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Abstract

The Crime Reducing Effect of Education**

In this paper, we study the crime reducing potential of education, presenting causal 
statistical estimates based upon a law that changed the compulsory school leaving age 
in England and Wales. We frame the analysis in a regression-discontinuity setting and 
uncover significant decreases in property crime from reductions in the proportion of 
people with no educational qualifications and increases in the age of leaving school that 
resulted from the change in the law. The findings show that improving education can 
yield significant social benefits and can be a key policy tool in the drive to reduce crime. 
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1. Introduction 
 

Crime reduction is high on the public policy agenda, not least because of the large 

economic and social benefits it brings. Indeed, research on the determinants of crime 

points in several directions as to how crime reduction can be facilitated. A relatively large 

body of research undertaken by social scientists considers the potential for expenditures 

on crime fighting resources (like increased police presence, or new crime fighting 

technologies), or on particular policies to combat crime.1 Other work focuses more on the 

characteristics of criminals and considers which characteristics are more connected to 

higher criminal participation. In this latter case, policies that affect these characteristics 

can, if implemented successfully, be used to counter crime. 

In this paper, we focus on one such characteristic that has received some attention 

in the quantitative social science literature on the determinants of crime, namely 

education. In this literature, there is a (relatively small) body of work that attempts to 

establish a causal connection between crime and education (most notably the seminal 

paper of Lochner and Moretti, 2004) and a vast literature from various social science 

disciplines that does not.2 A drawback associated with almost all of this latter work is that 

it is difficult to ascertain whether the direction of causation flows from education to crime 

(and not the other way around). This, of course, matters if one wishes to consider 

appropriate policy responses to empirical findings. 

                                                 
1  UK evidence on the crime-police relation (in the context of the July 2005 terror attacks that hit London) 
is presented in Draca, Machin and Witt (2010) and evidence of crime reduction from a specific policy (the 
Street Crime Initiative) appears in Machin and Marie (2010).  
2 Examples from the criminology literature include Farrington (1986, 2001) and from the education 
literature include Sabates (2008, 2009) and Sabates and Feinstein (2008). There is much less work by 
economists. See Lochner (2010) for a broader overview of the crime and education literature. 
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Our focus is on empirically analysing the crime reducing potential of education 

and we present causal statistical evidence based upon a law that changed the compulsory 

school leaving age in England and Wales. As the raising of the school leaving age 

generated sharp increases in education for those affected, we frame our analysis in a 

regression-discontinuity setting looking at birth cohorts just before and after the law 

change. We show that there were significant property crime reductions associated with 

the extra education people obtained (or were forced to obtain) from the raising of the 

school leaving age. The implications of these findings are clear. Not only do they show 

that improving the education levels and attainment of individuals who would otherwise 

be on the margins of crime participation can act as a key policy tool in the drive to reduce 

crime, but also that such educational improvements can yield sizable social benefits. 

The rest of the paper is organised as follows. Section 2 offers a brief discussion of 

the theoretical background on the relationship between education and crime, describes the 

data sources used, shows some descriptive evidence on the association between crime 

and education and discusses the school leaving age reform we consider. Section 3 

describes the empirical strategies we implement and presents the results, together with a 

calculation of the social benefits that follow from the estimated crime reducing effect of 

education. Concluding remarks are given in the last section of the paper.  

 

2. Crime Reducing Education Mechanisms, Data and Descriptive Analysis 

Mechanisms Where Education Changes Can Impact on Crime 

There are number of theoretical reasons why education may have an effect on 

crime. From the existing socio-economic literature there are (at least) three main channels 
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through which schooling might affect criminal participation: income effects, time 

availability, and patience or risk aversion. For most crimes, one would expect that these 

factors induce a negative effect of schooling on crime, although ultimately this is an 

empirical question.  We briefly consider each of the three mechanisms in turn: 

i) The income effect works through education increasing the returns to legitimate work 

and/or raising the opportunity costs of illegal behaviour (Lochner, 2004; Lochner and 

Moretti, 2004; Hjalmarsson, 2008). Empirical evidence supports the notion:  for example, 

Grogger (1998) links crime to wages, concluding that youth offending behaviour is 

responsive to price incentives and that falling real wages may have been an important 

factor in rising youth crime during the 1970s and 1980s. Machin and Meghir (2004) look 

at cross-area changes in crime and the low wage labour market in England and Wales. 

They find that crime fell in areas where wage growth in the bottom 25th percentile of the 

distribution was faster and conclude that “improvements in human capital accumulation 

through the education system or other means… enhancing individual labour market 

productivity… would be important ingredients in reducing crime.” 

Conversely, there is also some evidence that education can also increase the 

earnings from crime as certain skills acquired in school may be inappropriately used for 

criminal activities. Levitt and Lochner (2001) find that males with higher scores on 

mechanical information tests had increased offence rates. Lochner (2004) also estimates 

that across cohorts, increases in average education are associated with 11% increase in 

white-collar arrest rates (although this estimated effect is not statistically significant). 

ii) Time spent in education may also be important for teenagers in terms of limiting the 

time available for participating in criminal activity. This ‘self-incapacitation’ effect was 



 4

documented by Tauchen et al. (1994) who found that time spent at school (and work) 

during a year is negatively correlated to the probability of arrest that year. Hjalmarsson 

(2008) looked at the opposite relationship, studying the impact of being arrested and 

incarcerated before finishing school on probability of graduating high school. Her results 

suggest that the more times you are caught committing crime and the amount of time 

spent in prison both greatly increase the likelihood of becoming a high school dropout.   

As these still may be endogenous decisions, Jacob and Lefgren (2003) instrument 

days off school with exogenous teacher training days and Luallen (2006) uses unexpected 

school closings driven by teacher strikes as an instrument for student absence from 

school. Both papers find important incapacitation effects of education on criminal 

participation. However, they also report that violent offences increase while school is in 

session, a finding that is attributed to a concentration effect.3 Anderson (2009) also 

reports US evidence, based on minimum high school dropout ages that vary across states, 

in line with the notion that keeping youth in school decreases arrest rates. 

iii) Education may also influence crime through its effect on patience and risk aversion 

(Lochner and Moretti, 2004). Here, future returns from any activity are discounted 

according to one’s patience in waiting for them. Thus, individuals with a lot of patience 

have low discount rates and value future earnings more highly as compared to those with 

high discount rates. Oreopoulos (2007) summarizes a sample of studies from the 

psychological and neurological literature, concluding that young people who drop out of 

school tend to be myopic and more focussed on immediate costs from schooling (stress 

from taking tests, uninteresting curricula, foregone earnings, etc.), rather than on future 

                                                 
3 This is the geographical proximity of a large number of youths – in the educational establishment – which 
may result in increasing the probability of violent encounters. 
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gains from an additional year of schooling. This line of literature also suggests that 

adolescents lack abstract reasoning skills and are more predisposed to risky behaviour. 

