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PHASE TRANSITIONS FOR DILUTE PARTICLE SYSTEMS

WITH LENNARD-JONES POTENTIAL

By Andrea Collevecchio1, Wolfgang König2,

Peter Mörters3, and Nadia Sidorova4

(28 April, 2010)

Abstract: We consider a classical dilute particle system in a large box with pair-

interaction given by a Lennard-Jones-type potential. The inverse temperature is picked

proportionally to the logarithm of the particle density. We identify the free energy

per particle in terms of a variational formula and show that this formula exhibits a

cascade of phase transitions as the temperature parameter ranges from zero to infinity.

Loosely speaking, the particle system separates into spatially distant components in

such a way that within each phase all components are of the same size, which is the

larger the lower the temperature. The main tool in our proof is a new large deviation

principle for sparse point configurations.

MSC 2000. Primary 82B21 Secondary 60F10; 60K35; 82B31; 82B05; 82B26.

Keywords and phrases. Classical particle system, canonical ensemble, equilibrium statistical mechan-

ics, Lennard-Jones-type potential, dilute system, large deviations.

1. Introduction

1.1 Motivation

One of the basic themes of equilibrium statistical mechanics is the study of interacting many-body

systems in the thermodynamic limit. A major problem in this area, which has not been mathemati-

cally solved so far, is to understand the transition between the gaseous and the solid phase at positive

temperature and particle density. In the present paper we discuss the simpler situation when these

two quantities vanish asymptotically with the relation between them fixed on the critical scale. We

investigate a classical dilute system interacting via a pair potential of Lennard-Jones type, which in-

cludes attraction as well as repulsion. In this model we obtain that the temperature-density plane can

be divided into separate phases, corresponding to the formation of clusters of different sizes. Within

each phase all clusters have the same size. On the lines separating the phases, we encounter nondif-

ferentiability of the free energy of the system, so that we may speak of first-order phase transitions.
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density %

0 temperature T

Phase I (single points)

configu-

rations)

Phase IV

(infinite

% = e−c3/T

% = e−c2/T

Phase II

% = e−c1/T

Phase III

Figure 1. Blow-up near the origin in the temperature-density plane. The schematic

phase diagram is for the case of three phase transitions, η = 3: Phase I (single points),

Phase II (finite clusters with more than one point), Phase III (larger finite clusters),

Phase IV (infinite clusters). Phases I-III are gaseous phases, Phase IV may be inter-

preted as a fluid or solid phase.

At fixed positive temperature, in a dilute system, the minimal inter-particle distance diverges and

the system does not feel the interaction. At zero temperature, however, the minimisation of energy

leads to the emergence of a macroscopic rigid crystalline structure, see [Th06]. We study the transition

between these two scenarios by letting the temperature depend on the particle density in a critical

way and thus zooming into the crucial region near the origin in the temperature-density plane.

We now turn to a detailed description of the model. We consider the following pair-interaction

energy of N -point configurations in Rd,

VN (x1, . . . , xN ) =
N∑

i,j=1
i6=j

v
(
|xi − xj |

)
, for x1, . . . , xN ∈ Rd. (1.1)

Here the pair-interaction potential v : [0,∞) → (−∞,∞] is assumed to be of Lennard-Jones type, by

which we mean that it explodes close to zero, has a nondegenerate negative part and vanishes at

infinity. Additionally, we always assume that v has compact support. We allow the possibility that

v = ∞ in some interval [0, ν0] to represent hard core interaction. Assumption (V) below also ensures

that the potential is stable, i.e., the energy VN is of order N , see Lemma 1.1 below.

We consider N particles in a centred cube Λ ⊂ Rd, such that the particle density is % := N
|Λ| , where

|Λ| is the Lebesgue measure of Λ. The main object of our study is the partition function

ZN (β, %) :=
1

N !

∫

ΛN

dx1 . . .dxN exp
{
− βVN (x1, . . . , xN )

}
, for β, % ∈ (0,∞), N ∈ N. (1.2)

We derive a variational characterisation of the limiting free energy per particle,

Ξ(c) := − lim
N→∞

1

βNN
log ZN (βN , %N ), (1.3)

for βN → ∞, %N → 0 such that − 1
βN

log %N = c is constant. This relation implies that the energetic

and entropic contributions to the partition function are on the same scale, and their competition

determines the behaviour of the system.
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1.2 The free energy

We now state our precise assumptions on the potential v. For each r > 0, denote by s(r) the minimal

number of balls of radius r required to cover a ball of radius one, and let s? = supr∈(0,1] s(r)r
d ∈ (0,∞).

Observe that s? depends only on the dimension d.

Assumption (V). We suppose that the pair potential v : [0,∞) → (−∞,∞] satisfies the following

conditions:

(1) There is ν0 ≥ 0 such that v = ∞ on [0, ν0] and v < ∞ on (ν0,∞);

(2) v is continuous on [0,∞);

(3) there is R > 0 such that v = 0 on [R,∞);

(4) there is ν1 > 0 such that v < 0 on (R − ν1, R);

(5) there is ν2 > 0 such that min
[0,ν2]

v ≥ −ν−d
2 (2R)ds? min

[0,∞)
v.

satisfying Assumption (V)

RR

∞

Lennard-Jones potential

v(r) = r−12 − r−6

Examples of potentials

In particular, v has a finite and strictly negative minimum, and 0 ≤ ν0 ≤ ν2 < R − ν1 < R. We

define the minimal energy of an N -particle configuration as

ϕ(N) = inf
x1,...,xN∈Rd

VN (x1, . . . , xN ), for N ∈ N. (1.4)

Condition (5) will guarantee that −ϕ(N) grows not faster than linearly, which is known as stability

in statistical mechanics. Observe that (5) is always satisfied if ν0 > 0, as one can take ν2 = ν0.

Lemma 1.1 (Asymptotics of ϕ(N)). Let the pair-potential v satisfy Assumption (V), then the limit

ϕ̃ = lim
N→∞

ϕ(N)

N
= inf

N∈N

ϕ(N)

N
∈ (−∞, 0), (1.5)

exists and is finite.

The existence of the limit relies on subadditivity, the finiteness on Assumption (V) (5), and the

negativeness is provided by the presence of negative interactions according to Assumption (V) (4).

Remark 1.2. The point configurations that minimise the energy ϕ(N) received attention in the liter-

ature. In [GR79, Th06] crystallisation is proved for d = 1, resp. d = 2. This is the phenomenon that

the minimising particle configuration approaches, as N → ∞, a certain regular lattice which is unique

up to translation and rotation. See also [AFS09] for more recent results. Physically speaking, these

results are about zero temperature.

By Lemma 1.1, the extended sequence (θκ : κ ∈ N ∪ {∞}) given by

θκ =

{
ϕ(κ)

κ , if κ ∈ N,

ϕ̃, if κ = ∞,
(1.6)

is a continuous map from N ∪ {∞} to R.

Now we identify the logarithmic asymptotics of the partition function ZN (βN , %N ):
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Theorem 1.3 (Free energy). Suppose the pair-potential v satisfies Assumption (V). Let ΛN ⊂ Rd be

a centred cube and βN → ∞ such that, for some c ∈ (0,∞), the particle density %N = N/|ΛN | satisfies

%N = e−cβN . Then the free energy per particle,

Ξ(c) = − lim
N→∞

1

NβN
log ZN (βN , %N ), (1.7)

exists and is given by

Ξ(c) = inf
{ ∑

κ∈N∪{∞}

qκθκ − c
∑

κ∈N

qκ

κ
: q ∈ [0, 1]N∪{∞},

∑

κ∈N∪{∞}

qκ = 1
}

. (1.8)

Remark 1.4. In the case of positive particle density at fixed positive temperature, the existence of

the free energy per particle and of a close-packing phase transition when the potential is infinite in a

neighbourhood of zero, is a classical fact, see e.g. [Ru99, Theorem 3.4.4].

The probability sequence q = (qκ)κ∈N∪{∞} appearing in (1.8) has an interpretation, which we

informally describe now. Since the support of v is bounded, any point configuration {x1, . . . , xN}
in the integral on the right of (1.2) can be decomposed into connected components such that no

particles of different components interact with each other. The quantity qκ characterises the relative

frequency of components of cardinality κ among all these components, more precisely the configuration

{x1, . . . , xN} consists of Nqκ/κ components of cardinality κ for each κ ∈ N. In the case κ = ∞,

one should speak of components whose cardinalities tend to infinity as some function of N . Each

component of cardinality κ is chosen optimally, i.e., as a minimiser of the right-hand side in the

definition (1.4) of ϕ(κ). Then the term
∑

κ∈N∪{∞} qκθκ expresses the energy coming from such a

configuration, and the term
∑

κ∈N
qκ/κ describes its entropy.

Now the logarithmic asymptotics of the partition function ZN (βN , %N ) is determined by optimal

configurations, i.e., by those configurations whose component structure follows the frequency distribu-

tion of any minimiser q of the right hand side of (1.8). By a straightforward, but technical, extension

of the proof of the upper bound in (1.7), one could see that configurations with cluster frequencies

different from the optimal q do not contribute to the limiting free energy, but we do not carry out

details here. Neither information about the locations of the components relative to each other, nor

about their shape is present in (1.8). The optimal shapes of cardinality κ are precisely those that

minimize the right-hand side in the definition (1.4) of ϕ(κ), but it goes far beyond the scope of the

present paper to give more specific information about them.

