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1. Introduction 

Cooperation in transboundary pollution has proven, and still proves, difficult. Despite the fact 

that cooperation among nations could raise global welfare because of multilateral negative 

externalities, and could benefit all nations if accompanied by fair sharing arrangements, strong 

free-rider incentives prevail. Curbing greenhouse gases illustrates the problems of cooperation 

vividly. International response to global warming is often traced back to 1988 when the 

Intergovernmental Panel on Climate Change (IPCC) was founded – an international body 

initiated by the World Meteorological Organisation (WMO) and the United Nations 

Environment Programme (UNEP) that gathers and summarizes current world-wide scientific 

evidence on climate change. However, it was not until 1997 when 38 countries agreed to 

emission ceilings under the Kyoto Protocol to be met in the “commitment period” 2008-2012. 

Again, it was not before 2002 when this treaty was ratified. This did not happen before several 

concessions had been granted to various participants and after the USA had declared to withdraw 

from the treaty.  

Currently, in the light of the Stern report (Stern 2006) and the most recent IPCC report (IPCC 

2007), a follow-up “Post-Kyoto” agreement is being negotiated that should set emission ceilings 

for the period after 2012. The challenge is to agree on substantial medium and long term 

emissions reduction targets for industrialized countries, and to encourage participation of the new 

emerging polluters China, India and Brazil. 

Parallel to this political development, the interest in economics to analyze the reasons and 

possible remedies for the problem of international environmental cooperation emerged. One 

strand of literature focused on the game theoretic analysis of international environmental 

agreements (IEAs) which can be traced back to Barrett (1994), Chander and Tulkens (1992), 

Carraro and Siniscalco (1993) and Hoel (1992). Later papers focused on various designs and 

measures that could mitigate the free-rider problem. Due to the many papers, we refer the reader 
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to the surveys by Barrett (2003) and Finus (2003, 2008). Other contributions departed from the 

assumption of a static payoff structure of the initial papers and captured the dynamic nature of 

the stock pollutants “greenhouse gases”. This is also the starting point of the second strand of 

literature that modeled optimal policy responses in integrated assessment models that capture the 

dynamic interaction between the economy and the environment and which was pioneered by 

Nordhaus (1994). This initiated many other papers which are surveyed for instance in Böhringer 

and Löschel (2006). Naturally, there have also been attempts to combine both strands as for 

instance in Bahn et al. (2009), Bosello et al. (2003), Eyckmans and Tulkens (2003), Eyckmans and 

Finus (2006) and Weikard et al. (2006). On the one hand, this adds more realism to the analysis; 

on the other hand, this is sometimes the only way to derive results in richer game theoretic 

frameworks where analytical solutions are impossible to obtain.  

This paper is in the tradition of a combined approach: it links a game theoretic module of 

coalition formation to an integrated assessment numerical simulation module. The later module is 

based on the CLIMNEG World Simulation Model (CWSM) as for instance used in Eyckmans 

and Tulkens (2003) and Eyckmans and Finus (2006), though we use the updated version 1.2. 

Different from these papers, but also different from many theoretical contributions on the 

formation and stability of IEAs, our game theoretic module does not model coalition formation 

as a simultaneous but as a sequential decision process. This is motivated by the observation that 

usually some countries take the initiative of forming IEAs. Others join later or decide not to 

follow suit. The evolvement of membership in international agreements is a typical feature of 

many IEAs and is reported for instance in Finus (2003) for many environmental treaties.  

The sequential nature of the formation of international climate agreements introduces some new 

and interesting strategic aspects, but also poses many conceptual problems. This papers is a first 

step to address these problems, hoping to initiate more work in this important area of research. 
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We view coalition formation as a two-stage game. In the first stage players decide upon 

membership and in the second stage they decide upon their economic strategies, which are 

abatement strategies and in our simulation model also investment in capital and labor. The game 

is solved backward: equilibrium economic strategies determine the payoff of players and are the 

basis to decide upon membership. The second stage strategies are derived from a difference game 

among heterogeneous players, capturing the stock pollutant nature of greenhouse gases. For the 

membership decision in the first stage we consider a sequential process, though decisions are 

based on discounted payoffs. Thus, once coalitions have formed, membership is fixed. This 

contrasts to flexible membership considered in Breton et al. (2008), De Zeeuw (2007), Rubio and 

Ulph (2007) and Ulph (2004), invoking the concept of internal and external stability. However, all 

these papers assume symmetric players and allow only for a single coalition to be formed, 

probably for analytical tractability. Moreover, a simultaneous coalition formation process at each 

time t  is assumed. This comparison already suggests an avenue for future research, namely the 

integration of both approaches in order to comprehensively capture the dynamic nature of the 

formation of agreements and the economic and environmental impacts of climate change. 

In the following, we provide an overview of the model in section 2. Then we discuss stage 1 and 

2 of coalition formation in reverse order (according to backward induction) in sections 3 and 4. 

The focus is on the novel aspect of this paper: the sequential membership process related to the 

first stage (section 4) with its strategic implications as well as the conceptual difficulties of 

implementing and solving such a game. This will be illustrated with two simple examples as a 

preparation for the more involved numerical simulations with our climate model CWSM which 

we present in section 5. Section 6 summarizes our results and concludes. 

2. Overview of the Model 

Following Bloch (2003), we view the coalition formation process as a two-stage game. In the first 

stage, players, i I {1,...,n }  , which are world regions in our numerical model, decide upon 
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their membership in coalitions, which are climate agreements in our context. This stage is 

modeled along the lines of the sequential move unanimity game (SMUG) proposed by Bloch 

(1995). In this game, an initiator proposes a coalition. Prospective members of this coalition are 

sequentially asked for acceptance. If all potential members accept, the coalition is formed. If the 

proposed coalition is not the grand coalition, a new initiator among the remaining players can 

make a new proposal. If a player rejects a proposal, he can make a new proposal. The formation 

process continues until all players have agreed to be either a member of a (non-trivial) coalition 

or decided to remain a singleton.1 The decision process in the first stage leads to some coalition 

structure 1 mc { c ,...,c }  where c C  is a partition of players in disjoint non-empty sets, 

kc c =  k   and c I

 . 