Education can increase patience, which reduces the discount rate of future earnings and 

hence reduces the propensity to commit crimes. Education may also increase risk 

aversion that, in turn, increases the weight given by individuals to a possible punishment 

and consequently reduces the likelihood of committing crimes.  

Data Description 
 

There are a number of pertinent data issues that we next need to discuss, as they 

are relevant in the context we study. First, there is the issue that crime measurement is 

different across data sources. Second, whilst some micro-data on crime does contain 

information on the characteristics of criminals, the majority does not. In the latter case, 

we need some means of matching crime data to education data.   

Probably the most commonly used source of crime data in quantitative research is 

information on criminal offences recorded by the police. As not all of these are solved or 

cleared up, this type of data does not contain information on characteristics of the 

individuals committing these recorded offences. Unless these data are aggregated to some 

geographical level (like police force area) and matched to education data at this level, 

then it is not possible to use these data to study the empirical relationship between crime 

and education. Being realistic, such spatial aggregation does not offer much hope to 

credibly study the research question of interest in this paper. 

The other main form of crime data available comes from those individuals who 

enter the criminal justice system after having been apprehended and charged for a crime. 

In England and Wales, the Offenders Index Database (OID) contains criminal history 
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data for offenders convicted of standard list offences from 1963 onwards.4 The data 

(which are described in detail in Data Appendix A) are derived from the court 

appearances system and are updated quarterly. The Index was created purely for research 

and statistical analysis. Its main purpose is to provide full criminal history data on a 

randomly selected sample of offenders.  

We have access to OID data on anonymous samples for offenders sentenced 

during four weeks each year. We also have the entire pre- and post-court appearance 

history of these individuals. However, there is no information on a defendant’s education 

level in the OID and so the data needs to be aggregated to connect to education data from 

other sources. A big advantage (certainly relative to recorded offences data) is that some 

demographic characteristics are available in the OID, notably age and gender.  

We therefore calculated offending rates (per 1000 population) using Office for 

National Statistics (ONS) population data by age cohort and year, separately for men and 

women. In doing so, criminal offences were also broadly categorised as property crimes 

(burglary and theft and handling stolen goods) and violent crimes (violence against the 

person and robbery). These offending rates can be matched to education data from other 

micro-data sources where education measures can be collapsed into age by year (by 

gender) cells.  

We investigated several possible sources of data containing individual education 

characteristics to match to the OID. The three main candidates were: the Family 

Expenditure Survey (FES); the General Household Survey (GHS); and the Labour Force 

Survey (LFS). The best match turned out to be the GHS for several reasons. First, it 

                                                 
4 Standard list offences are all indictable or triable offences, plus a few of the more serious summary 
offences. 
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enables us to go further back in time, with a start year of 1972 with well defined 

education data, as compared to 1978 in the FES and 1979 (with some missing years as 

the original survey was only bi-annual) in the LFS. Starting earlier in the 1970s is 

important, to ensure we have data on young enough people before and after when the 

education reform we consider occurred. Second, we can consider two measures of 

education - age left school and whether individuals have no educational qualifications - in 

the GHS, whereas the FES only has information on age left full-time education and the 

LFS contains information on no qualifications (though not consistently in all years) and 

age left full-time education. Thirdly, as we are planning to look at the causal impact via a 

school leaving age law, the GHS has the more appropriate age left school measure 

whereas the other two data sources relate to school and non-school terminal age. Data 

Appendix A describes more fully how we matched the OID and GHS data for the main 

analysis in this paper. Our sample consists of people aged 18-40 born between 1946 and 

1970 from OID and GHS data across the 1972 to 1996 time period. 

 Other data sources with information on crime activity do permit non-causal 

analyses to be undertaken. For example, Census micro-data in a number of countries does 

contain information on both incarceration (individuals who are in prison service 

establishments) and on individual education levels.5 However, in the UK context, only 

the 2001 Census has good enough data on individual education and so only permits a 

cross-sectional analysis. The British Crime Survey (BCS) also contains information on 

the respondent’s education level and rudimentary self-reported information on criminal 

histories. 

                                                 
5 Indeed, a large part of the US paper by Lochner and Moretti (2004) uses US Census data. Their major 
advantage is having several US Censuses when both imprisonment and education data were simultaneously 
available. 



 8

 For purposes of illustration, Table 1 uses these different data sources to show 

some non-causal regression estimates of the association between crime and education for 

18-40 year-old men and women. Like other studies in the large literature in this area, they 

show a significant empirical negative correlation between crime and age left education 

and a positive association with no qualifications. This is true for the matched OID-GHS 

data in the upper panel (except for the no qualifications association for women), the 2001 

Census data on imprisonment and no qualifications in the middle panel and the 2001/2-

2007/8 British Crime Survey self-report data on ever being arrested or ever being in court 

as the defendant. 

Of course, these are simply correlations and are not easy to interpret as there are 

many other confounding factors at play. For the cases of the cohort models, consider a 

simple least squares regression of a measure of offending for a particular age cohort a in 

year t ( atO ) with an education variable ( atE ) as an explanatory variable and jatX  (

,J,,j 21 ) being a set of other control variables: 

at

J

j
jatjatat uXEO  

0
10   

(1) 

where atu  is an error term. 

If unobserved characteristics of cohorts drive crime participation, but also 

education, then least squares estimates of 1  (like those given in Table 1) will be biased. 

This is a key issue to the extent that unobserved characteristics affecting schooling 

decisions may be correlated with unobservables influencing the decision to engage in 

crime. For example, 1  could be estimated to be negative, even if schooling has no 

causal effect on crime. This would be the case if individuals who have high criminal 

returns were likely to spend most of their time committing crime rather than work, 
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regardless of their educational background. As long as education does not increase the 

returns to crime, these individuals are likely to drop out of further education. As a result, 

we might observe a negative correlation between education and crime even though there 

is no causal effect between the two. To implement a causal approach that is plausible 

requires an instrument for education, which is the issue we turn to next.   

The School Leaving Age Reform 

Identification of a causal education impact on crime is generated from a 

compulsory school leaving increase that affected 15 year-olds in England and Wales in 

the early 1970s. Like Lochner and Moretti’s (2004) approach, which exploits changes in 

school leaving age laws across US states, we use the raising of the school leaving from 

age 15 to 16 that took force in England and Wales in September 1972 (thus affecting the 

cohort of children finishing school in 1973) as an instrumental variable in our empirical 

analysis.6  

 The raising of the school leaving age generates a discontinuity in education 

measures at the time when the reform was implemented.  In the next section of the paper 

we will show results from empirical analysis of relationships between the law change and 

crime and education using instrumental variable and regression discontinuity methods. 

