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A perennial problem in computer-aided assessment is 

that “a right answer”, pedagogically speaking, is not the 

same thing as “a mathematically correct expression”, as 

verified by a computer algebra system, or indeed other 

techniques such as random evaluation. Paper I in this series 

considered the difference in cases where there was “the right 

answer”, typically calculus questions. Here we look at some 

other cases, notably in linear algebra, where there can be 

many “right answers”, but still there can be answers that are 

mathematically right but pedagogically wrong. We 

reformulate the problem in terms of articulating the sought-

after properties, which may include both mathematical 

equivalence and algebraic form. 

 

1 INTRODUCTION 

 Computer-aided assessment (CAA) of mathematics is 

a growing trend, endorsed by the American Mathematical 

Society (Lewis and Tucker, 2009). The first of their three 

recommendations is “Harness the power of technology to 

improve teaching and learning”. There are many advantages 

to such schemes, as exemplified in the large Rutgers study by 

Weibel and Hirsch (2002): not only sheer feasibility, but also 

immediacy and rewarding persistence. However, once we 

move beyond simple multiple-choice, grading mathematical 

answers is not as easy as might be envisaged. 

 

Acknowledgements. We are grateful to AJP (John 

Power, Bath), the teacher of CM10197, Sally Barton 

(University of Nottingham) for contributions to section 6, the 

Applications of Computer Algebra organisers and referees,  

the IJTME referees, and the London Mathematical Society 

for funding the travelling. 

 

2 MATHEMATICAL CORRECTNESS 

Once one gets beyond simple numbers, mathematical 

correctness is no longer textual correctness, and is not a 

simple task for automated assessment schemes. The student’s 

answer is generally (with today’s technology
1
) a series of 

characters: how does the mathematical object represented by 

them relate to the mathematical object that is the desired 

answer? Even in “arithmetic”, this issue arises. Suppose the 

question is “Subtract 5 from 12”. We expect the student to 

                                                 
1
 Practical recognition of hand-written mathematics will soon 

be upon us, but this will make the problems we are 

describing more, not less, salient. 

answer 7, but what if the answer is 07, or +7? Both 

alternatives should probably be regarded as correct. 

The reader may well complain that this is “merely a question 

of parsing”, and in the purely arithmetic context it would be 

possible to reduce issues of correctness to issues that parsing 

technology can solve, but what about ba + versus ab + ? 

In this paper we will assume that the student’s typed input 

(or indeed handwriting) has been parsed and we are 

considering the correctness of this parse tree. For comments 

on the practical challenges of parsing in this context, see 

Sangwin & Ramsden (2007). 

Lewis and Tucker (2009) survey three systems. 

• WeBWorK (Gage et al., 2002) checks the student’s 

answer against the “correct” answer by random 

evaluation: a technique that is, in fact, unreasonably 

effective for a wide range of calculus and pre-

calculus problems. 

• MapleTA uses the Maple computer algebra engine 

to check the student’s answer against the correct 

one. 

• Webassign uses built-in techniques, and no details 

are available to the authors. 

In addition, 

• STACK (Sangwin, 2007) uses the Maxima 

computer algebra engine both to establish algebraic 

equivalence and satisfaction of a (fixed) range of 

forms. 

Within their scope, these techniques seem to provide good 

solutions to the problem of determining mathematical 

correctness. The importance of this should not be under-

estimated: few things are more damaging to pedagogy than a 

wrong answer that is marked as right, and class confidence 

can easily be shattered by a few examples of the teacher 

having to say “yes, that’s right even though the computer 

marked it wrong”. 

3 BEYOND MATHEMATICAL CORRECTNESS 

We can identify three major challenges. 

1) The answer may be mathematically correct, in the sense 

that a “sufficiently powerful” algebra system (or 

mathematician) would agree that it was equivalent to the 

`right’ answer, but no teacher would agree that it was the 

(or a) correct answer. We will call an answer that 
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teachers would agree to be correct a pedagogically 

correct answer.  

