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Abstract. We present a systematic numerical analysis of the magnetic 
properties of pyramidal-shaped core-shell structures in a size range below 
400 nm. These are three-dimensional structures consisting of a ferromagnetic 
shell which is grown on top of a non-magnetic core. The standard micromagnetic 
model without the magnetocrystalline anisotropy term is used to describe the 
properties of the shell. We vary the thickness of the shell between the limiting 
cases of an ultra-thin shell and a conventional pyramid and delineate different 
stable magnetic configurations. We find different kinds of single-domain states, 
which predominantly occur at smaller system sizes. In analogy to equivalent 
states in thin square films we term these onion, flower, C and S states. At 
larger system sizes, we also observe two types of vortex states, which we 
refer to as symmetric and asymmetric vortex states. For a classification of the 
observed states, we derive a phase diagram that specifies the magnetic ground 
state as a function of structure size and shell thickness. The transitions between 
different ground states can be understood qualitatively. We address the issue of 
metastability by investigating the stability of all occurring configurations for 
different shell thicknesses. For selected geometries and directions hysteresis 
measurements are analysed and discussed. We observe that the magnetic 
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behaviour changes distinctively in the limit of ultra-thin shells. The study has 
been motivated by the recent progress made in the growth of faceted core-shell 
structures. 

Contents 

1. Introduction 2 
2. Motivation 3 
3. Methodology 5 

3.1. The investigated system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2. The micromagnetic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3. Exploring the parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . 7


4. Numerical results 8 
4.1. Energetic ground states at Hext = 0 . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2. Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17


5. Conclusions 21 
Acknowledgments 22 
References 22 

1. Introduction 

The magnetocrystalline anisotropy of a bulk magnetic material governs its magnetic behaviour 
and is therefore key to its technological applicability. However, it is an intrinsic property of the 
material and cannot readily be tailored [1]. In contrast, the magnetic behaviour of a nanomagnet 
is also largely influenced by the interaction of the magnetization with its shape. This dependency 
provides the possibility of fine-tuning magnetic properties through shape-manipulation, which 
in turn requires very precise growth techniques. 

Lithographic methods have been widely used to produce ordered arrays of 
nanoelements [2]. The basic idea is to deposit a thin resist layer onto a substrate, parts of 
which are then chemically altered by exposing them to radiation. Finally, different techniques 
are used in order to transfer the generated pattern into an array of nanoelements. However, 
these nanoelements are not very well defined along the direction perpendicular to the original 
resist layer. In contrast, chemical methods are based on what is often referred to as the ‘bottom 
up’ approach, i.e. the nanoparticles develop from smaller units. The challenge of fabricating 
nanoparticles of non-spherical geometry is, therefore, to obtain a suitably anisotropic growth. 
Corresponding research on magnetic nanoparticles has led to the growth of a wide variety of 
shapes for hard magnetic iron compounds [3, 4]. 

In this paper, we use the micromagnetic model in the limit of soft magnetic materials 
(thus neglecting the magnetocrystalline anisotropy of nickel), which allows us to accurately 
analyse the competition between the exchange and the magnetostatic contributions of the model. 
Due to their nonlinearity, analytical approaches to solving the micromagnetic equations are 
feasible only for highly symmetric geometries and, even in these cases, cannot address certain 
phenomena such as metastability. Therefore, one usually employs numerical methods such 
as the finite difference (FD) method or the finite element (FE) method. The disadvantage 
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of numerical results is that they generally give less physical insight than a corresponding 
analytical solution. However, micromagnetic simulations not only yield the magnetization but 
also other important scalar and vector fields such as energy densities and effective magnetic 
fields corresponding to the different energetic contributions. A careful examination of these 
fields can reveal much about the underlying physical mechanisms. 

Micromagnetic studies of fundamental geometries have been mostly carried out for 
platelets, either of square [5]–[8] or circular [8]–[10] shape, and ferromagnetic cubes [11, 12]. 
Due to the above-mentioned limitations of standard growth techniques, more complex, 
three-dimensional (3D) nanoelements have been subject to far less research. Corresponding 
micromagnetic studies are also more involved as a standard FD discretization is only accurate 
for structures of rectangular symmetry [13]. In the literature, one can find micromagnetic 
investigations of cones [14, 15], pyramids [14], partially spherical structures [16, 17], 
tetrahedra and octahedra [18] and hexagonally shaped islands [19]. Energetic ground states 
of spherical core-shell structures have been studied analytically by deriving expressions for the 
micromagnetic energy contributions [20]. 

This paper on the study of the magnetic behaviour of soft-magnetic core-shell pyramids 
is structured as follows. In section 2, we briefly discuss the research on core-shell structures 
and give a summary of corresponding experimental work on the growth of pyramidal core-
shell structures. In section 3, we define the geometry (3.1), introduce the model and details 
of how it is implemented (3.2) and explain how the micromagnetic configurations have been 
computed over the parameter space of this study (3.3). The numerical results are presented 
in section 4. It contains an analysis of the magnetic behaviour of the core-shell structures in 
the absence of an external magnetic field (4.1). Characterizations of all the found remanent 
configurations (4.1.1 and 4.1.2) are given. A phase diagram, which delineates the energetic 
ground states as a function of the geometry-defining parameters, is presented and discussed 
(4.1.3), and the occurrence of an asymmetric vortex state is analysed (4.1.4). The second part 
of section 4 contains an investigation of the reversal behaviour along selected directions of the 
applied fields (4.2). Finally, we summarize our findings in section 5. 