However, before moving on to this, we first illustrate discontinuities induced by the 

reform. Figure 1 uses GHS data to show the average age left school and the proportion 

                                                 
6 There was an earlier increase in the compulsory school leaving age from 14 to 15 that took force in April 
1947. This and (less frequently) the law we focus on here have been considered in a growing literature in 
labour and health economics. Harmon and Walker (1995) and Oreopoulos (2006) focus on the causal 
impact of education on earnings (see also Devereux and Hart's (2010) robust criticism of the Oreopoulos 
paper). Galindo-Rueda (2003), Chevalier (2004), and Chevalier et al. (2005) look at the effect of parental 
income on education of their children. Oreopoulos (2006), Doyle et al. (2007), and Lindeboom et al. (2009) 
examine the impact of education on health. We are the first to consider the school leaving age reforms in 
England and Wales to study the causal impact of education on crime. Of course, we do not have data on 
crime for young enough people before and after the 1947 increase and so can only consider the 1972 law. 
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with no educational qualifications for men aged 18-40 who were born between 1950 and 

1965. The vertical line in Figure 1 shows the timing of the law change. There is a very 

clear and marked fall in the proportion with no educational qualifications in the upper 

Figure and a sharp increase in the average school leaving age in the lower Figure. 

Evidently there was a big discontinuity in educational outcomes induced by the law 

change. The non-overlapping nature of the confidence intervals before and after the 

discontinuity in the Figure shows that the changes were clearly statistically significant. 

Figure 2 also shows a marked fall in the OID conviction rate for men leaving school after 

the school leaving reform. There is a very clear and distinct drop in the conviction rate at 

the discontinuity, after which convictions trend upwards. The existence of clear and 

significant discontinuities in both crime and education is highly suggestive of a causal 

impact, the issue and detail of which we next empirically explore. 

 

3. Causal Estimates of the Crime-Education Relation 

In this section of the paper, we present instrumental variable (IV) and regression-

discontinuity (RD) based estimates of the relationship between crime and education. We 

begin with the IV estimates, move next to the RD estimates, show a series of robustness 

tests and last present some calculations of the social benefits of crime reduction induced 

by improved education. 

Instrumental Variable Estimates 

Identification of the causal effect of education on crime is achieved through 

inclusion in a first stage education regression of a dummy variable that records the 

exogenous change in the minimum school leaving age that occurred in England and 
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Wales, as described above. We define a dummy variable (SLA) equal to one for 

individuals who entered their last compulsory school year in 1972 and later. The 

discontinuity is generated for the 1972 cohort who were the first to face a minimum 

school leaving age of 16 (SLA) when they left school in 1973.7  

The relevant crime and education reduced forms are 

at

J

j
jatjatat vXSLAO  

0
10   

 
 
(2) 

at

J

j
jatjatat XSLAE   

0
10

The crime structural form therefore used to yield causal estimates is 

at

J

j
jatjatat XEO   

0
10  

 
(3) 

where the IV estimate of the coefficient on the education variable in (3) is the ratio of the 

reduced form coefficients in (2), 111 /  . 

In this framework, it is important whether the change in compulsory schooling 

age legislation acts as a valid instrument. A legitimate instrument for education in 

equation (3) is a variable that: (i) significantly explains part of the variation in education; 

and (ii) is not correlated with the unobservables that are correlated with both offending 

and education. Put alternatively, it is a variable that is a determinant of schooling that can 

legitimately be omitted from equation (1). Our estimates hinge on the notion that SLA 

fulfils these requirements. The first issue is a statistical one which, as shown below, is 

satisfied as SLA is a strong predictor of education.  Regarding the second issue, changes 

in compulsory attendance laws have not historically been concerned by problems with 

                                                 
7 In most years of the GHS we do not know month of birth. Therefore, in a similar way to Devereux and 
Hart (2010) in their analysis of the 1947 reform which was introduced in April 1947, where they code their 
reform variable equal to 0 for pre-1933 birth cohorts, to 0.75 for the 1933 cohort and 1 to the post-1933 
cohorts, we code SLA to 0.33 for the 1957 birth cohort (since the reform began on 1 September 1972). 
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crime. To our knowledge, legislators enacting the laws did not act in response to concerns 

with juvenile delinquency, youth unemployment, or other factors related to crime, thus 

making schooling laws an appropriate instrument.  

It also needs to be acknowledged that the variation induced by the instrument is 

local in nature, as it has an impact at the bottom of the education distribution and not at 

the top. This is because people near the top would have stayed on after the compulsory 

school leaving age anyway and the change would not affect them. Therefore, the effect 

that our empirical approach estimates is the local average treatment (LATE) effect among 

those who alter their treatment status because they react to the instrument. For this 

reason, we consider effects separately for the continuous age left school measure, but also 

more appropriately for the no qualifications variable.  

Baseline Estimates 

 The first set of baseline estimates for total conviction rates are given in Table 2. 

The Table shows four sets of estimates of the reduced and structural form crime and 

education models described in equations (2) and (3). Columns (1)-(5) respectively show 

the crime reduced form, education reduced form and crime structural form for the no 

qualifications and age left school variables from the GHS-OID 1972-96 cohort year data 

for men aged 18-40 who were born between 1946-70. Columns (6)-(10) do the same, but 

for a sample of +/– four birth cohorts around the discontinuity point. 

 Both crime and education reduced forms show a strong and significant effect of 

the school leaving age increase. In column (1) there is a 4.7 percent point fall in the 

conviction rate in the years after the education reform, revealing a statistically significant 

crime reduced form.  In columns (2) and (5), the same is true of education, with a 5.7 
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percent fall in the proportion with no qualifications and an increase of almost a quarter of 

a year (0.22) in the average school leaving age. 

 These significant crime and education effects combine into a significant causal 

impact of education on crime. Column (3) shows the IV estimate for the no qualifications 

variable. It is positive and strongly significant at 0.82. Interestingly this is larger than the 

comparable non-causal, least squares estimate of 0.40 reported in the upper panel of 

Table 1. A strong crime reduction from education is also seen in the age left school 

specification in column (5) where a 10 percent increase in age left school lowers crime by 

2.1 percent.8 In this case, this is exactly the same as the least squares estimate in Table 1. 

The fact that the IV estimates lie at or above comparable least squares estimates 

draws an interesting parallel with the literature on the causal effect of education on 

earnings where the same pattern seems to occur (see Card, 1999). It does not seem 

unreasonable to think that the same kind of mechanisms discussed in that literature, 

highlighting the fact that the IV estimates pick up a local average treatment effect on low 

education individuals, also apply in interpreting the crime-education results reported here. 

Discontinuity Sample 

 As Figures 1 and 2 show, there are sharp crime and education discontinuities for 

cohorts affected by the school leaving age law. It therefore is natural to focus more on 

observations nearer to the discontinuity point.  The specifications in columns (6) to (10) 

of Table 2 show results from focussing in on a window defined as +/– four years around 

                                                 
8 Table B1 in Appendix B shows results for women. The education reduced forms are, if anything, stronger 
for women, but the crime reduced forms are imprecisely determined and therefore so is the IV estimate. 
This imprecision in estimates is not surprising given the very low female offending rates, especially 
amongst the older women in our age 18-40 cohorts, seen in the data. 