2) The answer may not be in the form required, even 

though mathematically correct, and indeed pedagogically 

correct were it not for the specific stipulation in the 

exercise: “Express X in the following form …”. This is 

the specific focus of this paper, which has not received 

much attention so far. For example, Lewis and Tucker 

(2009) write of WeBWorK “However, if a specified 

simplification of an expression is desired, […] 

WeBWorK cannot be used”. 

3) The answer may well be mathematically incorrect, but 

nevertheless be “nearly right”. 

 We illustrate these points with possible answers to the 

exercise “express 
)1)(2(

3
2 −−

−

xx

x
 in partial fractions”. 

1) 
)12)(2(

23

)21)(1(

13

2

1

)1)(23(

13

2

1
22 −−

+−
+

++

−−
+

−−

−

xxx

(probably the result of direct substitution into a canned 

formula) is mathematically correct but not pedagogically 

correct; 

2) 
)2(3

1

)1(3

5
2 −

−
+

−

+

xx

x
 is correct, and simplified, but not 

completely in partial fractions; 

3) 
)2(3

2

)1(3

4

)1(

2

−
−

+
−

− xxx
 is wrong by a factor of 

2, but is otherwise simplified and in complete partial 

fraction form. 

 The first challenge is fundamental to moving beyond 

simple “mathematical correctness” in computer assessment. 

A student’s answer may well be mathematically correct, in 

the sense that a computer algebra system would say that it is 

equivalent to “the correct” answer, without being 

pedagogically correct, in the sense that a human teacher 

would award it full marks. In Bradford et al. (2009) we 

introduced the concept of classifying the rules for 

mathematical correctness according to their pedagogical 

appropriateness, and defined “the correct answer” as that 

which was both mathematically correct and simplest in the 

sense of Carette (2004), which roughly speaking means 

“smallest”. There may in fact be several such, e.g., a+b or 

b+a, but they must all be equivalent under the underlying 

rules. 

 This philosophy works as long as  

• there is a single (up to the application of the 

underlying rules) correct answer, as tends to be case 

in calculus, and  

• there are no other constraints on the answer, such as 

“in partial fractions” or “reduced to upper triangular 

form”.  

Some other mathematical domains do not lend themselves to 

this paradigm so easily, though, and in this paper we explore 

the application of our philosophy to such areas, taking 

“undergraduate linear algebra” as our opening specific 

example.  

4 THE CLASSIFICATION OF RULES 

In Bradford et al. (2009) we considered the abstract 

model of a computer algebra system as operating via a set of 

rewrite rules. We stress that it is not necessary that the 

system actually operates this way: some do (e.g., 

Mathematica) but many, such as Maxima which underlies 

STACK (Sangwin, 2007), do not. Within such a model, we 

proposed classifying the rules into three types. 

Underlying: those that the student, or the algebra system, is 

free to apply at will, without changing mathematical 

or pedagogic correctness. A typical example of this 

class would be commutativity of addition as in a+b or 

b+a, both of which are normally
2
 “equally correct”. 

Venial: those that the student ought to have applied, but 

which aren’t the main thrust of the subject matter in 

hand.  Once we have got beyond basic algebra, rules 

such as “combining terms” and “carrying out numeric 

computations” fall into this class, and might attract a 

deduction of marks. It should be noted that the venial 

rules might be sub-divided into “degrees of 

incorrectness”, and that this classification might 

evolve with the pedagogic context: see the discussion 

of trigonometric contraction in Bradford et al. (2009).  

Fatal: those rules which are fundamental to the subject 

matter in hand, and, if the computer algebra system 

needs to apply them to get the “correct answer”, the 

student hasn’t truly answered the question. In the 

detailed example of Bradford et al. (2009), which was 

differentiation, the actual differentiation rules fell into 

this category. 

We should note that this classification, and the 

marking penalties to be applied in the case of the venial 

rules, is very dependent on what we have called “the subject 

matter in hand”. 

