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ABSTRACT 

 

Noise in hydraulic power steering systems is mainly generated by the hydraulic pump due 

to the cyclic pumping mechanism that creates pulsating flow transmitted by the fluid. This 

flow ripple and pressure ripple, propagating through the hydraulic circuit, interacts in a 

complex way with the other parts of the vehicle, generating audible noise inside the vehicle. 

The present work shows two ways to reduce the flow ripple amplitude generated by a vane 

pump through the redesigning of the pump rotating group. First, a nine-vane rotor pump is 

proposed and, secondly, a pump with three discharge ports is proposed. To check their 

results, a MatLab/Simulink based pump model was created according to the new 

geometrical characteristics and the results are compared with the regular pump ones.  Also, 

a flow ripple experimental test was run using the Secondary Source Method to validate the 

numerical model results of the regular pump. The new designs simulation results show 

large flow ripple amplitude reduction (from 6dB to 16dB per harmonic) as well as 

frequency displacement in the discharge flow ripple spectra in both designs. Also, the 

simulations show perpendicular force on the pump shaft generated by the non-balanced 

conditions created by the new designs. 

 

 
1. INTRODUCTION 

 
Noise produced by the hydraulic power steering pump during the car operation can, in 

some situations, be perceived inside the vehicle as an annoying sound. The flow variations 

(flow ripple) generated by the pump through its natural operating process, are transmitted 

along the power steering hydraulic circuit, interacting with the impedance of the hoses and 

tubes generating structural vibration and sound emission around the circuit. 

 

In some vehicles, the hydraulic circuit is tuned in order to avoid perceived noise inside the 

cabin. Flexible hoses, sometimes with tuning cables, are usually used to increase circuit 

compliance in order to remove unwanted frequencies or reduce the flow ripple amplitude. 

In fact, there are several techniques and devices (like silencers, side branches, 

accumulators, etc) that can be used to reduce fluidborne-noise along the propagation circuit 

[1, 2].  

 



However, if a pump can be produced with a lower noise profile, this may create a solution 

that is independent of the hydraulic circuit and that does not require costly and time-

consuming tuning of the system to achieve the wanted perceived noise reduction. 

 

The present work is aimed at vane pumps and proposes two new rotating group designs, 

aimed at flow ripple amplitude reduction. 

 

In order to achieve those results, a MatLab/Simulink based numerical-model is created 

from a regular pump design and validated through the experimental Secondary Source 

Method, developed in the University of Bath [3-5]. The simulated results of each new 

design are compared with the regular pump ones. Comparison is made in terms of the flow 

ripple amplitudes, and also in terms of force fluctuations. 

 

 
2. PUMP MODEL 

 

The numerical model of the pump is based on the general continuity equation, choosing the 

chamber (between a leading vane and its trailing vane) as the control volume. Similar 

models were created by Dickinson et al [6], Chalu [7] and Yang [8]. 

 

All the dimensions (geometric data) were loaded into the model from the drawings of a 

regular ten-vane automotive hydraulic pump. The pressure variation is described by 

equation 1: 
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where QIN is the flow in the inlet port, QOUT the flow in the discharge port, Be the effective 

bulk modulus, V the chamber volume and QLEAK the flow resulting by the leakage path 

inside the pump. 

 

The flows through the inlet and outlet ports are calculated using the orifice equation, which 

relates the pressure difference between the downstream and upstream sides of a restriction: 
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where Cd is the orifice flow coefficient, A the orifice area, ρ the fluid density and ∆p the 

pressure difference between the upstream and downstream sides. 

 

The flow leakages are calculated using the equation for laminar leakage flow between two 

planes, with one of them moving: 
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where h is the clearance, L the width of the gap, t the length of the gap, ω the fluid viscosity 
and u the velocity. The first term of this equation describes the flow through the areas when 

both are fixed. The second term adds the effect of relative movement of the plates (Couette 

flow).   