In the second stage, players choose their economic strategies, which are abatement and 

investment strategies in the CLIMNEG world simulation model (CWSM), based on the 

economic implications as estimated by this model. For a given coalition structure c , this implies 

a payoff vector 1 nv( c ) ( v ( c ),...., v ( c )) . That is, a coalition structure c C  is mapped into a 

vector of individual payoffs v( c ) V(C )  called valuations. In case a transfer scheme is 

implemented, this leads to “modified valuations”  T
i i iv ( c ) v ( c )   where i 0  implies to 

receive a transfer and i 0  to pay a transfer with the understanding that transfers are only paid 

among coalition members and that transfers balance, i.e. 


 ii c
0


  c c .  

For the first stage, which consists of many sub-stages due to the sequential coalition formation 

process, we solve for the subgame-perfect equilibrium in membership strategies. That is, each 

player, either in the role of an initiator or in the role of a player who is asked for acceptance 

should choose her best reply at each point in time for the rest of the game, given the strategies of 

the other players.  

                                                 
1  A non-trivial coalition is a coalition with at least two members. 
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For the second stage, we follow the standard assumption in the literature on coalition formation 

and solve for the coalitional Nash equilibrium in economic strategies.2 That is, members of coalition 

c  in coalition structure c  choose their economic strategies such as to maximize the aggregate 

payoff to their coalition, taking the strategies of outsiders as given. In CWSM this payoff is the 

net present value of a payoff stream, accounting for the fact that climate change is a stock 

pollution problem.  

We now discuss the stages in more detail in reverse order, following the argument of backward 

induction.  

3. Second Stage of Coalition Formation 

3.1 Data and Computations 

The CWSM is an integrated assessment (IA in the sequel), economy-climate model capturing the 

endogenous feedback of climate change damages on production and consumption. As the 

seminal RICE model by Nordhaus and Yang (1996), and in subsequent IA models like Bosello et 

al. (2003), Böhringer et al. (2007), Bahn et al. (2009) or Anthoff et al. (2009), CWSM is a dynamic, 

long-term, perfect foresight, Ramsey-type optimal growth model with a global climate externality. 

The version of the CWS model used in this paper is an updated version of the model used in 

Eyckmans and Tulkens (2003). The new version of the CWS model uses the more sophisticated 

carbon cycle model of RICE99 described in Nordhaus and Boyer (2000). In addition to a better 

representation of the climate system, the economic database and parameters of the CWS model 

have been updated and the reference year is now 2000 instead of 1990. Since an extensive 

exposition of the model, including the procedure of computing valuations, is provided in 

Eyckmans and Tulkens (2003) and Eyckmans and Finus (2006 and 2009), we describe here only 

                                                 
2  For a summary of this literature in the general context, see Bloch (2003) and in the context of IEAs, 

see Finus (2003). Sometimes a coalitional Nash equilibrium is also called a coalitional equilibrium 

(Ichiishi 1981) or a partial Nash equilibrium between coalitions (Chander and Tulkens 1997).  
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its main features. A brief description of the main equations and parameters is provided in 

Appendix 1. 

In CWSM, the world is divided into six regions: USA, JPN (Japan), EU (European Union), CHN 

(China), FSU (Former Soviet Union) and ROW (Rest of the World). The two basic choice 

variables, capital investment and emission abatement, affect output, abatement costs, damage 

costs and therefore also consumption domestically but also abroad. Finally, welfare is measured 

as total lifetime discounted consumption.  

An economic strategy vector is denoted by *s ( c )  and consists in CWSM of a time path of 35 

decades for emission abatement and investment for all six regions, hence its length is 2 x 35 x 6 = 

420. Valuations without transfers 1 nv( c ) ( v ( c ),...,v ( c ))  for coalition structure c C  are 

defined as  *
i iv ( c ) : W ( s ( c ))  where *s ( c )  is the coalitional Nash equilibrium economic 

strategy vector which is defined as: 

(1)  c c :   
  * * *

i c c i c c ci c i c
W ( s ( c ),s ( c )) W ( s ( c ),s ( c ) ) s ( c )

     
 

where iW ( )  is the discounted payoff of player i , cs ( c )


 is the economic strategy vector of 

coalition c , cs ( c )


 the vector of all other regions not belonging to c  and an asterisk denotes 

equilibrium strategies. Determining *s ( c )  for every coalition structure c C  (noting 

 *
i iv ( c ) : W ( s ( c )) ), gives the set of valuations V(C ) . 

Computationally, the coalitional Nash equilibria are computed by means of a standard iterative 

algorithm assuming that all members of coalition c c  jointly maximize the aggregate payoff to 

their coalition 
 ii c

W ( s )


 with respect to cs ( c )


, while taking the strategies of outsiders 

cs ( c )


 as given. Repeating this optimization problem for each strategic player (coalition or 

singleton) and iterating until strategy vectors do not change more than some prespecified 
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tolerance level, gives *s ( c )  which is substituted into iW  in order to derive 

 1 nv( c ) ( v ( c ),...,v ( c )) . 

Strategically, this means that members who belong to the same coalition behave cooperatively 

towards their fellow members (otherwise cooperation would not be worthwhile analyzing), but 

non-cooperatively towards outsiders. Economically, this means strategies are efficient within 

coalition c  but not globally efficient as long as the grand coalition does not form. It also means 

that the equilibrium economic strategy vector *s ( c )  corresponds to the classical “social or global 

optimum” if c  is the coalition structure with the grand coalition, and corresponds to the classical 

“Nash equilibrium” if c  is the coalition structure with only singletons.  

Valuations with transfers are defined as  T
i i iv ( c ) v ( c )   where the transfer i  is paid 

( i 0 ) or received ( i 0 ) in a lump-sum fashion (expressed in discounted consumption at 

time t 0 ) and hence does not affect equilibrium economic strategies in the CWSM as shown in 

Eyckmans and Tulkens (2003). This implies a TU-framework and the transfer scheme proposed 

by these authors leads to valuations 

(2) T N N
i i i j jj c

v ( c ) v ( c ) ( v ( c ) v ( c )) i c , c c


        


  . 