An answer is then: correct if it is equivalent to the 

correct answer under just the underlying rules; partially 

correct if it is equivalent to the correct answer under just the 

underlying and venial rules; and (pedagogically) incorrect 

otherwise. If it is equivalent to the correct answer under the 

underlying, venial and fatal rules, then the feedback ought to 

be along the lines of “OK. But that isn’t really a finished 

answer is it?”, as with the student who, on being asked to 

differentiate 
x

xe , replies with )'(expexp' xxxx + . 

Conversely, if it is not equivalent to the correct answer under 

even the fatal rules, then it is mathematically incorrect. 

“Buggy rules” (Brown & Burton, 1978) may then be used to 

identify possible causes for the error, from which feedback 

may be generated.  An example of a buggy rule would be to 

rewrite 
nnn yxyx +=+ )(  when 1≠n . 

 

                                                 
2
 But commutativity of addition would probably not be 

“underlying” for the terms of a power series: 

L+−+− 321 xxx is acceptable, but the alternative 

L++−− 231 xxx is not. This emphasises the dependence 

of pedagogic correctness on context. 
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5 UNDERGRADUATE LINEAR ALGEBRA  

5.1 The subject matter 

Two subjects clearly separate school mathematics 

from work at university: real analysis and linear algebra.  

Since the latter is covered world-wide, and contains a 

significant methods-based component we shall consider this 

here.  Our precise subject matter is the linear algebra 

component of the course CM10197 “Analytical mathematics 

for applications” at Bath
3
.  

5.2 Applicability of the paradigm 

Many of the questions one might want to set in 

teaching such material do have precise answers: in our 

terminology answers which are unique up to the application 

of the underlying rules. Hence, when teaching matrix 

multiplication, one would generally classify the rules for 

scalar expressions as underlying or venial, but the rule for 

matrix multiplication itself would be classified as fatal. 

Hence a student who answered 









=








×








5043

2219

87

65

43

21
is marked as correct, 

whereas a student who answers 










×+××+×

×+××+×
=








×








84637453

82617251

87

65

43

21
 is 

regarded as having committed (several) venial omissions, 

and a student who reduced the problem of multiplying 4×4 

matrices to 2×2 matrices but no further, as having fatal 

omissions in the answer. 

Much the same applies to questions like “compute the 

inverse of …”, or “solve this set of (fully determined) linear 

equations”. In this case, we note that classifying matrix 

multiplication and inverse as fatal would require the 

complete solution, whereas classifying them as venial would 

allow an answer of the form M
-1

.v to be “partially correct”. 

This stresses the point that the classification of the rules is 

dependent on the pedagogic aims
4
. 

Equally, though, we may choose to relegate 

mathematical correctness to the algebra system altogether, 

and just apply the underlying/venial/fatal classification to the 

individual scalar entries. 

5.3 Lack of “a correct answer” 

                                                 
3
 http://people.bath.ac.uk/masdr/23nov08.pdf and 

http://www.bath.ac.uk/catalogues/2009-

2010/cm/CM10197.htm 

4
 We also note that expressing matrix operations such as 

multiplication or inverse as rewrite rules is perfectly 

possible, but may well, in practice, be implemented via the 

internal operations of the underlying algebra system, e.g., 

matmul(A,B) → internal_matmul(A,B). 

 

However, many questions in this domain do not have 

an unambiguous “right answer”. A typical example, taken 

from the CM10197 problem sheets, is “reduce M to (upper) 

triangular form”. AJP informs us that this is the only “open-

ended” question in his sheets since he wishes to provide very 

rapid response to student homework.  This is typical: Pointon 

and Sangwin (2003), for example, found very few such 

questions in their analysis of first year university 

coursework.  While a human teacher “looks at the answer”, a 

CAS “establishes mathematical properties”.  The human 

makes many judgements rapidly, the author of CAA has to 

articulate these and encode them.  All question formats 

distort the assessment process: paper-based assessments do 

not encourage teachers to set open-ended questions, cited as 

one of the great advantages of automatic marking schemes 

by Lewis and Tucker (2009), and so we are not surprised 

that, in principle, AJP wishes he could set more such 

questions.  In this question the pedagogic context is implicit, 

but one would assume that “elementary row operations”, are 

the methods to be used.  