 

Analysing the pump operation and the way how the internal parts are assembled, several 

leakage paths can be identified where leakage flows can be calculated.  So, equation 3 is 

used to calculate the following leakage paths into the pump rotating group. 

 

Vane tip leakage: 
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Vane end leakage: 
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Vane slot leakage: 
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where Lv is the vane length, h1 vane tip clearance, h2 the vane end clearance, h3 vane slot 

clearance, ω the rotational speed of the vanes, p the fluid chamber pressure, pa is the 

adjacent (leading or trailing) fluid chamber pressure, hv the vane height, rc the radius of the 

cam ring from the centre of the rotor, rr the rotor radius. 

 

Figure 1 shows a schematic of a fluid chamber showing the three leakage paths 

corresponding to equations (4), (5) and (6). The schematic also shows a leakage path across 

the end faces of the rotor, rliq , which is not included in the current model as it is expected 

to be small. 

 

The model also needs to include the ‘under-vane’ flow to the chambers at the inner radial 

faces of the vanes, caused by the vane movement:  
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where vi = - dri/dt is the radial speed of the vane. These chambers connect to the delivery 

port, and the pressure helps the vane with its radial movement to maintain contact against 

the ring wall, along with centrifugal forces. The sum of the under-vane flows results in the 

pump under-vane flow. 
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where Nv is the number of pump vanes (in the standard pump, Nv = 10). 

 

 



 
 

Figure 1 – Leakages flows into and out of the fluid chamber (from Chalu [7]) 

 

Some of the properties used in the simulation are listed in table 1. The fluid bulk modulus is 

reduced to allow for the effect of air bubbles and compliance of the rotor and vanes. The 

vane end clearance was estimated from the vane and rotor dimensions. The vane tip and 

vane slot clearances are simple estimates, and in practice these clearances would be 

expected to vary as the vanes move through their cycle. 

 

Table 1 Properties used in simulation 

 

Fluid viscosity 8.3 cP 

Fluid density  870 kg/m
3
 

Effective bulk modulus 4×108 Pa 

Flow coefficient for ports 0.6 

Vane tip clearance 0.01 mm 

Vane end clearance 0.019 mm 

Vane slot clearance 0.01 mm 

Rotor radius 20.7 mm 

Rotor width 16 mm 

 

  

 

 

 



3. SECONDARY SOURCE METHOD 

 

The Secondary Source Method (SSM), developed at the University of Bath [3-5], was used 

to measure the pump flow ripple and the impedance. 

 

The SSM is based on the measurements of the harmonics of pressure ripple at a series of 

points along the length of a rigid pipe connected either to the delivery and suction port of 

the test pump. The pressure ripple that occurs at two or three positions is analyzed to 

determine the pressure ripple. 

 

From the Norton model shown in figure 2, is possible to find an equation to establish the 

pump flow at the discharge port: 
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(9) 

where Qs is the internal source flow, Q0 the flow ripple at the pump discharge port, P0 the 

pressure ripple at the discharge port and Zs the source impedance.  

 
 

Figure 2 – Norton model of a pump. 

 

In order to calculate the source impedance, a secondary source is situated downstream of 

the pump as shown in Figure 3. It can be shown that, if the second pump flow ripple 

frequencies do not coincide with the pump under test harmonic frequencies and the spectral 

leakages is negligible, Qs can be assumed to be zero. So, equation 9 is simplified and the 

source impedance can be calculated as: 
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Measurements of pressure ripple are then taken with the secondary source not operational, 

from which Qs can be calculated easily through the Norton model given that Zs, P0 and Q0 

are known. 

 

Even though the basic principles of SSM are presented, is not the aim of this paper to 

discuss it detail. More information and the detailed evaluation of the SSM can be found in 

[3] to [5]. 

 



 
 

Figure 3 – Hydraulic Circuit for secondary source method [3]. 

 

The simulated results were compared with the experimental ones (measured using the 

SSM) and some results are shown in figure 4. These results show reasonably good 

agreement when the pump is run at low speed (1000 rpm in figure 4 (a) and (b)). However, 

for more extreme conditions (2000 rpm and 75 bar, figure 4 (c), for example), the shape of 

the flow does not match accurately with the simulated ones.  