That is, every region i  in coalition c c  receives its payoff in the coalition structure with only 

singletons which is denoted by Nc  (first term on the R.H.S. in (2); Nc {{1},...,{ n }} ), and 

additionally a share i 0 , 


 ii c
1


, from the total coalitional surplus of cooperation when 

moving from coalition structure Nc  with no cooperation to some other coalition structure c  

(term in square brackets on the R.H.S. in (2)). Shares are those proposed by Eyckmans and 

Tulkens (2003) and reflect the relation between individual and global discounted marginal climate 

change damages in coalition structure c . Hence, the second term favors regions with relatively 

high marginal damages since they are entitled to a larger share of the surplus of their coalition.  
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3.2 Properties of Valuations 

Table 1 displays individual valuations, generated by CWSM, with and without transfers for a 

selection of coalition structures.3 The last two columns display aggregate valuations at the World 

level in absolute and relative terms. The relative magnitudes can be interpreted as a “closing the 

gap index” (abbreviated CGX), measuring how close a coalition structure comes to the global 

optimum where the performance in the grand coalition (full cooperation) is 100 percent and the 

performance in the coalition structure with only singletons (no cooperation) is 0 percent by 

definition (see the legend of Table 1).  

Table 1 about here 

Apart from stressing that both full and partial cooperation make a difference compared to no 

cooperation, Table 1 illustrates that not only the size of a coalition matters for the global success 

of cooperation, but also the identity of its members. Put differently, the commonly held view that 

a high participation automatically indicates the success of an IEA may be wrong. For instance, 

coalition structure No. 152 including the five members USA, JPN, EU, CHN and FSU ranks 

lower than many coalition structures comprising smaller coalitions as for instance coalition 

structure No. 150 and No. 151.  

As a general tendency, the importance of particular regions for global welfare decreases along the 

following sequence: ROW, CHN, USA, EU, FSU and JPN. ROW´s and CHN´s important role 

stems from the fact that they can provide cheap abatement. Similarly, JPN´s lesser importance is 

due to her steep marginal abatement cost curve. However, there is also an additional dimension 

related to environmental damages. Because optimal economic strategies are derived from 

coalitions maximizing the joint welfare of its members, the higher the marginal damages of 

coalition members are, the higher joint abatement efforts will be, everything else being equal. 
                                                 
3  We do not display the ecological implications (i.e. total emissions and concentration) of different 

coalition structures in this paper. For version 1 of CWSM, this is for instance provided in Eyckmans 

and Finus (2006). The complete matrix of valuations is available upon request from the authors. 
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This has not only a positive spillover effect on fellow coalition members but also on outsiders. 

This explains the importance of EU for cooperation.  

4. First Stage of Coalition Formation 

4.1 Original Game 

Based on valuations, either on valuations with or without transfers, V(C)  or TV (C) , derived in 

the second stage of coalition formation, players decide upon participation in coalitions in a 

sequential process. The process is modeled based on the sequential move unanimity game 

(SMUG) of Bloch (1995), though for our purposes some changes are necessary which we discuss 

below. This game is in the spirit of Rubinstein´s (1982) two-player alternating offers bargaining 

game and is a generalization of Chatterjee et al.´s (1993) extension to an n-player bargaining 

game. The SMUG assumes that players are ordered according to some rule. The player with the 

lowest index (initiator), say, player 1, starts by announcing a list of coalition members including 

himself. Every member on the list is asked whether he or she accepts the proposal. The player 

with the lowest index on this list is asked first, then the player with the second lowest index and 

so forth. If all players on the list agree, the coalition, say, 1c , is formed and coalitions among the 

remaining players 1I \ c  may form. The player with the lowest index among 1I \ c  becomes the 

new initiator. If a player rejects a proposal, he/she can make a new proposal.  

Thus, a coalition only forms by unanimous agreement. Because a player can always reject a 

proposal, participation in a non-trivial coalition is voluntary. Both features are well in line with 

the institutional setting of international environmental agreements. It is also evident that players 

whose proposals have been turned down are still part of the formation process. They may 

become members of other coalitions than those they have proposed. Also players that have 

turned down a proposal are still part of the game since they can propose a new coalition. Only if 

n-1 players have already formed a coalition, the last remaining player will have no other choice 
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than to remain a singleton. When the negotiation process terminates, all players receive their 

payoffs. 

For simplification, Bloch (1995, 1996) assumes no discounting of valuations during this process. 

He also assumes that players who cannot agree on a coalition receive a payoff which is Pareto-

dominated by payoffs in every coalition structure. Thus, the solution to the game becomes 

“finite”. Moreover, he only considers stationary perfect equilibrium strategies in order to reduce 

the amount of possible equilibria. That is, strategies only depend on the current state (and not on 

the entire history of the game) in the negotiation process. A sequence of proposals is a perfect 

equilibrium if proposals and reactions to proposals are mutually best replies for each possible 

state in the remaining game.  

To the best of our knowledge, until now, Bloch´s game has only be applied to economic 

problems with the assumption that all players have the same payoff function.4 For ex-ante 

symmetric players, as this assumption has been termed in the literature, Bloch (1996) has shown 

that things simplify substantially since the identity of players does not matter and – in most 

economic examples of interest - payoffs to a player only depend on the sizes of his own and the 

remaining coalitions in a given coalition structure c .5 Hence, the sequence in which players make 

proposals and counter-proposals, as well as the sequence according to which players are asked for 

acceptance does not matter for the outcome of coalition formation. Moreover, a proposal means 

to announce the size of a coalition to which the proposer wants to belong and hence the entire 

                                                 
4  See Bloch (2003) for an overview. Bloch’s game has been applied for instance by Finus and 

Rundshagen (2006a) and Ray and Vohra (2001) in the context of the provision of public goods; both 

applications assuming symmetric players. 

5  For instance, in a global emission abatement game with a static payoff function Finus and 

Rundshagen (2003) have shown that, in a given coalition structure, members of larger coalitions 

receive a lower valuation than members of smaller coalitions because all players receive the same 

benefits from global abatement but members of larger coalitions choose higher individual abatement 

levels and therefore have higher abatement costs. 
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game reduces to a “size announcement game” in which the interests of the proposer and the 

members of the proposed coalition always coincide.  