While it would be feasible to handle “elementary row 

operations” by rewrite rules, the rules would look relatively 

cumbersome, e.g., 

matrix(rows1,rowA,rows2,rowB,rows3)→ 

matrix(rows1,rowA,rows2,rowB-(b/a)*rowA,rows3) where 

rowA=(k zeros,a,elements) and a≠0 and 

rowB=(k zeros,b,elements) and b≠0. 

Hence it may be more appropriate simply to rely on 

the underlying algebra system for mathematical correctness. 

We would still suggest the approach of the previous section 

for pedagogical correctness, asking whether each component 

of the student’s answer is reducible by the venial rules. 

We propose that, if the parse tree representing the 

student’s answer is N, there are three distinct stages of 

verification that N should undergo. 

Syntactic: does N actually represent an upper triangular 

matrix of the right size?  Note that the correct test for 

“upper triangular”, i.e., all elements below the main 

diagonal being zero, is a purely syntactic one, and 

does not involve the rule classification outlined in the 

previous section. This means that we would regard the 

matrix 








10

21
 as being upper triangular, but the 

mathematically equivalent 








− 133

21
 would not 

be, since it is not manifestly upper triangular. 

Mathematical: is N actually equivalent to M? If M is non-

singular, then the test is “is det(M
-1

.N)=±1?” If M is 

singular (and the teacher may well not intend to teach 

this case!), then the correct test will depend on how 

the teacher has taught this case, but will certainly 

include “rank(M)=rank(N)?” 

Pedagogic: this is where the classification of rules comes in, 

but yet again the pedagogic context is vital. If 

pivoting is not required, then the elements of N are 
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given in closed form, e.g., from 

















ihg

fed

cba

 we 

have 























−

−−
−−

−−

)(

))((
00

0

bdaea

dcafgbah

a

gc
i

a

cd
f

a

bd
e

cba

 

but would the teacher be content simply to see 

numeric values substituted in unevaluated? Hence 

“carrying out numeric computations”, described 

above as venial, might, in this context, be regarded as 

fatal, or carry a penalty of, say, 50%. 

5.4 More challenging “correct answers” 
 

A question which is not often set, in the authors’ 

experience, largely because of the difficulty of verifying the 

solution, is “Give all the solutions to M.x=v”, where M is not 

(necessarily) of full rank. Here a major problem is syntactic 

verification, and we probably need to force the format of the 

students’ answers somewhat, e.g., “express in vector 

notation, v0+av1+bv2+…, where a, b etc. are parameters, all 

solutions to M.x=v”. Once this is done, the three stages of 

verification would look as follows. 

Syntactic: given the restrictions imposed, this is not too 

hard, but actually becomes a parsing problem, as we 

need to identify the various components.  

Mathematical: here it is tempting to observe that, by 

analogy with the “evaluate at five points” strategy of 

WeBWorK (Gage et al., 2002), we need only check 

that v0, v0+v1, v0+v2 etc. satisfy the system of the 

question. Indeed, since we are doing linear algebra, 

this is indeed sufficient, not merely a heuristic, to 

show that the student’s answer does indeed describe 

solutions. However, we only know it describes all 

solutions if we also verify that dim(v1, 

v2,…)=codim(M). In practice one would stray into 

“wrong answer but” territory if it was only this test 

that failed. 

Pedagogic: the same points as above largely apply here. 

Similar considerations arise with such questions as 

“What is the equation for the intersection of the planes …”. 

Again, we probably need to force
5
 the format. 