 14

the treated birth cohort at the discontinuity (i.e. those individuals born between 1953 and 

1961). 

 The main substantive change, which is probably not surprising given the 

narrowing of the cohort window, is that the estimated reduced form coefficients rise in 

absolute magnitude. This is the case in both the crime and education reduced forms such 

that the IV estimates remain similar. For the no qualifications and age left school 

specifications the IV estimate is strongly significant, identifying a causal crime reducing 

effect of education. 

Inverse Distance Weighting 

The second way we hone in more on the discontinuity is to note that the policy 

treatment induced by the law change is binding for the cohort right near the discontinuity 

in September 1957. We have thus also generated inverse distance weighted estimates 

where we place more weight on those observations nearer to the discontinuity point and 

less as they are further away.9 We do this to ensure that identification predominantly 

comes from variation close to the discontinuity, weighting by 1/d where d is distance in 

birth years from the discontinuity. 

The inverse distance weighted (IDW) results are given in Table 3, which is of the 

same form as Table 2.  The pattern of results is qualitatively the same as in Table 2 

although the coefficient on the school leaving age dummy variable tends to increase in 

magnitude (in absolute terms) in the full sample and in the discontinuity sample.  The 

IDW IV coefficient estimates of 0.88 in the no qualifications specification and of –0.27 in 

                                                 
9 A similar approach of inverse distance weighting is adopted in a very different context by Gibbons, 
Machin and Silva (2009) in their analysis of housing valuations of school quality where discontinuities 
arise as children rarely cross administrative boundaries to attend school. 
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the age left school specification show a strong and significant causal impact of education 

on crime.10 

Estimates by Broad Crime Type 

 Table 4 shows separate estimates from models of property crime and violent 

crime for the discontinuity sample. There are two panels in the Table, the upper panel 

focussing on the population weighted models and the lower panel reporting IDW 

estimates. There is evidence of a strong and significant crime reducing education effect 

for property crime, but the violent crime specifications are much less precisely 

determined and the estimated effects are insignificantly different from zero.  In the case 

of property crimes, the IV estimates suggest that a one percent point fall in the proportion 

with no educational qualifications reduces crime by between 0.85 and 1.00 percent. A 1 

percent increase in the average age men leave school generates a 0.25 to 0.30 percent fall 

in their probability of being convicted for a property crime. 

Robustness 

 In Table 5 we present a number of robustness checks of our main discontinuity 

sample results for property crimes. The upper panel of the Table considers robustness to 

functional form, for results from the standard regression models and for the inverse 

distance weighted specifications. Four such robustness checks are reported, revealing 

how the estimates change on adding birth cohort age specific trends, linear and quadratic 

birth cohort variables or linear splines on each side of the discontinuity.  In all cases the 

                                                 
10 The specifications in Tables 2 and 3 include full sets of age and year dummies. This choice of functional 
form is driven by the data matching procedure (see Data Appendix A). Adopting a different specification 
focussing more on birth cohort, for example as done by including a quartic in birth cohort and age (or age 
dummies) in the earnings-education studies of Oreopoulos (2006) or Devereux and Hart (2010), produced 
similar results which, if anything, were slightly larger in magnitude. For this latter choice of functional 
form in the IDW models, the estimated IV coefficients (standard error) were 0.777 (0.316) and -0.249 
(0.092) respectively in the no qualifications and age left school specifications. Other functional form 
robustness checks are reported below in Table 5. 
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IV estimates remain statistically significant and of similar magnitude to the baseline 

estimates in Table 4.  If anything, the magnitude of the causal estimates increase after 

these amendments of functional form.  

In the lower panel of Table 5 we also report the results from a simple falsification 

exercise which sets a ‘placebo’ school leaving age law in September 1969. The first 

cohort affected would have been the 1954 one and we include all males aged 18 to 40 

born between 1947 and 1957 (to exclude those affected by the actual school leaving age 

increase). We find all the IV estimates to be extremely small in magnitude and none are 

even close to being significant. These robustness checks validate the causal nature of the 

causal relationship observed despite the potential issues of the rising trends in crime and 

education over the years. 

Discussion and Social Benefits Calculation 

 The empirical analysis identifies a robust, causal impact of education on property 

crime. Results on violent crime are more volatile and no clear pattern emerged, possibly 

because of the noisier nature of the data, or perhaps (in line with the arguments discussed 

in the context of existing literature in Section 2) because the crime reducing potential of 

education applies more to property than violent crimes. However, the vast majority of 

crimes that occur are property crimes (these represent more than 70 percent of offences 

recorded by the police and indictable offences tried in courts). Given that we have 

identified a sizable crime reducing impact of education, it thus seems interesting to try to 

say something about the economic importance of such an effect. We have therefore 

carried out a simple, and in our view informative, calculation of the possible social 

savings that could result from such reduction in property crime. 
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 Table 6 shows estimates of the social benefits from crime reduction that would 

follow from a 1 percent reduction in the percentage of individuals with no educational 

qualifications. Using cost of crime estimates from Dubourg et al. (2005) we calculate that 

the average cost of a property offence tried in court comes to £1,369 in 2007/8 prices. 

The Table 4 IV estimates suggest that a 1 percent reduction in the population with no 

educational qualifications resulted in a 0.851 to 0.999 percent fall in property crime 

convictions. As 91,800 men aged 18 and over were convicted of property offences in 

2007/8, this translates to between 791 and 917 fewer convictions. Since only 2 percent of 

property crimes committed in 2007/8 ended up with a court conviction, this corresponds 

to an estimated net crime reduction of between 39,525 and 45,836 offences.11 For this 

scale of crime reduction, the average social benefits can be calculated as ranging between 

£54.1 and £62.7 million.  