4.2 Modified Game 

As pointed out already, we consider heterogeneous players and therefore the sequence of 

proposals matters. Hence, we have to solve for the equilibrium coalition structure for every 

possible index sequence of which there are 720 in the case of six players. Section 5 will focus on 

the effect of different sequences on the outcome of coalition formation. Important questions will 

be for instance: which regions should be among the initiators in order to induce successful 

cooperation from a global point of view? Is it an advantage to be an initiator or is a wait-and-see-

strategy more promising for individual regions?  

Generally, the bargaining game may have no solution. Suppose players have completely contrary 

preferences about their most preferred outcome. Then if all players insist on their most preferred 

outcome, this may lead to an infinite number of proposals, rejections and counterproposals. As 

mentioned, Bloch avoids infinite cycles by assuming that if players do not agree in finite time, 

they will end up with a Pareto-inferior outcome compared to the valuations of all possible 

coalition structures. Though this may seem an elegant solution in a theoretical setting, we think it 

is less appropriate in our context. Viewing the coalition structure with only singletons as the 

starting point of negotiations, there seems to be no plausible reason why regions should not 

receive at least this payoff if negotiations fail. Therefore, we follow a pragmatic approach that is 

inspired by software programs used for chess computers. At the time of an ongoing proposal and 

as long as no additional coalition has formed, the same player cannot make a second proposal if 

his/her first proposal has been turned down. It is important to note that this rule only applies if 

the game does not proceed. If a coalition has eventually formed at stage t , this player can again 

make a proposal at t 1  (provided he/she has not accepted already another proposal). 
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We call Bloch’s slightly modified coalition game SMUG Finite Sequential Move Unanimity Game 

(FSMUG). We order players, i.e. regions in CWSM, randomly and then generate all permutations. 

Since like in Bloch (1995), the relevant history at time t  depends only on the current state of the 

game at time t  (and not on the entire history of the game, equilibrium coalition structures are 

derived as stationary perfect equilibrium. A backtracking algorithm along the lines for instance 

described in Alho et al. (1987) was programmed in Java, version 1.4.2 in order to determine these 

equilibria in the FSMUG for the valuations computed with the numerical CWS model.  

4.3 Properties and Strategies  

We first briefly and informally show that our FSMUG - applied to our valuations V(C )  and 

TV (C )  derived from CWSM - possesses some essential properties which are important for 

determining equilibrium coalition structures. Then, we illustrate some interesting implications for 

the optimal strategies of players. For this we use simple examples with three players as the driving 

forces would be difficult to trace in our application with six players. 

First note that an equilibrium in the FSMUG always exists and the equilibrium coalition structure 

is unique for a given index sequence. This follows from three items: a) the game tree is finite by 

construction, b) there is perfect information with respect to the history of the game and hence 

every information set consists of only one decision node and c) at every decision node every 

player has a strict preference order over all coalition structures for the valuations generated by 

CWSM.  

Second note that all equilibria (e.g. emerging from different index sequences or different sets of 

valuations) will be individually rational, meaning that every player receives a payoff in excess of 

the payoff in the coalition structure with only singletons. Regardless of the coalition which has 

formed in the game, a player i  can always remain a singleton by proposing coalition { i } . This 

strategy ensures him at least the payoff in the singleton coalition structures because the CWSM 

valuation functions satisfy the so-called positive externality property. This property says that 
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outsiders to a coalition cannot lose from the merger of other players and/or coalitions (e.g. Bloch 

(2003), Yi (2003) and Finus and Rundshagen 2006b). 

Example 1 in Table 2 shall illustrate the interesting phenomenon that a player may intentionally 

put forward a proposal that she knows will be turned down. First note that players 2 and 3 derive 

their highest valuation when the other two players form a coalition and they free-ride. Hence, if 

either player 2 or 3 is the initiator, they propose a single coalition. Since the singleton coalition 

structure 1c  is Pareto-dominated by all other coalition structures, the remaining players will form 

a coalition of two players. Thus, if player 2 is the initiator 3c {{1,3 },{ 2 }}  and if player 3 is the 

initiator, 2c {{1,2 },{ 3 }}  will emerge as the equilibrium coalition structure.  

Example 1: Provoked Non-Acceptance Game 

Coalition Structure 
1v ( c )  2v ( c )  3v ( c )  

3

ii 1
v ( c )  

1c {{1},{ 2 },{ 3 }}  0 0 0 0 

2c {{1,2 },{ 3 }}  2 2 8 12 

3c {{1,3 },{ 2 }}  8 8 2 18 

4c {{1},{ 2,3 }}  4 4 4 12 

5c {{1,2,3 }}  7 7 7 21 

 

A more interesting strategy is observed when player 1 is the initiator. Her most preferred 

coalition structure is 3c {{1,3 },{ 2 }} . However, suppose she proposed this, then player 3 

would turn down her offer and would simply  propose { 3 } . Now, player 1 and 2 would have no 

better option than to agree on forming a coalition together and hence 2c {{1,2 },{ 3 }}  would 

form which is player 1’s second worst option. Thus, player 1 proposes {1,2 }  which she knows 

will not be accepted by player 2. That is, she passes on the right to make a proposal to player 2, 

knowing that he will act in her best interest: player 2 will propose { 2 }  so that player 3 has to 

give in and forms a coalition with player 1. Hence, 3c {{1,3 },{ 2 }}  emerges as the equilibrium. 
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In other words, players 1 and 2’s interest are in line and player 1 can only get her way be letting 

player 2 make the first effective move. Hence, 3c {{1,3 },{ 2 }}  is the equilibrium if player 1 is 

the initiator.  

Example 1 also illustrates that the equilibrium outcome depends on the sequence of players. 

Moreover, moving first can be associated with an advantage. Regardless who kicks off the game, 

he/she can implement his/her most preferred coalition structure. That this is not always true will 

be illustrated in example 2 below. 

In example 2 there are only two Pareto-undominated coalition structures, namely 2c  and 5c . 

Coalition structure 2c  is the most preferred outcome of player 1 and 5c  of players 2 and 3. 