5.5 Eigenvectors 

 

Similar questions arise when it comes to eigenvectors 

(eigenvalues are a simple issue and the methodology of 

Bradford et al. (2009) applies). The teacher may think that 

the eigenvector is (1,2,3), but it is hard to mark as “wrong” 

                                                 
5
 Manual marking tends to prefer fixed formats, but without 

forcing them. 

the student’s (17,34,51), whereas we might want to mark as 

(at least venially) wrong a partially-worked out answer. 

When the eigenspace has dimension greater than one, 

the challenge is greater. We need to check that the 

eigenvectors are correct, complete (both mathematically and 

pedagogically) and irredundant.  At this point, we have 

essentially the same problem as in the previous section, since 

we are actually asking for the solutions of 0v =− ).( IA λ . 

6 OTHER SYNTACTIC ISSUES 

We can see the same three-fold classification of 

Syntactic/ Mathematical/ Pedagogical correctness arising 

elsewhere, when what is required is an answer in a certain 

form.  

6.1 Factorization 

 

If it were not for the syntactic constraint “factored”, of 

course a student would be able to return the question as the 

answer.  This shows the importance of the “syntactic” check. 

However, the syntactic check is more subtle than might 

appear. It is insufficient to ask for a top-level product, else a 

student could “factor” 12 −x  as ( )11 2 −× x , which is of 

course a factored form, but not what the teacher intended.  

The question “what did the teacher intend” is very 

important here. We can imagine at least five possible 

meanings, which we illustrate with respect to the polynomial 

4816 48 ++= xxf . 

1. Any non-trivial factorization, e.g., ( )( )124 44 ++ xx . 

2. A factorization into irreducible (over the integers) 

factors, i.e., ( )( )( )122222 422 ++−++ xxxxx . 

3. A factorization over the reals such as ( )222 ++ xx
 

( )( )( )3232323222 42422 +−+++− xxxxxx

 

4. A factorization into irreducible (over the Gaussian 

integers, with i allowed) polynomials, i.e., 

( )( )( )( )( )121111 4 +−−+−−+++ xixixixix . 

5. An absolute factorization over the complex numbers, 

where the ( )124 +x  factor would also be split into the 

four terms ( )ix ±± 134
. 

While it is unlikely that a teacher would use our 

terminology with a class, the teacher, and the assessment 

scheme, must be clear what is intended. There is also the 

issue of what to do with the over-eager pupil, who returns, 

say, answer 3 or answer 4 when the teacher was only 

expecting answer 2. 

Syntactic: For option 1 above, the only syntactic 

requirement is for the factorization to be non-trivial, 
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with the semantic requirement being mathematical 

correctness.  

Mathematical: For this family of questions, mathematical 

correctness is probably the easiest aspect — (i) are the 

factors irreducible and (ii) do the factors multiply 

back to the original input? However, the issue of 

“buggy rules” and diagnosis of (mathematically) 

incorrect answers is also important here. Typical 

errors would include getting the sign, or another 

constant factor, wrong, which could be relatively 

easily tested for. 

Pedagogic: Suppose the “true” answers from our computer 

algebra system are the factors if  and the student’s 

answers are the jg : then each jg  must correspond to 

some if , or to some product of the if s. Here 

“correspond” would normally mean “equal up to a 

constant factor”, unless the teacher is trying to impose 

specific rules about the distribution of constants. 

Having established that jg  corresponded to if , i.e., 

that ij cfg = , then the methodology of Bradford et 

al. (2009) can be applied to see whether it is 

equivalent under the underlying rules, the venial rules, 

or the fatal rules (which would  include division). We 

should note that the “mathematical correctness” 

branch of the test will ensure that the c multiply out 

correctly, or not as the case may be. If not, we have 

the necessary material to look for a “buggy rule” 

(Brown & Burton, 1978). 

6.2 Partial Fractions 

 
In elementary algebra there are relatively few forms, the 

normal pedagogic order being given by Barnard (1999).  At 

the macro level, interesting comments are made about form 

in Miller (1995).  After factored form, perhaps the most 

important is that of partial fractions.   