1.3 The phase transitions

Now we analyse the minimisers q on the right-hand side of (1.8). It turns out that, as the temper-

ature parameter c decreases from infinity to zero, the minimiser q jumps between Dirac sequences

on increasing component sizes, beginning with the size one. This means that, for sufficiently large

c, the interparticle distance diverges, and that for smaller values of c all components of the system

have the same finite size, which depends on the phase. The number of phases may be finite or infinite

(depending on the interaction potential v). If it is finite then there is a phase with components of

unbounded size. We interpret the phases with finite component sizes as the gaseous phases of the

system. It remains open whether the phase with infinite component size is a fluid or solid phase.

Let us turn to the details. Consider the sequence of points (1/κ, θκ) with κ ∈ N∪ {∞}, and extend

them to the graph of a piecewise linear function [0, 1] → (−∞, 0]. Pick those of them which determine

the largest convex minorant of this function. In formulas, let κ1 = 1 and, for n ∈ N,

κn+1 = max
{

i ∈ N ∪ {∞} : i > κn and
θκn − θi

1/κn − 1/i
= max

j>κn

θκn − θj

1/κn − 1/j

}
, (1.9)
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if κn 6= ∞. Observe that the maximum in (1.9) exists since the set {j ∈ N∪{∞} : j > κn} is compact

and the mapping j 7→
θκn−θj

1/κn−1/j is continuous.

Hence, the sequence (κ1, κ2, . . . ) either terminates at κη+1 = ∞ for some η ∈ N or continues

infinitely, in which case we put η = ∞. We thus have

η = sup{n : κn < ∞} ∈ N ∪ {∞}.

By

cn =
θκn − θκn+1

1/κn − 1/κn+1
, for 1 ≤ n < η + 1, (1.10)

we denote the slope of the convex minorant in the n-th interval. If η = ∞ define c∞ = infn∈N cn.

1
∞

θ4

c1

ϕ̃ c3

c2

1
4

1
6

1
5

1
3

1
1

1
2

θ1

θ3

θ6

θ7
θ5

θ2

Figure 2. Example with η = 3 phase transitions and κ1 = 1, κ2 = 2, κ3 = 5.

For 1 ≤ n < η + 1, let

I(n) =
{
κn ≤ i ≤ κn+1 : (1/i, θi) lies on the straight line

passing through (1/κn, θκn) and (1/κn+1, θκn+1)
}
.

For κ ∈ N ∪ {∞}, we denote by q(κ) the Dirac sequence that has a one in the κ-th entry and zeros

everywhere else; we use the conventions 1/∞ = 0 and 1/0 = ∞. Let Q(n) be the convex hull of all q(i)

with i ∈ I(n), i.e.,

Q(n) =
{ ∑

i∈I(n)

λiq
(i) :

∑

i∈I(n)

λi = 1, λi ≥ 0 for all i ∈ I(n)

}
.

Now we can identify the free energy introduced in Theorem 1.3. It turns out that there are precisely

η phase transitions, and they occur at the critical values cn with 1 ≤ n < η + 1 (with one more phase

transition at c∞ in the case when η = ∞ and c∞ > 0). In particular, the function c 7→ Ξ(c) is

continuous and is linear between cn and cn−1, with slope equal to −1/κn, which is strictly decreasing

in n.

Theorem 1.5 (Analysis of the variational formula). Let Ξ be as in Theorem 1.3. Then

(i) The sequence (cn)1≤n<η+1 is positive, finite and strictly decreasing.

(ii)

Ξ(c) =





ϕ̃ if c ∈ (0, cη],
ϕ(κn)

κn
− c

κn
if c ∈ (cn, cn−1] for some 2 ≤ n < η + 1,

−c, if c ∈ (c1,∞).

(1.11)
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(iii) If c ∈ (0,∞) \ {cn : 1 ≤ n < η + 1}, then the minimiser q of (1.8) is unique:

• for c ∈ (0, cη) it is equal to q(∞),

• for c = c∞ it is equal to q(∞) (this is only applicable if η = ∞ and c∞ > 0),

• for c ∈ (cn, cn−1), with some 2 ≤ n < η + 1, it is equal to q(κn),

• for c ∈ (c1,∞) it is equal to q(κ1) = q(1).

(iv) If c = cn for some 1 ≤ n < η + 1, then the set of the minimisers of (1.8) is equal to Q(n).

Note that η ≥ 1, that is, there is at least one phase transition. In particular, the high temperature

phase corresponding to the last case in (1.11) is always present. In this phase the relevant configura-

tions {x1, . . . , xN} on the right-hand side of (1.2) consist of single points, i.e., there is no interaction

between any of the particles of the configuration and we are in an entropy dominated regime. The first

case in (1.11) is the low-temperature phase, where the relevant configurations consist of components

whose cardinalities tend to infinity as N → ∞. This case is empty if η = ∞ and cη = c∞ = 0. The

second case in (1.11) is the case of intermediate temperatures; here those configurations dominate

whose connected components have a finite cardinality ≥ 2. If η = 1, then the second case is empty,

that is, only one-point configurations appear for c above the critical point c1 = −ϕ̃ and infinitely large

ones for c below that point. This happens if and only if neither of the points (1/κ, θκ) with 1 < κ < ∞

lies below the line connecting (1, θ1) = (1, 0) and (0, θ∞) = (0, ϕ̃), that is, if and only if ϕ(κ)
κ−1 ≥ ϕ̃.

We do not offer any criterion under which the value of η is determined. See Section 6 for an example

of a potential v for which there are two phase transitions.

1.4 Outline of the proof of Theorem 1.3

As v(x) = 0 for x ≥ R, points do not interact if the distance between them is larger than R. We

therefore introduce a graph structure on point configurations, connecting two points by an edge if the

distance between them is at most R. A finite or countable set C ⊂ Rd is called connected if for any two

elements a, b ∈ C there exist k ∈ N and a0, . . . , ak ∈ C such that a0 = a, ak = b and |ai − ai−1| ≤ R

for i ∈ {1, . . . , k}.

For a configuration x = (x1, . . . , xN ) of points in ΛN , we define Θi to be the largest subset of

{1, . . . , N} containing i such that the set {xj : j ∈ Θi} is connected. Now the i-th connected cloud is

defined by

[xi] :=
∑

j∈Θi

δxj ,

and the shifted i-th connected cloud by

[xi] − xi :=
∑

j∈Θi

δxj−xi ,

where δy denotes the Dirac measure at y ∈ Rd. If [xi]({a}) 6= 0 we say that a ∈ [xi] and denote

#[xi] = [xi](R
d), which is equal to the number of points in the i-th connected cloud. The main object

of our analysis is the empirical measure on the connected components of the graph induced by the

configuration, translated such that any of its points is at the origin with equal measure,

Y (x)

N =
1

N

N∑

i=1

δ[xi]−xi
. (1.12)

Observe that the energy of the configuration may be written as

VN (x) =
N∑

i,j=1
i6=j

v
(
|xi − xj |

)
=

N∑

i=1

∑

j 6=i
xj∈[xi]

v
(
|xi − xj |

)
=

N∑

i=1

1

#[xi]

∑

x,y∈[xi]
x 6=y

v(|x − y|) = N Ψ
(
Y (x)

N

)
,
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where, for a suitable class of probability measures Y on configurations, we define

Ψ(Y ) =

∫
Y (dA)

1

#A

∑

x,y∈A
x 6=y

v(|x − y|).

Let X be a vector of independent random variables X(N)

1 , X(N)

2 , . . . , X(N)

N uniformly distributed on ΛN ,

and write YN = Y (X)

N . Hence we can represent the partition function as

ZN

(
βN , e−cβN

)
=

|ΛN |N

N !
EΛN

[
exp

{
− NβNΨ(YN )

}]
, (1.13)

where EΛN
and PΛN

denote the expectation and probability with respect to X. The main step,

formulated as Proposition 2.2, is a large deviation principle for YN in the weak topology with speed

N log(1/%N ) and a rate function

J(Y ) = 1 −

∫
Y (dA)

1

#A
.

By definition, this means that

1

N log(1/%N )
log PΛN

(
YN ∈ ·

)
=⇒ − inf

Y ∈ ·
J(Y ) ,

where ⇒ denotes weak convergence. Large deviation principles for particle systems with interactions

were also considered in [Ge94], though in the non-dilute case which is significantly different.

By our assumption N log(1/%N ) = cNβN and hence an informal application of Varadhan’s lemma

(whose direct application is impossible by the lack of continuity of the functional Ψ) to (1.13) implies

that

lim
N→∞

1

NβN
log EΛN

[
exp

{
− NβNΨ(YN )

}]
= − inf

Y

{
Ψ(Y ) + c J(Y )

}
.

Using (1.13) and

|ΛN |N

N !
= exp

{
N log 1

%n

}
eO(N) = exp{cNβN} eo(NβN ), (1.14)

it is easily seen that this gives Theorem 1.3.

The remainder of this paper is organised as follows. In Section 2, we analyse the distribution of

Y (X)

N and prove a large deviation principle. In Section 3 we analyse ϕ(N) and its asymptotics and

prove in particular Lemma 1.1. The proofs of Theorems 1.3 and 1.5 are in Sections 4 and 5. Finally,

an example of a potential v that admits several phase transitions is described in Section 6.

2. Large deviations for YN

In this section we analyse the distribution of the empirical measure YN introduced in (1.12) asymptoti-

cally as N → ∞. In particular, we state and prove one of our main tools, the large deviation principle.

In Section 2.1 we introduce the topological framework. The principle is formulated in Section 2.2 and

proved in Sections 2.3 and 2.4.