2. Motivation 

As discussed in the introduction, most experimental and theoretical research has been devoted 
to the study of simple geometries such as circular or square platelets. This is mainly due to 
practical difficulties that arise in the growth of more complex geometries. In the context of 
3D objects, core-shell structures are advantageous for the following reasons: they reduce the 
amount of magnetic material used compared to filled 3D objects, which, in the case of expensive 
components, may lead to significant cost reductions. In addition, the interaction between the 
core and shell regions may lead to interesting physical phenomena. For example, the core region 
could consist of a material that is superconducting below a certain critical field, HC. In this case, 
the core can exhibit re-entrant superconductivity when the applied magnetic field compensates 
for the stray fields due to the ferromagnetic shell. Furthermore, superconductivity can exist 
up to applied fields well above the bulk critical field of the core due to these effects. On the 
other hand, if the core material is non-magnetic (e.g. the magnetic field in the core region lies 
above HC), then the magnetic behaviour of the core-shell structure will be solely governed by 
the ferromagnetic shell (the situation assumed in this paper). The transition between the two 
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Figure 1. Left: atomic force microscope (AFM) image of a pyramidal core-shell 
structure with a silver core and a nickel shell. Surface roughening indicates the 
polycrystalline character of the nickel shell [21]. The scale bar length is 1 µm. 
Right: hysteresis measurement on a pyramidal Ag/Ni core-shell structure. These 
measurements have been carried out at 5 K using a linear array of 2 µm × 2 µm 
GaAs/AlGaAs heterostructure Hall probes. An individual structure has been 
taken from the electrode and then placed onto an active Hall probe element 
with its basal plane facing down. The homogeneous magnetic field has been 
applied perpendicular to the Hall element, a direction that we identify with the 
z-direction. The x-axis shows the strength of the applied magnetic field, while 
the y-axis depicts the magnetic field detected by the Hall element �Bz� minus the 
applied field Hz. The latter quantity corresponds to the stray field generated by 
the pyramidal shell, which is spatially averaged over the active area of the Hall 
element. 

magnetic states of the core-shell structure depends on the properties of both core and shell 
materials, and on the geometry of the structure. 

The work presented here only considers the properties of the ferromagnetic shell. It 
has been motivated by corresponding experimental work on the electrochemical growth of 
pyramidal core-shell structures with a silver (Ag) core and a nickel (Ni) shell ([21], figure 1), 
which we will briefly describe in the following: for this a two-step dual bath method is used. 
First, single crystalline, pyramidal-shaped silver mesostructures are deposited on a highly 
ordered pyrolytic graphite (HOPG) working electrode from an aqueous solution of 100 mM 
AgNO3 at a pH value between 2 and 2.5. In the process the potential of the HOPG working 
electrode is first set to 1 V for 60 s, then to 0 V for 10 s and finally to −10 mV for 30 s. The 
silver deposition occurs during the last stage via the so-called Volmer–Weber mechanism, in 
which 3D nuclei are promptly formed. In the second step the electrolyte is replaced by an 
aqueous solution containing 2.3 M NiSO4, 0.6 M NiCl2 and 0.5 M boric acid. The nickel is then 
electrodeposited at a potential of −800 mV versus an Ag/AgCl reference electrode and a pH 
value of 2. Cyclic voltammograms suggest that at this potential nickel is only deposited on the 
metallic silver islands and not elsewhere on the HOPG electrode. A direct deposition of nickel 
onto HOPG turns out to be impracticable as it tends to plate rather than to exhibit a 3D growth 
mode. The pyramidal core-shell structures grown with this method (figure 1) have typically a 
base side length of 10 µm, a height of 5 µm and a shell thickness of about 100 nm. 
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Figure 2. Sketch of a pyramidal shell structure. The left part of the figure shows 
a 3D visualization. On the right, parameters defining the shell geometry are 
introduced on the basis of a cross-section through the shell structure’s centre. 
The parameter h is the height of the pyramid, a denotes its edge length and t is 
the thickness of the shell. t � defines the distance between each outer side face 
and the centre of the basal plane. Throughout the paper, we define the z-direction 
as the direction that is represented by the tip, while x and y are aligned parallel 
to the edges of the basal plane. 

3. Methodology 

3.1. The investigated system 

We focus our micromagnetic studies on pyramidal shells with a square base. The base of the 
pyramid is not covered with a ferromagnetic layer as it is sitting face down on the growth 
substrate (i.e. the HOPG) during electrodeposition. Figure 2 shows how such a structure can be 
defined in terms of three parameters. The pyramidal shape is defined by the edge length a and 
the height h, while the parameter t is the shell thickness. 

In order to limit the number of simulations for this study to a reasonable extent, we 
have restricted our parameter space by setting h = a/2, which also appears to concur with the 
shape of the experimentally grown structures (see section 2). Furthermore, we replace the shell 
thickness t in absolute units by trel, which is defined as 

t 
trel = 100.0 .· 

t � 

Here, t �
= a/(2

√
2) is the distance of one of the triangular faces of the shell’s outside to the · 

centre of the base. trel ranges between 0.0 and 100.0, with 0.0 being the limit of an infinitely thin 
shell, and 100.0 representing a completely filled pyramid. Two shells with the same value for 
trel, say (a1, trel) and (a2, trel), are mathematically similar, i.e. the former can be obtained from 
the latter by rescaling it by a factor a1/a2. Thus, a may be regarded as a size parameter and trel 

as a shape parameter. 