 

Whilst there are differences in the shapes of the waveforms, the peak-to-peak amplitudes 

are quite similar. Differences in the experimental and simulated results may be attributed to 

inaccuracies in the SSM as well as simplifications and assumptions in the simulation 

model. Uncertainties in the nature of the delivery passageway and integral flow control 

valve, which are not included in the model, may explain some of the differences. 

Nonetheless, the similarity in the amplitude and the trends of the results indicate that the 

results from the simulation model are reasonable and may be used to investigate the effect 

of changes in the design of the rotor, cam and ports. 
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(a) 1000 rev/min, 25 bar
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Figure 4 – Measured and simulated outlet flow ripple 

 

 

4. NEW PUMP DESIGNS 

 

4.1  Regular pump.  

The regular automotive pump has two discharge ports located diametrically opposite each 

other, i.e., they are spaced by an angle of 180° regarding the centre of the thrust plate as the 
centre of the reference circumference. This kind of positive displacement pump is a so 

called balanced pump because these two opposite ports balance the force acting against the 

rotor (and all the walls of the chamber as well), reducing the shaft pump oscillations and 

overall vibrations. Figure 5 shows the inlet and outlet flow generated by just one fluid 

chamber. For this and all subsequent results the speed and pressure were 1000 rpm and 50 

bar respectively, and all results were from simulation. 
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Figure 5 – Inlet and outlet flow for one fluid chamber. 

 

As a result of this design, the discharge flow will be composed of the sum of the ten fluid 

chamber volumes per revolution.  

 

The simulated waveform and amplitude spectrum of the flow at the discharge port are 

shown in Figure 6. The fundamental frequency 0f  is equal to the vane passing frequency 

Vf  ( 167
60

0 =
Ω

== V

V

N
ff Hz at 1000 rpm). This is the first and highest peak in the graph. 

Several smaller harmonics can also be seen. 
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Figure 6 – Waveform and amplitude spectrum of total flow at outlet port. 

 



 

4.2 Nine-vanes Pump. 

In this design, the pump is modelled based on a rotating group containing a nine-slot rotor 

where the (nine) vanes are housed. The slots are equally spaced  by an angle of 40° to each 

other while the other parts (ring and plates) remain the same. Figure 7 shows the rotor 

cross-section. 

 

 
Figure 7 – Nine-vane rotor and cam. 

 

Unlike what is found in the regular pump, where the diametrically opposite vanes (for 

example, the first and sixth vane) reach the discharge ports at the same time, in this nine-

vanes design  the opposite vanes will reach the respective discharge port in a different time, 

offset by a rotational angle of (40/2)°. The effect of this process is the destructive 

interference of the chambers’ discharge flows at the outlet port, generating an increase in 

the flow ripple frequency and reduction in the amplitude. The predicted flow ripple 

waveform and amplitude spectrum are shown in Figure 8. 

 

The mean flow level remains roughly the same in both regular and 9-vane pumps. This is 

because the cam profile is the same in both cases. The displacement in frequency and the 

amplitude reduction are clearly shown in Figure 8. Because the ports open alternately, the 

fundamental frequency 0f  is now given by 300
60

2
20 =

Ω
== V

V

N
ff Hz. There is a great 

improvement moving the fundamental to higher frequency because the noise isolation of 

the hydraulic circuit tends to be better at high frequencies, further helping to reduce the 

noise. However the human ear is more sensitive to these higher frequencies. The tonal 

characteristic will be quite different, and the perception by the occupants of the car would 

need to be considered subjectively [9, 10]. 
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Figure 8 – Total flow at outlet port of the nine-vane design. 

 

4.3 Three discharge port Pump. 
In this design, the pump is modelled based on a rotating group composed of a standard ten-

vane rotor but with three discharge and suction ports in the thrust and pressure plates. Also, 

the cam ring is redesigned to support the new plate’s modifications as shown in Figure 9. 