Suppose player 1 is the initiator. If she proposed {1,2 } , and player 2 accepted, then 2c  would 

form. However because 2c  is only player 2’s second best option, and player 2 and 3 both prefer 

the grand coalition 5c , player 2 could propose the grand coalition. Given that player 1 cannot 

make a new proposal as long as the game has not proceeded, and the grand coalition Pareto-

dominates the singleton coalition structure 1c , player 1 would accept this proposal. However, 5c  

is only player 1’s third-best alternative. Consequently, player 1, anticipating all this, proposes {1}  

in equilibrium, knowing that players 2 and 3 prefer to form a coalition together instead of 

remaining singletons. Thus, the equilibrium coalition structure if player 1 is the initiator 

(regardless how players 2 and 3 are ordered), is coalition structure 4c {{1},{ 2,3 }} .  
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Example 2: Pareto-dominated Equilibrium Game 

Coalition Structure 
1v ( c )  2v ( c )  3v ( c )  

3

ii 1
v ( c )  

1c {{1},{ 2 },{ 3 }}  0 0 0 0 

2c {{1,2 },{ 3 }}  6 2 4 12 

3c {{1,3 },{ 2 }}  1 1 1 3 

4c {{1},{ 2,3 }}  5 1 3 9 

5c {{1,2,3 }}  3 6 5 14 

 

Since 4c  is Pareto-dominated by 2c , this example illustrates that there are instances where a 

Pareto-dominated equilibrium coalition structure can emerge as an equilibrium due to strategic 

considerations. Moreover, it shows that an initiator cannot always push through his/her most 

preferred outcome. This is also the case if either player 2 or 3 are the initiators, though in this 

case the Pareto undominated coalition structure 2c  is the equilibrium outcome. 

If either player 2 or 3 moves first, he/she anticipates that he/she cannot enforce his/her most 

preferred coalition structure 5c  as player 1 will raise objections. Hence, both players try to 

enforce their second-best option which is 2c  and which they know will be accepted by player 1, 

as it is her first-best option. Hence, if player 2 is the initiator, he will propose {1,2 } , which 

player 1 will accept, leaving player 3 as a singleton. If player 3 is the initiator, she proposes { 3 }  

and player 1 and 2 form {1,2 } . 

Thus, if either player 2 or 3 is the initiator, they cannot implement their first choice as an 

equilibrium (as this is the case if player 1 is the initiator). Even more important, they make 

proposals which lead to the most preferred coalition structure of player 1. In other words, from 

player 1’s point of view, there is an advantage not to move first.  
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5. Results 

5.1 Base Case 

In this section we display and discuss equilibrium coalition structures based on the valuations in 

CWSM. Table 2 displays equilibrium coalition structures for the case of no transfers and the case 

of transfers. In the case of no transfers, there are 11 equilibrium coalition structures, in the case 

of transfers, there are only two. Equilibrium coalition structures are sorted according to welfare at 

the world level in descending order. The ranks for different regions within the set of equilibria 

are indicated in the columns under the heading “Ranking”. The first entry in the column “PO” 

indicates whether the coalition structure is Pareto-undominated among the entire set of coalition 

structures of which there are 203. The second entry in this column indicates whether the 

coalition structure is Pareto-undominated among the set of equilibrium coalition structures. The 

frequency of occurrence of a coalition structure among the 720 possible index sequences is 

indicated in the last column.  

Table 2 about here 

We would like to point out four general observations. First, equilibrium coalition structures 

emerge that are not a PO among the set of possible coalition structures. This possibility was 

illustrated in example 2 in section 4.4 and is due to the strategic characteristics of a sequential 

coalition formation process. As in example 2, this even occurs if Pareto-dominance is only 

checked among the set of equilibrium coalition structures. 

Second, nearly all equilibrium coalition structures include multiple non-trivial coalitions. Hence, if 

players have a wider choice of options than  only joining an agreement or remaining a singleton, 

coalition structures with multiple coalitions emerge in equilibrium. This observation is in line with 

simulation results for instance in Finus et al. (2009) and Eyckmans and Finus (2006) and the 

theoretical findings in Carraro (2000) and Finus and Rundshagen (2003), though they assume a 

simultaneous coalition formation process under various membership rules. The relative high 
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average CGX is due to the fact that the FSMUG de facto implies that a coalition only forms if 

and only if all players unanimously agree to form exactly this coalition. That is, a high degree of 

unanimity is conducive to the success of coalition formation as spelled out for instance in 

Eyckmans and Finus (2006) and Finus and Rundshagen (2006b). However, the grand coalition is 

not stable. 

Third, transfers lead to a higher average CGX than no transfers. Transfers seem to align interests 

more among heterogeneous players for our data set, as they lead to a more symmetric 

distribution of the gains from cooperation (at least all coalition structures are individually 

rational), which leads to one equilibrium coalition structure in 98 percent of the possible index 

sequences. This is different for no transfers where the index sequence matters much more. 

Nevertheless, also here the first three ranked equilibrium coalition structures (which are Pareto-

undominated) appear with a frequency of 599 all together, amounting to 83 percent of the 

possible index sequences. All together, we confirm the positive effect of transfers for the success 

of coalition formation that has been found for simultaneous coalition formation games. See for 

instance Botteon and Carraro (1997), Carraro et al. (2006), Eyckmans and Finus (2006), Weikart 

et al. (2006) among many others. 

Fourth, irrespective whether we consider no transfers or transfers, there is no equilibrium 

coalition structure which is the most preferred for a particular region among the entire set of 

coalition structures.6 In other words, no region, regardless of the sequence in which they make 

proposals, can enforce its most preferred coalition structure. A similar conclusion, though less 

pronounced emerges from Table 3. 

Table 3 looks at the most preferred and least preferred equilibrium from a region’s point of view 

among the set of equilibrium coalition structures. Percentages indicate the frequency that region 

i  is among the first three in the index sequence when this equilibrium emerges. For instance, 

                                                 
6  This is evident by comparing Table 1 and 2. 
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USA’s most preferred equilibrium for no transfers is the first equilibrium coalition structure 

displayed in Table 2. It occurs 32 times. In 30 instances, the USA is among the first three players 

and hence 30/32=93.8%. Thus, the USA has a first mover advantage when it comes to her most 

preferred equilibrium. Similarly, USA’s worst equilibrium is ranked no. 10 at the world scale (see 

Table 2, no transfers). It occurs 78 times and in 12 instances the USA is among the first three 

players and hence 12/78=15.4%. Put differently, in 84.6% of the cases the USA cannot avoid the 

worst outcome because of her late mover position. This relation can be interpreted as a first 

mover advantage to avoid bad outcomes. 