3.2. The micromagnetic method 

The micromagnetic model, as introduced by Brown, approaches ferromagnetism on a 
mesoscopic scale, i.e. it only indirectly accounts for the underlying atomic structure of the 
material and assumes a continuous magnetization M� (r�), which determines the state of the 
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ferromagnetic structure. At each point r�, usually four different torques are considered to act 
upon M� (r�). These torques are due to local magnetocrystalline anisotropy, short-range exchange 
interaction, long-range magnetostatic interaction and an externally applied magnetic field. The 
former three contributions are material dependent, so that the model requires the input of 
corresponding parameters. These parameters are the exchange constant A, anisotropy constants 
of different order (K1, K2,. . . ), and the saturation magnetization MS. Since nickel is a very 
promising ferromagnetic material for the growth by electrodeposition, we use the corresponding 
values A = 7.2 × 10−12 J m−1 and MS = 493380 A m−1 [22], while we neglect its highly 
temperature-dependent cubic anisotropy. At room temperature the anisotropy constants are 
K1 = −4500 J m−3 and K2 = −2500 J m−3, which are small compared to the typical magnitude 

µ0of the magnetostatic self-energy Kd = 2 · MS
2 
= 152948 J m−3. Earlier studies suggest that 

the omission of the anisotropy term does not qualitatively alter the results within the regime 
investigated here (i.e. dimensions of about 60 lexch and below, where lexch is the exchange · 
length defined by lexch =

√
A/K D) [12]. Furthermore, due to the polycrystalline structure 

of the electrodeposited nickel shell, an inclusion of magnetocrystalline anisotropy is not 
straightforward. We do not consider surface anisotropy, which becomes especially important 
for very thin shells [6], and additional energy contributions that, for example, may arise from 
magnetoelastic effects such as magnetostriction. The total energy Etot of our system can be 
written as 

Etot = Eexch + Edemag + Eext. (1) 

In order to find a configuration M� (r�) that minimizes Etot, we use the Landau–Lifshitz–Gilbert 
(LLG) equation 

∂ M� γ αγ 
= − M� × H� eff + M� × (M� × H� eff), (2)

∂t 1 + α2 (1 + α2)MS 

where the effective magnetic field H� eff is the variational derivative of Etot with respect to 
the magnetization M� (r�) and accordingly has contributions stemming from the exchange and 
magnetostatic interactions and the external field H� ext, i.e. 

1 δEtot
H� eff = H� exch + H� demag + H� ext = − . (3) 

µB δM�

The constant γ = 2.214 × 105 m (As)−1 is the gyromagnetic ratio of an electron, and α the 
dimensionless Gilbert damping constant. Since we are only interested in finding energy-
minimizing configurations of the system, and not in the dynamics of M� (r�), we choose α = 1 
in order to achieve a maximal damping [22]. Equation (2) implies that the magnitude of 
the magnetization does not change over time, i.e. |M� (r�, t)| = | M� (r�)| = MS. Therefore, we 
introduce a reduced vector field m�(r�, t) = M� (r�, t)/MS whose magnitude is 1, and use m�(r�) for 
illustrations of the magnetization in this paper. For the numerical solution of the LLG equation, 
we employ the micromagnetic FE simulation package Nmag [23], which discretizes the relevant 
fields on a tetrahedral (i.e. unstructured) mesh and thus allows for modelling arbitrarily shaped, 
ferromagnetic structures. While the contributions of the exchange and the external field are 
obtained by a direct FE discretization of the corresponding energy terms, the hybrid FE 
method/boundary element method (hybrid FEM/BEM) is used to calculate the numerically 
expensive, magnetostatic contribution [24]. Like a direct discretization of the magnetostatic 
energy the latter method only requires the meshing of the ferromagnetic region Rm , while the 
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scaling behaviour improves from O(N 2) to O(NS
2), where N and NS denote the total numbers 

of nodes within Rm and on the surface of Rm , respectively. We use hierarchical matrices [25] in 
order to approximate a dense boundary element matrix which occurs within the scheme of the 
hybrid FEM/BEM. This further improves the computational complexity of the method to O(N ). 
The hierarchical matrix approximations are assembled using the HCA II algorithm [26] with a 
set of parameters as given in [27]. We find that the use of hierarchical matrices works well for the 
studied pyramidal geometries, as the error introduced by this approximation is small compared 
to other numerical errors in the computation of H� demag, which are driven by the discretization 
(see discussion of tetrahedra edge length below). Each tetrahedral mesh has been created with 
the commercial software tool Fluent Gambit 2.4.6. When creating the unstructured mesh its 
resolution has to be such that the computation of the model’s exchange and magnetostatic fields 
is reasonably accurate. For a sufficient accuracy in the exchange field computation the edge 
lengths of all tetrahedrons should typically lie below the exchange length lexch [18, 28], which in 
the case of nickel is equal to 6.86 nm. Since Gambit does not provide a parameter for specifying 
a maximal edge length, we use an h-type refinement [29], i.e. add a nodal point to the centre 
of tetrahedron edges a with |a| > lexch and rearrange adjacent tetrahedra accordingly, in order 
to ensure a resolution below lexch. For each simulation we have checked whether the maximal 
angle between the magnetic moments of adjacent mesh nodes (the so-called spin angle) of the 
relaxed configuration is about 30◦ or below. Spin angles, which dramatically exceed this limit, 
underestimate the contribution of the local exchange field and may lead to incorrect results [30]. 
In order to estimate the error in the computation of the magnetostatic field H� demag, we have 
systematically varied the mesh resolution to compute H� demag, and repeated this procedure for 
different edge lengths a, shell thicknesses trel and magnetization configurations. As an estimate 
for the error we have used the average of H� demag over all mesh nodes (in a more rigorous 
analysis one should use a norm as defined in [31]), and demand that its variation as a function 
of the mesh resolution should lie well below 1% (in line with [31]). Our findings are that the 
edge lengths of the tetrahedra should be below the values 0.035a or 0.5t , where a and t are 
the base length of the pyramidal structure and the shell thickness, respectively (see geometry 
figure 2 for a and t). In summary, depending on the size and shape of the pyramidal shell we 
have chosen the smallest of three threshold values (exchange length, 0.5t , 0.035a), to obtain 
satisfactory accuracy. For the time integration of (2), Nmag uses an implicit time integration 
scheme as reported in [32] and made available in the Sundials software library [33]. The system 
is integrated until the angular rate of change of the magnetization is below 1◦ ns−1 at every mesh 
node. 