2.1 Topological framework

A measure A on Rd is called a configuration or a point measure if A =
∑

i∈I δai for some finite or

countable collection (ai : i ∈ I) of (not necessarily distinct) points of Rd such that A(K) < ∞ for any

compact set K ⊂ Rd. For any configuration A, we denote #A = A(Rd) and, for a ∈ Rd, we write

a ∈ A if A({a}) ≥ 1. We call a point a a multiple point of a configuration A if A({a}) ≥ 2.
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Denote by N the space of all configurations on Rd. We equip N with the vague topology, that is,

An converges to A if lim supn→∞ An(K) ≤ A(K) and lim infn→∞ An(O) ≥ A(O), for any compact

set K ⊂ Rd and open set O ⊂ Rd. The vague convergence is metrisable and N is a Polish space,

cf. [Res87, Prop. 3.17].

A configuration A =
∑

i∈I δai ∈ N is called connected if the set {ai : i ∈ I} is connected in the sense

explained in Section 1.4. We denote by N (0)

R the set of all configurations A ∈ N which are connected

and such that 0 ∈ A. It is easy to see from [Res87, Prop. 3.13] that the set N (0)

R is closed in N . Hence

N (0)

R is a Polish space. We equip N with the Borel σ-algebra and denote by M1 = M1(N
(0)

R ) the

set of all probability measures on N (0)

R . We equip M1 with the weak topology and observe that it is

Polish as so is N (0)

R (see [Bil68, App. III]).

In the sequel, it will often be more convenient to work with atomic measures in M1 that are

concentrated on finitely many finite configurations without multiple points and without points at the

critical distance R. Observe that the clouds [X(N)

i ] have this property with probability one; the shifted

clouds have this property too, and they additionally contain zero. Denote by N (0)

R,? the set of all finite

configurations A ∈ N (0)

R which satisfy A({x}) = 1, for any x ∈ A, and |x − y| 6= R, for any x, y ∈ A.

Let

M1,? :=
{

Y =
m∑

i=1

piδAi : m ∈ N,
m∑

i=1

pi = 1, and pi > 0, Ai ∈ N (0)

R,? for all i
}

denote the set of all convex combinations of finitely many Dirac measures configurations in N (0)

R,?.

Observe that YN belongs to the space M1,? with probability one but it additionally has a lot of

symmetries. Namely, for each A ∈ N (0)

R and a ∈ A one has YN ({A − a}) = YN ({A}).. Hence, with

probability one, YN is element of

M(0)

1,? :=
{

Y ∈ M1,? : Y ({A − a}) = Y ({A}) for each A ∈ N (0)

R and a ∈ A
}

.

Let us denote by M(0)

1 the closure of M(0)

1,? in M1. It will be the main state space for our analysis.

Finally, for ν > 0 and n ∈ N, denote

N (0)

R,n,ν :=
{
A ∈ N (0)

R,? : #A ≤ n, |x − y| > ν for any distinct x, y ∈ A
}
. (2.1)

Our last preparation is the following continuity property.

Lemma 2.1. The map A 7→ #A from N (0)

R to N ∪ {∞} is continuous in the vague topology.

Proof. Let {An : n ∈ N} be a sequence in N (0)

R converging to some A ∈ N (0)

R . Since Rd is open we

have lim infn→∞ #An = lim infn→∞ An(Rd) ≥ A(Rd) = #A. If #A = ∞ we are done. If #A < ∞ we

need to prove that lim supn→∞ #An ≤ #A. If this is not the case then #An ≥ #A + 1 for infinitely

many n and, for those n, An(K) ≥ #A + 1, where K is a closed ball of radius R(#A + 1) centred at

zero. Then lim supn→∞ An(K) ≥ #A + 1 > A(Rd) ≥ A(K) which is a contradiction. �

2.2 The large deviation principle

Now we formulate the main result of this section, the large deviation principle for the empirical

measures YN introduced in (1.12). Let L, J : M1 → [0,∞) be defined by

L(Y ) :=

∫

N
(0)
R

Y (dA)
1

#A
and J(Y ) := 1 − L(Y ), (2.2)

where we recall our conventions 1/∞ = 0 and 1/0 = ∞.
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Proposition 2.2 (Large deviation principle for YN ).

(i) The sequence (YN )N∈N satisfies a large deviation principle on the space M(0)

1 with speed

N log(1/%N ) and rate function J , that is, the following holds. For any open set O ⊂ M(0)

1 ,

lim inf
N→∞

1

N log(1/%N )
log PΛN

(YN ∈ O) ≥ − inf
Y ∈O

J(Y ), (2.3)

and for any closed set C ⊂ M(0)

1 ,

lim sup
N→∞

1

N log(1/%N )
log PΛN

(YN ∈ C) ≤ − inf
Y ∈C

J(Y ). (2.4)

Furthermore, J is continuous.

(ii) Let O ⊂ M(0)

1 be an open set and Y ∈ M(0)

1,? ∩ O. Denote

n(Y ) = max
{
#A : Y ({A}) > 0

}

and pick ν < ν(Y ), where

ν(Y ) = min
{
|x − y| : x, y ∈ A for some A with Y ({A}) > 0 and x 6= y

}
.

Then

lim inf
N→∞

1

N log(1/%N )
log PΛN

(
YN ∈ O, YN

(
N (0)

R,n(Y ),ν

)
= 1

)
≥ −J(Y ).

Proposition 2.2 shows that the distribution of YN depends, on the exponential scale N log(1/%N ),

only on the distribution of the component sizes, i.e., on the distribution of the mapping q̂ =

(q̂κ)κ∈N : M1 → [0, 1]N defined by its coordinates

q̂κ(Y ) = Y ({A : #A = κ}), for κ ∈ N. (2.5)

This can be understood as follows. Given q, the probability that the configuration {X1, . . . , XN} has

about Nqκ/κ components of size κ for each κ ∈ N, is determined by the probability to place, for any

κ ∈ N, Nqκ/κ points somehow into ΛN and to control the combinatorics coming from the possible

choices of the indices 1, . . . , N . The excluded-volume effect requiring that these points are sufficiently

distant from each other may be ignored when deriving upper bounds and has a negligible effect because

of the diluteness. Placing the remaining points in such a way that components of the required sizes

arise has an effect on the scale e−O(N), which is negligible. This explains why the large-deviation rate

function is only a function of the numbers q̂κ(Y ).

We refer to (2.3) and (2.4) as to the lower bound for open sets and the upper bound for closed sets,

respectively. The version of the large deviation lower bound in Proposition 2.2 (ii) is used in Section 4.2,

where we apply Varadhan’s lemma to a functional without sufficient continuity properties.

Observe that the continuity of J follows from the continuity of L, which itself immediately follows

from Lemma 2.1. In Section 2.3 we prove (ii) and in Section 2.4 we prove the upper bound for closed

sets. Observe that the lower bound for open sets immediately follows from (ii) by the continuity of J ,

since M(0)

1,? is dense in M(0)

1 . By Br(x) we denote the Euclidean ball of radius r > 0 around x ∈ Rd.

2.3 Proof of Proposition 2.2 (ii)

Let O ⊂ M(0)

1 be an open set, and let Y ∈ M(0)

1,? ∩ O. Let us write Y in the form

Y =
m∑

i=1

piδAi ,

where m ∈ N, p1, . . . , pm > 0 add up to one, and the configurations Ai ∈ N (0)

R,? are pairwise distinct.

The symmetries of Y as a member of the space M(0)

1,? imply that any two atoms of Y that are shifts
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of each other appear with the same probability. This allows us to introduce an equivalence relation

on the integers {1, . . . , m}: we say that i ∼ j if there is x ∈ Ai such that Aj = Ai − x. It is easy to

see that this is indeed an equivalence relation: i ∼ i as 0 ∈ Ai; if i ∼ j then j ∼ i since 0 ∈ Ai and

so −x ∈ Aj ; if i ∼ j and j ∼ k then Aj = Ai − x for some x ∈ Ai and Ak = Aj − y for some y ∈ Aj ,

which implies Ak = Ai − x − y, and it suffices to notice that x + y ∈ Ai since y = z − x for some

z ∈ Ai. For each configuration A ∈ N (0)

R,? we denote by b(A) = 1
#A

∑
a∈A a its barycentre. If i ∼ j

then #Ai = #Aj , Ai − b(Ai) = Aj − b(Aj) and pi = pj . Denote the set of equivalence classes by C
and, for any c ∈ C, define Ec = Ai − b(Ai) and qc = pi for some i ∈ c. For technical reasons, we extend

the set C by one extra element c? and write C? = C ∪ {c?}. Finally, we denote Ec? = {0} and qc? = 0.

Hence, we may write

Y =
∑

c∈C

qc

∑

e∈Ec

δEc−e. (2.6)

For any N , let k(N)
c = bNqcc if c ∈ C and k(N)

c? = N −
∑

c∈C k(N)
c #Ec, also put k(N) =

∑
c∈C? k(N)

c .

Below we prescribe certain ways to place N points x1, . . . , xN into ΛN such that, for large N , the

resulting measure Y (x)

N lies in O and Y (x)

N (N (0)

R,n(Y ),ν) = 1.

Roughly speaking, we pick, for any c ∈ C?, precisely k(N)
c places in ΛN at which we put slightly

perturbed copies of the set Ec; let {x1, . . . , xN} be the union of these copies. If all these places are not

too close to each other, then these copies are its connected components, and Y (x)

N ≈ Y . Afterwards,

we give a lower bound for the total mass of the choices of these places and the choices of the perturbed

copies under the N -fold product of the uniform distribution on ΛN . Using elementary combinatorics,

we show that the exponential rate of this probability is bounded from below by −J(Y ).