These are sizable social benefits, especially if one considers that the average cost 

to the government of a year of education for a secondary school student in 2007/8 prices 

was approximately £4,200 (Goodman and Sibieta, 2006). The cost of making 1% of those 

with no qualifications stay on and get some qualification as a result of raising the school 

leaving age would be a little over £20 million each year. The yearly net social benefits 

from crime reduction would be at first negative as only a few cohorts would be affected 

by the policy. However, as can be seen in the last panel of Table 6, this would be quickly 

reversed and by the third or fourth year the yearly net social benefits would become 

                                                 
11 The best estimates of criminal activity in England and Wales come from annual reported victimisation in 
the British Crime Survey. The 2007/08 BCS recorded just over 5.8 million property offences. If we assume 
that men commit a relatively similar proportion of such crimes as they are convicted for (78 percent), we 
can calculate that they are responsible for just under 4.6 million of the property offences committed that 
year. It is important to note the British Crime Survey criminal activity measure is also the basis for the 
official calculation of cost of crime by Dubourg et al. (2005) and should therefore be our reference (rather 
than number of offences recorded by the police) for this cost benefit calculation. 
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positive. A decade after increasing the school leaving age, the net social benefits would 

become substantial and reach between £21 and £30 million.12  

This cost-benefit calculation should be carefully and cautiously interpreted. For 

one thing, it presumes that the 1% who could benefit from staying on and getting some 

qualifications can be well targeted. In reality it may prove difficult to identify the right 

population and we cannot measure the exact cost of obtaining an educational 

qualification. Secondly, general equilibrium effects are not factored in. However these 

seem unlikely to significantly offset the large net social benefit estimates the calculation 

implies.13 The social savings appear to be quite large over time, confirming that crime 

reduction is an extra indirect benefit that can be generated from education policies (as 

highlighted by Lochner's 2010 review).  

 
4. Conclusions 

This paper presents new evidence on the crime reducing effect of education, using 

a regression discontinuity approach to identify a causal connection. Other than Lochner 

and Moretti (2004) for the US and the results reported in this paper, evidence on this is 

not available. We report empirical findings showing that education reduces property 

crime and that improved education can therefore generate social benefits. The estimated 

                                                 
12 Our net social benefit estimate is much smaller than the $1.4 billion put forward by Lochner and Moretti 
(2004). The main reason is that we do not identify a clear impact of education on violent crime and 
especially murder which account for 80 percent of their crime savings. When only considering prevented 
property crimes, then their estimate is just above $52 million or ₤35 million (at the average 1.5 ₤/$ 
exchange rate from 2002) which falls very close to our lower bound estimate of the social savings of crime. 
Still, since the population of England and Wales is more than five times smaller than that of the US, this 
represents a very substantial social benefit per capita.  
13 One way of thinking about general equilibrium effects would be to consider that the increase in the 
proportion of individuals with some qualification could reduce the wages of workers already with this 
education level. Considering the wage effects on crime with an elasticity of -1 as reported in Machin and 
Meghir (2004), it could be possible that it would increase the crime participation of the latter group. 
However we believe that this should be more than compensated by the decrease in crimes from the wage 
premium (estimated at around 40%) experienced by the individuals now obtaining some qualification.   



 19

social savings from crime reduction implied by our estimates are substantial and, fairly 

quickly after the school reform, imply sizable net social benefits from the additional 

schooling. 

The existence of a causal crime reducing effect of education has potentially 

important implications for longer term efforts aimed at reducing crime. For example, 

policies that subsidise schooling and human capital investment have significant potential 

to reduce crime in the longer run by increasing skill levels. At the very least, our results 

confirm that improving education amongst offenders and potential offenders should be 

viewed as a key policy lever that can be used in the drive to combat crime. 
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Figure 1: 
Education Discontinuities Around the Compulsory School Leaving Age Increase 

 
a) No Educational Qualifications 

 
 
b) Age Left School 

 
 

Notes: Based on General Household Survey Data From 1972 to 1996, Men Aged 18 to 40. Lines denote 
kernel weighted smooth polynomial fit to data points before and after the discontinuity denoted by the 
vertical line. Grey shaded area is 95% confidence interval. 
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Figure 2: 
Crime Discontinuities Around the Compulsory School Leaving Age Increase 

 
 

 
 

Notes: Based on Offenders Index Data From 1972 to 1996, Men Aged 18 to 40. Lines denote kernel 
weighted smooth polynomial fit to data points before and after the discontinuity denoted by the vertical 
line. Grey shaded area is 95% confidence interval. 
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Table 1:  Example Estimates of Crime-Education Associations 

 
Data Description Crime Education Men,  

Aged 
18-40 

Women, 
Aged  
18-40 

 
 
Offenders Index 
Database, England 
and Wales 

 
 

Matched OID 
convictions to GHS 
education data by 

age and year, 1972-
1996a 

 

 
 

Log 
(Convictions 

per 
1000 

Population) 

 
No 

Qualifications 

 
0.40 

(0.09) 

 
-0.04 
(0.18) 

 
Age Left 
School 

 
-0.21 
(0.03) 

 
 

 
-0.19 
(0.07) 

 
Census 

 
3% Individual 
Sample, 2001b 

 

 
Imprisonment 

Rate  

 
No 

Qualifications 

 
1.61 

(0.06) 
[0.60] 

 
1.72 

(0.30) 
[0.04] 

 
 
 
British Crime 
Survey 

 
 

Self report data, 
2001/2-2007/8c 

 

 
Ever Been 
Arrested 

 
No 

Qualifications 
 

 
0.84 

(0.08) 
[15.90] 

 
1.13 

(0.10) 
[7.30] 

 
 

Ever Been in 
Court as the 

Accused 
 

 
No 

Qualifications 

 
0.90 

(0.07) 
[12.70] 

 
1.01 

(0.10) 
[3.90] 

 
Notes: a – Population weighted regression least squares regression coefficients reported (standard errors in round 
parentheses). Sample size is 410 age-year cells for Men Aged 18-40 and Women Aged 18-40. Includes GHS control 
variables (proportion British born, proportion employed, proportion non-white, proportion living in London); b – Logit 
coefficients reported (standard errors in round parentheses, marginal effects X 100 in square parentheses). Sample size 
is 278831 Men and 212197 Women. Specifications include a full set of age dummies, 15 country of birth dummies, 
non-white dummy, 5 marital status dummies, dummy for never worked, dummies for country of residence;  c -  Logit 
coefficients reported (standard errors in round parentheses, marginal effects X 100 in square parentheses). Based on the 
pooled 2001/2-2007/8 British Crime Surveys. Sample size for Ever Been Arrested is 6526 Men and 8073 Women. 
Sample size for Ever Been in Court as the Accused is 9837 Men and 12252 Women. The precise questions asked are: 
'Have you ever been arrested by the police for any reason?' and 'Have you ever been in court as the person ACCUSED 
of committing a crime?'. Specifications include a full set of age and year dummies. See Machin, Marie and Vujić 
(2010) for more details. 
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Table 2: The Causal Effect of Education on Crime 

 
  

Log(OID Convictions Per 1000 Population), Matched to GHS by Age and Year, 1972 to 1996 
 

  
Men, Aged 18-40, Born 1946-70 

 

 
Men, Aged 18-40, Discontinuity Sample 

  No Qualifications Age Left School  No Qualifications Age Left School

 (1) 
Crime 

Reduced 
Form 

(2)  
Education 
Reduced 

Form 

(3) 
Crime 

Structural 
Form 

(4) 
Education 
Reduced 

Form 

(5) 
Crime 

Structural 
Form 

(6) 
Crime 

Reduced 
Form 

(7)  
Education 
Reduced 

Form 

(8) 
Crime 

Structural 
Form 

(9) 
Education 
Reduced 

Form 

(10) 
Crime 

Structural 
Form 

School Leaving Age Increase -0.047 
(0.017) 