3.3. Exploring the parameter space 

The parameters a and trel, as introduced in section 3.1, define a 2D phase space. One goal 
of this paper is to examine this phase space for micromagnetic ground state configurations in 
the absence of an externally applied magnetic field. Ground state configurations minimize the 
micromagnetic energy of (1). We start these investigations by relaxing the magnetization for 
different parameter sets (a, trel) and initial configurations. The edge length a is set to values 
at 20, 50, 100, 150, 200, 250, 300, 350 and 400 nm (i.e varied between amin ≈ 3 · lexch and 
amax ≈ 60 · lexch), while thicknesses of trel = 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90 and 100% 
are used. As initial configurations we choose different homogeneously aligned magnetizations 
pointing in directions such as (1, 0, 0), (0, 0, 1), (1, 1, 0) and (1, 1, 0.5) (with respect to 
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the coordinate system defined in figure 2). Obtaining a set of stable configurations for each 
investigated point (a, trel) we assume the configuration with the lowest micromagnetic energy 
to be the ground state. The corresponding results are then most conveniently summarized in a 
phase diagram which states the micromagnetic ground state as a function of a and trel. 

In order to add phase boundaries to the phase diagram, we use a technique similar to 
the one described in [34]. We start from the relaxed micromagnetic configuration and rescale 
the mesh such that the edge length a increases or decreases by �a, i.e. the rescale factor is 
(a + �a)/a or (a − �a)/a, respectively. One should note that the described procedure does not 
work with a variation of the shape parameter trel. We extrapolate the rescaled micromagnetic 
configuration to a new mesh that discretizes the geometry of the new size (otherwise the 
rescaling procedure would change the resolution of the mesh) and relax the system to a new 
stable state. Usually the system will relax quickly, since we already start from a very good 
approximation of the domain structure. However, if the domain structure becomes unstable at 
the new system size, it will collapse to a qualitatively different micromagnetic configuration. 
We use this procedure iteratively, when the ground state configuration between adjacent points 
of the same thickness trel changes. Starting from a configuration corresponding to a small 
value of a and gradually increasing a, we get a curve for the total energy as a function of a. 
Starting from a (different) configuration corresponding to a large a and then decreasing a, we 
obtain another data set of the total energy as a function of the edge length a. Subsequently, 
we determine by a low-order polynomial interpolation the point atrans at which the energies 
of both configurations cross over. When both states decay spontaneously into each other we 
choose atrans as the arithmetic mean value of the two edge lengths between which the transition 
occurs. Repeating this procedure for different thicknesses trel one can draw phase boundaries 
between areas of different micromagnetic ground states. Depending on the magnitude of a, 
we use different values for �a. We choose �a = 2 nm for 10 nm < a < 20 nm, �a = 5 nm for 
20 nm < a < 50 nm and �a = 10 nm for 50 nm < a < 400 nm. 

A problem in our approach may arise because the primary data points of the phase diagram 
have been obtained from a finite set of initial states. Thus, it could happen that at a certain 
parameter point (a, trel) a magnetization configuration may not have been found although it 
may be stable or even the ground state. 

4. Numerical results 

4.1. Energetic ground states at Hext = 0 

In this section, we present results on the micromagnetic states of pyramidal shells (see 
section 3.1) in the absence of an external magnetic field. In accordance with previous work 
on soft magnetic structures [12, 18], we find that in the investigated regime two types of 
ferromagnetic domains occur: the so-called single domain (or quasi-homogeneous) states and 
vortex states. 

4.1.1. Single-domain states. Single-domain states are quasi-homogeneous and have a well-
defined mean magnetization direction. They usually occur in the limit of very small structures 
(at dimensions of just a few exchange lengths). While the exchange interaction leads to the 
quasi-homogeneity, magnetostatic effects govern the direction of the mean magnetization. In the 
literature, one distinguishes between two types of anisotropies arising from the magnetostatic 
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contribution to the micromagnetic energy functional (1). Shape anisotropy describes the 
anisotropy of a completely aligned magnetization due to the shape of the ferromagnet. However, 
the deviations from homogeneous alignment may lead to a change in the character of the 
anisotropy, i.e. the assumption of homogeneous magnetization becomes invalid. This interaction 
between an inhomogeneous magnetization and the shape is called configurational anisotropy. 
The name derives from the fact that an inhomogeneous state generally changes with the 
direction in space, and the anisotropy follows from the different energies of those configurations. 
Configurational anisotropy is usually studied for quasi-homogeneous states [5, 18], while 
an analysis for more complex states (e.g. vortex states) turns out to be problematic [18]. 
We have investigated the shape anisotropy of our structures by systematically varying the 
spatial orientation of the homogeneous magnetization and computing the corresponding mean 
magnetostatic energy density. As a result, we have found that the shape anisotropy has a uniaxial 
symmetry with the structure’s basal plane being the easy plane. However, it turns out that due to 
configurational anisotropy quasi-homogeneous states, whose mean magnetization aligns either 
along the x (or y) direction (as defined in figure 2) or the diagonal of the basal plane, are 
energetically favoured. Figure 3 shows the observed single-domain states. Every state (apart 
from the state of figure 3(c)) corresponds to a state observed in square nanostructures [5, 6], 
i.e. shows a similar symmetry. However, the states of the pyramidal system are more 
inhomogeneous in the sense that there is a significant variation of the magnetization’s 
z-component. This is due to the fact that the magnetization tries to avoid surface charges on 
the inner and outer side faces of the shell by aligning parallel to those faces. 

We refer to the single-domain state, whose mean magnetization is aligned along the 
diagonal of the basal plane as an onion state (sometimes also called the leaf state). Figure 3(a) 
shows the magnetization of the onion state on the outer surface of a pyramidal shell with 
(a = 35 nm, trel = 20%). Moving from the lower left to the upper right corner the magnetization 
tries to follow the surface geometry by pointing upwards on the lower left and pointing 
downwards on the upper right half. Due to the symmetry of this state the z-component of the 
magnetization is zero across the crest, around which the proximity of negative and positive 
surface charges leads to a high magnetostatic energy density. The latter effect is inherent to the 
onion state. 