The role of c? is the following. Having taken care of the components that appear with positive

probability in Y , we have distributed only
∑

c∈C k(N)
c #Ec points; the remaining k(N)

c? points will be

placed by default at the origin.

Let us turn to the details. Denote

r = max
{
|x − y| : x, y ∈ Ai for some i

}
∈ [0,∞),

ρ? = max
{
|x − y| : x, y ∈ Ai for some i and |x − y| < R

}
∈ [0, R).

Observe that ρ? < R since Y ∈ M(0)

1,?, and that |e| ≤ r for any e ∈ Ec for any c ∈ C?. Let ∆ = 2r+2R+1

and define the grid

DN :=
{
x ∈ ∆Zd ∩ ΛN : dist(x, ∂ΛN ) > r + R

}

and observe that #DN ≥ ∆−d|ΛN | (1 + o(1)). Let

Z(N) :=
{
z = (zc,i : c ∈ C?, i ≤ k(N)

c ) ∈ (DN )k(N)
: zc,i 6= zc′,i′ for (c, i) 6= (c′, i′)

}
,

the set of vectors of places where the perturbed copies of the Ec will be located. Note that, for any

z ∈ Z(N), for (c, i) 6= (c′, i′), the distance between zc,i and zc′,i′ is larger than 2r + 2R. Observe that,

as N ↑ ∞,

#Z(N) =
k(N)∏

j=1

[
#DN − j + 1

]
≥ (#DN )k(N)

(
1 −

k(N)

#DN

)k(N)

≥ |ΛN |k
(N)

eO(N) exp
{
−

(k(N))2

|ΛN |
O(1)

}
= |ΛN |k

(N)
eo(N log(1/%N )).

(2.7)

For each z ∈ Z(N), denote

σ(N)
z =

⋃

c∈C?

k
(N)
c⋃

i=1

(
zc,i + supp(Ec)

)
and S(N)

z =
∑

x∈σ
(N)
z

δx ∈ N .



DILUTE PARTICLE SYSTEM WITH LENNARD-JONES POTENTIAL 11

Since all Ec do not have multiple points, and due to our choice of Z(N), the configuration S(N)
z consists

of N distinct points of mass 1 belonging to ΛN , which form k(N)
c connected components of size #Ec

for each c ∈ C?. Later we will introduce a perturbation of the set σ(N)
z to obtain the set {x1, . . . , xN}

mentioned in the rough explanation below (2.6).

Fix 0 < ρ < min{ν(Y )− ν, R − ρ?}. Observe that the ρ/2-balls around the points of S(N)
z lie in ΛN

and have distance larger than ν to each other. The former follows from ρ/2+ r < r +R and the latter

from ρ+ν < ν(Y ) for balls centred at points belonging to the same cloud and from ρ+2r+ν < 2r+2R

(provided by the conditions ν < R and ρ < R) for balls centred at points belonging to different clouds.

Further, if y1, y2 ∈ S(N)
z are such that |y1 − y2| < R then the same is true for any ỹ1 ∈ Bρ/2(y1),

ỹ2 ∈ Bρ/2(y2). Indeed, |y1 − y2| < R implies |y1 − y2| ≤ ρ? and |ỹ1 − ỹ2| < R follows from ρ? + ρ < R.

On the other hand, if y1, y2 ∈ S(N)
z lie in different clouds, then |y1 − y2| ≥ (2r + 2R)− 2r = 2R. Since

ρ < R we obtain |ỹ1 − ỹ2| ≥ 2R− ρ > R for any ỹ1 ∈ Bρ/2(y1), ỹ2 ∈ Bρ/2(y2) and also ỹ1 and ỹ2 lie in

different clouds. Finally, the case |ỹ1 − ỹ2| = R is impossible since Y is concentrated on configurations

in N (0)

R,?.

For any A =
∑

i∈I δxi ∈ N and any ε > 0, we denote

A(ε) =
{∑

i∈I

δx̃i
: |x̃i − xi| < ε for all i ∈ I

}
.

The preceding arguments imply that any configuration S ∈ S(N)
z (ρ/2), like S(N)

z itself, consists of N

points which form k(N)
c clouds of size #Ec for each c ∈ C?. In particular, S does not contain clouds of

size larger than n(Y ) since #Ec ≤ n(Y ) for all c. Moreover, S has no multiple points, and any two

distinct points of S have distance larger than ν to each other. Finally, any two points of S belonging

to the same cloud have distance smaller than R to each other. We write {x1, . . . , xN} for the support

of S. This is the set mentioned in the rough explanation below (2.6). Recall that the measure Y (x)

N is

defined in (1.12). Summarising, we have that Y (x)

N is concentrated on the set N (0)

R,n(Y ),ν .

Observe that Y (x)

N can be written as

Y (x)

N =
1

N

∑

c∈C∗

k
(N)
c∑

i=1

∑

e∈Ec

δEc,i−ẽ(e,c,i),

where Ec,i ∈ Ec(ρ/2) and ẽ(e, c, i) ∈ Ec,i is uniquely determined by the condition |ẽ(e, c, i)− e| < ρ/2.

Let us show that Y (x)

N ∈ O for any support x = {x1, . . . , xN} of an S ∈ S(N)
z (ρ/2) with z ∈ Z(N).

There is an open set UY ⊂ O of the form

UY =
n⋂

j=1

{
Ỹ ∈ M(0)

1 :
∣∣∣
∫

Ỹ (dA)Fj(A) −

∫
Y (dA)Fj(A)

∣∣∣ < η
}

,

where η > 0, n ∈ N and F1, . . . , Fn : N (0)

R → R are continuous and bounded. Let M be such that

|Fj(A)| ≤ M for all A and all j ∈ {1, 2, . . . , n}. Denote q = min{qc : c ∈ C}. We have, for N ≥ 1/q,

∣∣∣
∫

Y (x)

N (dA)Fj(A) −

∫
Y (dA)Fj(A)

∣∣∣ =
∣∣∣
1

N

∑

c∈C∗

k
(N)
c∑

i=1

∑

e∈Ec

Fj

(
Ec,i − ẽ(e, c, i)

)
−

∑

c∈C?

∑

e∈E

qcFj(Ec − e)
∣∣∣

≤
∑

c∈C

∑

e∈Ec

k
(N)
c∑

i=1

∣∣∣
1

N
Fj

(
Ec,i − ẽ(e, c, i)

)
−

qc

k(N)
c

Fj(Ec − e)
∣∣∣ +

1

N

k
(N)
c?∑

i=1

∣∣Fj(Ec?,i − ẽ(0, c?, i))
∣∣.

Observe that Ec,i − ẽ(e, c, i) ∈ (Ec − e)(ρ) = Al(ρ) for some l ≤ m. Since the functions F1, . . . , Fn

are continuous and since the configurations A1, . . . , Am are finite, there is ε > 0 such that A ∈ Ai(ε)



12 ANDREA COLLEVECCHIO, WOLFGANG KÖNIG, PETER MÖRTERS AND NADIA SIDOROVA

implies |Fj(A) − Fj(Ai)| < η/2 for all i, j. We further require that ρ < ε, then we have

|Fj

(
Ec,i − ẽ(e, c, i)

)
− Fj(Ec − e)| <

η

2

for all j, c, i, e. Further, notice that
∣∣∣
1

N
−

qc

k(N)
c

∣∣∣ =
qc

bNqcc
−

1

N
≤

qc

Nqc − 1
−

1

N
≤

1

N(Nq − 1)
.

Using the boundedness of all Fj by M we obtain
∣∣∣
∫

Y (x)

N (dA)Fj(A) −

∫
Y (dA)Fj(A)

∣∣∣

≤
∑

c∈C

∑

e∈Ec

k
(N)
c∑

i=1

[
1

N

∣∣Fj

(
Ec,i − ẽ(e, c, i)

)
− Fj(Ec − e)

∣∣ +
∣∣∣
1

N
−

qc

k(N)
c

∣∣∣
∣∣Fj(Ec − e)

∣∣
]

+
k(N)

c? M

N

≤
1

N

∑

c∈C

∑

e∈Ec

k
(N)
c∑

i=1

[
η

2
+

M

Nq − 1

]
+

k(N)

c? M

N
=

η

2
+

M

Nq − 1
+

k(N)

c? M

N
.

Observe that

k(N)

c? = N −
∑

c∈C

k(N)
c #Ec = N −

∑

c∈C

bNqcc#Ec ≤
∑

c∈C

#Ec, (2.8)

which implies that
k
(N)
c? M

N → 0, since the right hand side of (2.8) does not depend on N . Since
M

Nq−1 → 0 as well, there is N0 such that for all N ≥ N0

∣∣∣
∫

Y (x)

N (dA)Fj(A) −

∫
Y (dA)Fj(A)

∣∣∣ < η

for all j ≤ n. This proves that, for N ≥ N0, Y (x)

N ∈ O for any S ∈ S(N)
z (ρ/2), z ∈ Z(N).

Recall that X(N)

1 , . . . , X(N)

N under PΛN
are independent and chosen uniformly from the set ΛN . For

N ≥ N0, we have

PΛN

(
Y (X)

N ∈ O, Y (X)

N

(
N (0)

R,n(Y ),ν

)
= 1

)
≥ PΛN

( ⋃

z∈Z(N)

Ω(N)
z

)
, (2.9)

where

Ω(N)
z :=

{ N∑

i=1

δ
X

(N)
i

∈ S(N)
z (ρ/2)

}
.