 

The 3 suction ports are spaced by an angle of 120° between themselves as well as the 

discharge ports. Each discharge and suction port has a radial length of 24° while the “pre-

compression” zone (situated between the suction and discharge port) has a radial length of 

36°, keeping the minimum angle between a leader and a trailing vane to avoid “short-

circuit” between the ports. The cam profile was designed to give the same displacement as 

the other designs. 

 

With this configuration, a fluid chamber reaches the beginning of a discharge port every 

12° of rotation. For example, when a vane reaches the very beginning of the first discharge 

port, another vane will be in the middle of the second discharge port and another vane will 

be in the end of the third discharge port. This happens the same way in the suction port. The 

result of this three-phase fluid delivery is, again, the destructive interference of each 

delivered fluid package, achieving excellent outlet flow amplitude reduction. Figure 10 

shows the flow ripple waveform and amplitude spectrum. The steady flow level is roughly 

the same as for the regular pump. 

 

 



 
Figure 9 – Three-port cam ring internal profile. 

 

As with the nine vanes design, in this three-port design there will be displacement in the 

frequency-domain. Now, the fundamental frequency 0f  changes from 167 Hz (regular 

pump) to 50030 == Vff Hz, changing the original tonal pump noise.  
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Figure 10 - Total flow at outlet port of the three discharge port design. 

 

Figure 11 shows the reduction achieved per harmonic for each new design. This result 

shows a reduction around 12dB (9 vanes design) and 16dB (3 ports design) regarding the 



first harmonic of the generated noise, and similar reductions for the higher harmonics. 

From the graph, it’s possible to conclude that the 3 ports design gives the best flow ripple 

reduction. It should be noted that the timing of the ports and relief grooves, and the shape 

of the cam ring, may not be ideal for the new designs, and further improvement could be 

achieved by optimising the design. 

 

Also, the frequency displacement will help the vehicle system to absorb the noise, as the 

high frequencies may be easier to reduce through the transmission path (fluid and air) than 

the low ones, and there are likely to be fewer significant harmonics. 

 

Unfortunately the proposed designs result in instantaneous force imbalances because of the 

alternating port opening. The undesirable effect of these two new designs is shown in 

Figures 12 and 13. These graphs show the resulting perpendicular forces on the shaft and 

rotor during the pump operation. These were computed from the simulated pressures acting 

on the rotor and vanes. In the regular pump the theoretical forces would always be zero. For 

the modified designs there is a rapid and large force fluctuation. 
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Figure 11 – Reduction in amplitude versus harmonic for the nine-vane and three-port 

pump designs, relative to the regular design. 
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Figure  12 – Resulting lateral forces on rotor, nine-vane design. 
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Figure 13– Resulting lateral forces on rotor, three-port design. 

 

These resulting forces may generate excessive vibration on the shaft or housing, causing 

wear or even mechanical damage to the shaft bearing.  Therefore, the practical use of these 

new rotating group designs in the regular automotive pump needs strategies to reinforce the 

shaft-bearing to avoid undesirable vibration and damage. 

 



5.  CONCLUSIONS 

 

This work has shown a method to calculate and predict the outlet flow in an automotive 

positive displacement pump.  Also, it presented an experimental method (Secondary Source 

Method) to rate the pump flow ripple that was used to validate the numerical results. 

 

Two new rotating group designs were proposed; a nine-vane and a 3 port design, aiming for 

flow ripple amplitude reduction and frequency increase. Both designs have shown excellent 

flow ripple amplitude reduction (over 10dB for the first harmonic in both designs) and a 

displacement of the tonal noise frequency. Both effects, allied with the vehicle noise 

isolation capability, can improve the noise acoustical comfort and reduce the perceived 

noise inside the vehicle. 

 

Nevertheless, these new designs showed an undesirable effect, presented by the non-

compensated forces over the shaft-end. These resulting forces could generate extra shaft 

vibration and wear if the shaft and bearings are not properly designed to support those 

unbalanced forces.  
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