The state of figure 3(b) is called a flower state. It features the typical tilting in the 
vicinity of corners, which gives a flower-like impression. We observe that the spatially averaged 
magnetization, which is aligned with either the x- or y-axis, increases with growing shell 
thickness. This is due to surface charges that can be created on the basal plane of the pyramidal 
shell. The area of the latter grows with increasing shell thickness. Thus, the higher impact of the 
basal plane leads to generally better alignment of the magnetization along the x (or y) axis for 
thick shells. 

Figure 3(d) shows a so-called buckle or C state. The latter name derives from the shape 
of the flux lines, which, in the perspective of figure 3(d), resembles the letter C rotated 90◦ 

in the clockwise direction. Compared to a flower state, a C state reduces the magnetostatic 
energy by a higher degree of flux closure. This happens at the expense of a higher exchange 
energy. 

The so-called S state is shown in figure 3(e). Analogous to the C state, it gets its name from 
the shape of the flux lines that follow the shape of the letter S. Compared to the flower and the 
C state the mean magnetization of the S state is shifted towards a diagonal of the basal plane, 
i.e. from (1, 0, 0) to typically about (0.75, 0.25, 0). 
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Figure 3. Top view (in negative z-direction) of stable single domain states. The 
observed states are (a) an onion state, (b) a flower state, (c) a single-domain state 
aligned along the z-direction, (d) a C state, and (e) an S state. The pyramidal 
geometries correspond to the following parameter sets: a = 35 nm and trel = 20% 
for the onion state, a = 120 nm and trel = 10% for the flower state, a = 60 nm and 
trel = 10% for single-domain state in figure (c), and a = 300 nm, and trel = 10% 
for the C and the S state. For illustration purposes a semi-transparent depiction 
of the pyramidal shells has been overlaid onto each picture. 

Figure 3(c) shows a quasi-homogeneous metastable state found for very thin pyramid shells 
with a mean magnetization pointing in the z-direction. As this state is only metastable for very 
thin and small structures (a � 100 nm, trel � 10%) but unstable otherwise, we will not discuss it 
in what follows. 

4.1.2. Vortex states. There is no mathematically rigorous definition of a vortex state in 
micromagnetics [35]. For thin films a vortex state consists of a small, out-of-plane vortex core 
and an in-plane magnetization curling around the core. The in-plane magnetization helps form 
closed flux lines, i.e. reduces surface charges, at the expense of a higher exchange energy in the 
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Figure 4. Top view (in negative z-direction) of stable vortex states. We observe 
a symmetric vortex state (a) and an asymmetric vortex state (b). The pyramidal 
structure has an edge length of a = 300 nm and a thickness of trel = 10%. 

region around the vortex core. However, the magnetostatic energy of the vortex core cannot be 
neglected [6, 7]. For our geometries we observe two different vortex states (figure 4). 

Figure 4(a) shows a vortex state with a core aligned along the direction of the pyramid’s tip 
(i.e. in the z-direction). Due to the core position in the symmetry centre of the geometry, we will 
refer to this state as the symmetric vortex state. We note two features: firstly, the z-component 
of the curling magnetization fluctuates around the edges between two adjacent side faces. This 
effect is just visible in the form of colour variations in figure 4(a) but more pronounced in the 
warp plane representation of figure 9 (top image). Secondly, the vortex core broadens towards 
the top of the pyramid (see figure 5(a)). A consequence of this broadening is a decrease in the 
exchange energy density within the vortex core towards the top of the pyramid. 

Figure 4(b) shows the asymmetric vortex state whose core is sitting on one of the four 
(outer) side faces of the shell. A characteristic of the asymmetric vortex state is that its remanent 
magnetization is not only carried by the vortex core but also has a component parallel to 
the basal plane. This can be seen in figure 4(b) where more ‘magnetic moments’ point to 
the right than to the left. We discuss in section 4.2 that this leads to an interesting magnetic 
reversal behaviour. Figure 5 shows that the character of the state changes with varying shell 
thickness. While for thin shells (trel � 50) the vortex core runs from the outer face straight to 
the corresponding inner face (see figures 5(b) and (c)), it tends to bend towards the tip of the 
structure’s core for larger values of trel (figure 5(d)). This vortex core bending is also illustrated 
in figure 6 for a conventional pyramid, i.e. trel equals 100%. The position of the vortex on the 
outer side face lies in the vicinity of the pyramid tip for most values of trel, but is shifted towards 
the centre of the triangular face for very thin shells below 10%. 

4.1.3. Phase diagram and metastability. The phase diagram of figure 7 summarizes which 
state minimizes the total micromagnetic energy, i.e. is the ground state, for which geometry 
(defined by the parameter set (a, trel)). Physically the ground state can be interpreted as the 
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Figure 5. (a) Cross-sectional display of the symmetric vortex state. The pyramid 
in this example has an edge length of a = 150 nm and a thickness of trel = 50%. 
(b–d) Cross-section through an asymmetric vortex state for an edge length of 
a = 300 nm and three different thicknesses trel: 20% (b), 50% (c) and 80% (d). 
The cross-sectional plane centrally cuts the pyramidal structure in all depicted 
images. 

state which should be formed when a ferromagnetic structure is slowly cooled below its 
Curie temperature to 0 K [36]. According to [36], in the limit of large thermal activation, the 
ground state tends to be the same as the remanence state after saturation by an applied field. 
However, due to the complicated energy landscape of ferromagnetic systems it is difficult to 
make a general remark on the tendency of systems to adopt the micromagnetic ground state. 
In particular, for soft magnetic structures, metastable states may occur. Therefore, we will later 
discuss in figure 8 the stability regimes of all domain structures, which have been observed at 
the shell thicknesses trel = 10, 50 and 100%. One should note that our model does not consider 
the effects of thermal activation on the stability of different configurations. 

