioned in the previous section 5. As in FE, these problems



Figure 13: Delamination Stages for ELS test: longitudinal stress σx plot

Figure 14: Delamination Stages for ELS test: longitudinal stress τxy plot



Figure 15: Reaction Force for ENF test : continuous line: numerical ; dashed line: exper-
imental

can be overcome when relatively ”small” load increments are applied and when the nodes
distribution is globally refined. The measure of the refinement and the choice of load
increments can really depend on the problem. Moreover, an iterative process known as
modified arc-length can be used to accurately choose the load increments. Such method
assumes the load level (in this case the value of the reaction force) as an additional un-
known.

7 CONCLUSIONS
In this paper a penalty-based approach to delamination has been proposed. Delamination
is modeled considering two different sub-domains connected (or disconnected) with co-
hesive forces. Using the cohesive model, a variable penalty factor along the crack line
consented to loosen or tight the two parts according to their relative displacements.

A two-dimensional meshfree method (RKPM) has been used to discretized the lam-
inate. Conversely to FE approaches, meshfree techniques consent to effectively treat the
contact between the parts without interface elements or conforming meshes. Arbitrary
crack propagation path can be as well modeled with additional cohesive segments and
therefore more unknowns.

Nevertheless when the path is known, the RKPM approximation consents to couple
the parts without adding additional unknowns. Results showed very good agreement with
experimental evidences for single-mode delamination under mode I and mode II loading.



Figure 16: Delamination Stages for ENF test: longitudinal stress σx plot



Figure 17: Reaction Force for ENF test : continuous thick line: RKPM ; continuous thin
line: FE decohesion
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