The other entries for other regions in Table 3 are computed in the same way. Hence, in row 

“Best Equilibrium”, a percentage above 50% indicates a first mover advantage (indicated bold) 

and in row “Worst Equilibrium” this is true for a percentage below 50% (indicated bold). Thus, 

only in the case of transfers there seems to be on average a first mover advantage. This is in line 

with our example 2 in section 4.4 which showed that it is not always in the interest of a player to 

move first, i.e. there may be a last or later mover advantage. It appears that – on average - there is 

a first-mover advantage to avoid the worst outcome. 

In the context of the provision of a public good, two incentives can roughly be identified to 

explain this, though incentives are far more complex for the valuations derived from CWSM. On 

the one hand, moving first provides the possibility to free-ride by either proposing to remain a 

singleton or being only a member of a small coalition. This, however, requires that the player can 

expect that others cooperate if he commits to little cooperation. On the other hand, it can also be 

advantageous to move later in the game, hoping that others commit to cooperation. In a simple 

symmetric player context and public good provision Finus and Rundshagen (2006a) have shown 
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that only the first incentive is at work.7 Now, in the case of heterogeneous players, obviously, also 

the second incentive seems to be relevant in some instances.  

5.2 Sensitivity Analysis 

Since our results have been obtained by simulations, we test the robustness of our conclusions. 

As appears from the discussion in the previous sections, we are not interested in quantitative 

results, but in qualitative conclusions. This seems suggestive given the large uncertainty 

surrounding the calibration of the parameters of integrated assessment models. Among the main 

parameters that enter CWSM, we focus on a variation of the discount rate as there has been 

much debate about the appropriate choice of the discount rate (time preference rate). Hence, we 

consider instead of 0.01   (see Appendix 1) also two other values, 0.02   and 0.03  , for 

which we produce tables in the spirit of Tables 2 and 3 and which are available upon request. 

From this sensitivity analysis the following conclusions can be drawn. 

Despite the fact that the composition of some equilibrium coalition structures is different, all  

conclusions turn out to be very robust. Average success rates measured as average CGX remain 

very similar. The general observations mentioned in section 5.1 also remain true. Equilibrium 

coalition structures emerge that are not Pareto-optimal among the entire set of coalition 

structures and some are even Pareto-dominated by other equilibrium coalition structures, and this 

happens more frequently in the absence of transfers.  

Nearly all equilibrium coalition structures comprise multiple non-trivial coalitions and transfers 

usually lead to a higher average CGX. Regions can never push through their most preferred 

coalition structure regardless of the sequence in the negotiations, though there is now one 

exception: FSU. However, interestingly, when this most preferred coalition structure emerges, the 

percentage of instances in which FSU is among the first three regions in the index sequence is 

                                                 
7  In example 1 in section 4.4, this free-rider incentive could also be observed if either player 2 or 3 

moves first, though the game is not symmetric. 
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below 50%, suggesting that there is no first but a later mover advantage for FSU. Also for other 

players there is no indication of first-mover advantage on average concerning their most 

preferred outcome, suggesting that a wait-and-see-strategy can be attractive to the participants in 

climate negotiations. 

6. Summary and Conclusions 

We combined two modules, an empirical model on climate change and a game theoretic model of 

coalition formation, to study self-enforcing climate agreements. The empirical model was the 

Climate Change World Simulation Model (CWSM), version 1.2, which is a dynamic optimal 

growth model that captures the feedback between the economy and climate change for six world 

regions. We computed payoffs for all possible partitions of players, called valuations, allowing for 

the possibility of the co-existence of several coalitions. Based on these valuations, we determined 

stable coalition structures. 

We considered a new conceptual issue of coalition formation in the context of IEAs: a sequential 

coalition formation process. This was motivated by the empirical evidence that participation in 

IEAs has evolved sequentially in the past. We argued that the sequential move unanimity game 

proposed by Bloch (1995) has to be modified for practical purposes in order to avoid infinite 

cyclical proposals. We introduced the assumption that a player whose proposal has been turned 

down, cannot make a second proposal as long as the formation process has not proceeded. This 

allowed us to develop a backtracking algorithm to solve for equilibrium coalition structures.  

One part of our results illustrated the strategic properties of a sequential coalition formation 

process. For instance, we showed that there is not always a first-mover advantage, but a wait-and-

see-strategy may well pay. Negotiators may even have an incentive to put forward a proposal 

which they know will be turned down in order to benefit from a later mover advantage. Due to 

strategic considerations and strong free-rider incentives, equilibrium coalition structures may not 
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be Pareto-optimal. It also clearly emerged that it is very unlikely that single negotiators can push 

through their most preferred outcome, irrespective of the sequence when they move.  

Another part of the results confirmed conclusions derived from a simultaneous coalition 

formation process. Due to large asymmetries across the world in the climate change context in 

terms of the environmental damages and abatement cost, compensation payments are conducive 

to establish effective cooperation. Moreover, if participation is not restricted exogenously to a 

single agreement, multiple coalitions will emerge as equilibrium outcomes. As argued for instance 

in Eyckmans and Finus (2006) and Finus et al. (2009), this may be taken as indication to revise 

previous policy strategies. As long as free-rider incentives do not allow forming a climate 

agreement with full participation, it may be worthwhile to allow for bilateral agreements instead 

of focusing on a single treaty.  

From our results important avenues for future research emerge. In particular, we believe that 

more conceptual work is needed to comprehensively capture the dynamic nature of the 

formation of IEAs in terms of the sequence of proposals, participation, policy goals, enforcement 

and the stock pollutant nature of greenhouse gases. This is certainly a non-trivial challenge but 

would help to base policy recommendations for the design of successful future IEAs on a more 

realistic basis. After all, it is not to be expected that problems like climate change, the depletion 

of the ozone layer or biodiversity will disappear in the future. 
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Appendix 1 

Figure A.1 shows the CLIMNEG World Simulation Model8, version 1.2, which consists of two 

main blocks of equations: the economy (left) and the climate module (right). Subindices t denote 

time (in steps of 10 years9) and indices i indicate the region. Exogenous processes are indicated by 

an overbar.  