For small structure sizes (i.e. a < 100 nm ) only the flower and the onion state are energetic 
ground states. As can be seen from figure 7 the onion state minimizes the energy roughly for 
edge lengths a below 25 nm and shell thicknesses trel smaller than 55%. The simulation results 
do not give obvious reasons why the onion state becomes metastable at trel � 55%. However, 
corresponding investigations on square platelets have shown that the onion state becomes 
energetically favourable with respect to the flower state for larger values of the ratio between size 
and thickness [5, 36], which is qualitatively in agreement with our findings. These investigations 
have also shown that for small platelet thicknesses the onion state is the micromagnetic ground 
state in a wide size range. Thus, we observe a suppression of the onion state for the pyramidal 
structures. The reason seems to be the high magnetostatic energy density in the vicinity of the 
crest, which is inherent to the onion state. 
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Figure 6. Equipotential surfaces of the exchange energy density displaying 
a vortex state with a bent vortex core. The geometry is a full pyramid with 
a basal plane edge length of 300 nm and a height of 150 nm. The exchange 
energy density is defined as uexch = M� · H� exch = 2A m� · �

2m� . Artifacts from the 
numerical calculation of the exchange energy appear to lead to non-smooth 
surfaces. 

Figure 7. Phase diagram showing the ground states for different pyramidal 
structures. The two parameters are the edge length of the outer pyramid and the 
thickness of the pyramid shell. For better readability we have added schematic 
plots to the legend, which highlight the main features of each ground state from 
a top-down perspective. 

At larger edge lengths a the micromagnetic ground state crucially depends on the shell 
thickness trel. For thicknesses trel above 30% the symmetric vortex state becomes the ground 
state in a range between 120 and 180 nm, above which the asymmetric vortex state minimizes 
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Figure 8. Dependence of the energy density of different micromagnetic 
configurations on the size of the shell structure. Three different thicknesses 
trel are considered: (a) 10%, (b) 50% and (c) 100%. The dashed lines denote 
transitions between different states, i.e. the state with the higher total energy 
becomes unstable and the lower-energy state develops. For better readability, we 
have added schematic plots to the legend, which highlight the main features of 
each ground state from a top-down perspective. 

the micromagnetic energy. Here, the edge length atrans at which these transitions occur depends 
weakly on the shell thickness. Below trel = 20% the situation is different: with increasing edge 
length a the lowest energy state changes from the flower state to the C state and from the C 
state to the asymmetric vortex state. However, in this region of the phase diagram atrans strongly 
depends on the shell thickness trel itself. The occurrence of the C state at low values of trel can 
be readily understood: the penalty in the magnetostatic energy for the C state decreases with 
decreasing trel, as fewer surface charges on the basal plane are created. 

Another feature of very thin shells is a growth in the number of metastable states (figure 8). 
The number of stable configurations (i.e. curves in figure 8) is 7 for trel = 10%, 5 for trel = 50% 
and 4 for trel = 100%. Furthermore, the stability range of the quasi-homogeneous states (C and 
S states) and the symmetric vortex state extends to amax = 400 nm for trel = 10%, while for 
trel = 50% and trel = 100%, only the asymmetric vortex state is stable at large a. Thus the 
energy landscape becomes more complex, i.e. it contains more local minima, for very thin 
shells. Figure 8 shows that the S state only occurs as a metastable state. We find that its total 
micromagnetic energy is always higher than the energy of the C state, a result that also has been 
found for square films [6, 8]. A possible explanation is the larger distance between positive and 
negative surface charges for the S state [6]. 
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4.1.4. Why does the asymmetric vortex state occur?. The phase transitions from a flower state 
to a C state, and from a flower or C state to a vortex state (both symmetric and asymmetric), 
can be qualitatively explained in terms of (partial) flux closure and a corresponding reduction of 
the magnetostatic energy. In contrast, the physics driving the transition between the symmetric 
and the asymmetric vortex state is less evident and one has to take a closer look at the interplay 
between the geometry and the magnetization. In this section, we will qualitatively explain this 
transition, and thus the occurrence of the asymmetric vortex state. The fact that the asymmetric 
vortex state is the ground state at large sizes a suggests that it reduces the magnetostatic 
energy with respect to the symmetric vortex state. A key role in this reduction is played by 
the edges separating adjacent side faces on the outside of the shell. Figure 9 compares the 
magnetization, the demagnetization field, and the magnetostatic energy density of the symmetric 
and the asymmetric vortex states for a cross-section, which lies perpendicular to the z axis. The 
magnetostatic energy density is defined as 

udemag = − 2
1 M� · H� demag, (4) 

so that a parallel alignment of magnetization M� (r�) and demagnetization field H� demag is favoured. 
Let us first discuss the symmetric vortex state: Surface charges close to the edges of the outer 
surface, i.e. the corners of the cross-section in figure 9, create a local demagnetization field, 
which approximately aligns anti-parallel to the magnetization (see top left and middle left image 
of figure 9), corresponding to a local increase in the magnetostatic energy density. Therefore, 
the observed fluctuations of the magnetization around the edges of the outer side faces (see 
figure 9 (top)) can be understood in terms of a reduction of surface charges and a resulting lower 
demagnetization field. Towards the tip of the pyramid the area of the cross-section decreases 
and the impact of the edges becomes more significant. As a consequence the magnetization is 
increasingly driven out of the xy-plane so that this effect qualitatively explains the broadening 
of the vortex core as observed in figure 5(a). Effects at the edges between the inner side faces 
of the shell are far weaker. This is mainly because the large demagnetization fields, which are 
created between the areas of positive and negative surface charges, lie in the vacuum region, 
and therefore do not contribute to the micromagnetic energy functional. This is illustrated in the 
sketch of figure 10. 