For a fixed z, Ω(N)
z is the event that each of N fixed non-intersecting balls of radius ρ/2 contains

exactly one of the points X(N)

1 , . . . , X(N)

N . Therefore

PΛN

(
Ω(N)

z

)
= N !

( |Bρ/2(0)|

|ΛN |

)N
.

Two events Ω(N)
z and Ω(N)

z′ are either equal or disjoint. Equality holds if and only if {zc,i : i ≤ k(N)
c } =

{z′c,i : i ≤ k(N)
c } for all c ∈ C with #Ec > 1 and additionally {zc,i : i ≤ k(N)

c , #Ec = 1} = {z′c,i : i ≤

k(N)
c , #Ec = 1}. Hence we can pick a subset of Z(N) consisting of

#Z(N)

( ∏

c∈C
#Ec>1

k(N)
c !

) ( ∑

c∈C?

#Ec=1

k(N)
c

)
!
≥ |Λn|

k(N)
exp

{
− N log N

∑

c∈C

qc

}
eo(N log(1/%N ))
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elements such that the corresponding events Ω(N)
z are pairwise disjoint. For the lower bound we

used (2.7). Together with (2.9) we obtain, for N ≥ N0,

PΛN

(
Y (X)

N ∈ O, Y (X)

N

(
N (0)

R,n(Y ),ν

)
= 1

)

≥ |Λn|
k(N)

exp
{
− N log N

∑

c∈C

qc

}
eo(N log(1/%N )) N !

|Bρ/2(0)|N

|ΛN |N

= exp
{

k(N) log |ΛN | − N log N
∑

c∈C

qc + N log N − N log |ΛN | + o(N log(1/%N ))
}

.

Recall that
∑

c∈C

qc =
m∑

i=1

pi

#Ai
= L(Y )

and hence k(N) = NL(Y ) + O(1). This gives

k(N) log |ΛN | − N log N
∑

c∈C

qc + N log N − N log |ΛN |

= (L(Y ) − 1)
(
N log |ΛN | − N log N

)
+ O(log |ΛN |)

= −J(Y )N log
1

%N
+ O(log N

%N
).

Obviously O(log N
%N

) is also o(N log(1/%N )). Hence

lim inf
N→∞

1

N log(1/%N )
log PΛN

(
YN ∈ O, YN

(
N (0)

R,n(Y ),ν

)
= 1

)
≥ −J(Y ),

which finishes the proof of Proposition 2.2 (ii).

2.4 Proof of Proposition 2.2 (i), upper bound

Now we show the upper bound for closed sets. As a preliminary step, we estimate the probability

PΛN
(q̂(Y (X)

N ) = q) from above for any q ∈ [0, 1]N, where q̂ is as defined in (2.5). By the discrete nature

of Y (X)

N , this probability is nonzero only when q lies in the set

Q(N) =
{

q ∈ [0, 1]N :
N∑

i=1

qi = 1,
Nqi

i
∈ N ∪ {0} for all i ≤ N, qi = 0 for all i > N

}
.

Substituting ki = Nqi/i and noting that ki ≤ N/i, the cardinality of this set can be estimated by

#Q(N) = #
{

(k1, . . . , kN ) ∈ NN
0 :

N∑

i=1

iki = N
}
≤

N∏

i=1

(N

i
+ 1

)
≤

(2N)N

N !
≤ e2N . (2.10)

Fix q ∈ Q(N). On the event {q̂(YN ) = q}, the points X(N)

1 , . . . , X(N)

N form ki = Nqi/i connected

components of size i, for each i ≤ N , and no connected components of size larger than N . The number

of ways to decompose {1, . . . , N} into
∑N

i=1 ki sets such that there are ki sets of cardinality i, for any i,

is equal to
N !

(
∏

i ki!)(
∏

i i!
ki)

.

We bound the probability that such a decomposition represents the connected components of

{X(N)

1 , . . . , X(N)

N } by the probability that each partition set is just connected. Therefore, using in-

dependence, we obtain

PΛN

(
q̂(Y (X)

N ) = q
)
≤

N !

(
∏

i ki!)(
∏

i i!
ki)

N∏

i=1

PΛN

(
{X(N)

1 , . . . , X(N)

i } is connected
)ki .
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If {X(N)

1 , . . . , X(N)

i } is connected, there exists a labelled tree on {1, . . . , i} with root in 1, such that for

every edge (j, k) in the tree, we have

X(N)

k ∈ BR(X(N)

j ).

By Cayley’s theorem, see [AZ98, pp. 141–146], the number of labelled trees with i vertices is ii−2, and

therefore we can estimate

PΛN

(
q̂(Y (X)

N ) = q
)
≤ N !

N∏

i=1

[ 1

ki!(i!)ki

( i|BR(0)|

|ΛN |

)(i−1)ki
]

≤ %N
N exp

{
−

∑

i

ki log
ki

|ΛN |
+ O(N)

}
,

uniformly in q ∈ Q(N), using the convention 0 log 0 = 0 and that
∑N

i=1 iki = N .

Let t ∈ (0, 1). Observe from (2.5) and (2.2) that L(YN ) =
∑∞

i=1
qi

i on the event {q̂(YN ) = q}. Hence

log PΛN
(L(YN ) ≤ t) = log

∑

q∈Q(N)
∑

i qi/i≤t

PΛN
(q̂(YN ) = q)

≤ log
[(

#Q(N)
)

max
{

PΛN

(
q̂(YN ) = q

)
: q ∈ Q(N),

∞∑

i=1

qi

i
≤ t

}]

≤ N log %N − inf
k∈DN

N∑

i=1

ki log
ki

|ΛN |
+ O(N),

(2.11)

where we introduced

DN =
{

k ∈ [0,∞)N :
N∑

i=1

iki = N,
N∑

i=1

ki ≤ tN
}
.

We show that

inf
k∈DN

N∑

i=1

ki log
ki

|ΛN |
≥ tN log %N + o

(
N log 1

%N

)
, for N → ∞. (2.12)

Indeed, substituting ri = ki/N , it suffices to show that

N∑

i=1

ri log(%Nri) ≥ t log %N + o
(
log 1

%N

)
,

whenever r1, . . . , rN ≥ 0 satisfy
∑N

i=1 iri = 1 and
∑N

i=1 ri ≤ t. Distinguishing the alternatives

log(1/ri) ≤ i and ri < e−i and using that x 7→ x log(1/x) is increasing near the origin, we get

N∑

i=1

ri log(1/ri) ≤
N∑

i=1

iri +
N∑

i=1

ie−i ≤ 1 +
∞∑

i=1

ie−i.

Therefore
∑N

i=1 ri log ri is bounded from −∞, which proves (2.12).

Inserting (2.12) into (2.11) implies that

log PΛN
(L(YN ) ≤ t) ≤ −(1 − t)N log

1

%N
+ o

(
N log 1

%N

)
, for N → ∞. (2.13)

Now let C ⊂ M(0)

1 be a closed set. Let s = infC J ∈ [0, 1]. If s = 1 then C contains only infinite

configurations and so PΛN
(YN ∈ C) = 0. If s = 0 then the upper bound is obviously satisfied. Assume
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that s ∈ (0, 1). We have

log PΛN
(YN ∈ C) ≤ log PΛN

(J(YN ) ≥ s) = log PΛN

(
L(YN ) ≤ 1 − s

)

≤ −sN log
1

%N
+ o

(
N log 1

%N

)
= −N log

1

%N

(
inf
C

J + o(1)
)
, for N → ∞.

This finishes the proof of the upper bound for closed sets.

3. Analysis of ϕ(n)

In this section we prove Lemma 1.1 and provide some properties of ϕ(n) introduced in Section 1.4.

Recall that ν0 = inf{x > 0: v(x) < ∞} and v(ν0) = ∞. For n ≥ 1, denote

Dn =
{
x = (x1, . . . , xn) ∈ (Rd)n : |xi − xj | > ν0 for all i 6= j

}
,

so that ϕ(n) = infx∈Dn Vn(x). Further recall the definition of N (0)

R,n,ν0
from (2.1).

Lemma 3.1.

(i) For each n, there is a minimiser x(n) ∈ Dn such that Vn(x(n)) = ϕ(n).

(ii) lim
n→∞

ϕ(n)
n = ϕ̃ ∈ (−∞, 0) and ϕ(n)

n > ϕ̃ for all n ∈ N.

(iii) For each n, there is a sequence (x(n,m) : m ∈ N) in Dn such that Vn(x(n,m)) → ϕ(n) as m → ∞,

and
n∑

i=1

δ
x
(n,m)
i

∈ N (0)

R,n,ν0
, for all m ∈ N.

Proof. (i) Denote D′
n = {x ∈ Dn : x1 = 0 and |xi| ≤ nR for all i}. Observe that ϕ(n) =

infx∈D′
n

Vn(x). Indeed, Vn is invariant under parallel translations, which allows to fix the first variable

to be zero. Further, since v is strictly negative on (R − ν1, R) and the system is invariant under

rotations and translations, only the points x with connected configurations
∑n

i=1 δxi contribute to the

infimum. Indeed, if the configuration has more than one connected component then two of them can

be rotated and translated in such a way that exactly one new negative interaction (at distance close

to R) occurs.

The set D′
n is bounded and, by Assumption (V) (2), the function Vn is continuous on D′

n. As

∂D′
n\D

′
n has components of distance precisely ν0 we infer from Assumption (V) (1) that Vn(x) → ∞

as x → y ∈ ∂D′
n\D

′
n. Hence Vn has a minimum x(n) on D′

n, which is also a minimum on Dn.