 

Here is a typical example of an expression in both rational 

and partial fraction form.   

n

n

n

n

nnn 2112

1

24

1

24

1

41

1
2 −

+
+

+
=

−
−

+
=

−
 

What would a teacher say to the third form on the right?  It is 

certainly a sum of terms, each of which has a linear 

denominator, and for which the order of the numerator is no 

greater than
6
 that of the denominator, and where the 

numerator is coprime to the denominator. 

Syntactic: This example is chosen to illustrate that 

recognizing form is non-trivial. 

Mathematical: Again, here mathematical correctness is 

algebraic equivalence with the original expression. 

Pedagogic: In this example the unary minus can cause 

significant technical problems.  Teachers are likely to 

condone differences such as the following, which 

                                                 
6
 Of course, the teacher may have insisted on having the 

numerator degree strictly less than the denominator degree, 

in which case the third solution would fail the “syntactic” 

check. 

involve significantly more than commutativity of 

addition.   

nnnn 42

1

42

1

24

1

24

1

−
+

+
=

−
−

+
 

In the terminology of Bradford et al. (2009), we have 

to regard 
c

b
a

c

b
a

−
+=−  and 

c

b
a

c

b
a

−
+=−  as 

further underlying rules. Further comments on the 

technical aspects of this are given by Heeren and 

Jeuring (2009).  

 

 

7 OTHER ISSUES 

Rewrite rules cannot capture all the aesthetic 

judgements that teachers would like to make: notational 

conventions which require consistency aid human 

recognition, as in cbxax ++2
versus γ++ axBx2

. 

Similarly in section 5.5, choosing a unit eigenvector, or an 

eigenvector with integer coefficients, is essentially an 

aesthetic judgement. A practical teacher may well choose 

problems which obviate the need for such decisions to be 

made, and this can be made relatively systematic (Steele, 

2005). 

Our goal in this paper, as in the previous, was to 

examine judgements made by teachers in terms of abstract 

rewrite rules. While it is not our goal here to design a 

complete system, we note that run-time complexity is 

normally not a major issue for the sort of problems that 

teachers actually pose to students. 

A more relevant complexity question is how to 

describe the rules, and to provide a user interface which 

enables the teacher to assign each rule, or group of rules, to 

one of our three categories in a practical on-line assessment 

system. 

8         CONCLUSIONS 

We have seen that the methodology of Bradford et al. 

(2009) is useful in more general contexts than the calculus 

context in which it was introduced, where “the right answer” 

was a meaningful concept (even if not always as well-

articulated as one would like). There are several topics in 

linear algebra where “the right answer” is not as well-

defined, and in section 6 we have touched on some other 

questions where the same is true. 

We regard the methodology of Bradford et al. (2009) 

as answering the third leg of our three-legged test: 

• Is it syntactically correct, i.e., does it meet the 

requirements of the question posed; 

• Is it mathematically correct, i.e., is it a correct 

answer to the question; 

• Is it pedagogically correct, i.e., has the student 

completed the work (no venial rules need to be 
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applied) and not tried to answer the question with a 

re-statement (no fatal rules need to be applied). 

We note that different questions have very different 

balances between the syntactic, mathematical and pedagogic 

aspects of their verification: in some the syntactic part is 

trivial, whereas for under-determined linear systems (and 

multiple eigenvectors) it is the most challenging component. 

There is a real distinction, in our view, between the 

syntactic and pedagogic checks. Consider asking the student 

to triangularize 

















231

682

351

. The “correct” answer is 

















−=

100

020

351

:A , but the zero in position 3,2A  is 

fundamentally different from the others. They have to be 

zero, else the matrix is not syntactically upper triangular, 

whereas writing 3,2A  as, say, 66 − , is a venial error of 

failing to carry through the arithmetic. 

We cannot emphasise too strongly our view that the 

pedagogic context has to drive the classifications we have 

outlined above, and any marking penalties to be applied in 

the case of the venial rules. Indeed, the case of partial 

fractions shows that the precise definition adopted by the 

teacher has to control even the syntactic phase of answer 

checking. 
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