When comparing the micromagnetic energy densities of an asymmetric and a symmetric 
vortex state (figure 9 (bottom)), a reduction of magnetostatic energy density at the edges of 
the outer surface can be observed for the asymmetric vortex state. It can be attributed to the 
significant z-component of the magnetization in the vicinity of the edges (figure 9 (top)). Firstly, 
this reduces surface charges and thus the magnitude of the local demagnetizing field as shown by 
figure 9 (middle). Secondly, figure 9 (middle) also shows that the symmetry (i.e. the direction) 
of the demagnetizing field remains basically unaltered, so that magnetization and demagnetizing 
field subtend a smaller angle, i.e. are not anti-parallel any more. According to (4), this leads to 
a reduction of the magnetostatic energy density udemag. 

In section 4.1.2, we have discussed that the core of the symmetric vortex state broadens 
towards the tip of the pyramidal structure. Accordingly, figure 9 (top) shows a very low exchange 
energy density at the top of the pyramidal structure for the symmetric vortex state, compared 
to the values shown for the core of the asymmetric vortex state. The much higher exchange 
energy density at the tip of the inner side faces is not shown in this figure. Generally we 
find that the exchange and magnetostatic energy densities are higher within the displaced core. 
As other energetic differences (e.g. at the edges of the inner surface) are relatively small, the 
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Figure 9. Different fields in a cross-sectional plane are shown for the symmetric 
(left) and the asymmetric (right) vortex state. The cross-section is perpendicular 
to the z-axis and intersects it at z = 50 nm (z = 0 nm corresponds to the basal 
plane). Within all images of the asymmetric vortex state the bent vortex core 
points towards the right. The geometry parameters are a = 240 nm and trel = 
30%. Top: the arrows in the plane represent the magnetization. Supplementary 
information is given by the warp plane, which bends out of the cross-plane. 
The displacement is proportional to mz. Quantitative values of mz can be taken 
from the colouration of the warp plane and the colour bar on the left. The 
exchange energy density of both configurations is represented in the form 
of contour surfaces. These reveal the location of the vortex core. Middle: 
demagnetization field. The arrows are scaled according to the strength of the 
local demagnetization field. Bottom: magnetostatic energy density. 
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m (r)

n (r)

HDemag (r)

σ (r) =M · n

Figure 10. Cross-section of a pyramidal shell illustrating the creation of surface 
charges near corners on the shell’s inner and outer surfaces. The symbols 
defined in the plot correspond to the magnetization m�(r�), the surface normals 
n� (r�), magnetic surface charges σ(r�), and the demagnetization field H� demag. 
The resulting demagnetization fields and their orientation with respect to 
the magnetization govern the magnetostatic energy density. The plot gives 
a qualitative idea of the physical behaviour, but the lengths of vectors and 
the number of each symbol do not rigorously mirror corresponding physical 
quantities. 

transition between the symmetric and the asymmetric vortex state seems to be governed by 
the competition between the magnetostatic energy density at the edges of the outer surface 
and the total micromagnetic energy density within the vortex core. More generally, we can 
conclude that a vortex configuration, whose core ends at a corner with converging edges, leads 
to high magnetostatic energy densities around the edges. This also may be an important factor in 
octahedra and cubes, where, for large enough structures, a vortex core aligned along a diagonal 
(i.e. the core ends in corners) switches to a vortex configuration with its core aligned along face 
normals [18]. Also the twisted vortex state observed for cubes [12] could be driven by similar 
edge effects as it becomes prominent in the limit of soft materials. 

4.2. Hysteresis 

Although a direct observation of ferromagnetic states by a direct measurement of the 
magnetization is possible (for example by using magnetic force (MFM) or spin-polarized 
scanning tunnelling microscopy (SP-STM) [37]), hysteresis measurements are often more 
pertinent for a characterization of the ferromagnetic properties of a structure. This is especially 
true for 3D structures like the pyramidal shells studied in this paper, as the above-mentioned 
methods are surface techniques and only relatively straightforward to use on planar, 2D 
structures. From a hysteresis measurement one can obtain parameters such as the coercivity, 
susceptibility and the hysteresis [1], which quantify the magnetic properties. Furthermore, 
the knowledge of which state develops from a configuration, where the magnetization is 
homogeneously aligned along a certain direction in space, is essential to the research on 
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ferromagnetic structures as it provides the opportunity to establish desired magnetic states. 
In the following section, we focus on the qualitative behaviour of the magnetic reversal and 
investigate intermediate magnetic configurations occurring between the saturated states and 
their effect on the hysteresis curve. 

We apply and change the external magnetic field H� ext along one of the edges of the 
structure’s basal plane (i.e. the x- or the y-direction in figure 2) and along the direction 
of the pyramid tip (z-direction). We choose the former direction since it corresponds to the 
system’s easy axis (for reasonable large system sizes where configurational anisotropy becomes 
important). The latter one is a suggested direction because it is perpendicular to the bottom layer. 
Therefore, the external magnetic field can be aligned accordingly and corresponding hysteresis 
measurements are easily realizable in experiments. The reversal simulations are performed by 
systematically changing the external field in small steps, and relaxing the magnetization to a 
stable configuration after each step. For every simulation, the external field is initially set to 
3.0 T. From there the field is first reduced in steps of 0.2 to 1.0 T, then in finer intervals of 0.05 
to 0.2 T, and finally to zero in 0.01 T steps. Afterwards the external field is changed equivalently 
from zero to −3.0 Tesla. We have performed hysteresis simulations at system sizes a = 100 nm, 
a = 150 nm and a = 250 nm for a thin shell (trel = 10%), a shell (trel = 50%), and a conventional 
pyramid (trel = 100%). Those parameter sets (a, trel) correspond to regimes where either the 
flower state, the C state or symmetric vortex state, or the asymmetric vortex state are the ground 
state. 