Figure A.1: Schematic Overview of CLIMNEG World Simulation Model 
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8  The GAMS code for the simulations is available from the authors upon request, including the entire 

matrix of valuations. 

9  In order to save space, the equations shown in Figure A.1 are simplified to an annual representation 

of the stock variables’ accumulation processes. Using a time step different than one year, alters 

slightly the look of these equations but does not affect the essential aspects of the processes.  
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Table A.1: List of Variables and Functions 

i,tY  production (billion US$2000) 

i,tZ  consumption (billion US$2000) 

i,tI  investment (billion US$2000) 

i,tK  capital stock (billion US$2000) 

i,tE  carbon emissions (billion tons of carbon, btC) 

i,t  emission reduction (between zero and one) 

 i,tC   emission reduction cost function (fraction of GDP, between zero and one) 

tT  global mean temperature change (°C)

 i tD T  climate change damage function (fraction of GDP, between zero and one) 

iW  welfare measured as aggregated discounted consumption 
at
tM  atmospheric carbon concentration (btC)

uo
tM  carbon concentration in upper strata ocean (btC)

lo
tM  carbon concentration in lower strata ocean (btC)

tF  radiative forcing (Watt per m2) 
at
tT  atmospheric temperature (°C)

0
tT  lower ocean temperature (°C)
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Table A.2: Global Parameters 

i,ta  Productivity exogenous  

i,tL  Population exogenous  

i,t  emission-output rate exogenous  

x
tF  Exogenous radiative forcing exogenous  

K  annual rate of capital depreciation 0.10  
  capital productivity parameter 0.25  
  annual rate of time preference 0.01*  

  terminal year 2330  

11  parameter carbon cycle -0.033384  

12  parameter carbon cycle 0.033384  

21  parameter carbon cycle 0.027607  

22  parameter carbon cycle -0.039103  

23  parameter carbon cycle 0.011496  

32  parameter carbon cycle 0.000422  

33  parameter carbon cycle -0.000422  

1  parameter global temperature module 0.226  

2  parameter global temperature module 0.440  

3  parameter global temperature module 0.020  

  parameter global temperature module 1.410  
at
0M  Initial (=2000) atmospheric carbon concentration 783 btC
uo
0M  Initial (=2000) carbon concentration in upper strata ocean 807 btC
lo
0M  Initial (=2000) carbon concentration in lower strata ocean 19238 btC

at
0T  Initial (=2000) atmospheric temperature 0.622 °C
0
0T  Initial (=2000) lower ocean temperature 0.108 °C

* The sensitivity analysis is conducted for values 0.02 and 0.03. 
Details for the time path of exogenous parameters and calibration of carbon cycle and 
temperature module are available from the authors upon request.  
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Table A.3: Regional Parameters 

 
i,1  i,2  i,1b  i,2b  

USA 0.01102 2.0 0.07 2.887 
JPN 0.01174 2.0 0.05 2.887 
EU 0.01174 2.0 0.05 2.887 
CHN 0.01523 2.0 0.15 2.887 
FSU 0.00857 2.0 0.15 2.887 
ROW 0.02093 2.0 0.10 2.887 
Source: RICE_96 model by Nordhaus and Yang (1996). 
 
 
Table A.4: Regional Initial (=2000) Data 

 
i,0Y  i,0L  i,0K  i,0E  

USA 7563.810 282.224 19740.689 1.574 
JPN 3387.931 126.87 9753.970 0.330 
EU 8446.901 377.136 22804.477 0.888 
CHN 968.906 1262.645 2686.056 0.947 
FSU 558.436 287.893 1490.038 0.626 
ROW 6633.427 3715.663 14105.209 2.192 
WORLD 27559.411 6052.431 70580.438 6.556 
 billion US$2000 

(market exchange 
rate) 

million 
people 

billion US$2000 billion tons 
carbon btC 

(fossil fuel use) 
Source: World Resources Institute http://www.wri.org (for i,0Y  and i,0E ), UN 
Economic and Social Affairs division (for i,0L ) and own calibration (for i,0K ). 
Details are available from the authors upon request. 
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Table 1: Overview of Selected Coalition Structures and their Welfare Implications* 
Rank Coalition Structure Valuations without Transfers Valuation with Transfers   

  USA JPN EU CHN FSU ROW USA JPN EU CHN FSU ROW World CGX 

1 {USA,JPN,EU,CHN,FSU,ROW} 255882.2 48068.1 179478.3 308069.3 19038.2 359617.9 257401.2 48116.1 179507.6 307220.6 19417.5 358490.8 1170154 100.0 

2 {USA,EU,CHN,FSU,ROW},{JPN} 255793.3 48435.0 179368.4 307762.0 19041.8 359127.1 257267.1 48435 179408.9 306960.3 19408.5 358047.7 1169528 97.9 

3 {USA,JPN,EU,CHN,ROW},{FSU} 255686.8 48029.6 179319.5 307610.7 19622.1 358882.0 257232.0 48085.9 179385.9 306892.3 19622.1 357932.4 1169151 96.7 

4 {USA,EU,CHN,ROW},{JPN,FSU} 255613.6 48393.4 179229.2 307361.9 19603.1 358486.6 257119.4 48448.9 179306.9 306685.0 19547.6 357580.0 1168688 95.1 

5 {USA,EU,CHN,ROW},{JPN},{FSU} 255590.1 48390.2 179212.7 307314.3 19604.3 358409.0 257095.3 48390.2 179289.9 306638.8 19604.3 357502.2 1168521 94.6 

6 {USA,JPN,CHN,FSU,ROW},{EU} 255592.8 47979.2 180526.1 307021.0 19059.2 357931.3 256915.2 48029.0 180526.1 306307.3 19386.1 356945.9 1168110 93.2 

16 {USA},{JPN,EU,CHN,FSU,ROW} 258283.8 47886.3 178712.9 305884.7 19045.5 356069.0 258283.8 47963.2 178896.8 305609.3 19362.1 355767.0 1165882 85.8 

17 {USA,JPN,EU,FSU,ROW},{CHN} 255393.4 47872.6 178657.4 308478.0 19117.0 356225.0 256298.4 47919.5 178721.3 308478.0 19345.0 354980.3 1165743 85.4 