-0.057 
(0.008) 

 0.221 
(0.026) 

 -0.080 
(0.034) 

-0.113 
(0.019) 

 0.375 
(0.055) 

 

No Qualifications   0.817 
(0.308) 

    0.707 
(0.310) 

  

Age Left School     -0.212 
(0.073) 

    -0.297 
(0.126) 

F-test F(1,358)
=7.41 

[P=.007] 

F(1,358)
=46.94 

[P=.000] 

 F(1,358)
=69.86 

[P=.000] 

 F(1,117) 
=5.65 

[P=.019] 

F(1,117)
=36.34 

[P=.000] 

 F(1,117)
=46.13 

[P=.000] 

 

Age and Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
GHS Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Sample Size 410 410 410 410 410 169 169 169 169 169 

 
Notes: Population weighted models estimated on age-year cells, including a full set of age and year dummy variables, between 1972 and 1996. Robust standard 
errors in parentheses. GHS control variables included are:  proportion British born, proportion employed, proportion non-white, and proportion living in London. 
The discontinuity sample comprises +/- four birth years around the 1957/8 cohorts which were affected by the school leaving age increase 15 years later (i.e. born 
between 1954-1957 and 1958-1961). 
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Table 3: The Causal Effect of Education on Crime – Inverse Distance Weights 
 

  
Log(OID Convictions Per 1000 Population), Matched to GHS by Age and Year, 1972 to 1996 

 
  

Men, Aged 18-40, Born 1946-70 
 

 
Men, Aged 18-40, Discontinuity Sample 

  No Qualifications Age Left School  No Qualifications Age Left School

 (1) 
Crime 

Reduced 
Form 

(2)  
Education 
Reduced 

Form 

(3) 
Crime 

Structural 
Form 

(4) 
Education 
Reduced 

Form 

(5) 
Crime 

Structural 
Form 

(6) 
Crime 

Reduced 
Form 

(7)  
Education 
Reduced 

Form 

(8) 
Crime 

Structural 
Form 

(9) 
Education 
Reduced 

Form 

(10) 
Crime 

Structural 
Form 

School Leaving Age Increase -0.053 
(0.016) 

-0.081 
(0.008) 

 0.282 
(0.028) 

 -0.119 
(0.032) 

-0.135 
(0.021) 

 0.445 
(0.058) 

 

No Qualifications   0.658 
(0.201) 

    0.882 
(0.310) 

  

Age Left School     -0.189 
(0.055) 

    -0.267 
(0.077) 

F-test F(1,358)
=11.56 

[P=.001] 

F(1,358)
=67.42 

[P=.000] 

 F(1,358)
=98.83 

[P=.000] 

 F(1,117) 
=13.26 

[P=.000] 

F(1,117)
=42.14 

[P=.000] 

 F(1,117)
=58.89 

[P=.000] 

 

Age and Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
GHS Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Sample Size 410 410 410 410 410 169 169 169 169 169 

 
Notes: As for Table 2. 
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Table 4: The Causal Effect of Education on Crime, by Broad Types of Crime 
 

 
 

Men, Aged 18-40, Born 1946-70, Discontinuity Sample  
 

 Log(Property Convictions per 1000 Population) Log(Violent Convictions per 1000 Population) 

A.  Population Weighted   No Qualifications Age Left School  No Qualifications Age Left School

 

(1) 
Crime 

Reduced 
Form 

(2)  
Education 
Reduced 

Form 

(3) 
Crime 

Structural 
Form 

(4) 
Education 
Reduced 

Form 

(5) 
Crime 

Structural 
Form 

(6) 
Crime 

Reduced 
Form 

(7)  
Education 
Reduced 

Form 

(8) 
Crime 

Structural 
Form 

(9) 
Education 
Reduced 

Form 

(10) 
Crime 

Structural 
Form 

School Leaving Age Increase 
-0.096 
(0.039) 

-0.113 
(0.019) 

 
0.375 

(0.055) 
 

-0.028 
(0.057) 

-0.113 
(0.019) 

 
0.375 

(0.055) 
 

No Qualifications   
0.851 

(0.370) 
    

0.251 
(0.490) 

  

Age Left School     
-0.257 
(0.108) 

    
-0.076 
(0.152) 

F-test 
F(1,117)

=6.02 
[P=.016] 

F(1,117)
=36.34 

[P=.000] 
 

F(1,117) 
=46.13 

[P=.000] 
 

F(1,117)
=0.25 

[P=.619] 

F(1,117)
=36.34 

[P=.000] 
 

F(1,117) 
=46.13 

[P=.000] 
 

B.  Inverse Distance Weighted   No Qualifications Age Left School  No Qualifications Age Left School

 

(1) 
Crime 

Reduced 
Form 

(2)  
Education 
Reduced 

Form 

(3) 
Crime 

Structural 
Form 

(4) 
Education 
Reduced 

Form 

(5) 
Crime 

Structural 
Form 

(6) 
Crime 

Reduced 
Form 

(7)  
Education 
Reduced 

Form 

(8) 
Crime 

Structural 
Form 

(4) 
Education 
Reduced 

Form 

(10) 
Crime 

Structural 
Form 

School Leaving Age Increase 
-0.135 
(0.037) 

-0.135 
(0.021) 

 
0.445 

(0.058) 
 

-0.067 
(0.059) 

-0.135 
(0.021) 

 
0.445 

(0.058) 
 

No Qualifications   
0.999 

(0.306) 
    

0.498 
(0.426) 

  

Age Left School     
-0.303 
(0.089) 

    
-0.151 
(0.131) 

F-test 
F(1,117)
=13.58 

[P=.000] 

F(1,117)
=42.14 

[P=.000] 
 

F(1,117)
=58.89 

[P=.000] 
 

F(1,117)
=1.33 

[P=.252] 

F(1,117)
=42.14 

[P=.000] 
 

F(1,117)
=58.89 

[P=.000] 
 

 
Notes: As for Table 2. Sample size is 169 in all cases.  
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Table 5:  Robustness to Functional Form and a Falsification Exercise 
 

 
Log(OID Property Convictions Per 1000 Population), 

Matched to GHS by Age and Year, 1972 to 1996 

 
Men, Aged 18-40, 

Discontinuity Sample, 
Population Weighted 

Men, Aged 18-40, 
Discontinuity Sample, 

Inverse Distance Weighted 

A. Functional Form 
No 

Qualifications 
Age Left 
School 

No 
Qualifications 

Age Left School 

 
Baseline Estimates From Table 4 

0.851 
(0.370) 

-0.257 
(0.108) 

0.999 
(0.306) 

-0.303 
(0.087) 

Birth Cohort Specific Age Trends 
0.726 

(0.421) 
-0.212 
(0.120) 