(ii) We first show subadditivity of the sequence (ϕ(n) : n ∈ N).. Fix n, m ∈ N. If y(n) and y(m) denote

any two configurations of n resp. m points in Rd, then we obtain a configuration y(n+m) of n+m points

by putting the two configurations at distance R to each other, such that they do not interact. Then

Vn+m(y(n+m)) = Vn(y(n)) + Vm(y(m)). Passing to the infimum of Vn resp. Vm over y(n) and y(m) yields

that ϕ(n + m) ≤ ϕ(n) + ϕ(m). Hence (ϕ(n) : n ∈ N) is subadditive and so ϕ̃ = limn→∞
ϕ(n)

n exists

and satisfies ϕ̃ ≤ ϕ(n)
n , for all n ∈ N.

Now suppose that for some n we have ϕ(n)
n = ϕ̃.. Let y(n) be a translated and rotated copy of x(n)

such that there is exactly one pair (i, j) with R > |x(n)

i −y(n)

j | > R−ν1. Then, by Assumption (V) (4),

ϕ(2n) ≤ V2n(x(n), y(n)) < Vn(x(n)) + Vn(x(n)) = 2ϕ(n) = 2nϕ̃

and so ϕ(2n)
2n < ϕ̃, which contradicts the fact that ϕ̃ = infn

ϕ(n)
n . Further, ϕ̃ ≤ ϕ(2)/2 = 1

2 min[0,∞) v <

0 and so it remains to prove that ϕ̃ > −∞. This is easy in the case ν0 > 0, since all the points x(n)

i

have distance ≥ ν0 to each other, and, by a comparison of volume, each of these points interacts only

with a number of other particles that is bounded in n. Hence, the total number of interactions is of

order n, and ϕ(n) is of order n as well, resulting in ϕ̃ > −∞.
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Now suppose ν0 = 0. Let In,i : Dn → R be defined by

In,i(x) =

n∑

j=1
j 6=i

v(|xi − xj |)

for 1 ≤ i ≤ n. Then Vn(x) =
∑n

i=1 In,i(x). For each n, let

In = max
1≤i≤n

In,i(x
(n)). (3.1)

The main step of the proof is to show that the sequence (In : n ∈ N) is bounded from below.

For each n, choose i(n) ∈ {1, . . . , n} in such a way that the ball Bν2

(
x(n)

i(n)

)
contains the maximal

number, k(n), of points x(n)

1 , . . . , x(n)
n . In particular, no ball of radius ν2/2 contains more than k(n)

of the points x(n)

1 , . . . , x(n)
n . Introduce ν3 = inf{x > 0: v(x) = 0} and denote by m(n) the number of

points x(n)

1 , . . . , x(n)
n that interact with x(n)

i(n), but have distance ≥ ν3 to this point. Since v is nonnegative

on [ν2, ν3], we obtain

In ≥ In,i(n)(x
(n)) ≥ (k(n) − 1) min

[0,ν2]
v + m(n) min

[0,∞)
v.

Hence

m(n) ≥
In − (k(n) − 1)min[0,ν2] v

min[0,∞) v
.

Recall the function s defined in Section 1.2. By scaling, for any r > 0, s(r/R) is the minimal number

of balls of radius r required to cover a ball of radius R. By definition of s?, we have (r/R)ds(r/R) ≤ s?.

Cover the ball BR(x(n)

i(n)) with a least number of balls of radius ν2/2. By choice of k(n), each of these

balls contains at most k(n) of the points x(n)

1 , . . . , x(n)
n . Hence the total number of points x(n)

j in

BR

(
x(n)

i(n)

)
is bounded by k(n)s(ν2/2R), which is not larger than k(n)(2R/ν2)

ds?. In particular,

In − (k(n) − 1)min[0,ν2] v

min[0,∞) v
≤ m(n) ≤ k(n)(2R/ν2)

ds?

and so

In ≥ k(n)
[

min
[0,ν2]

v + ν−d
2 (2R)ds? min

[0,∞)
v
]
− min

[0,ν2]
v.

By Assumption (V) (5), the expression in brackets is nonnegative. Using that k(n) ≥ 1 we obtain, for

all n,

In ≥ ν−d
2 (2R)ds? min

[0,∞)
v =: c > −∞.

For each n, let j(n) be the index where the maximum in (3.1) is attained, then we have

ϕ(n) = Vn−1(x
(n)

1 , . . . , x̂(n)

j(n), . . . , x
(n)
n ) + 2In ≥ ϕ(n − 1) + 2c ≥ · · · ≥ 2c(n − 1),

where the hat indicates the dropped component. Hence ϕ̃ ≥ 2c > −∞.

(iii) It has already been argued that there is a minimiser x(n) ∈ Dn for which
∑n

i=1 δ
x
(n)
i

is connected

and contains zero. Obviously, it can be approximated by x(n,m) ∈ Dn having both these properties

and additionally having no points at distance R. Since Vn is continuous the statement follows. �
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4. Asymptotics of ZN

In this section we complete the proof of Theorem 1.3. Recall from (1.13) that the partition function

N !|ΛN |−N ZN (βn, %N ) is the expectation of an exponential of Ψ(YN ), for Ψ: M(0)

1,? → (0,∞] defined

by

Ψ(Y ) :=

∫
Y (dA)W (A), where W (A) :=

1

#A

∑

x,y∈A
x 6=y

v(|x − y|).

We would like to apply Varadhan’s lemma for the large deviation principle for YN established in

Proposition 2.2 and the function Ψ. However, for both bounds there are technical obstacles. For the

upper bound, compactness of the level sets of the rate function J would be required, which is missing.

For the lower bound, upper semicontinuity of Ψ would be required. But W is only defined on finite

configurations and Ψ has no upper-semicontinuous extension to the whole space M(0)

1 . In case of hard

core interactions, a further problem is that Ψ(Y ) is infinity if Y gives positive weight to configurations

A with points close to each other.

In Section 4.1 we prove the upper bound by estimating Ψ(YN ) from below by Φ(q̂(YN )), where Φ is

a bounded and continuous function on a compact space and q̂(Y ) = (Y ({A : #A = n}) : n ∈ N). By

projection, we derive a large deviation principle for q̂(YN ) from the large deviation principle for YN .

We then apply Varadhan’s lemma to the function Φ.

In Section 4.2 we prove the lower bound by first restricting the expectation to the event that

the measure YN is concentrated on configurations with a bounded number of well-separated points.

On this event Ψ coincides with a cut-off approximation, which is continuous and bounded on M(0)

1 .

Proposition 2.2 (ii) shows that the restriction of YN to this event satisfies the same large deviation

lower bound. Hence we can apply the lower bound of Varadhan’s lemma on this event, and we finish

by showing that the restricted variational formula has the same value as the original one.

4.1 Proof of the upper bound

We endow [0, 1]N with the topology of pointwise convergence and recall that it is compact. Further

denote

Q =
{

q ∈ [0, 1]N :
∞∑

i=1

qi ≤ 1
}

,

and note that Q is closed, by Fatou’s lemma, and therefore compact. Let Φ: Q → R be defined by

Φ(q) =

∞∑

n=1

qn
ϕ(n)

n
+ ϕ̃

(
1 −

∞∑

n=1

qn

)
=

∞∑

n=1

qn

(ϕ(n)

n
− ϕ̃

)
+ ϕ̃.

We recall from (2.5) the definition of the mapping q̂ : M1 → Q given by q̂n(Y ) = Y ({A : #A = n}).

Lemma 4.1.

(i) For any real sequence (bn : n ∈ N) converging to zero the mapping q 7→
∑∞

n=1 qnbn is continuous

on Q. In particular, Φ is continuous.

(ii) The sequence (q̂(YN ) : N ∈ N) satisfies a large deviation principle on the space Q with speed

N log(1/%N ) and rate function H : Q → [0,∞) given by

H(q) := 1 −
∞∑

n=1

qn

n
.

The rate function H is continuous, and the level sets of H are compact.
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Proof. (i) Let q(i) → q in Q as i → ∞. For any ε > 0 let n0 be such that |bn| < ε/4 for all n ≥ n0.

There is i0 such that |q(i)
n − qn| < ε(2n0(maxk |bk| + 1))−1 for all i ≥ i0 for all n ≤ n0. For all i ≥ i0

we obtain
∣∣∣

∞∑

n=1

q(i)
n bn −

∞∑

n=1

qnbn

∣∣∣ ≤ max
k

|bk|
n0∑

n=1

|q(i)
n − qn| +

ε

4

∑

n>n0

(q(i)
n + qn) < ε.

Therefore, Φ is continuous, as ϕ(n)/n → ϕ̃ by Lemma 3.1.

(ii) For any n ∈ N, let Cn = {A ∈ N (0)

R : #A = n}, then the indicator function 1lCn : N (0)

R → {0, 1}
is continuous since the mapping A 7→ #A is continuous by Lemma 2.1. Since q̂n(Y ) =

∫
1lCn dY for

any Y , the map q̂n is continuous. Hence q̂ is continuous.