150 {USA},{JPN},{EU},{CHN}, 
{FSU,ROW} 255723.7 47788.2 178265.1 304393.3 19155.1 352360.0 255723.7 47788.2 178265.1 304393.3 19289.5 352225.5 1157685 58.6 

151 {USA},{JPN,ROW},{EU},{CHN}, 
{FSU} 255705.1 47660.4 178251.7 304362.0 19332.1 352195.0 255705.1 47759.9 178251.7 304362.0 19332.1 352095.5 1157506 58.1 

152 {USA,JPN,EU,CHN,FSU},{ROW} 253310.9 47467.0 176958.1 300739.6 19016.4 350146.7 253718.4 47470.1 176907.2 300219.1 19177.1 350146.7 1147639 25.3 

157 
{USA,JPN,CHN,FSU,},{EU}, 
{ROW} 253151.6 47416.4 177134.2 300178.2 19037.5 348238.3 253464.8 47426.3 177134.2 299732.3 19160.4 348238.3 1145156 17.1 

167 
{USA},{JPN,EU,CHN,FSU}, 
{ROW} 253722.2 47376.6 176572.6 299713.5 19038.2 347037.4 253722.2 47405.3 176644.5 299498.8 19152.3 347037.4 1143461 11.5 

173 {USA,JPN,EU,FSU},{CHN},{ROW} 253282 47396.9 176655.7 300001.6 19094.0 346569.3 253283.1 47394.9 176602.3 300001.6 19148.3 346569.3 1142999 9.9 

195 {USA},{JPN,EU,FSU},{CHN},{ROW} 253219.5 47369.1 176534.5 299267.3 19120.0 345276.0 253219.5 47372.5 176511.4 299267.3 19139.7 345276.0 1140787 2.6 

203 {USA},{JPN},{EU},{CHN},{FSU}, 
{ROW} 253104.6 47364.1 176477.5 299040.1 19136.5 344878.6 253104.6 47364.1 176477.5 299040.1 19136.5 344878.6 1140001 0.0 

* Rank: rank of coalition structure in the list of all coalition structures sorted in descending order of global welfare (column “World”); valuations are billion US dollars expressed in 2000 levels, 

rounded to the first digit; World: sum of valuations of all six regions (i.e. global welfare); CGX: global welfare expressed in terms of closing the gap index: 

   n nN F N
i i i ii 1 i 1

100 (v (c) v (c )) / (v (c ) v (c ))
 

     where welfare is discounted lifetime consumption integrated over 2000-2300 (see section 3.1), global welfare with full cooperation is denoted by 
n F

ii 1
v (c )

  ( Fc =coalition structure No. 1), global welfare with no cooperation is denoted by 
n N

ii 1
v (c )

  ( Nc =coalition structure No. 203) and global welfare in some coalition structure c is 

denoted by 
n

ii 1
v (c)

 ; abbreviation of regions as explained in the text in section 3.1; bold numbers indicate highest valuation of a region among the set of valuations V(C)  and TV (C) , respectively. 
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Table 2: Equilibrium Coalition Structures for No Transfers and Transfers* 

No Transfers 
Coalition Structure Ranking  CGX PO FR 

 USA JPN EU CHN FSU ROW World    
{USA,EU,FSU},{JPN},{CHN,ROW} 1 1 1 5 9 1 1 80.7 yes/yes 32
{USA,JPN,EU},{CHN,ROW},{FSU} 3 3 3 6 1 2 2 80.3 yes/yes 52
{USA,EU},{JPN},{CHN,ROW},{FSU} 5 2 4 8 2 3 3 78.2 yes/yes 515
{USA,JPN,FSU},{EU},{CHN,ROW} 2 5 2 9 5 4 4 76.2 yes/yes 1
{USA},{JPN},{EU,FSU},{CHN,ROW} 4 4 5 10 4 9 5 73.7 no/no 16
{USA},{JPN,EU},{CHN,ROW},{FSU} 6 6 6 11 3 10 6 73.4 no/no 4
{USA,ROW},{JPN},{EU,FSU},{CHN} 8 7 7 1 10 5 7 72.2 no/yes 8
{USA,ROW},{JPN,EU},{CHN},{FSU} 9 10 8 2 6 6 8 71.9 no/yes 10
{USA,ROW},{JPN,FSU},{EU},{CHN} 10 8 9 3 8 7 9 71.3 no/yes 2
{USA,ROW},{JPN},{EU},{CHN},{FSU} 11 9 10 4 7 8 10 70.8 no/yes 78
{USA},{JPN},{EU,ROW},{CHN},{FSU} 7 11 11 7 11 11 11 63.8 no/no 2
                  77.3  

Transfers 
Coalition Structure Ranking  CGX PO FR 

 USA JPN EU CHN FSU ROW World    
{USA,EU,CHN,ROW},{JPN},{FSU} 2 1 1 1 1 1 1 94.6 yes/yes 706
{USA},{JPN},{EU,FSU},{CHN,ROW} 1 2 2 2 2 2 2 73.7 no/yes 14
                  94.2  
* Ranking: ranking of equilibrium coalition structures in terms of valuations “World” in descending order; CGX: closing the gap index as 
explained in Table 1,  =average welfare over all possible index sequences; PO: first entry = Pareto-optimal coalition structure in the set 
of all coalition structures, second entry = Pareto-optimal coalition structure in the set of equilibria; FR: frequence of appearance of 
coalition structure as an equilibrium out of the total number of index sequences that is 720. 

 
 
 
Table 3: First-Mover Advantage to Enforce Best and to Avoid Worst Equilibrium* 

No Transfers 
 USA JPN EU CHN FSU ROW 
Best Equilibrium 93.8 43.8 18.8 100 73.1 18.8 
Worst Equilibrium 15.4  100 0 50 0 0 

Transfers 
 USA JPN EU CHN FSU ROW 
Best Equilibrium 100 50.4 50.1 49.3 50.1 51 
Worst Equilibrium 49 28.6 42.9 85.7 42.9 0 
* Numbers are percentages of region i having an index number equal or smaller than 3 with respect to the the best and worst equilibrium 
coalition structure from player i’s perspective in Table 2. Bold entries: %>50 for Best Equilibrium and %<50 for Worst Equilibrium 
indicate first-mover advantage. 