Hysteresis simulations along the z-direction, which corresponds to the hard axis direction 
for quasi-homogeneous states, reveal two types of reversal mechanisms: Figure 11 displays the 
reversal for (a = 100 nm, trel = 10%) and exemplifies the first type, which occurs via an onion-
like configuration. The remanent state is a symmetric vortex state (figure 11(b)). At a magnetic 
field of about −20 000 A m−1 the vortex state becomes unstable and switches to the onion-
like configuration (see figures 11(c) and (d)). This transition leads to a distinctive kink in the 
hysteresis curve and therefore may well be identifiable in an experiment. For larger structures the 
reversal along the z-direction happens via the asymmetric vortex configuration. Figure 12 gives 
a corresponding example for a full pyramid (trel = 100%). The hysteresis curve only contains 
subtle indications of changes in the micromagnetic configuration. Due to the discrepancy 
between the structure sizes accessible by experiment (∼µm) and simulation (∼100 nm), a 
comparison with the experimentally measured hysteresis curve of figure 1 is currently not 
feasible [21]. Interestingly the experimental curve exhibits a more square-like shape. This could 
be due to a pinning of the magnetization, which may arise from the polycrystalline structure 
of the shell and additional anisotropies (enhanced magnetocrystalline anisotropy of nickel at 
low temperatures, strain-induced anisotropy) not included in the used model. Another possible 
explanation is that the reversal involves the nucleation and propagation of domain walls, which 
may get pinned at imperfections of the sample, such as grain boundaries [21]. 

Varying the external magnetic field along the x-direction, we again find two reversal 
mechanisms. For smaller (i.e. a = 10 and 150 nm) or thin structures (trel = 10%), we find a 
direct transition between quasi-homogeneous states (i.e. flower, C and S states). This results in 
rectangular-shaped hysteresis curves similar to those of Stoner–Wohlfarth particles. Geometries 
with an edge length of a = 250 nm and thicknesses of trel = 50 and 100% exhibit a reversal 
mechanism that comprises a transition between two asymmetric vortex states whose cores end 
on opposing side faces (see figures 13(c) and (d)). The switching between the asymmetric 
vortex states can easily be understood, as both states have a relatively large magnetization 
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Figure 11. Hysteresis of a pyramid shell with an edge length of 100 nm and 
trel = 10%. The external field H� ext is applied along the z-direction, i.e. along 
the direction of the pyramid’s tip. For selected points (a)–(f) magnetization 
patterns are shown from a top-down perspective: (a) at higher external field 
the magnetization subsequently aligns along side faces. (b) At zero field a 
symmetric vortex configuration develops. (c) Magnetization partially reverses 
within vortex state. (d) Switch to a quasi-homogeneous state with the mean 
magnetization mainly aligned along a diagonal of the structure’s basal plane 
(onion state). (e) Reversal continues within onion state. (f) Switch to state where 
the magnetization is aligned along side faces again. 

component either parallel or anti-parallel to the external field. Generally, the reversal mechanism 
resembles the one observed for circular nanodots [9]. The main difference, however, is that 
for the pyramidal shells the hysteresis curve passes through two different remanent states, 
which correspond to the asymmetric states on opposite side faces. According to figure 13, this 
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Figure 12. Hysteresis curve of a full pyramid with an edge length of 250 nm. The 
external field H� ext is applied along the z-direction, i.e. along the direction of the 
pyramid’s tip. At selected points (a)–(f) magnetization patterns for cross-sections 
of the pyramid are presented. The cross-section lies in the xz-plane and intersects 
the pyramid centrally. (a) With decreasing external field a symmetric vortex state 
subsequently develops. (b) System switches to an asymmetric vortex state at 
remanence. (c) The asymmetric vortex state remains stable at low external fields. 
(d) Nucleation of what will become the core of a reversed symmetric vortex state. 
(e) The displaced vortex core is gradually pushed out by the developing core of 
the reversed symmetric vortex state. (f) Reversed symmetric vortex configuration 
after the displaced vortex core has been annihilated. 

transition occurs at relatively low fields, i.e. at fields below our step width of 7958 A m−1. Due 
to the fourfold symmetry of the pyramidal shell, one cannot only switch between two but four 
equivalent asymmetric vortex states. 
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Figure 13. Hysteresis of a pyramid shell with an edge length of 250 nm and 
trel = 50%. The external field H� ext is applied along the x-direction. For selected 
points (a)–(f) magnetization patterns are shown from an on-top perspective: 
(a) as the external field is reduced a flower state develops. (b) Switch to a C 
state at very low fields. (c) An asymmetric vortex configuration is formed at 
remanence. (d) At a low negative field the vortex core moves to the opposite side. 
(e) Vortex core subsequently moves down the side. (f) After the annihilation of 
the vortex core a reversed flower state becomes stable. 

5. Conclusions 

We have used micromagnetic simulations to conduct an in-depth analysis on the micromagnetic 
behaviour of pyramidal core-shell structures in the limit of soft magnetic materials. We have 
identified and characterized several stable and metastable states in a regime of sizes below 
60 lexch. A phase diagram, which presents the energetic ground states at different structure · 
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sizes and shell thicknesses, with accurately computed phase boundaries has been created. 
By carefully examining the results of our micromagnetic simulations we have been able to 
qualitatively understand the phase transitions between different ground states. Additionally, we 
have investigated the stability regimes of all occurring states at different thicknesses. From our 
findings we conclude that the physics changes crucially in the limit of very thin shells. This 
implies a higher number of metastable states, generally extended stability regimes of quasi-
homogeneous and vortex states (especially towards larger sizes) and differences in the ground 
state configurations. In particular, the reduction of metastable states with increasing thickness 
may be technologically relevant as the occurrence of metastable states can lead to problems. 
Analysing the magnetic reversal with respect to selected directions, we have found a switching 
mechanism between two equivalent vortex states that can be induced with low magnetic fields. 
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