The statement of the lemma follows now from the contraction principle (see [DZ98, Theorem 4.2.1])

since, for any q ∈ Q, J is constant on the set {Y : q̂(Y ) = q} and equal to H(q). The continuity of H

follows from (i). The level sets of H are closed, and hence compact as Q is compact. �

Observe that if #A = n and A({a}) = 1 for all a ∈ A then W (A) ≥ ϕ(n)/n. Because YN ∈ M(0)

1,?

with probability 1 and
∑∞

n=1 q̂n(YN ) = 1, for all N ∈ N, we obtain

Ψ(YN ) ≥
∞∑

n=1

q̂n(YN )
ϕ(n)

n
= Φ(q̂(YN )).

Therefore

ZN (βN , %N ) ≤
|ΛN |N

N !
EΛN

[
exp

{
− NβN Φ(q̂(YN ))

}]
.

Recall that NβN = 1
cN log(1/%N ). Observe that infQ Φ ≥ ϕ̃ > −∞ by Lemma 3.1. Since Φ is

continuous and nonnegative and q̂(YN ) satisfies a large deviation principle with speed N log(1/%N )

and rate function H (with compact level sets) by Lemma 4.1, we can use the upper bound in Varadhan’s

lemma, see [DZ98, Lemma 4.3.6], which implies

lim sup
N→∞

1

N log(1/%N )
log EΛN

[
exp

{
− NβN Φ(q̂(YN ))

}]
≤ − inf

Q

{
1
cΦ + H

}
.

Using (1.14) we get

lim sup
N→∞

1

NβN
log ZN (βN , %N ) ≤ − inf

Q

{
Φ + c(H − 1)

}
.

Let q∞ = 1 −
∑∞

n=1 qn. Then we see that

inf
Q

{
Φ + c(H − 1)

}
= inf

q∈Q

{ ∑

n∈N

qn
ϕ(n)

n
+ ϕ̃

(
1 −

∑

n∈N

qn

)
− c

∑

n∈N

qn

n

}

= inf
{ ∑

n∈N∪{∞}

qnθn − c
∑

n∈N

qn

n
: q ∈ [0, 1]N∪{∞},

∑

n∈N∪{∞}

qn = 1
}

,
(4.1)

which is equal to the right hand side of (1.8).

4.2 Proof of the lower bound

Recall that v is continuous with a negative minimum and let ν3 = inf{x > 0: v(x) = 0} ∈ (ν0, ν1).

For any ν ∈ (ν0, ν3), denote vν(x) = min{v(x), v(ν)} for x ≥ 0. For each such ν and n ∈ N consider

Wn,ν : N (0)

R → R defined by

Wn,ν(A) =





1

#A

k∑

i,j=1
i6=j

vν(|xi − xj |) if A =
k∑

i=1

δxi and k ≤ n,

0 otherwise.
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and denote Ψn,ν : M(0)

1 → R by

Ψn,ν(Y ) =

∫
Y (dA)Wn,ν(A).

Lemma 4.2. For each ν ∈ (ν0, ν3) and n, Ψn,ν is well-defined and continuous.

Proof. Observe that −∞ < min
[0,∞)

v ≤ vν(x) ≤ max
[ν,ν3]

v < ∞ for all x ≥ 0 and so, for each A,

n min
[0,∞)

v ≤ Wn,ν(A) ≤ n max
[ν,ν3]

v.

Hence Ψn,ν is well-defined. To prove the continuity of Ψn,ν it suffices to show the continuity of Wn,ν .

Let A(i) → A in N (0)

R as i → ∞. If #A > n then #A(i) > n eventually by Lemma 2.1 and so

Wn,ν(A
(i)) = Wn,ν(A) = 0. If #A = k ≤ n then eventually #A(i) = k. It follows from [Res87,

Prop. 3.13] that if A =
∑k

j=1 δaj then eventually A(i) =
∑k

j=1 δai,j , where ai,j → aj as i → ∞ for all

j ≤ k. Now the continuity of Wn,ν obviously follows from the continuity of vν . �

Note that W and Wn,ν agree on N (0)

R,n,ν , for each n ∈ N and ν ∈ (ν0, ν3). Using (1.13) we obtain,

for each n and ν, that

ZN (βN , %N ) ≥
|Λ|N

N !
EΛN

[
exp

{
− NβN Ψn,ν(YN )

}
1
{
YN (N (0)

R,n,ν) = 1
}]

. (4.2)

Denote

M(0)

1,?,v =
{
Ỹ ∈ M(0)

1,? : ν(Ỹ ) > ν0

}
,

where ν(Y ) and n(Y ) have been defined in Proposition 2.2(ii). Let ε > 0 and Y ∈ M(0)

1,?,v. Pick

ν ∈ (ν0, min{ν(Y ), ν3}). Since Ψn(Y ),ν is continuous at Y by Lemma 4.2, there is an open set O ⊂ M(0)

1

such that Y ∈ O and Ψn(Y ),ν(Ỹ ) < Ψn(Y ),ν(Y ) + ε for all Ỹ ∈ O. Recall that log(1/%N ) = cβN . We

obtain, using (4.2), (1.14) and Proposition 2.2(ii),

lim inf
N→∞

1

N log(1/%N )
log ZN (βN , %N )

≥ 1 + lim inf
N→∞

1

N log(1/%N )
log EΛN

[
exp

{
− NβN Ψn(Y ),ν(YN )

}
1
{
YN ∈ O, YN

(
N (0)

R,n(Y ),ν

)
= 1

}]

≥ 1 − 1
c

(
Ψn(Y ),ν(Y ) + ε

)
+ lim inf

N→∞

1

N log(1/%N )
log PΛN

(
YN ∈ O, YN

(
N (0)

R,n(Y ),ν

)
= 1

)

≥ −1
c Ψn(Y ),ν(Y ) − ε

c + L(Y ).

Observe that Ψn(Y ),ν(Y ) = Ψ(Y ) for each Y , as it is concentrated on N (0)

R,n(Y ),ν . Since ε and Y are

arbitrary, we get

lim inf
N→∞

1

NβN
log ZN (βN , %N ) ≥ − inf

Y ∈M
(0)
1,?,v(N

(0)
R )

{
Ψ(Y ) − cL(Y )

}
. (4.3)

Now we explicitly construct a sequence in M(0)

1,?,v(N
(0)

R ) such that the values of Ψ − cL along the

sequence approach Ξ(c). Let ε > 0. For each n ∈ N, choose m(n) in such a way that Vn(x(n,m(n))) −
ϕ(n) < ε, where x(n,m) has been defined in Lemma 3.1. Denote y(n) = x(n,m(n)) and A(n) =

∑n
j=1 δ

y
(n)
j

,

which is in NR, by Lemma 3.1. For each k ∈ N and q ∈ Q, denote

p(k,q)
n =





qn if n ≤ k,

1 −
k∑

j=1

qj if n = 2k,

0 otherwise.
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Finally, denote

Yk,q =
2k∑

n=1

p(k,q)
n

1

n

n∑

j=1

δ
A(n)−y

(n)
j

and observe that Yk,q ∈ M(0)

1,?,v(N
(0)

R ) by Lemma 3.1. We have

L(Yk,q) =

∞∑

n=1

q̂n(Yk,q)

n
=

∞∑

n=1

p(k,q)
n

n
=

k∑

n=1

qn

n
+ 2−k

(
1 −

k∑

n=1

qn

)
.

Further,

Ψ(Yk,q) =
∞∑

n=1

q̂n(Yk,q)W (A(n)) =
2k∑

n=1

p(k,q)
n

Vn(y(n))

n
≤

k∑

n=1

qn
ϕ(n)

n
+

ϕ(2k)

2k

(
1 −

k∑

n=1

qn

)
+ ε.

We obtain

inf
Y ∈M

(0)
1,?,v(N

(0)
R )

{
Ψ(Y ) − cL(Y )

}
≤ Ψ(Yk,q) − cL(Yk,q)

=
k∑

n=1

qn
ϕ(n)

n
+

ϕ(2k)

2k

(
1 −

k∑

n=1

qn

)
+ ε − c

k∑

n=1

qn

n
− c 2−k

(
1 −

k∑

n=1

qn

)
.

This inequality is satisfied for all k and ε and hence we can take the limit as k → ∞ and ε → 0, which

gives

inf
Y ∈M

(0)
1,?,v(N

(0)
R )

{
Ψ(Y ) − cL(Y )

}
≤

∞∑

n=1

qn
ϕ(n)

n
+ ϕ̃

(
1 −

∞∑

n=1

qn

)
− c

∞∑

n=1

qn

n
.

Since this is true for all q ∈ Q we can take the infimum. Using (4.1) and recalling (4.3), we get the

lower bound.

5. Analysis of the variational formula

In this section we prove Theorem 1.5. Recall that θκ = ϕ(κ)/κ for κ ∈ N, θ∞ = ϕ̃, and denote by g

the largest convex function [0, 1] → [ϕ̃, 0] whose graph lies below the points (1/κ, θκ), see Figure 2.

This graph changes its slope precisely in the points (1/κn, θκn) with 1 ≤ n < η + 1, but may contain

more of these points. In particular, the sequence of slopes cn with 1 ≤ n < η + 1 is strictly decreasing

in n. As θκ > ϕ̃ by Lemma 3.1 (ii), all slopes cn of g are strictly positive. We write

g(x) =

{
θκn + cn(x − 1/κn) if x ∈ (1/κn+1, 1/κn] for some 1 ≤ n < η + 1,

ϕ̃ if x = 0.

Using the convention 1/∞ = 0, we can rewrite (1.8) as

Ξ(c) = inf
{ ∑

κ∈N∪{∞}

qκ

(
θκ −

c

κ

)
: q ∈ [0, 1]N∪{∞},

∑

κ∈N∪{∞}

qκ = 1
}

. (5.1)

For each c, denote by I(c) ⊂ N∪{∞} the set of points where the continuous mapping κ 7→ θκ − c/κ

from N ∪ {∞} to R attains its minimum.