1.061 
(0.408) 

-0.288 
(0.103) 

Linear in Birth Cohort 
1.051 

(0.511) 
-0.304 
(0.143) 

1.200 
(0.423) 

-0.350 
(0.115) 

Quadratic in Birth Cohort 
1.136 

(0.529) 
-0.315 
(0.140) 

1.254 
(0.445) 

-0.352 
(0.114) 

Linear Splines 
1.034 

(0.507) 
-0.302 
(0.145) 

1.185 
(0.419) 

-0.350 
(0.116) 

B. Placebo SLA Increase 
No 

Qualifications 
Age Left 
School 

No 
Qualifications 

Age Left School 

 
Affected Cohort 1954, Men aged 18-40, 
Born 1947 to 1957 
 

-0.050 
(0.415) 

0.027 
(0.222) 

0.008 
(0.357) 

-0.004 
(0.182) 

 
Notes: As for Table 4. The placebo increase in Panel B refers to an ‘imaginary’ law raising the school 
leaving age from 15 to 16 that took force in September 1969, three years before the actual increase. 
`
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Table 6: Social Benefits from Decreasing Population with  

No Educational Qualification by 1 Percent 
 
 

Causal Estimate of SLA Change of 1% Change of 
Population with No Qualification  

Estimate = 0.851 Estimate = 0.999 

   

Cost in Anticipation of Crime 174 174 

Cost as Consequence of Crime 787 787 

Cost to the Criminal Justice System  407 407 

Total Cost per Crime  1.369 1.369 
   

Number of Male Convictions 91.800 91.801 

Estimated Change in Male Convictions 790 917 

Estimated Change in Male Crimes 4.587.960 4.587.960 
   

Average Social Benefit from Crime Reduction 54.103.619 62.741.986 
   

Cost per Student of One Year of Secondary School 4.244 4.244 

Number of Pupils in Education Aged 16 493,000 493,000 

Cost of 1% Increase or Extra Year of Education 20,922,920 20,922,920 
   

Yearly Net Social Benefit  
from Crime Reduction  

1 Year after SLA -13,822,842 -12,689,220 

3 Years after SLA -2,257,534 722,645 

5 Years after SLA 6,705,272 11,116,482 

10 Years after SLA 23,260,601 30,315,091 

 
Notes: All costs are inflated to represent 2007/08 real prices using changes in the Consumer Price Index. 
The cost of crime estimates are taken from Dubourg et al. (2005). These estimates can be split between 
three main channels that are presented in the rows above the total cost per crime. They are based on British 
Crime Survey victimisation measures of criminal activity and are all weighted for the probability of an 
offence leading to police involvement, a conviction, and possible incarceration. The estimated change in 
male crimes is adjusted by the number of crimes per conviction (i.e. 1/0.020 = 50). The cost of one year of 
secondary school per student is from Goodman and Sibieta (2006). There were almost half a million pupils 
aged 16 in school in 2007/08. We consider the impact of education on a 1 percent increase in this stock of 
pupils to calculate the yearly net social benefit as the number of individuals treated with the extra year of 
schooling increases over time. We do this after 1, 3, 5, and 10 years weighting by the proportion of 
property crimes by age for each cohorts affected by the SLA.  
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Appendix A 

Data Description  

 

Offenders Index Database (OID) 

 

Our analysis uses OID data from 1972 to 1996, which we match to General Household 

Survey data by age cohort and survey year. The version of the Offenders Index Database 

to which we have access holds criminal history data for offenders convicted of standard 

list offences between 1963 and 2003. Standard list offences are all indictable or triable 

either way offences, plus a few of the more serious summary offences. Standard list class 

codes are set out in the Offenders Index codebook. The data are derived from the Court 

Appearances system and are updated quarterly.  

 

The data set holds anonymous samples (of about 4 weeks) for each year from the early 

1960s onwards. The selection of offenders is done by analysis of the court appearance 

data using the date to select relevant offenders. Selection is based on the following 

criteria: select offenders where they appeared in court during the first week in March, the 

second week in June, the third week in September and the third week in November.14  

 

The following variables are recorded for each offender: Offenders Index (OI) Number, 

Date of Birth, Gender, Ethnicity, Appearance Date, Court Code, Curfew Orders, Date of 

Previous Court Appearance, Age at Appearance, Number of Previous Appearances, 

Number of Subsequent Appearances, Police Force Code, Offence Class Code, Offence 

Sub Class, Proceedings Type, Plea, Disposal 1-4 Code, Disposal 1-4 Amount, Disposal 1-

4 Units, Count of Previous Offences, Count of Subsequent Offences. 

 

Matching OID to ONS population data, we calculated offending rates (per 1000 

population) by age cohort and year, separately for men and women, using Date of Birth 

and Gender variables. Criminal offences have been broadly categorised as property 

crimes (burglary and theft and handling stolen goods) and violent crimes (violence 

                                                 
14 The first week in any calendar month is the week where the Monday is the first Monday in that month. 
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against the person and robbery), using categorisation in the Offence Class Code 

variable.15 The overall conviction rate we use is the sum of the two. 

 

The data structure for men and women, with means of the total conviction rate per 1000 

population, as well as property and violent conviction rates, is as follows: 

 
OID 
Year 

Age 
Range 

Men, 
Conviction 

Men, 
Property 

Men, 
Violent 

Women, 
Conviction 

Women, 
Property 

Women, 
Violent 

1972 18-25 2.71 2.26 0.45 0.36 0.34 0.02 
1973 18-26 2.31 1.85 0.46 0.34 0.31 0.02 
1974 18-27 2.57 2.13 0.44 0.39 0.37 0.02 
1975 18-28 2.90 2.34 0.56 0.43 0.40 0.03 
1976 18-29 2.72 2.13 0.59 0.45 0.41 0.04 
1977 18-30 2.62 2.13 0.49 0.44 0.41 0.04 
1978 18-31 2.44 1.96 0.47 0.46 043 0.03 
1979 18-32 2.39 1.83 0.56 0.42 0.38 0.04 
1980 18-33 2.49 1.92 0.57 0.42 0.38 0.04 
1981 18-34 2.56 2.04 0.52 0.42 0.38 0.03 
1982 18-35 3.03 2.45 0.57 0.51 0.47 0.03 
1983 18-36 2.84 2.29 0.55 0.47 0.43 0.04 
1984 18-37 2.83 2.31 0.52 0.47 0.44 0.03 
1985 18-38 2.65 2.16 0.49 0.44 0.41 0.03 
1986 18-39 2.29 1.82 0.47 0.39 0.36 0.03 
1987 18-40 2.66 2.18 0.48 0.38 0.35 0.03 
1988 19-40 2.33 1.83 0.50 0.35 0.32 0.04 
1989 20-40 2.01 1.51 0.51 0.34 0.31 0.04 
1990 21-40 1.86 1.39 0.47 0.32 0.29 0.04 
1991 22-40 1.83 1.42 0.41 0.30 0.28 0.03 
1992 23-40 1.67 1.31 0.36 0.28 0.25 0.03 
1993 24-40 1.55 1.22 0.33 0.27 0.25 0.02 
1994 25-40 1.38 1.08 0.30 0.28 0.26 0.02 
1995 26-40 1.19 0.97 0.23 0.23 0.21 0.02 
1996 27-40 1.14 0.93 0.21 0.22 0.20 0.02 

 
 
General Household Survey (GHS) 

 

Our analysis uses GHS data from 1972 to 1996.  The survey took place on a calendar 

year basis from 1972 to 1987, and then moved to financial year.  Using month of survey 

we matched the GHS to the OID for England and Wales by age and year on a calendar 

year basis. 