Lemma 5.1.

Ξ(c) = min
κ∈N∪{∞}

(
θκ −

c

κ

)
,

the infimum in (5.1) is a minimum, and the set of minimisers is the convex hull of q(i) with i ∈ I(c).
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Proof. Let q ∈ [0, 1]N∪{∞} be such that
∑

κ∈N∪{∞} qκ = 1. If qj > 0 for some j /∈ I(c) then
∑

κ∈N∪{∞}

qκ

(
θκ −

c

κ

)
> min

κ∈N∪{∞}

(
θκ −

c

κ

) ∑

κ∈N∪{∞}

qκ = min
κ∈N∪{∞}

(
θκ −

c

κ

)
,

otherwise equality holds. �

Lemma 5.2.

min
κ∈N∪{∞}

(
θκ −

c

κ

)
=





ϕ̃ if c ∈ (0, cη],

− c
κn

+ θκn if c ∈ [cn, cn−1) for some 2 ≤ n < η + 1,

−c if c ∈ (c1,∞).

(5.2)

Further,

• if c ∈ (0, cη) then I(c) = {∞},
• if c = c∞ then I(c) = {∞}; this is only applicable if η = ∞ and c∞ > 0,

• if c ∈ (cn, cn−1), with some 2 ≤ n < η + 1, then I(c) = {κn},
• if c ∈ (c1,∞) then I(c) = {1},
• if c = cn for some 1 ≤ n < η + 1 then I(c) = I(n).

Proof. It is easy to see that

min
κ∈N∪{∞}

(
θκ −

c

κ

)
= min

x∈[0,1]
(g(x) − cx).

Since g is strictly convex and piecewise linear, the minimum on the right hand side can be found by

comparing the derivative of g with c.

• If c = cn for some 1 ≤ n < η + 1 then the minimum is attained on [1/κn+1, 1/κn] and is equal

to θκn − c
κn

.

• If c1 < c then the minimum is attained at x = 1 and is equal to −c.

• If cn < c < cn−1 for some 2 ≤ n < η + 1 then the minimum is attained at 1/κn and is equal

to θκn − c
κn

.

• If c < cη then the minimum is attained at 0 and is equal to ϕ̃.

• In the case η = ∞, c∞ > 0 we additionally have to consider c = c∞. In that case the minimum

is also attained at 0 and is equal to ϕ̃.

This proves (5.2) and the remaining statements follow easily. �

Theorem 1.5 follows now directly from (5.1) in combination with Lemmas 5.1 and 5.2.

6. A potential with more than one phase transition

By Theorem 1.5, we always have at least two phases: a high temperature phase where particles do not

interact, and a low temperature phase where the connected components of interacting particles are

unbounded. We now give an example of a potential where at least one further, intermediate, phase

exists.

To explain the idea, consider the potential v such that v = ∞ on [0, ν0) ∪ (ν0, R), v = 0 on [R,∞)

and v(ν0) = −M for some M > 0 and R > 2ν0. Obviously it does not satisfy Assumption (V),

but it provides the correct intuitive picture on which we build our example below. For this potential,

configurations have finite energy only if any two of its points are either precisely at distance ν0 or do not

interact. The largest configurations in Rd such that all distances are equal to ν0 are regular simplices

of d+1 points. Hence, optimal configurations of n particles are organised in bn/(d+1)c such simplices

at distances > R to each other and one subset of such a simplex with in = n−(d+1)bn/(d+1)c points.
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In particular, ϕ(n) = −2M
(
d+1
2

)
bn/(d + 1)c − 2M

(
in
2

)
for any n ∈ N, and ϕ̃ = −M . Hence, at zero

temperature, we see a phase in which only the simplices are present. In our modification below, this

phase is shifted to positive temperature. In the simplest case, where d = 1, we have ϕ(n) = −2Mbn
2 c,

and the diagram of the points (1/κ, ϕ(κ)/κ) with κ ∈ N ∪ {∞} is depicted in Figure 3.

Phase transitions diagram

1
1

1

2

1

3

1

4

1

5

1

6

1

7

−M

∞

−M

ν0 R

Potential v

Figure 3

The potential v violates Assumption (V)(4), as it is not negative just to the left of R. This is the

reason why the slope of the largest convex minorant is equal to zero close to 0, and this is why the

phase of simplices is present only at zero temperature. Introducing a (small) negative part in v to the

left of R will shift this phase to positive temperature.

Now we consider a potential of similar shape, but modified in such a way that it fulfills Assump-

tion (V). We will see that the diagram in Figure 3 is a degeneration of the phase transitions diagram

of this example.

Fix T > 6 and M > ε > 0. Consider a continuous potential v (shown in Figure 4) with support

equal to [0, 2T + 6], satisfying

(i) v(x) = +∞ for x ∈ [0, T ] and finite otherwise;

(ii) v(x) ≥ 3M for x ∈ [T + 1, 2T + 3];

(iii) min v = −M = v(T + 1/2);

(iv) v(x) < 0 for x ∈ [2T + 4, 2T + 6);

(v) min{v(x) : x > 2T + 3} = −ε = v(2T + 5).

T

3M

T + 1

∞

−M

−ε

2T + 5 2T + 62T + 42T + 3

Figure 4

The potential v satisfies Assumption (V) with ν0 = T and R = 2T + 6. For simplicity we will

consider its action on one-dimensional point configurations, i.e., we put d = 1. Our goal is to prove

that η = 2.

For each n, denote by x1 < · · · < xn a minimiser of Vn, which exists by Lemma 3.1. Obviously,

xi+1 − xi > T for all i. In the following lemma we prove that only neighbouring points in this
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configuration interact, and that the points are split into pairs with strong interaction −M between

the points in each pair and weak interaction −ε between the pairs.

Lemma 6.1.

(i) Precisely n − 1 − bn−1
2 c of the nearest-neighbour distances xi+1 − xi are equal to T + 1

2 , the

others are equal to 2T + 5. No two successive distances are equal to T + 1
2 . In particular, if n

is even then

xi+1 − xi =

{
T + 1

2 for odd i,

2T + 5 for even i.

(ii) For each n ∈ N,

ϕ(n) = −2M
(
n − 1 −

⌊n − 1

2

⌋)
− 2ε

⌊n − 1

2

⌋
.

(iii) ϕ̃ = −M − ε.

Proof. Since xi+1 − xi > T for all i, we have xi+3 − xi > 3T > 2T + 6, and so each point interacts

with at most two points on its left and at most two points at its right.

Let us show that there are no points with interacting distance between T +1 and 2T +3, where the

potential is large. Suppose this is not true and xj − xi ∈ [T + 1, 2T + 3] for some j > i (recall that j

can only be i + 1 or i + 2). Consider a new configuration y1 < · · · < yn given by yk = xk for k ≤ i

and yk = xk + 2T + 6 for k ≥ i + 1, i.e., we separate the first i points of the configuration x from the

others. This removes all the three interactions that involve xi and xi+1:

Vn(y1, . . . , yn) = Vn(x1, . . . , xn) − 2
(
v(xi+1 − xi−1) + v(xi+1 − xi) + v(xi+2 − xi)

)

Since either v(xi+1 − xi) or v(xi+2 − xi) is greater or equal than 3M and the other two are greater or

equal than −M we obtain Vn(y1, . . . , yn) < Vn(x1, . . . , xn), which contradicts x being a minimiser.

Now we conclude that each point in the configuration x interacts only with its neighbours. Indeed,

for any i, we have xi+2 − xi = (xi+2 − xi+1) + (xi+1 − xi) > 2T > T + 1. The above implies that

xi+2 − xi > 2T + 3. This implies that either xi+1 − xi or xi+2 − xi+1 is greater than T + 1 and hence

is greater than 2T + 3, by the above. This in turn implies that xi+2 − xi > 3T + 3 > 2T + 6, i.e., xi+2

and xi do not interact.

Therefore, since v assumes its minimum on [T, T + 1] at T + 1
2 with value −M and its minimum

outside [T, T + 1] at 2T + 5 with value −ε, all nearest-neighbour distances are either equal to T + 1
2

or 2T + 5. For each i, at most one of the distances xi+2 − xi+1 and xi+1 − xi belongs to the interval

[T, T + 1]. Hence, no two successive distances are equal to the optimal distance, T + 1
2 . Because

M > ε, the distance T + 1
2 is more favourable than the distance 2T +5, hence the number of distances

equal to T + 1
2 is maximal, i.e., equal to n − 1 − bn−1

2 c, and the other bn−1
2 c distances are equal to

2T + 5. From this, it is easy to conclude the proof. �
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−M − ε

Figure 5. Phase transitions diagram
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Now we argue that there are exactly two phase transitions. Indeed, for any n ∈ N, we have

ϕ(n) =

{
nϕ̃ − ϕ̃ if n is odd,

nϕ̃ + 2ε if n is even.

Hence all points (1/n, ϕ(n)/n) with n odd lie on the straight line passing through (0, ϕ̃) and (1, 0),

whereas the others lie on the straight line passing through (0, ϕ̃) and (− ϕ̃
2ε , 0) = (1

2 + M
2ε , 0), which lies

below the first line because M > ε. Hence we obtain the phase transitions diagram of Figure 5.

We obtain two phase transitions: one at c1 = −ϕ(2) = 2M from singletons to particle clouds with

even cardinality, and then at c2 = 2ε to infinite clouds.
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