 

                                                 
15 We do not consider sexual offences since there are very few of them and their relationship with education 
is contrary to that of other crimes (as in the case of rape in Lochner and Moretti, 2004).  
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We use two education variables from GHS: 

 

i) Age left school - variable AGELFTS from 1972-82 and AGELFTSC from 1983-96. 

Age left school is set to missing if less than 13 above 25.   

 

ii) No educational qualifications - derived from variables measuring highest educational 

qualification or  whether individuals have any educational qualifications. 

 

The school leaving age variable was constructed from year of birth as follows.  The GHS 

contains actual year of birth from 1986-95. In other years, like Devereux and Hart (2010) 

we coded year of birth as (year of survey – age) in the July-December survey months and 

(year of survey – age – 1) for the January-June survey months. The variable was coded to 

0 for birth cohorts before 1957, to 0.33 in 1957 (as the law became binding in September 

1972) and to 1 for birth cohorts from 1958 onwards. 

 

We matched to the OID data by age and year for years 1972 to 1996 for people aged 18-

40 born between 1946 and 1970, eliminating discrepancies between age and year of birth. 

 

The control variables were as follows: proportion employed; proportion living in London; 

proportion white; proportion British born. 

 

The data structure for men and women, with means of the two education variables is as 

follows: 

 
GHS  
Year 

Age 
Range 

Men, No 
Qualifications 

Men, Age 
Left School 

Women, No 
Qualifications 

Women, Age 
Left School 

      
1972 18-26 0.44 15.85 0.50 15.69 
1973 18-27 0.36 15.76 0.46 15.69 
1974 18-28 0.36 15.76 0.44 15.73 
1975 18-29 0.35 15.76 0.45 15.72 
1976 18-30 0.34 15.83 0.43 15.76 
1977 18-31 0.32 16.00 0.40 15.87 
1978 18-32 0.30 16.03 0.40 15.95 
1979 18-33 0.32 16.01 0.37 15.97 
1980 18-34 0.29 16.08 0.37 16.01 
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1981 18-35 0.30 16.07 0.37 16.02 
1982 18-36 0.29 16.10 0.33 16.04 
1983 18-37 0.28 16.10 0.33 16.02 
1984 18-38 0.28 16.06 0.34 16.01 
1985 18-39 0.28 16.10 0.32 16.03 
1986 18-40 0.26 16.06 0.32 16.02 
1987 18-40 0.25 16.12 0.29 16.07 
1988 18-40 0.21 16.27 0.23 16.22 
1989 18-40 0.20 16.28 0.23 16.24 
1990 19-40 0.20 16.28 0.24 16.25 
1991 20-40 0.20 16.31 0.21 16.26 
1992 21-40 0.17 16.34 0.18 16.31 
1993 22-40 0.16 16.41 0.18 16.36 
1994 23-40 0.14 16.40 0.18 16.37 
1995 24-40 0.16 16.37 0.17 16.37 
1996 25-40 0.15 16.38 0.17 16.36 
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Appendix B 
Table B1:  The Causal Effect of Education on Crime, by Broad Types of Crime, Women 

 

 
 

Women, Aged 18-40, Born 1946-70, Discontinuity Sample  
 

 Log(Property Convictions per 1000 Population) Log(Violent Convictions per 1000 Population) 

A.  Population Weighted   No Qualifications Age Left School  No Qualifications Age Left School

 

(1) 
Crime 

Reduced 
Form 

(2)  
Education 
Reduced 

Form 

(3) 
Crime 

Structural 
Form 

(4) 
Education 
Reduced 

Form 

(5) 
Crime 

Structural 
Form 

(6) 
Crime 

Reduced 
Form 

(7)  
Education 
Reduced 

Form 

(8) 
Crime 

Structural 
Form 

(9) 
Education 
Reduced 

Form 

(10) 
Crime 

Structural 
Form 

School Leaving Age Increase 
-0.017 
(0.064) 

-0.168 
(0.019) 

 
0.363 

(0.038) 
 

-0.261 
(0.263) 

-0.168 
(0.019) 

 
0.363 

(0.038) 
 

No Qualifications   
0.106 

(0.382) 
    

1.557 
(1.594) 

  

Age Left School     
-0.049 
(0.177) 

    
-0.719 
(0.740) 

F-test 
F(1,117)

=0.08 
[P=.781] 

F(1,117)
=80.27 

[P=.000] 
 

F(1,117) 
=89.20 

[P=.000] 
 

F(1,117)
=0.98 

[P=.324] 

F(1,117)
=80.27 

[P=.000] 
 

F(1,117) 
=89.20 

[P=.000] 
 

B.  Inverse Distance Weighted   No Qualifications Age Left School  No Qualifications Age Left School

 

(1) 
Crime 

Reduced 
Form 

(2)  
Education 
Reduced 

Form 

(3) 
Crime 

Structural 
Form 

(4) 
Education 
Reduced 

Form 

(5) 
Crime 

Structural 
Form 

(6) 
Crime 

Reduced 
Form 

(7)  
Education 
Reduced 

Form 

(8) 
Crime 

Structural 
Form 

(4) 
Education 
Reduced 

Form 

(10) 
Crime 

Structural 
Form 

School Leaving Age Increase 
-0.017 
(0.063) 

-0.185 
(0.019) 

 
0.430 

(0.039) 
 

-0.242 
(0.267) 

-0.185 
(0.019) 

 
0.430 

(0.039) 
 

No Qualifications   
0.092 

(0.338) 
    

1.311 
(1.461) 

  

Age Left School     
-0.039 
(0.146) 

    
-0.563 
(0.632) 

F-test 
F(1,117)

=0.07 
[P=.787] 

F(1,117)
=92.73 

[P=.000] 
 

F(1,117)
=120.79 
[P=.000] 

 
F(1,117)

=0.82 
[P=.366] 

F(1,117)
=92.73 

[P=.000] 
 

F(1,117)
=120.79 
[P=.000] 

 

Notes: As for Table 2.  All specifications include a full set of age and year dummies and control variables.  Sample size is 169 in all cases. 


